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A matchbox manifold is a foliated space with totally disconnected transver-
sals, and an equicontinuous matchbox manifold is the generalization of Rie-
mannian foliations for smooth manifolds in this context. We develop the
Molino theory for all equicontinuous matchbox manifolds. Our work ex-
tends the Molino theory developed by Álvarez López and Moreira Galicia,
which required the hypothesis that the holonomy actions for these spaces
satisfy the strong quasianalyticity condition. The methods of this paper are
based on the authors’ previous work on the structure of weak solenoids, and
provide many new properties of the Molino theory for the case of totally
disconnected transversals, and examples to illustrate these properties. In
particular, we show that the Molino space need not be uniquely well defined,
unless the global holonomy dynamical system is stable, a notion defined in
this work. We show that examples in the literature for the theory of weak
solenoids provide examples for which the strong quasianalytic condition
fails. Of particular interest is a new class of examples of equicontinuous
minimal Cantor actions by finitely generated groups, whose construction
relies on a result of Lubotzky. These examples have nontrivial Molino se-
quences, and other interesting properties.
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1. Introduction

A smooth foliation F of a connected compact manifold is a smooth decomposition
of M into leaves, which are connected submanifolds of M with constant leaf
dimension n and codimension q, where m = n+ q is the dimension of M. This
structure is defined by a finite covering of M by coordinate charts whose image is
the product space

(−1, 1)n × (−1, 1)q ⊂ Rm,

such that the leaves are mapped into linear planes of dimension n, and the transition
functions between charts preserve these planes. The space (−1, 1)q is called the
local transverse model for F. A smooth foliation F is said to be Riemannian, or
bundle-like, if there exists a Riemannian metric on the normal bundle Q → M
which is invariant under the transverse holonomy transport along the leaves of F.
This condition was introduced by Reinhart [1959], and is a very strong assumption
to impose on a foliation. The Molino theory for Riemannian foliations gives a
complete structure theory for the geometry and dynamics of this class of foliations
on compact smooth manifolds [Haefliger 1989; Moerdijk and Mrčun 2003; Molino
1982; 1988].

An n-dimensional foliated spaceM, as introduced by Moore and Schochet [2006],
is a continuum — a compact connected metrizable space — with a continuous de-
composition of M into leaves, which are connected manifolds with constant leaf
dimension n. Moreover, the decomposition has a local product structure analogous
to that for smooth foliations [Candel and Conlon 2000; Moore and Schochet 2006];
that is, every point of M has an open neighborhood homeomorphic to the open
subset (−1, 1)n ⊂ Rn times an open subset of a Polish space X, which is said to be
the local transverse model. Thus, M has a foliation denoted by FM whose leaves
are the maximal path-connected components, with respect to the fine topology on
M induced by the plaques of the local product structure.

An equicontinuous foliated space is the topological analog of a Riemannian
foliation. In this case, the transverse holonomy pseudogroup associated to the
foliation is assumed to act via an equicontinuous collection of local homeomor-
phisms on the transverse model spaces. The transverse holonomy maps are not
assumed to be differentiable, so there is no natural normal bundle associated to
a foliated space, and the standard methods for showing an analog of the Molino
theory do not apply. In a series of papers, Álvarez López and Candel [2009; 2010]
and Álvarez López and Moreira Galicia [2016] formulated a topological Molino
theory for equicontinuous foliated spaces, which is a partial generalization of the
Molino theory for smooth Riemannian foliations. They formulated the notion of
strongly quasianalytic “regularity” for a foliated space, which is a condition on the
pseudogroup associated to the foliation, as discussed in Section 9. The topological
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Molino theory in [Álvarez López and Moreira Galicia 2016] applies to foliated
spaces which satisfy the strongly quasianalytic condition.

The topological Molino theory for an equicontinuous foliated space M with
connected transversals essentially reduces to the smooth theory, by [Álvarez López
and Candel 2010; Álvarez López and Moreira Galicia 2016; Álvarez López and
Barral Lijó 2016]. In contrast, when the transversals to FM are totally disconnected,
and we then say that M is a matchbox manifold, the development of a Molino
theory in [Álvarez López and Moreira Galicia 2016] does not address several key
issues, which can be seen as the result of using techniques developed for the smooth
theory in the context of totally disconnected spaces. In this work, we apply a
completely different approach to developing a topological Molino theory for the
case of totally disconnected transversals. The techniques we use were developed
in the authors’ works [Dyer 2015; Dyer et al. 2016; 2017]. They are used here to
develop a topological Molino theory for matchbox manifolds in full generality, and
to reveal the far greater complexity of the theory in this case. In particular, we show
by our results and examples that the classification of equicontinuous matchbox
manifolds via Molino theory is far from complete.

We recall in Section 2 the definitions of a foliated space M, and of a matchbox
manifold, which is a foliated space whose local transverse models for the foliation
FM are totally disconnected. The terminology “matchbox manifold” follows the
usage introduced in continua theory [Aarts and Oversteegen 1991; 1995; Aarts and
Martens 1988]. A matchbox manifold with 2-dimensional leaves is a lamination by
surfaces, as defined in [Ghys 1999; Lyubich and Minsky 1997]. If all leaves of M
are dense, then it is called a minimal matchbox manifold. A compact minimal set
M ⊂ M for a foliation F on a manifold M yields a foliated space with foliation
FM = F |M. If the minimal set is exceptional, then M is a minimal matchbox
manifold. It is an open problem to determine which minimal matchbox manifolds
are homeomorphic to exceptional minimal sets of Cr-foliations of compact smooth
manifolds, for r ≥ 1. For example, the issues associated with this problem are
discussed in [Cass 1985; Clark and Hurder 2011; Hurder 2013].

It was shown in [Clark and Hurder 2013, Theorem 4.12] that an equicontinuous
matchbox manifold M is minimal; that is, every leaf is dense in M. This result
generalized a result of Joe Auslander [1988] for equicontinuous group actions.
Examples of equicontinuous matchbox manifolds are given by weak solenoids,
which are discussed in Section 3. Briefly, a weak solenoid SP is the inverse limit
of a sequence of covering maps

P = {p`+1 : M`+1→ M` | `≥ 0},

called a presentation for SP , where M` is a compact connected manifold without
boundary and p`+1 is a finite-to-one covering space. The results of [Clark and
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Hurder 2013] reduce the study of equicontinuous matchbox manifolds to the study
of weak solenoids:

Theorem 1.1 [Clark and Hurder 2013, Theorem 1.4]. An equicontinuous matchbox
manifold M is homeomorphic to a weak solenoid.

The idea of the proof of this result is to choose a clopen transversal V0 ⊂M;
then associated to the induced holonomy action of FM on V0, one defines (see
Proposition 3.4) a chain of subgroups of finite index, G = {G0 ⊃ G1 ⊃ · · · }, where
G0 is the fundamental group of the first shape approximation M0 to M, where M0

is a compact manifold without boundary. Then M is shown to be homeomorphic to
the inverse limit of the infinite chain of coverings of M0 associated to the subgroup
chain G.

The theory of inverse limits for covering spaces, as developed for example in
[Fokkink and Oversteegen 2002; McCord 1965; Rogers 1970; Rogers and Tollefson
1971a; 1971b; Schori 1966], reduces many questions about the classification of
weak solenoids to questions about properties of the group chain G associated with
the presentation P. Thus, every equicontinuous matchbox manifold M admits a
presentation which determines its homeomorphism type. In Section 3A, the notion of
a weak solenoid SP with presentation P is recalled, and the notion of a dynamical
partition of the transversal space V0 is introduced in Section 3B. As discussed
in Section 3C, the homeomorphism constructed in the proof of Theorem 1.1 is
well defined up to return equivalence for the action of the respective holonomy
pseudogroups [Clark et al. 2013a, Section 4]. Thus, we are interested in invariants for
group chains that are independent of the choice of the chain, up to the corresponding
notion of return equivalence for group chains. This is the approach we use in this
work to formulate and study “Molino theory” for weak solenoids.

Section 4 introduces the group chain model for the holonomy action of weak
solenoids, following the approach in [Dyer 2015; Dyer et al. 2016; 2017]. Section 5
then recalls results in the literature about homogeneous matchbox manifolds and the
associated group chain models for their holonomy actions, which are fundamental
for developing the notion of a “Molino space”. Section 6 introduces the notion
of the Ellis group associated to the holonomy action of a weak solenoid. Ellis
semigroups were developed in [Auslander 1988; Ellis and Gottschalk 1960; Ellis
1960; 1969; Ellis and Ellis 2014], and also appeared in [Álvarez López and Candel
2010]. A key point of our approach is to use this concept as the foundation of our
development of a topological Molino theory.

A key aspect of the Molino space for a foliation is that it is foliated homogeneous.
A continuum M is said to be homogeneous if given any pair of points x, y ∈M, then
there exists a homeomorphism h :M→M such that h(x)= y. A homeomorphism
ϕ :M→M preserves the path-connected components, hence a homeomorphism
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of a matchbox manifold preserves the foliation FM of M. It follows that if M is
homogeneous, then it is also foliated homogeneous. Our first result is that every
equicontinuous matchbox manifold admits a foliated homogeneous Molino space.

Theorem 1.2. Let M be an equicontinuous matchbox manifold, and let P be a
presentation of M, such that M is homeomorphic to a solenoid SP . Then there
exists a homogeneous matchbox manifold M̂ with foliation F̂, called a Molino
space of M, and a compact totally disconnected group D (the discriminant group
for P as defined in Section 6C) such that there exists a fibration

(1) D −→ M̂
q̂
−→M,

where the restriction of q̂ to each leaf in M̂ is a covering map of some leaf in M.
We say that (1) is a Molino sequence for M.

The construction of the spaces in (1) is given in Section 7. The homeomorphism
type of the fibration (1) depends on the choice of a homeomorphism of M with
a weak solenoid SP , and this in turn depends on the choice of the presentation
P associated to M and a section V0 ⊂M, as discussed in Section 3C. Examples
show that the topological isomorphism type of D may depend on the choice of the
section V0, and the sequence (1) need not be an invariant of the homeomorphism
type of M. This motivates the introduction of the following definition.

Definition 1.3. A matchbox manifold M is said to be stable if the topological type
of the sequence (1) is well defined by choosing a sufficiently small transversal V0 to
the foliation FM of M. A matchbox manifold M is said to be wild if it is not stable.

In Section 7D we discuss the relation between the above definition and the notion
of a stable group chain as given in Definition 7.5. Our next result concerns the
existence of stable matchbox manifolds.

Proposition 1.4. Let M be an equicontinuous matchbox manifold, and suppose M

admits a transverse section V0 with presentation P, such that the group D in the
Molino sequence (1) is finite. Then M is stable.

Proposition 1.4 is proved in Section 7. Theorem 10.8 shows that every separable
Cantor group D can be realized as the discriminant of a stable weak solenoid, but
we do not know of a general criterion for when a weak solenoid whose discriminant
is a Cantor group must be stable.

The Molino space M̂ is always a homogeneous matchbox manifold. By the
results in [Dyer et al. 2016], M is homogeneous if and only if for some section V0,
the fibration (1) has trivial fiber D. Each leaf of a homogeneous foliated space has
trivial germinal holonomy, and thus the properties of holonomy for a matchbox
manifold M are closely related to its nonhomogeneity. Section 8 considers the
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germinal holonomy groups associated to the global holonomy action for a matchbox
manifold.

Of special importance is the notion of locally trivial germinal holonomy, intro-
duced by Sacksteder and Schwartz [1965], and used by Inaba [1977; 1983] in his
study of Reeb stability for noncompact leaves in smooth foliations. A leaf L x in a
matchbox manifold M, which intersects a transversal section V0 at a point x , has
locally trivial germinal holonomy if there is an open neighborhood U ⊂ V0 of x
such that the holonomy pseudogroup acts trivially on U. A leaf with locally trivial
germinal holonomy has trivial germinal holonomy, but the converse need not be
true. In particular, we prove the following result in Section 8. We say that a leaf
L x has finite π1-type if its fundamental group is finitely generated. A matchbox
manifold M has finite π1-type if all leaves in the foliation FM have finite π1-type.

Lemma 1.5. Let M be an equicontinuous matchbox manifold with finite π1-type.
Let L x be a leaf with trivial germinal holonomy. Then L x has locally trivial germinal
holonomy.

The statement of Lemma 1.5 is implicit in the authors’ work [Dyer et al. 2017].
The notion of locally trivial germinal holonomy and the germinal holonomy proper-
ties of equicontinuous matchbox manifolds turn out to be important in the study
of topological Molino theory. Since a weak solenoid is a foliated space, by a
fundamental result of Epstein, Millett and Tischler [Epstein et al. 1977] it contains
leaves with trivial germinal holonomy. A Schori solenoid is an example of a weak
solenoid, and was first constructed in [Schori 1966]. Each leaf in the foliation of a
Schori solenoid is a surface of infinite genus.

Proposition 1.6. The Schori solenoid contains leaves which have trivial germinal
holonomy, but do not have locally trivial germinal holonomy.

Proposition 1.6 is proved in Section 9. Proposition 1.6 shows that the condition
of finite generation of the fundamental group is essential for the conclusion of
Lemma 1.5. Another result, proved in Section 8, relates the existence of leaves with
nontrivial holonomy with nontriviality of the fiber D in the Molino sequence (1).

Theorem 1.7. Let M be an equicontinuous matchbox manifold. If M has a leaf
with nontrivial holonomy, then the Molino sequence (1) is nontrivial for any choice
of section V0 ⊂M.

The example in [Fokkink and Oversteegen 2002] and new examples in Section 10
show that nontrivial holonomy is not a necessary condition for (1) to be nontrivial,
as one can construct nonhomogeneous equicontinuous matchbox manifolds with
simply connected leaves.

Álvarez López and Moreira Galicia [2016] investigated Molino theory in the
case when the closure of the pseudogroup of an equicontinuous foliated space (in
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the compact-open topology) satisfies the condition of strong quasianalyticity (SQA).
Geometrically, this means that the pseudogroup action is locally determined; that is,
if a holonomy map acts trivially on an open subset of its domain, then it is trivial
everywhere on its domain. A natural problem is to determine which classes of
equicontinuous matchbox manifolds are SQA. This question is studied in Section 9.

Note that for equicontinuous actions on Cantor sets the compact-open topology,
the uniform topology and the topology of pointwise convergence coincide. The
following result is proved in Section 9. The set Vn in the statement below is a
partition set of V0 ⊂ T as defined in Proposition 3.4.

Theorem 1.8. Let M be an equicontinuous matchbox manifold which has finite
π1-type. Then there exists a transverse section V0 such that the action of the
holonomy pseudogroup on this section is SQA. In addition, if V0 can be chosen
so that the fiber D in the Molino sequence (1) is finite, then there exists a section
Vn ⊂ V0 such that the closure of the pseudogroup action on Vn is SQA as well.

On the other hand, there are equicontinuous matchbox manifolds which do not
satisfy SQA condition.

Theorem 1.9. For every transverse section V0 in the Schori solenoid, the holonomy
pseudogroup associated to the section is not SQA.

Theorem 1.2 proves that the Molino space exists for any matchbox manifold M,
including those that do not admit a section with the SQA holonomy pseudogroup.
Thus, for equicontinuous matchbox manifolds, our results are more general than
those in [Álvarez López and Moreira Galicia 2016].

Analyzing the results of Lemma 1.5 and Theorem 1.8, one concludes that the
condition of finite π1-type, imposed on a matchbox manifold M, and the condition
of finiteness of the fiber D in the Molino sequence (1), are quite strong and force
the holonomy pseudogroup to possess various nice properties, such as locally trivial
germinal holonomy and the SQA condition.

It is natural to ask, how diverse is the class of examples with finite fiber D
in the Molino sequence? The authors’ work [Dyer et al. 2016] constructed new
examples of equicontinuous matchbox manifolds with finite fiber D, which are
weakly normal, that is, restricting to a smaller transverse section one can arrange
that the Molino sequence (1) has a trivial fiber. One of these examples is also
described in Example 8.6 in this paper. Rogers and Tollefson [1971c] constructed
an example of a weak solenoid which turns out to be stable and have finite fiber D,
where the nontriviality of D is due to the presence of a leaf with nontrivial holonomy.
This example illustrates Proposition 1.4 and Theorem 1.7.

The concluding section (Section 10) gives the construction of a variety of new
classes of examples which illustrate the concepts and results of this work. We
first give in Section 10A a reformulation of the constructions of the discriminant
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groups in Section 6, in terms of closed subgroups of inverse limit groups, which
is analogous to a construction attributed to Lenstra in [Fokkink and Oversteegen
2002]. This alternate formulation is of strong interest in itself, as it gives a deeper
understanding of the Molino spaces introduced in this work. This construction can
be applied to the examples constructed by Lubotzky [1993] showing the existence
of various products of torsion groups in the profinite completion of torsion-free
groups, as recalled in Section 10D. We then give three applications of these results,
which are included in Section 10E. The first construction is based on the conclusions
of Theorem 10.4.

Theorem 1.10. Fix an integer n ≥ 3. Then there exists a finite index, torsion-free
subgroup G ⊂ SLn(Z) of the n×n integer matrices such that given any finite group
F of cardinality |F | which satisfies 4(|F | + 2)≤ n, there exists an irregular group
chain GF in G with the properties that

(1) the discriminant group of GF is isomorphic to F ;

(2) the group chain GF is stable, with constant discriminant group isomorphic to F ;

(3) the kernel K (G ĝ
F ) of each conjugate G ĝ

F of this group chain is trivial.

The terminology used in Theorem 1.10 will be explained in later sections, where
we will show that given such a group chain, one can construct matchbox manifolds
with the following properties:

Corollary 1.11. Let F be a finite group. Then there exists a nonhomogeneous
matchbox manifold M such that every leaf of FM has trivial germinal holonomy,
and for any sufficiently small transverse section in M, its Molino sequence is
nontrivial with fiber group D ∼= F.

Note that it follows by Theorem 1.8 that for the examples constructed in the
proof of Corollary 1.11, there is a section V ⊂M such that the closure of the
pseudogroup action on V satisfies the SQA condition of Álvarez López and Moreira
Galicia [2016].

The next two constructions are based on the conclusions of Theorem 10.5, due
to Lubotzky. Again, the terminology used in the statements will be explained in
later sections.

Theorem 1.12. There exists a finite index, torsion-free finitely generated group G
such that given any separable profinite group K , there exists an irregular group
chain GK in G such that

(1) the discriminant group of GK is isomorphic to K ;

(2) the group chain GF is stable, with constant discriminant group isomorphic to K.



MOLINO THEORY FOR MATCHBOX MANIFOLDS 99

Corollary 1.13. Let K be a Cantor group. Then there exists a nonhomogeneous
matchbox manifold M such that, for any sufficiently small transverse section in M,
its Molino sequence is nontrivial with fiber group D ∼= K.

Finally, Theorem 10.10 gives the first examples of equicontinuous matchbox
manifolds which are not virtually regular. The virtually regular condition was
introduced in [Dyer et al. 2017], and is defined in Definition 10.9. As the terminol-
ogy suggests, this notion is related to the homogeneity properties of finite-to-one
coverings of a matchbox manifold M.

The concluding section (Section 10F) lists some open problems.

2. Equicontinuous Cantor foliated spaces

In this section, we recall background concepts about foliated spaces, and introduce
the group chains associated to their equicontinuous Cantor holonomy actions.

2A. Equicontinuous Cantor foliated spaces. Recall that an n-dimensional match-
box manifold M is a compact connected metrizable topological space such that every
point x ∈M has an open neighborhood U ⊂M such that there is a homeomorphism

(2) ϕx :Ux → [−1, 1]n ×Tx ,

where Tx is a totally disconnected space. The homeomorphism ϕx is called a local
foliation chart, and the space Tx is called a local transverse model. As usual in
foliation theory, one can choose a finite atlas U={(ϕi ,Ui )}1≤i≤ν of local charts such
that the intersections of the path-connected components in Ux ∩Uy are connected
and simply connected, and the images Ti =ϕ

−1
i ({0}×Ti ) are disjoint. The leaves of

the foliation FM of M are defined to be the path-connected components of M, which
are then a union of the path-connected components (the plaques) in the open sets Ui .
A matchbox manifold is (topologically) minimal if each leaf L ⊂M is dense in M.

We require the matchbox manifold M to be smooth; that is, the transition maps

ϕj ◦ϕ
−1
i : ϕ

−1
i (Ui ∩Uj )→ ϕj (Ui ∩Uj )

are C∞-maps in the first coordinate x ∈ [−1, 1]n , and the restrictions to plaques
depend continuously on y ∈ Ti , in the C∞-topology on leaves, for 1≤ i, j ≤ ν.

Let pr2 : [−1, 1]n × Ti → Ti be the projection onto the second factor. Then
πi = pr2◦ϕi :Ui→Ti for 1≤ i ≤ ν are the local defining maps for the foliation FM.
Set Ti, j = πi (Ui ∩Uj ) for 1≤ i, j ≤ ν. Since the path-connected components of
the charts are either disjoint or have a connected intersection, there is a well-defined
change-of-coordinates homeomorphism

(3) hi, j = πj ◦π
−1
i : Ti, j → T j,i
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with domain Ti, j and range T j,i . Let G1
F = {(hi, j ,Ti, j ) | 1 ≤ i, j ≤ ν}. Set

T = T1 ∪ · · · ∪ Tν . Then the collection of maps G1
F generates the holonomy

pseudogroup GF acting on the transverse space T. The construction and properties
of GF are described in full detail in [Clark and Hurder 2013, Section 3].

For the study of the dynamical properties of FM, it is useful to introduce also the
collection of maps G∗F ⊂ GF , defined as follows. Let G0 ⊂ GF denote the collection
consisting of all possible compositions of homeomorphisms in G1

F . Then G∗F consists
of all possible restrictions of homeomorphisms in G0 to open subsets of their
domains. The collection of maps G∗F is closed under the operations of compositions,
taking inverses, and restrictions to open sets, and is called a pseudo?group in
[Álvarez López and Moreira Galicia 2016; Matsumoto 2010], while G∗F is called a
localization of G0 in [Álvarez López and Moreira Galicia 2016].

Remark 2.1. The standard definition of a pseudogroup [Candel and Conlon 2000]
requires the pseudogroup to be closed under the operations of composition, taking
inverses, restriction to open subsets, and combination of maps. A combination of
two local homeomorphisms h1 and h2, with possibly disjoint domains D(h1) and
D(h2) and with disjoint ranges, is a homeomorphism h defined on D(h1)∪ D(h2)

where h|D(h1)=h1 and h|D(h2)=h2. However, allowing such arbitrary gluings of
maps is unnatural. For example, a composition hj,k ◦hi, j can be associated with the
existence of a leafwise path γx : [0, 1] → L x ∈M with γx(0) ∈Ui and γy(1) ∈Uk ,
where L x is a leaf such that πi (x)∈ D(hj,k ◦hi, j ). If πi (y)∈ D(hj,k ◦hi, j ), then the
path γx can be lifted to a nearby leaf L y to a “parallel” path γy with γy(0) ∈Ui and
γy(1) ∈Uk . Thus a holonomy transformation hj,k ◦hi, j has a geometric meaning as
the transverse transport in leaves along a leafwise path. Therefore, in the definitions
of G0 and G∗F (and of a pseudo?group in [Matsumoto 2010]), one does not allow
combinations of local homeomorphisms, unless such homeomorphisms can be
obtained by restrictions to open subsets of maximal domains of elements in G0.

Let dM be a metric on M, and denote by dTi the restriction of dM to the embedded
image Ti of the transversal Ti , 1≤ i ≤ ν. For each 1≤ i ≤ ν, consider the pullback
dTi of dTi along the embedding. Then define a metric dT on T by the formula

dT(x, y)=
{

dTi (x, y) if x, y ∈ Ti for some i,
∞ otherwise.

For a homeomorphism γ ∈ G∗F , denote by D(γ ) and R(γ ) the domain and the range
of γ , respectively.

Definition 2.2. The action of the pseudo?group G∗F on the transversal T is equicon-
tinuous if for all ε > 0 there exists δ > 0 such that for all γ ∈ G∗F , if x, x ′ ∈ D(γ )
and dT(x, x ′) < δ, then dT(γ (x), γ (x ′)) < ε.
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The following notion is used in the statement of various results in this work.

Definition 2.3. A path-connected topological space X is said to have finite π1-type
if the fundamental group π1(X, x) is a finitely generated group for the choice of
some basepoint x ∈ X . A matchbox manifold M is said to have finite π1-type if
each leaf L ⊂M is a space of finite π1-type.

2B. Suspensions. There is a well-known construction which yields a foliated space
from a group action, called the suspension construction, as discussed in [Candel and
Conlon 2000, Chapter 3], for example. We state this construction in the restricted
context which we use in this work.

Let X be a Cantor space and H a finitely generated group, and assume there
is given an action ϕ : H → Homeo(X). Suppose that H admits a generating set
{g1, . . . , gk}; then there is a homomorphism αk :Z∗· · ·∗Z� H of the free group on
k generators onto H , given by mapping generators to generators. Of course, the map
αk will have nontrivial kernel, unless H happens to be a free group. Next, let6k be a
compact surface without boundary of genus k. Then for a choice of basepoint x0∈6k

set G = π1(6k, x0). Then there is a homomorphism βk : G→ Z ∗ · · · ∗Z onto the
free group of k generators. Denote the composition of these maps by8=ϕ◦αk ◦βk

to obtain the homomorphism8 :G =π1(6k, x0)→Z∗· · ·∗Z→ H→Homeo(X).
Now, let 6̃k denote the universal covering space of 6k , equipped with the right

action of G by covering transformations. Form the product space 6̃k×X which has
a foliation F̃ whose leaves are the slices 6̃k ×{x} for each x ∈ X . Define a right
action of G on 6̃k× X , which for g ∈ G is given by (y, x) · g = (y · g,8(g−1)(x)).
For each g, this action preserves the foliation F̃ , so we obtain a foliation FM on the
quotient space M= (6̃k × X)/G. Note that all leaves of FM are surfaces, which
are in general noncompact.

Note that M is a foliated Cantor bundle over6k , and the holonomy of this bundle
π :M→ 6k acting on the fiber V0 = π

−1(x0) is canonically identified with the
action 8 : G→ Homeo(X). Consequently, if the action 8 is minimal in the sense
of topological dynamics [Auslander 1988], then the foliation FM is minimal. If the
action 8 is equicontinuous in the sense of topological dynamics [Auslander 1988],
then FM is an equicontinuous foliation in the sense of Definition 2.2.

There is a variation of the above construction, where we assume that G is a
finitely presented group, and there is given a homomorphism 8 : G→ Homeo(X).
In this case, it is a well-known folklore result (for example, see [Massey 1991]) that
there exists a closed connected 4-manifold B such that for a choice of basepoint
b0 ∈ B, π1(B, b0) is homeomorphic to G. Then the suspension construction can be
applied to the homomorphism 8 : π1(B, b0)→ Homeo(X), where we replace 6k

above with B, and the space 6̃k with the universal covering B̃ of B. The resulting
foliated space M will have holonomy given by the map 8.
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In summary, the suspension construction translates results about equicontinuous
minimal Cantor actions to results about equicontinuous matchbox manifolds.

3. Weak solenoids

In this section, we first recall the construction procedure for (weak) solenoids, and
describe some of their properties. In Section 3B, we discuss the construction from
[Clark and Hurder 2013] which associates a group chain to an equicontinuous match-
box manifold, which leads to a more precise statement of Theorem 1.1. Then in
Section 3C, we make some observations about the conclusion of Theorem 1.1 which
are important when considering the definition of the Molino space for matchbox
manifolds.

3A. Weak solenoids. Let n ≥ 1. Then for each ` ≥ 0, let M` be a compact
connected simplicial complex of dimension n. A presentation is a collection
P = {p`+1 : M`+1→ M` | `≥ 0}, where each map p`+1 is a proper surjective map
of simplicial complexes with discrete fibers, which is called a bonding map. For
`≥ 0 and x ∈ M`, the preimage {p−1

`+1(x)} ⊂ M`+1 is compact and discrete, so the
cardinality #{p−1

`+1(x)} is finite. For a presentation P defined in this generality, the
cardinality of the fibers of the maps p`+1 need not be constant in either ` or x .

Associated to a presentation P is an inverse limit space,

(4) SP ≡ lim
←−−
{p`+1 : M`+1→ M`}

= {(x0, x1, . . . ) ∈ SP | p`+1(x`+1)= x` for all `≥ 0} ⊂
∏
`≥0

M`.

The set SP is given the relative topology, induced from the product (Tychonoff)
topology, so that SP is itself compact and connected.

Definition 3.1. The inverse limit space SP in (4) is called a (weak) solenoid if for
each `≥ 0 the space M` is a compact connected manifold without boundary, and
p`+1 is a proper covering map of degree m`+1 > 1.

Weak solenoids are a generalization of 1-dimensional (Vietoris) solenoids, de-
scribed in Example 3.2 below. Weak solenoids were originally considered by
McCord [1965], Rogers and Tollefson [1971a; 1971c] and Schori [1966], and later
by Fokkink and Oversteegen [2002].

Example 3.2. Let M`=S1 for each `≥0, and let the map p`+1 be a proper covering
map of degree m`+1> 1 for `≥ 0. Then SP is an example of a classic 1-dimensional
solenoid, discovered independently by van Dantzig [1930] and Vietoris [1927]. If
m`+1 = 2 for `≥ 0, then SP is called the dyadic solenoid.
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Let SP be a weak solenoid as in Definition 3.1. For each `≥ 1, the composition

(5) q` = p1 ◦ · · · ◦ p`−1 ◦ p` : M`→ M0

is a finite-to-one covering map of the base manifold M0. For each `≥ 0, projection
onto the `-th factor in the product

∏
`≥0 M` in (4) yields a fibration map denoted

by 5` : SP→ M`. For `= 0 this yields the fibration 50 : SP→ M0, and for `≥ 1
we have

(6) 50 = q` ◦5` : SP→ M0.

A choice of basepoint x0 ∈ M0 fixes a fiber X0 =5
−1
0 (x0), which is a Cantor set by

the assumption that the fibers of each map p`+1 have cardinality at least 2. McCord
[1965] showed that (6) is a fiber bundle over M0 with a Cantor set fiber, and the
solenoid SP has a local product structure as in (2). The path-connected components
of SP thus define a foliation denoted by FP . We then have:

Proposition 3.3. Let SP be a weak solenoid whose base space M0 is a compact
manifold of dimension n≥ 1. Then SP is a minimal matchbox manifold of dimension
n with foliation FP .

Denote by G0=π1(M0, x0) the fundamental group of M0 with basepoint x0, and
choose a point x ∈X0 in the fiber over x0. This defines basepoints x`=5`(x)∈M`

for `≥ 1.
Let y ∈ X0 be another point, set y` = 5`(y) ∈ M`, and note that y0 = x0 by

construction. We will interchangeably write y = (y`) to denote a point in X0 or SP .
Let L y denote the leaf of FP containing y. Then the restriction 50|L y : L y→ M0

of the bundle projection to each path-connected component L y is a covering map.
For g = [γ0] ∈ G0, let γ` : [0, 1] → M` be a lift of γ0 with the starting point
γ`(0) = y`. Define a homeomorphism hg : X0→ X0 by hg(y`) = (γ`(1)). Thus
there is a representation

(7) 80 : G0→ Homeo(X0) : γ → hg,

called the global holonomy map of the solenoid SP .

3B. Dynamical partitions. It was shown in [Clark and Hurder 2013, Theorem 4.12]
that an equicontinuous matchbox manifold M is minimal, that is, every leaf is
dense in M. This result generalizes to pseudogroups by a corresponding result of
Auslander [1988] for equicontinuous group actions. It follows that for any clopen
subset V0 ⊂ T, the restricted pseudo?group G∗V0

= G∗F |V0 is return equivalent to the
pseudo?group G∗F on T, where return equivalence is defined and studied in [Clark
et al. 2013a, Section 4]. Thus, for the study of the dynamical properties of FM one
can restrict to the study of G∗V0

. The following result is based on the constructions
in [Clark and Hurder 2013].
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Proposition 3.4. Let M be a matchbox manifold with totally disconnected transver-
sal T and equicontinuous holonomy pseudo?group G∗F on T, let x ∈ T be a point,
and let W ⊂ T be a clopen (closed and open) neighborhood of x. Then there exists
a clopen subset x ∈ V0 ⊂W and a descending chain of clopen sets V0 ⊃ V1 ⊃ · · ·

of T with {x} =
⋂
` V` such that:

(1) The restriction G∗F |V0 is generated by a group G0 of transformations of V0.

(2) For each `≥ 1 the collection Q` = {g · V`}g∈G0 is a finite partition of V0 into
clopen sets.

(3) We have diam(g · V`) < 2−` for all g ∈ G0 and all `≥ 0.

(4) The collection of elements which fix V`, that is,

Gx
` = {g ∈ G0 | g · V` = V`},

is a subgroup of finite index in G0. More precisely, |G0 : Gx
` | = cardQ`.

There are many choices involved in the construction of the partitions Q` and
consequently the stabilizer groups Gx

` :

(1) The choice of a transverse section V0 ⊂ T, which results in the choice of the
group G0.

(2) The choice of a basepoint x ∈ V0.

(3) Given V0, x and G0, there is freedom to choose clopen sets V1 ⊃ V2 ⊃ · · · ,
which results in the choice of the sequence of groups G0 = Gx

0 ⊃ Gx
1 ⊃

Gx
2 ⊃ · · · .

Thus, the algebraic and geometric data encoded by these choices must be consid-
ered up to suitable notions of equivalence, which will be introduced in Section 4A.

3C. Homeomorphisms. Let M be a matchbox manifold with totally disconnected
transversal T and equicontinuous holonomy pseudo?group G∗F acting on T, let x ∈T
be a point, and let {V`+1 ⊂ V` | `≥ 0} be a descending chain of clopen subsets of T
with x ∈ V` for all `≥ 0, as introduced in Proposition 3.4, where G0 is a group of
transformations of V0, and G` denotes the stabilizer subgroup of G0 of the set V`.

The basic idea of the proof of Theorem 1.1 is that if we choose the section
V0 ⊂M appropriately and it is sufficiently small, then there is a compact manifold
M0 and a fibration5′0 :M→M0 for which the inverse image (5′0)

−1(x0) equals V0,
where x0 =5

′

0(x). Moreover, the restrictions of the map 5′0 to the leaves of FM

are coverings of M0. The definition of the map 5′0 requires the highly technical
results of [Clark et al. 2013b] to define a transverse Cantor foliation H0 to FM,
so that the quotient space M0 =M/H0 is a compact manifold, and then 5′0 is
the projection along the leaves of the transverse foliation H0, or better said the
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equivalence classes defined by the leaves of H0. Then V0 is the H0-equivalence
class of the point x ∈ V0 ⊂M.

Let V` ⊂ V0 be the clopen set in Proposition 3.4 and Gx
` = {g ∈ G0 | g ·V` = V`}

the isotropy subgroup of V`. Then there is a Cantor subfoliation H` of H0 such
that V` is the H`-equivalence class of x . Moreover, there is a quotient map
5′` : M → M/H` ≡ M`, where is M` is identified with the covering of M0

associated to the subgroup G` ⊂ G0 = π1(M0, x0). Note that the fiber (5′`)
−1(x0)

equals V` and the monodromy action of G0 on V0 partitions V0 into the translates
of V`. There is then a quotient covering map q` : M`→ M0, and as in (6), we have

(8) 5′0 = q` ◦5′` :M→ M0.

For each `≥ 0 let p`+1 : M`+1→ M` be the quotient map defined by expanding the
equivalence classes of M defined by H`+1 to the equivalence classes defined by H`.
Then we obtain a collection of covering maps P={p`+1 :M`+1→M` |`≥0}which
defines a weak solenoid SP . As the diameters of the clopen partition sets V` tend to 0
as ` increases, it is then standard that the collection of maps {5′` :M→ M` | `≥ 0}
induces a foliated homeomorphism 5∗0 :M→ SP .

In later sections, we will also consider the presentations Pn obtained by truncating
the initial n terms in the presentation P. That is, for n ≥ 0 we have

(9) Pn = {p′`+1 : M
′

`+1→ M ′` | `≥ 0}, where M ′` = M`+n and p′`+1 = p`+n+1.

It is a basic property of inverse limit spaces [McCord 1965; Rogers 1970] that
for n ≥ 1 and m ≥ 0, there is a homeomorphism σn : SPm+n

∼= SPn , where the
homeomorphism is given by the “shift in coordinates” map σn in the inverse
sequences defining these spaces. Also, by the same reasoning as above, there is a
foliated homeomorphism 5∗n :M→ SPn and we have a commutative diagram of
fibrations:

(10)

M

5∗n+m
��

=
// M

5∗m
��

SPn+m

σn // SPm

Note that if the presentation P is constructed using the holonomy of FM acting
on the transversal V0 ⊂M, then for n > 0 and m ≥ 0, the map σn : SPn+m → SPm

satisfies σn(Vm+n) ⊂ Vn . That is, the induced map on M sends the transversal
(5∗m+n)

−1(Vm+n)⊂M into the transversal (5∗n)
−1(Vn)⊂M. On the other hand,

given a homeomorphism h :M→M there is no reason it should map the transversal
V0 into itself. In particular, the induced map

(11) (5∗n) ◦ h ◦ (5∗m+n)
−1
: SPm+n → SPn
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on weak solenoids need not be fiber preserving. On the other hand, as discussed
in [Fokkink and Oversteegen 2002], there is always a map h′ :M→M which is
homotopic to h such that the induced map as in (11) maps a clopen subset of Vm+n

into a clopen subset of Vn . Thus, by allowing sufficiently large values of n and
m and choice of basepoints in the range and domain, we can always ensure that
a given homeomorphism of M induces a fiber-preserving map between the weak
solenoids SPm+n and SPn .

4. Group chain models

Let SP be a weak solenoid defined by a presentation P, with basepoint x ∈ X0 ≡

5−1
0 (x0)⊂ SP . For G0 = π1(M0, x0), let 80 : G0→Homeo(X0) be the holonomy

action in (7).
The following “combinatorial model” for the action (7) allows for a deeper

analysis of the relation between the action 80 and the algebraic structure of G0.
For each `≥ 1, recall that

(12) Gx
` = image{(q`)# : π1(M`, x`)→ G0}

denotes the image of the induced map (q`)# on fundamental groups. In this way,
associated to the presentation P and basepoint x ∈ X0, we obtain a descending
chain of subgroups of finite index

(13) Gx
: G0 ⊃ Gx

1 ⊃ Gx
2 ⊃ · · · ⊃ Gx

` ⊃ · · · .

Each quotient X x
` = G0/Gx

` is a finite set equipped with a left G0-action, and there
are surjections X x

`+1→ X x
` which commute with the action of G0. The inverse limit

(14) X x
∞
=lim
←−−
{p`+1 :X x

`+1→X x
` }={(eG0, g1Gx

1, . . . )|g`G
x
`=g`+1Gx

` }⊂

∏
`≥0

X x
`

is then a totally disconnected compact perfect set, so is a Cantor set. The fundamental
group G0 acts on the left on X x

∞
via the coordinatewise multiplication on the product

in (14). We denote this Cantor action by (X x
∞
,G0,8x).

Lemma 4.1. There is a homeomorphism τx :X0→ X x
∞

equivariant with respect to
the action (7) of G0 on X0 and 8x on X∞; that is, τx ◦ hg(y)=8x(g) ◦ τx(y) for
all y ∈ X0.

In particular, this allows us to conclude that the action 80 of G0 on the fiber of
the solenoid SP is minimal. Indeed, the left action of G0 on each quotient space
X x
` is transitive, so the orbits are dense in the product topology on X x

∞
.

Remark 4.2. The group chain (14) and the homeomorphism in Lemma 4.1 depend
on the choice of a point x ∈X0. For a different basepoint y ∈X0 in the fiber over x0,
let τx(y)= (gi Gx

` )∈ X x
∞

; then the group chain G y associated to y is given by a chain
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of conjugate subgroups in G0, where G y
` = g`Gx

`g−1
` for `≥ 0. The group chains

G y and Gx are said to be conjugate chains. The composition τy ◦ τ
−1
x : X

x
∞
→ X y

∞

gives a topological conjugacy between the minimal Cantor actions (X x
∞
,G0,8x)

and (X y
∞,G0,8y). The map τx :X0→ X x

∞
can be viewed as “coordinates” on the

inverse limit space X0, and the composition τy ◦ τ
−1
x as a “change of coordinates”.

Properties of the minimal Cantor action (X x
∞
,G0,8x) which are independent of

the choice of these coordinates are thus properties of the topological type of SP .

4A. Equivalence of group chains. Fokkink and Oversteegen [2002] and the au-
thors [Dyer et al. 2016] studied equivalences of group chains associated to a given
equicontinuous minimal Cantor system (V0,G0,8). We now briefly recall the key
results.

Denote by G the collection of all possible subgroup chains in G0. Then there are
two equivalence relations on G. The first was introduced by Rogers and Tollefson
[1971b]:

Definition 4.3. In a finitely generated group G0, two group chains {G`}`≥0 and
{H`}`≥0 with G0=H0 are equivalent if and only if there is a group chain {K`}`≥0 and
infinite subsequences {G`k }k≥0 and {Hjk }k≥0 such that K2k = G`k and K2k+1 = Hjk
for k ≥ 0.

The next definition was introduced by Fokkink and Oversteegen [2002].

Definition 4.4. Two group chains {G`}`≥0 and {H`}`≥0 in G are conjugate equiva-
lent if and only if there exists a sequence (g`) ⊂ G0 for which the compatibility
condition g`G` = g`+1G` for all `≥ 0 is satisfied, and such that the group chains
{g`G`g−1

` }`≥0 and {H`}`≥0 are equivalent.

The dynamical meaning of the equivalences in Definitions 4.3 and 4.4 is given
by the following theorem, which follows from results in [Fokkink and Oversteegen
2002]; see also [Dyer et al. 2016].

Theorem 4.5. Let {G`}`≥0 and {H`}`≥0 be group chains in G0, with H0 = G0, and
let

G∞ = lim
←−−
{G0/G`+1→ G0/G`},

H∞ = lim
←−−
{G0/H`+1→ G0/H`}.

Then

(1) the group chains {G`}`≥0 and {H`}`≥0 are equivalent if and only if there exists
a homeomorphism τ : G∞→ H∞ equivariant with respect to the G0-actions
on G∞ and H∞, and such that ϕ(eG`)= (eH`);

(2) the group chains {G`}`≥0 and {H`}`≥0 are conjugate equivalent if and only if
there exists a homeomorphism τ : G∞→ H∞ equivariant with respect to the
G0-actions on G∞ and H∞.
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That is, an equivalence of two group chains corresponds to the existence of
a basepoint-preserving equivariant homeomorphism between their inverse limit
systems, while a conjugate equivalence of two group chains corresponds to the
existence of a equivariant conjugacy between their inverse limit systems, which
need not preserve the basepoint.

Let G(80) denote the class of group chains in G0 which are conjugate equivalent
to the group chain {Gx

` }`≥0 with basepoint x . The following result gives a geometric
interpretation of the conjugate equivalence class G(80) of a group chain {Gx

` }`≥0.

Proposition 4.6. Given an equicontinuous minimal Cantor action (V0,G0,80),
let {Gx

` }`≥0 be a group chain with partitions {Q`}`≥0 and basepoint x , as in
Proposition 3.4. Then a group chain {H`}`≥0 is in G(80) if and only if there exists
a collection of G0-invariant partitions S` = {g ·U`}g∈G0 of V0, where U` ⊂ V0 is a
clopen set, and

⋂
` U` = {y} ⊂ V0, such that H` = H y

` is the isotropy group at U`

of the action of G0 on the partition S`, for all `≥ 0.

4B. Kernels of group chains. The following notion is important for the study of
group chains.

Definition 4.7. The kernel of a group chain G = {G`}`≥0 is the subgroup of G0

given by

(15) K (G)=
⋂
`≥0

G`.

The following property is immediate from the definitions.

Lemma 4.8. Suppose that the group chains G = {G`}`≥0 and H = {H`}`≥0 with
G0 = H0 are equivalent. Then K (G)= K (H)⊂ G0.

If the chains G and H are only conjugate equivalent, then the kernels need not
be equal.

An infinite group G0 which admits a group chain C = {C`}`≥0 where each C` is
a normal subgroup of G0, and such that

⋂
C` = {e}, where e denotes the identity

element in G0, is said to be residually finite. It is an elementary fact that given any
group chain G = {G`}`≥0 in G0, there is an associated core group chain G for which
C` ⊂ G` with C` normal in G0 for all ` > 0, as will be discussed in Section 6B
below. Thus, if the group chain Gx

= {Gx
` }`≥0 introduced above has K (Gx) the

trivial group, then G0 must be a residually finite group. On the other hand, there
are many classes of groups which are not residually finite, and thus any group chain
for these groups must have nontrivial kernels. For example, many of the types of
Baumslag–Solitar groups are not residually finite [Levitt 2015a; 2015b; Meskin
1972], so every equicontinuous minimal Cantor system defined by an action of one
of these groups will have nontrivial kernels.
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The kernel K (Gx) has an interpretation in terms of the topology of the leaves
of the foliation FP of a weak solenoid. Let (V0,G0,80) be the holonomy ac-
tion for a weak solenoid SP with presentation P and basepoint x ∈ V0, and let
Gx
= {Gx

i }i≥0 be the group chain at x . Recall that the restriction of the bundle
projection 50|L x : L x→ M0 to the leaf L x containing x is a covering map. Let M̃0

be the universal cover of M0. Then by standard arguments of covering space theory
(see [McCord 1965]) there is a homeomorphism

(16) M̃0/K (Gx)→ L x .

Now let y ∈ X0 be another point. Then by Remark 4.2, the group chain associated
to y is given by G y

= {gi G
x
i g−1

i }i≥0 where τx(y) = (gi Gx
i ). If y is in the orbit

of x under the G0-action, then we can take gi = g for some g ∈ G0, and thus
K (G y) = gK (Gx)g−1; that is, the kernels of Gx and G y are conjugate, reflecting
the fact that the fundamental group of the leaf L x is replaced by a conjugate as
x changes. If y is not in the orbit of x , then the relationship between K (Gx) and
K (G y) depends on the dynamical properties of the solenoid.

In particular, in Section 8 we relate the algebraic properties of the kernels K (G y)

with the germinal holonomy groups of the foliation FP . Recall from Section 1 that
a manifold L has π1-finite type if its fundamental group is finitely generated. A
matchbox manifold M has finite π1-type if all leaves in FM have finite π1-type.
The following statement is immediate from the above discussion.

Lemma 4.9. An equicontinuous matchbox manifold M has finite π1-type if and
only if , for the associated group chain Gx

= {Gx
` }`≥0, for all G y

∈G(8), the kernel
K (G y) is a finitely generated subgroup of G0.

We next give two examples to illustrate the above concepts.

Example 4.10. Let SP be a Vietoris solenoid, as in Example 3.2, where m` > 1
is the degree of p`. Choose x ∈ SP so that 5`(x) = 0 for ` ≥ 0. Then G0 = Z,
and Gx

` = m̃`Z, where m̃` = m1m2 · · ·m` is the product of the degrees of the
coverings. Then the kernel K (Gx) is {0}, and the path-connected component L x is
homeomorphic to the real line. Let y ∈ X0 be any other point in the fiber. Since
Z is abelian, any subgroup conjugate to Gx

` = m̃`Z is equal to it. It follows that
K (G y)= {0}, and L y is homeomorphic to the real line for any y ∈ X0.

More generally, suppose SP is an n-dimensional solenoid and Gx
` is a normal

subgroup of G0 for all ` ≥ 1. Then for any y ∈ X0 we have G y
= Gx, and so

K (G y)= K (Gx). It follows that all leaves in SP are homeomorphic. The Vietoris
solenoid SP is of finite π1-type.

Example 4.11. This example is due to Rogers and Tollefson [1971c]. Consider a
map of the plane given by a translation by 1

2 in the first component, and by reflection
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in the second component, i.e.,

r × i : R2
→ R2, where (x, y) 7→

(
x + 1

2 ,−y
)
.

This map commutes with translations by the elements in the integer lattice Z2
⊂R2,

and so induces the map r × i : T2
= R2/Z2

→ T2 of the torus. This map is an
involution, and the quotient space K = T2/(x, y)∼ r × i(x, y) is homeomorphic
to the Klein bottle.

Consider the double covering map L : T2
→ T2 given by L(x, y) = (x, 2y).

The inverse limit T∞ = lim
←−−
{L : T2

→ T2
} is a solenoid with 2-dimensional leaves.

Let x0 = (0, 0) ∈ M0 = T2. The fundamental group G0 = Z2 is abelian, so for
any x, y ∈ X0 the kernels K (Gx)= K (G y) are isomorphic to Z, and every leaf is
homeomorphic to an open two-ended cylinder.

The involution r × i is compatible with the covering maps L , and so it induces
an involution (r × i)∞ : T∞ → T∞, which is seen to have a single fixed point
(0, 0, . . . ) ∈ T∞ and permute other path-connected components. Let p : K → K
be the double covering of the Klein bottle by itself, given by p(x, y) = (x, 2y),
and consider the inverse limit space K∞ = lim

←−−
{p : K → K }. Note that taking the

quotient by the involution r × i is compatible with the covering maps L and p; that
is, p ◦ (r × i) = L , and so induces the map i∞ : T∞→ K∞ of the inverse limit
spaces. Under this map, the path-connected component of the fixed point (0, 0, . . . )
is identified so as to become a nonorientable one-ended cylinder. The image of any
other path-connected component is an orientable two-ended cylinder.

Let x = (x`) ∈ K∞ for x` ∈ K . Then G0 = π1(K , x0) = 〈a, b | bab−1
= a−1

〉.
Fokkink and Oversteegen [2002] computed the kernel K (Gx)= 〈b〉 of the group
chain Gx. They also computed kernels for group chains at any other basepoint
y ∈ X0 and found that either K (G y) is conjugate to 〈b〉, or K (G y) is equal to 〈b2

〉.
This example has finite π1-type.

5. Homogeneous solenoids and actions

In this section, we review the results from various works about the criteria for
homogeneity of matchbox manifolds. These data will be of use later, when we give
the proof Theorem 1.2.

A continuum M is said to be homogeneous if given any pair of points x, y ∈M,
there exists a homeomorphism h :M→M such that h(x)= y. A homeomorphism
ϕ :M→M preserves the path-connected components, hence preserves the foliation
FM of M. It follows that if M is homogeneous, then it is also foliated homogeneous.

By [Clark and Hurder 2013, Theorem 5.2] a homogeneous matchbox manifold
M is equicontinuous. Hence by Theorem 1.1 above, which is proved in [Clark
and Hurder 2013, Theorem 1.4], the foliated space M is homeomorphic to a weak
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solenoid SP . We restrict our attention to equicontinuous foliated spaces, so consider
the problem of giving conditions for when a weak solenoid SP is homogeneous,
which is thus equivalent to asking when an equicontinuous matchbox manifold
is homogeneous. This is one of the original motivating problems in the study of
solenoids, to obtain necessary and sufficient conditions for when the solenoid SP is
homogeneous [Fokkink and Oversteegen 2002; Rogers 1970; Rogers and Tollefson
1971a; Schori 1966]. In this section, we recall the relevant results of these previous
works, and of [Dyer 2015; Dyer et al. 2016; 2017].

5A. Regular actions. An automorphism of (V0,G0,80) is a homeomorphism
h :V0→V0 which commutes with the G0-action on V0. Denote by Aut(V0,G0,80)

the group of automorphisms of the action (V0,G0,80). Note that Aut(V0,G0,80)

is a topological group for the compact-open topology on maps, and is a closed
subgroup of Homeo(V0).

Definition 5.1. The equicontinuous minimal Cantor action (V0,G0,80) is

(1) regular if the action of Aut(V0,G0,80) on V0 has a single orbit;

(2) weakly normal if the action of Aut(V0,G0,80) decomposes V0 into a finite
collection of orbits;

(3) irregular if the action of Aut(V0,G0,80) decomposes V0 into an infinite
collection of orbits.

The terminology in Definition 5.1 is chosen to be consistent with the terminology
in [Dyer et al. 2016; Fokkink and Oversteegen 2002].

Recall that G denotes the collection of all possible subgroup chains in G0, and
let G(80)⊂G denote the collection of all group chains in G which are conjugate
equivalent to a given group chain Gx

= {Gx
` }`≥0. Theorem 4.5 states that a group

chain {Gx
` }`≥0 is equivalent to the group chain {H y

` }`≥0 if and only if there exists a
conjugacy h : V0→ V0 of the G0-action on V0 such that h(x)= y. Such an h is an
automorphism of (V0,G0,80), which gives the following result.

Theorem 5.2. Let (V0,G0,80) be an equicontinuous minimal Cantor action, and
{Gx

` }`≥0 ∈G be a group chain associated to the action. Then (V0,G0,80) is

(1) regular if all group chains in G(80) are equivalent;

(2) weakly normal if G(80) contains a finite number of classes of equivalent
group chains;

(3) irregular if G(80) contains an infinite number of classes of equivalent group
chains.

McCord [1965] studied the case when the chain {Gx
` }`≥0 consists of normal

subgroups of G0. In this case, every quotient X x
` = G0/Gx

` is a finite group, and
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the inverse limit X x
∞

, defined by (14), is then a profinite group. The group X x
∞

is identified with V0 as a topological space, and it acts transitively on V0 on the
right. The right action of X x

∞
commutes with the left action of G0 on X x

∞
, and thus

X x
∞
⊂ Aut(V0,G0,80), and so the automorphism group acts transitively on H∞.

McCord [1965] used this observation to show that the group Homeo(SP) acts
transitively on SP , proving the following theorem.

Theorem 5.3. Let SP be a solenoid with a group chain {Gx
` }`≥0 such that Gx

` is a
normal subgroup of G0 for all `≥ 0. Then SP is homogeneous.

For example, if G0 is abelian, then every group chain {Gx
` }`≥0 consists of normal

subgroups, and the solenoid SP is homogeneous.

5B. Weakly normal actions. We next consider the problem of giving necessary
and sufficient conditions for when a solenoid SP is homogeneous.

The converse to Theorem 5.3 is not true. Indeed, Rogers and Tollefson [1971b]
gave an example of a weak solenoid for which the presentation yields a chain of
subgroups which are not normal in G0, yet the inverse limit is a profinite group,
and so the solenoid is homogeneous. This example was the motivation for the work
of Fokkink and Oversteegen [2002], where they gave a necessary and sufficient
condition on the chain {Gx

` }`≥0 for the weak solenoid to be homogeneous. In
particular, they proved the following result. Let NG0(G`) denote the normalizer of
the subgroup G` in G0; that is, NG0(G`)= {g ∈ G0 | g G` g−1

= G`}.

Theorem 5.4 [Fokkink and Oversteegen 2002]. Let (V0,G0,80) be an equicon-
tinuous minimal Cantor action, x ∈ V0 be a point, and {Gx

` }`≥0 be an associated
group chain with conjugate equivalence class G(80). Then

(1) (V0,G0,80) is regular if and only if there exists a group chain {N`}`≥0 ∈

G(80) such that N` is a normal subgroup of G0 for each `≥ 0;

(2) (V0,G0,80) is weakly normal if and only if there exists {Gx
`
′
}i≥0 ∈G(80) and

an n > 0 such that Gx
`
′
⊂ Gx

n ⊆ NG0(G
x
`
′) for all `≥ n.

In Theorem 5.4, the set G(80) contains group chains which are conjugate
equivalent to the given chain {Gx

` }`≥0. The condition that the group chain {N`}`≥0

consists of normal subgroups implies that every chain in G(80) is equivalent to
{N`}`≥0, and so {Gx

` }`≥0 is equivalent to {N`}`≥0. In statement (2), the condition
Gx
`
′
⊂ Gx

n ⊆ NG0(G
x
`
′) implies that the group chain {Gx

`
′
}`≥0 is equivalent to

{Gx
` }`≥0. Indeed, suppose that Gx

`
′
⊂Gx

m
′
⊆ NG0(G

x
`
′) for some m. Then for n ≤m

and ` ≤ n we have Gx
`
′
⊂ Gx

n
′
⊆ NG0(G

x
`
′). If {Gx

`
′
}i≥0 is equivalent to {Gx

` }i≥0,
then for some n ≤ m we have Gx

n
′
⊂ Gx

n ⊂ Gx
m
′, which yields the statement.

Recall that Proposition 3.4 introduced the descending chain of clopen sets
{V`+1 ⊂ V` | `≥ 0} of V0 such that V` is stabilized by the action of G`. Thus, the
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weak normality condition in Theorem 5.4 implies that if we restrict the G0 action
to the clopen set Vn ⊂ V0, then the restricted action (Vn,Gn,8n) with associated
group chain Gx

n = {G
x
` }`≥n is regular. In the case where the group chain {G`}`≥0 is

associated to a weak solenoid SP , restricting to the action (Vn,Gn,8n) amounts to
discarding the initial manifolds {M0, . . . ,Mn−1} in the presentation P, to obtain
the presentation Pn defined in (9). Then as discussed in Section 3C, there is a
homeomorphism SPn

∼= SP , where the homeomorphism is given by the “shift”
map σn . Thus, SP is homogeneous if and only if SPn is homogeneous, and so by
Theorem 5.3 a weak solenoid whose associated group chain is weakly normal is
homogeneous. We thus obtain the following result of Fokkink and Oversteegen
[2002], giving a criterion for when a weak solenoid is homogeneous.

Proposition 5.5. Let SP be a weak solenoid, defined by a presentation P with
associated group chain {Gx

` }`≥0. Then SP is homogeneous if and only if {Gx
` }`≥0 is

weakly normal.

We also have the following property of presentations of homogeneous solenoids.

Proposition 5.6 [Fokkink and Oversteegen 2002]. Let SP be a weak solenoid, de-
fined by a presentation P with associated group chain Gx

= {Gx
` }`≥0. If SP is homo-

geneous, then the kernel K (Gx)⊂G0 has a finite number of conjugacy classes in G0.

Proof. Suppose that SP is homogeneous. Then by Theorem 5.4, there exists
Gx ′
= {Gx

`
′
}`≥0 ∈G(80) and an n> 0 such that Gx

`
′
⊂Gx

n ⊆ NG0(G
x
`
′) for all `≥ n.

Then Gx
n
′
⊆ NG0(G

x
`
′) for all `≥ n, which implies that Gx

n
′
⊂ NG0(K (G′x)). Indeed,

the chain {Gx
`
′
}`≥n contains subgroups normal in Gx

n
′, and its intersection is then

again normal in Gx
n
′. Then for any h ∈ Gx

n
′ we have

(17) h · K (Gx ′) · h−1
= K (Gx ′),

and K (Gx ′) has only a finite number of conjugacy classes, at most [G0 :Gx
n
′
]. Since

Gx is equivalent to Gx ′, we have that Gx
0 =Gx

0
′
⊃Gx

1 ⊃Gx
1
′
⊃Gx

2 ⊃Gx
2
′
⊃ · · · , and

so K (Gx)= K (Gx ′), which yields the statement. �

6. Ellis group of equicontinuous minimal systems

In [Ellis and Gottschalk 1960; Ellis 1960], the Ellis (enveloping) semigroup as-
sociated to a continuous group action 8 : G × X → X was introduced, and it is
treated in [Auslander 1988; Ellis 1969; Ellis and Ellis 2014]. The construction
of Ê(X,G,8) is abstract, and it can be difficult to calculate this group exactly.
A key problem is to understand the relation between the algebraic properties of
Ê(X,G,8) and the dynamics of the action. In this section, we briefly recall some
basic properties of Ê(X,G,8), then consider the results for the special case of
equicontinuous minimal systems.
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6A. Ellis (enveloping) group. Let X be a compact Hausdorff topological space
and G be a finitely generated group. Consider the space X X

=Maps(X, X) with
the topology of pointwise convergence on maps. With this topology, X X is a
compact Hausdorff space. Each g ∈ G defines an element ĝ ∈ Homeo(X) ⊂
X X
=Maps(X, X). Denote by Ĝ the set of all such elements. Ellis [1960] showed

that the closure Ĝ⊂ X X has the structure of a right topological semigroup. Moreover,
if the action (X,G,8) is equicontinuous, then the semigroup Ĝ is a group naturally
identified with the closure 8(G) of 8(G) ⊂ Homeo(X) in the uniform topology
on maps. Each element of 8(G) is the limit of a sequence of points in Ĝ, and we
use the notation (gi ) to denote a sequence {gi | i ≥ 1} ⊂ G such that the sequence
{ĝi =8(gi ) | i ≥ 1} ⊂ Homeo(X) converges in the uniform topology.

Assume the action of G on X is minimal, that is, the orbit 8(G)(x) is dense in
X for any x ∈ X . It then follows that the orbit of the Ellis group 8(G)(x) equals
X for any x ∈ X . That is, the group 8(G) acts transitively on X . Then for the
isotropy group of the action at x ,

(18) 8(G)x = {(gi ) ∈8(G) | (gi ) · x = x},

we have the natural identification X ∼=8(G)/8(G)x of left G-spaces.
Given an equicontinuous minimal Cantor system (X,G,8), the Ellis group

8(G) depends only on the image 8(G) ⊂ Homeo(X). On the other hand, the
isotropy group 8(G)x may depend on the point x ∈ X . Since the action of 8(G)
is transitive on X , given any y ∈ X , there exists (gi ) ∈8(G) such that (gi ) · x = y.
It follows that

(19) 8(G)y = (gi ) ·8(G)x · (gi )
−1.

Thus, the cardinality of the isotropy group 8(G)x is independent of the point
x ∈ X , and so the Ellis group 8(G) and the cardinality of 8(G)x are invariants of
(X,G,8).

6B. Ellis group for group chains. We consider the Ellis group for an equicontin-
uous minimal Cantor action (V0,G0,8), in terms of an associated group chain
Gx
= {Gx

` }`≥0 for x ∈ V0. For each subgroup Gx
` consider the maximal normal

subgroup of Gx
` which is given by

(20) C` ≡ coreG0 Gx
` ≡

⋂
g∈G0

gGx
`g−1

⊆ Gx
` .

The group C` is called the core of G` in G0. Since C` is normal in G0, the quotient
G0/C` is a finite group, and the collection C = {C`}`≥0 forms a descending chain
of normal subgroups of G0. The inclusions of coset spaces define bonding maps



MOLINO THEORY FOR MATCHBOX MANIFOLDS 115

δ`+1
` for the inverse sequence of quotients G0/C`, and the inverse limit space

C∞ = {(eG0, g1C1, . . . ) | g`C` = g`+1C`} ⊂
∏
`≥0

G0/C`(21)

∼= lim
←−−
{δ`+1
` : G0/C`+1→ G0/C`}(22)

is a profinite group. Let ι̂ :G0→C∞ be the homomorphism defined by ι̂(g)= (gC`)
for g ∈ G0. Then the induced left action of G0 on C∞ yields a minimal Cantor
system, denoted by (C∞,G0, 8̂0).

Also, introduce the descending chain of clopen neighborhoods of the identity
(eC`) ∈ C∞, which for n ≥ 0 defines a neighborhood system for C∞:

Cn,∞ = {(g`C`) ∈ C∞ | gn ∈ Cn},(23)
∼= lim
←−−
{δ`+1
` : Cn/C`+1→ Cn/C` | `≥ n}.(24)

6C. The discriminant. Observe that for each ` ≥ 0, the quotient group Dx
` =

Gx
`/C` ⊂ G0/C`. It follows that the inverse limit space

(25) Dx = lim
←−−
{δ`+1
` : Dx

`+1→ Dx
` }

is a closed subgroup of C∞. The group Dx is called the discriminant group of the
action (V0,G0,80).

The relationship between C∞ and the Ellis group of (V0,G0,80) is given by
the following result.

Theorem 6.1 [Dyer et al. 2016, Theorem 4.4]. Let (V0,G0,80) be an equicontin-
uous minimal Cantor action, let x ∈ V0, and let Gx

≡ {Gx
` }i≥0 be the associated

group chain at x. Then there is a natural isomorphism of topological groups
2̂ :8(G0)∼= C∞ such that the restriction 2̂ :8(G0)x

∼= Dx .

Moreover, the discriminant subgroup is simple by the next result.

Proposition 6.2 [Dyer et al. 2016, Proposition 5.3]. Let (V0,G0,80) be an equicon-
tinuous minimal Cantor system, x ∈V0 a basepoint, and80(G0)x the isotropy group
of x. Then

(26) coreG0 80(G0)x =
⋂

k∈G0

k80(G0)x k−1

is the trivial group. Thus, the maximal normal subgroup of 80(G0)x in 80(G0) is
also trivial.

We next consider the homogeneity properties of a solenoid SP in terms of Dx

(see [Dyer et al. 2016]). It follows from Proposition 6.2 that if Dx is nontrivial, then
it is not normal in C∞, and therefore the quotient X x

∞
= C∞/Dx is not a group.

We thus conclude:
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Proposition 6.3 [Dyer et al. 2016]. The action (V0,G0,80) is regular if and only
if Dx is trivial.

Note that Proposition 6.3 does not take into account the possibility that the action
of a subgroup Gx

` on a smaller section V` is regular. The general formulation is
then as follows.

Corollary 6.4. An equicontinuous matchbox manifold M is homogeneous if and
only if it admits a transverse section V0 and a presentation P with associated group
chain {Gx

` }`≥0 such that the discriminant group Dx is trivial.

7. Molino theory for weak solenoids

In this section, we obtain a Molino theory for weak solenoids, and hence for all
equicontinuous matchbox manifolds, including those for which the hypotheses of
[Álvarez López and Moreira Galicia 2016] are not satisfied. There are often subtle,
and not so subtle, differences between the theory for matchbox manifolds and for
smooth Riemannian foliations, as will be discussed further in the following sections.

7A. Molino overview. Molino theory for Riemannian foliations gives a structure
theory for the geometry and dynamics of this class of foliations on compact smooth
manifolds. The Séminaire Bourbaki article by Haefliger [1989] gives a concise
overview of the theory and its applications, and Molino’s book [1988] and its
multiple appendices give a more detailed treatment of this theory and its applications.
The book [Moerdijk and Mrčun 2003] is also an excellent reference about the
essentials of Molino theory. We give a very brief summary below of some key
properties of the Molino space M̂ associated to a smooth Riemannian foliation F
of a compact connected manifold M.

Given a Riemannian foliation F of a compact connected manifold M, the associ-
ated Molino space M̂ is a compact connected manifold with a Riemannian foliation
F̂ whose leaves have the same dimension as those of F. In the case where F is
a minimal foliation, in the sense that each leaf of F is dense in M, then we can
assume that the foliation F̂ is also minimal.

Associated to a minimal Riemannian foliation F is the structural Lie algebra h,
given by the algebra of holonomy-invariant vector fields normal to F, and which is
well defined up to isomorphism.

There is a fibration π̂ : M̂→ M equipped with a fiber-preserving right action
of a connected Lie group H whose Lie algebra is h, and for which the foliation F̂
is invariant under the action of H . Moreover, for each leaf L̂ ⊂ M̂ , there is a leaf
L ⊂ M such that the restriction π̂ : L̂→ L is the holonomy covering of L . We say

(27) H −→ M̂ π̂
−→M

is a Molino sequence for M, and H is the structural Lie group for F̂ .
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A key property of the Molino space M̂ of F is that it is transversally paral-
lelizable, or TP. This condition states that there are nonvanishing vector fields
{Ev1, . . . , Evq} on M which span the normal bundle to F at each x ∈ M , and the
vector fields are locally projectable. As a consequence, given any pair of points
x, y ∈ M̂ there exists a diffeomorphism h : M̂ → M̂ which maps leaves of F̂ to
leaves of F̂ , and satisfies h(x)= y. A foliation F̂ satisfying this condition is said
to be foliated homogeneous.

7B. Molino sequences for weak solenoids. For a matchbox manifold, the TP
condition cannot be defined, as the transversal space to the foliation is totally
disconnected. Thus, we need an alternative approach to defining the Molino fibration
(27) in the case where the transversal space to the foliation is a Cantor set. The
basic observation is that the foliated homogeneous condition for M̂ admits a natural
generalization to all foliated spaces, as discussed for weak solenoids in Section 5.
For weak solenoids, we will see below that the structural Lie group H is replaced by
the discriminant subgroup Dx ⊂ C∞ of Section 6C, and the foliated homogeneous
condition is a consequence of the Ellis group construction. We now restate and
prove Theorem 1.2.

Theorem 7.1. Let M be an equicontinuous matchbox manifold, and let P be a
presentation of M, such that M is homeomorphic to a solenoid SP . Then there
exists a homogeneous matchbox manifold M̂ with foliation F̂ , called a Molino
space of M, a compact totally disconnected group D, and a fibration

(28) D −→ M̂
q̂
−→M,

where the restriction of q̂ to each leaf in M̂ is a covering map of some leaf in M.
We say that (28) is a Molino sequence for M.

Proof. Let V0 ⊂M be a transverse section to the foliation FM of M, as given in
Proposition 3.4, and let x ∈ V0 be a choice of basepoint. Let G0 be the restricted
holonomy group acting on V0. Let P={p`+1 :M`+1→M` | `≥0} be a presentation
at x such that there is a homeomorphism M∼= SP , and for x ∈ V0 let Gx

= {Gx
` }`≥0

be the associated group chain in G0 = π1(M0, x0). Let 50 : SP → M0 and set
X0=5

−1
0 (x0). Let τ :V0→X0 with τx(x)= (eGx

` ) be the homeomorphism defined
in Lemma 4.1.

Recall that the covering map q` : M`→ M0 defined in (5) is associated to the
subgroup Gx

` ⊂ G0 = π1(M0, x0). Recall that the core subgroup C` ⊂ Gx
` is the

maximal normal subgroup of G0 contained in Gx
` , and has finite index in Gx

` . For
each ` > 0, let q̂` : M̂` → M0 be the proper covering space associated to the
normal subgroup C`. Each inclusion C`+1 ⊂ C` induces a normal covering map
p̂`+1 : M̂`+1→ M̂`, and so yields a presentation P̂ = { p̂`+1 : M̂`+1→ M̂` | `≥ 0}.
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Definition 7.2. The Molino space associated to a weak solenoid SP defined by a
presentation P is the inverse limit space associated to the presentation P̂,

(29) ŜP ≡ lim
←−−
{ p̂`+1 : M̂`+1→ M̂`}.

Let 5̂0 : ŜP→ M0 be the projection map, with fiber X̂0 = 5̂
−1
0 (x0).

We state some of the basic properties of the space ŜP . The proofs of the following
statements are omitted, as they follow by arguments analogous to the corresponding
statements for SP .

Proposition 7.3. Let SP be a weak solenoid defined by a presentation P, and let
ŜP be the solenoid defined by (29). Then

(1) there is a natural isomorphism X̂0 ∼= C∞, where C∞ is the profinite group
defined by (22);

(2) there is a natural map of fibrations q̂ : ŜP → SP , whose fiber over x ∈ X0 is
the discriminant group Dx ;

(3) the global holonomy of the fibration 5̂0 : ŜP→ M0 is naturally conjugate as
G0-actions with the minimal Cantor system (C∞,G0, 8̂0).

Definition 7.4. The Molino sequence for the weak solenoid SP is the principal
fibration

(30) Dx −→ ŜP
q̂
−→SP .

Proposition 7.3(3) implies that the foliation F̂P on ŜP is minimal, and the
restrictions of q̂ to the leaves of F̂P are covering maps by construction, as there is a
covering map M̂`→M` for each `≥ 1 which induces q̂. Finally, the space ŜP is ho-
mogeneous by Proposition 5.5, as it is defined using the normal group chain {C`}`≥0.

Set M̂= ŜP and D = Dx . Then we have established Theorem 7.1. �

The construction of the sequence in (30) may depend on the various choices
made, and this is a fundamental aspect of the Molino theory for weak solenoids. We
consider in Section 7C the dependence of the discriminant group on the partition
sets Vn ⊂ V0. Then in Section 8, we consider the dependence of the sequence (30)
on the choice of the basepoint x ∈ V0 and the role of the holonomy of the leaf L x

in the properties of Dx .

7C. Stability of the Molino sequence. We next consider the stability of the dis-
criminant group for an equicontinuous Cantor minimal system (V0,G0,80) when
one restricts to a section Vn ⊂ V0.

We start with an example that highlights the importance of the “asymptotic
algebraic structure” of the group chain Gx for the definition of the Molino space.
Consider a weak solenoid SP with associated group chain Gx

= {Gx
` }`≥0 defined by
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the holonomy action (V0,G0,80) for a clopen subset V0 ⊂ X0, and suppose that
Gx is not regular. Then by Proposition 6.3, the discriminant group Dx is nontrivial,
and thus the sequence (30) has nontrivial fiber. Now suppose that, in addition, the
group chain Gx is weakly normal. Then by Theorem 5.4, there exists some n > 0
such that the restricted action (Vn,Gn,8n) is regular; hence the discriminant group
Dn

x for the truncated chain Gx
n = {G

x
` }`≥n associated to the restricted action is trivial.

For the truncated presentation Pn defined by (9), we have ŜPn = SPn as Dn
x is the

trivial group, and SPn
∼= SP as remarked in Section 3C; hence we can consider ŜPn

as a Molino space for SP as well. That is, for this choice of Vn as a section, the
Molino sequence (30) has trivial fiber.

We next develop a comparison, for n ≥ 0, of the discriminant groups Dn
x for the

group chain Gx
n associated to the truncated presentation Pn defined by (9). We work

with the group chain model (X x
∞
,G0,8x) of Lemma 4.1 for the holonomy action

80 : G0→ Homeo(X0). By definition (25) of the discriminant group, it suffices to
consider this invariant in sufficiently small clopen neighborhoods of the identity
in the core group associated with the group chains. For n ≥ 0, we have the clopen
neighborhoods of {e} ∈ X∞:

Un = {(g`G`) ∈ X∞ | gn ∈ Gx
n} ⊂ X∞(31)

∼= lim
←−−
{δ`+1
` : Gx

n/Gn
`+1→ Gx

n/G` | `≥ n}.(32)

Note that Un is just the inverse limit group defined by the truncated group chain Gx
n .

Next, we introduce the core groups of Gx
n for arbitrarily small neighborhoods of

{e} ∈Un . For `≥ n ≥ 0, set

(33) En,` ≡ coreGx
n

Gx
` ≡

⋂
g∈Gx

n

g Gx
`g−1.

Note that E0,`=C`, and that for all m≥n≥0 and `>m, we have En,`⊂ Em,`⊂Gx
` .

For k ≥ n ≥ 0, define the clopen neighborhood Vn,k of {e} for the core group of
Gx

n by

Vn,k = {(g`En,`) | `≥ k, gk ∈ Gx
k , g`+1 En,` = g`En,`}(34)

∼= lim
←−−
{δ`+1
` : Gx

k/En,`→ Gx
k/En,`+1 | `≥ k}.(35)

Then Vn,n is the core limit group, or the Ellis group, for the truncated group chain Gx
n ,

and {e} ∈ Vn,k ⊂ Vn,n for all k ≥ n. Note also that V0,0 = C∞ is the Ellis group
for Gx.

For each `≥ k ≥ m ≥ n, the inclusions En,` ⊂ Em,` induce group surjections

(36) Gx
k/En,`

ϕ`k,n,m
−−−→Gx

k/Em,`,
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so we obtain surjective homomorphisms of profinite groups ϕn,m : Vn,k→ Vm,k for
each m > n ≥ 0. In particular, for k = m, this states that the clopen neighborhood
Vn,m of {e} in the limit core group for Gx

n maps onto the limit core group Vm,m

of Gx
m .

We consider next the discriminant groups associated to the group chains Gx
n for

n ≥ 0, Dn
x ⊂ Vn,n:

Dn
x = lim

←−−
{δ`+1
` : Gx

`+1/En,`+1→ Gx
`/En,` | `≥ n}(37)

∼= lim
←−−
{δ`+1
` : Gx

`+1/En,`+1→ Gx
`/En,` | `≥ m} for m ≥ n.(38)

It follows from (36) and (38) that for m > n, there are surjective homomorphisms:

(39) Dx
ψ0,n
−−→Dn

x
ψn,m
−−→Dm

x .

Definition 7.5. A group chain Gx
= {Gx

` }`≥0 is said to be stable if there exists
n0 ≥ 0 such that the maps ψn,m : Dn

x → Dm
x defined in (39) are isomorphisms for

all m ≥ n ≥ n0. Otherwise, the group chain is said to be wild.

Theorem 5.4 implies that if the group chain {Gx
` }`≥0 is weakly normal, then it is

stable, as there exists some n0 ≥ 0 such that Dn
x is the trivial group for all n ≥ n0.

This discussion and Lemma 7.6 yield Proposition 1.4 of the Introduction.

Lemma 7.6. If the discriminant group Dx for Gx
= {Gx

` }`≥0 is finite, then Gx is
stable.

Proof. The map ψ0,n : Dx → Dn
x is surjective for all n ≥ 0, so the assumption that

the cardinality #Dx is finite implies that the cardinality #Dn
x of the group Dn

x is
decreasing with n, and thus there exists n0 ≥ 0 such that the cardinality of its image
must stabilize for n ≥ n0. Then for n ≥ n0, the homomorphism ψn,m :Dn0

x →Dn
x is

an isomorphism. �

7D. Stable matchbox manifolds. We next consider the relationship between the
notion of stable for a matchbox manifold as given in Definition 1.3, and stable for
a group chain as given in Definition 7.5.

Let M be an equicontinuous matchbox manifold, let V0 be a transverse section
in M as given in Proposition 3.4, and let x ∈ V0 be a choice of basepoint. Let
V` be defined as in Proposition 3.4, so that x ∈ V` for all ` ≥ 0. Let G0 be the
group of transformations of V0 which induces the restricted holonomy group acting
on V0, and let Gx

` ⊂ G0 be the stabilizer group of the set V`. Let Gx
= {Gx

` }`≥0

be the associated group chain in G0 = π1(M0, x0), let Pn be the presentation (9)
associated to the truncated group chain Gx

n = {G
x
` }`≥n , and let SPn be the inverse

limit solenoid. For each n ≥ 0, let ŜPn be the homogeneous solenoid associated to
the normal group chain {En,`}`≥n defined by (33).
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Assume that the group chain Gx is stable in the sense of Definition 7.5. That
is, there exists an index n0 such that for any m > n ≥ n0 restricting to the smaller
sections Vm ⊂ Vn ⊂ V0 with induced presentations Pm and Pn , then the induced map
ψn,m :Dn

x→Dm
x in (39) is a topological isomorphism. Then we have a commutative

diagram of fibrations:

(40)

Dn
x

��

ψn,m // Dm
x

��

ŜPn

��

σ̂m−n // ŜPm

��

SPn

σm−n // SPm

By the discussion in Section 3C, the shift map σm−n is a homeomorphism, and
by assumption, the map ψn,m : Dn ∼= Dm is a topological isomorphism. Thus the
map σ̂m−n : ŜPn → ŜPm is a homeomorphism. Hence, the Molino sequences for the
presentations Pn and Pm yield isomorphic topological fibrations. Conversely, if the
topological type of the Molino sequence

(41) Dn
x −→ ŜPn−→ SPn

is well defined up to homeomorphism of fibrations, for given V0 and n≥0 sufficiently
large, then there exists n0 ≥ 0 such that m > n ≥ n0 implies that Dn

x
ψn,m
−−→Dm

x is a
topological isomorphism. Thus, the map of fibers ψn,m :Dn

x →Dm
x is a topological

isomorphism, and hence Gx is stable.
The following statement summarizes these conclusions.

Theorem 7.7. Let M be an equicontinuous matchbox manifold, let V0 be a trans-
verse section in M as given in Proposition 3.4, and let x ∈ V0 be a choice of
basepoint. Let V` be defined as in Proposition 3.4, so that x ∈ V` for all ` ≥ 0.
Let G0 be the restricted holonomy group acting on V0, and let Gx

` ⊂ G0 be the
stabilizer group of the set V`. Let Gx

= {Gx
` }`≥0 be the associated group chain in

G0 = π1(M0, x0), let Pn be the presentation (9) associated to the truncated group
chain Gx

n = {G
x
` }`≥n , and let SPn be the inverse limit solenoid. For each n ≥ 0, let

ŜPn be the homogeneous solenoid associated to the normal group chain {En
` }`≥n

defined by (33).

(1) If Gx is stable, then there exists n0 ≥ 0 such that for all n ≥ n0 the fibration
(41) is a Molino sequence for M∼= SPn , and the fiber group Dn

x is well defined
up to topological isomorphism.

(2) If Gx is wild, then the topological isomorphism type of the fiber in the sequence
(41) does not stabilize as n tends to infinity.



122 JESSICA DYER, STEVEN HURDER AND OLGA LUKINA

Theorem 7.7 implies that the Molino sequence of a matchbox manifold M need
not be well defined, though if the associated group chain Gx is stable, then M does
have a well-defined Molino sequence.

8. Germinal holonomy in solenoids

In this section, we investigate the relationship between the germinal holonomy
groups of leaves in a solenoid, the kernels of the associated group chains, and the
discriminant group of the action.

Let M be an equicontinuous matchbox manifold with transverse section V0,
let x ∈ V0 be a point, and let P = { f `+1

i : M`+1 → M`} be a presentation with
associated group chain Gx

= {Gx
` }`≥0 in G0 = π1(M0, x0). Then by Theorem 1.1,

there is a foliated homeomorphism M∼= SP .
Let C∞ = lim

←−−
{G0/C`+1→ G0/C`}, where C` is the maximal normal subgroup

of Gx
` , `≥ 0, and let Dx be the discriminant group at x. Denote by L x ⊂ SP the leaf

of FP through x. Recall that the kernel of Gx is the subgroup K (Gx)⊂G0 as defined
in Definition 4.7, and is the isotropy subgroup of the action (V0,G0,80) at x.

8A. Locally trivial germinal holonomy. The following properties of pseudogroup
actions are basic for understanding their dynamical properties.

Definition 8.1. Given g1, g2 ∈ K (Gx), we say g1 and g2 have the same germinal
holonomy at x if there exists an open set Ux ⊂ V0 with x ∈ Ux such that the
restrictions 80(g1)|Ux and 80(g2)|Ux agree on Ux . In particular, we say that
g ∈ K (Gx) has trivial germinal holonomy at x if there exists an open set Ux ⊂ V0

with x ∈Ux such that the restriction 80(g)|Ux is the trivial map.

By straightforward checking of definitions, one can see that the notion “germi-
nal holonomy at x” defines an equivalence relation on the image of the isotropy
subgroup K (Gx) under the global holonomy map 80 : G0→ Homeo(V0). Denote
by Germ(80, x) the quotient of 80(K (Gx)) by this equivalence relation. Thus the
composition of80 :K (Gx)→Homeo(V0)with the quotient map gives us a surjective
map K (Gx)→ Germ(80, x). A standard argument shows that if Germ(80, x) is
trivial, and y is in the same G0-orbit of x , then Germ(80, y) is trivial. This leads
to the following definition.

Definition 8.2. We say that a leaf L x is without holonomy, or that L x has trivial
holonomy, if Germ(80, x) is trivial. We say that Germ(80, x) is locally trivial if
there exists an open set Ux ⊂ V0 with x ∈ Ux such that for every g ∈ K (Gx) the
restriction 80(g)|Ux is the trivial map.

The distinction between the holonomy group Germ(80, x) being trivial and it
being locally trivial may seem technical, but this distinction is related to funda-
mental dynamical properties of the foliation FP of SP . For example, it is a key
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concept in the generalizations of the Reeb stability theorem from compact leaves to
the noncompact case for codimension-one foliations, as discussed in [Sacksteder
and Schwartz 1965; Inaba 1977; 1983]. The nomenclature “locally trivial” was
introduced by Inaba [1977; 1983]. As we see below, this distinction is also important
for the study of the dynamics of weak solenoids. First, we make an elementary
observation, which implies Lemma 1.5 of the Introduction.

Lemma 8.3. Suppose that K (Gx) is finitely generated. If Germ(80, x) is trivial,
then Germ(80, x) is locally trivial.

Proof. Let {g1, . . . , gk} ⊂ K (Gx) be a set of generators. Then Germ(80, x) being
trivial implies that for each 1 ≤ i ≤ k there exists an open Ui ⊂ V0 with x ∈ Ui

such that the restriction 80(gi )|Ui is the trivial map. Then let Ux =U1 ∩ · · · ∩Uk ,
which is an open neighborhood of x , and the restriction 80(g)|Ux is then trivial for
all g ∈ K (Gx). �

We also recall a basic result, which is a version of the fundamental result of
Epstein, Millett and Tischler [Epstein et al. 1977] in the language of group actions
on Cantor sets.

Theorem 8.4. Let (V0,G0,80) be a given action, and suppose that V0 is a Baire
space. Then the union of all x ∈ V0 such that Germ(80, x) is the trivial group
forms a Gδ subset of V0. In particular, there exists at least one x ∈ V0 such that
Germ(80, x) is the trivial group.

The following is an immediate consequence of this result and Definition 5.1.

Corollary 8.5. Let (V0,G0,80) be a regular equicontinuous minimal Cantor sys-
tem. Then Germ(80, x) is the trivial group for all x ∈ V0. Consequently, if M is
a homogeneous matchbox manifold, then all leaves of FM are without germinal
holonomy.

8B. Algebraic conditions. Next, we explore the relation between the structure of
a group chain Gx and the germinal holonomy group at x . First, note that for a given
section V0 and the holonomy action (V0,G0,80), the assumption that the germinal
holonomy group Germ(80, x) is trivial need not imply that K (Gx) is trivial, or
even that it is a normal subgroup of G0, as the following example shows.

Example 8.6. Let 0 be a finitely presented group and {0`}`≥0 be a chain of normal
subgroups in 0 with kernel 0x =

⋂
` 0`. Let H be a finite simple group, and let

K ⊂ H be a nontrivial subgroup. Since H is simple, K is not normal in H .
Let G0 = H ×0 and G` = K ×0`, ` ≥ 0. Note that G` is a normal subgroup

of G1 = K ×01 for all `≥ 1, but G` is not normal in G0. Thus, the group chain
{G`}`≥0 is weakly normal. Let M0 be a compact connected manifold without
boundary such that π1(M0, x0)= G0, where x0 ∈ M0 is some basepoint. Then the
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group chain Gx
= {G`}`≥0 yields a presentation P = { f `+1

` : M`+1→ M`}, and the
corresponding solenoid SP is homogeneous by Proposition 5.5.

By Theorem 8.4, SP has a leaf L y without holonomy. By Remark 4.2, a group
chain with basepoint y is given by G y

= {gi Gi g−1
i }i≥0, where gi = (ci , γi ). Since

the projection G0/G`+1→ G0/G` restricts to the identity map on the factor H/K ,
for all `≥ 0, one can write gi = (c, γi ) for some c ∈ H . Since each 0` is a normal
subgroup, we have that gi Gi g−1

i = cK c−1
×0i . Thus, K (G y) = cK c−1

×0x is
not a normal subgroup of G0, since H is simple.

Next, we consider the holonomy action of the elements in K (Gx) on V0 in more
detail, using the inverse limit model τx : V0 ∼= X x

∞
= {G0/Gx

`+1→ G0/Gx
` }. For

each n ≥ 0, set

(42) U (x, n)= {(g`Gx
` ) ∈ X x

∞
| g` = e if `≤ n; g`Gx

` = g`+1Gx
` for all `≥ n},

which is a “cylinder neighborhood” of (eGx
` ) ∈ V0. Note that τx(Vn)=U (x, n) for

n ≥ 0, where Vn is a generating set in the partition introduced in Proposition 3.4.
Since K (Gx) is a subgroup of G0, for each n ≥ 1 one can consider its left action

on the cosets in G0/Gx
n . Such an action fixes the coset eGx

n ; thus the action of
g∈K (Gx

n ) fixes the neighborhood of the identity as a set,80(g) :U (x, n)→U (x, n)
for g ∈ Gx

n , and permutes the points in U (x, n).
Now observe that the action of g has trivial germinal holonomy at x if for

some ng > 0, g acts trivially on the clopen neighborhood U (x, ng) of x ; that is,
80(g)|U (x, ng) is the trivial map. The following algebraic characterization of
elements without holonomy was obtained in [Dyer et al. 2017, Lemma 5.3].

Lemma 8.7. The action of g ∈ K (Gx) has trivial germinal holonomy at x if
and only if there exists some index ig ≥ 0 such that multiplication by g satisfies
g · hK (Gx)= hK (Gx) for all h ∈ Gig . That is, h−1gh ∈ K (Gx) for all h ∈ Gig .

In the case where the kernel K (Gx) is finitely generated, we have the following
consequence of Lemma 8.7, whose proof can be compared with that of Lemma 8.3.

Proposition 8.8. Let Gx
={Gx

` }`≥0 be a group chain, and suppose the kernel K (Gx)

is finitely generated. Suppose that Germ(80, x) is the trivial group. Then there is
an index `x ≥ 0 such that K (Gx) is a normal subgroup of Gx

`x
.

Proof. Let {g1, . . . , gk} ⊂ K (Gx) be a set of generators. Then for each 1≤ `≤ k,
there exists i`≥0 such that h−1gh ∈ K (Gx) for all h ∈Gi` . Let `x =max{i1, . . . , ik}.
Then this implies that h−1gh ∈ K (Gx) for all g ∈ K (Gx) and h ∈G`x ; that is, K (Gx)

is a normal subgroup of Gx
`x

. �

Remark 8.9. The condition that the kernel K (Gx) of the group chain Gx is finitely
generated is essential. Example 9.7 gives a group chain whose kernel at x is
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infinitely generated, and the germinal holonomy group Germ(80, x) is not locally
trivial.

Proposition 8.8 implies the following result, which is an algebraic analog of
Reeb stability.

Proposition 8.10. Let (V0,G0,80) be a minimal equicontinuous Cantor group
action. Let x, y ∈ V0 be such that both germinal holonomy groups Germ(80, x)
and Germ(80, y) are locally trivial. Then for associated group chains Gx and G y,
the kernels K (Gx) and K (G y) are conjugate subgroups of G0.

Proof. Let Gx and G y be group chains at x and y, respectively, for the action
(V0,G0,80). Let τx : X0→ X x

∞
and τy : X0→ X y

∞ be the corresponding homeo-
morphisms defined in Lemma 4.1, each of which is equivariant with respect to the
action (7) of G0.

By the assumption that Germ(80, x) is locally trivial, there exists an open set
Ux ⊂ V0 with x ∈Ux such that for every g ∈ K (Gx) the restriction 80(g)|Ux is the
trivial map. As the image τx(Ux)⊂ X x

∞
is open and contains (eGx

i )= τx(x), there
exists an index `x > 0 such that U ((eGx

i ), `x) ⊂ τx(Ux), where U ((eGx
i ), `x) is

defined in (42). Note that Gx
`x

is the stabilizer of U ((eGx
i ), `x) for the action of G0.

Then K (Gx) acts trivially on U ((eGx
i ), `x), so K (Gx) is a normal subgroup of Gx

`x

by Lemma 8.7.
Set V1 = τ

−1
x (U ((eGx

` ), `x)) ⊂ Ux and let z ∈ V1 with z 6= x . Then the image
τx(z) is (hi Gx

i ), where hi ∈ Gx
`x

for i ≥ `x and hi = e for i ≤ `x . As usual, the
sequence (hi ) also satisfies the compatibility condition hi Gx

i = h j Gx
i for all i ≥ 0

and j > i . By Remark 4.2, we have that Gz
= {hi Gx

i h−1
i }i≥0.

Note that hi K (Gx)h−1
i = K (Gx) for i ≥ 0, since K (Gx) is normal in Gx

`x
, so we

have

(43) K (Gx)=
⋂
i≥0

Gx
i =

⋂
i≥0

hi K (Gx)h−1
i ⊆

⋂
i≥0

hi Gx
i h−1

i = K (Gz).

In general, this inclusion may be proper, as illustrated in Example 9.6.
Now assume that Germ(80, z) is locally trivial. We show that K (Gz)⊆ K (Gx).

First, note that there exists an open set Uz ⊂ V0 with z ∈ Uz such that for every
g ∈ K (Gz) the restriction 80(g)|Uz is the trivial map. Recall that τx(z)= (hi Gx

i ) ∈

U ((eGx
` ), `x). Then there exists `z ≥ `x such that

(44) U ((hi Gx
i ), `z)= {(gi Gx

i ) ∈ X x
∞
| gi = hi for i ≤ `} ⊂ τx(Uz).

That is, g ∈ K (Gz) acts trivially on the cylinder set U ((hi Gx
i ), `z) in X x

∞
. Let

h = h`z ∈ Gx
`x

, so we obtain an element (hGx
i ) ∈ X x

∞
. By choice of h and (44) we

have (hGx
i )∈U ((hi Gx

i ), `z). Now let g∈K (Gz). Then the restricted map80(g)|Uz

is the identity, so we have g · (hGx
i )= (hGx

i ). But this means that h−1ghGx
i = Gx

i
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for all i ≥ 0, and thus h−1gh ∈ K (Gx), or g ∈ hK (Gx)h−1. Since h ∈ Gx
`z
⊂ Gx

`x
,

and K (Gx) is a normal subgroup of Gx
`x

, this implies that K (Gz)⊆ K (Gx).
Now suppose that y ∈ V0 is such that Germ(80, y) is locally trivial. The action

of G0 on V0 is assumed to be minimal, so there exists g ∈ G0 such that z =
80(g)(y) ∈ V1. Then the holonomy at z is also locally trivial, so K (Gz)= K (Gx)

by the argument above. On the other hand, we have K (G y)= g−1K (Gz)g as K (G y)

is the isotropy subgroup of y. The claim of the proposition then follows. �

8C. Kernels and discriminants. We give two results concerning the relation be-
tween the kernel of a group chain and its discriminant.

Proposition 8.11. Let (V0,G0,80) be an equicontinuous minimal Cantor system,
x ∈ V0 be a choice of basepoint, and Gx

= {Gx
` }`≥0 be a group chain associated to

(V0,G0,80) at x. Let L0 = Ker(80) denote the kernel of 80 : G0→ Homeo(V0).
Then K (Gx) ⊂ L0 if and only if the intersection 80(G0)∩80(G0)x is the trivial
group.

Proof. By Theorem 6.1, we can identify 80(G0)∼= C∞ and 80(G0)x
∼= Dx , where

the image80(G0) is identified with the elements (g`C`)∈C∞ such that g`C`= gC`
for all `≥ 0, for some g ∈ G0.

First, suppose that g ∈ G0 satisfies 8(g) ∈80(G0)x and 8(g) is not the trivial
element. Then ĝ = (gC`) ∈Dx and (gC`) 6= (eC`), so there exists `0 > 0 such that
g /∈ C`0 . By the definition of Dx in (25), we have that ĝ is in the image of the map
δ`+1
` : Dx

`+1→ Dx
` for all ` > 0 where Dx

` = Gx
`/C`. This implies that gC` ⊂ Gx

` ,
and hence g ∈ Gx

` for all ` ≥ 0, and so g ∈ K (Gx). We claim that 80(g) is not
the trivial action, so that g /∈ L0. It is given that g /∈ C`0 ; hence gC`0 6= C`0 . Then
for all ` ≥ `0, we have gC` 6= C`, so g · (eC`) 6= (eC`), which implies g /∈ L0. It
follows that K (Gx) 6⊂ L0, as was to be shown.

Conversely, let g ∈ K (Gx) and suppose that g /∈L0. First note that g ∈Gx
` for all

`≥ 0, and so we have ĝ = (gC`) ∈ Dx . The assumption that g /∈ L0 implies there
exists some (h`C`) ∈ C∞ such that g · (h`C`) 6= (h`C`). Thus, there exists `0 > 0
such that for all `≥ `0 we have gh`C` 6= h`C`, which implies that h−1

` gh` /∈C` and
so g /∈ C` as C` is a normal subgroup of G0. Thus, (eC`) 6= (gC`) for all ` ≥ `0,
and so (gC`) ∈ Dx is nontrivial. That is, 8(g) ∈80(G0)x is a nontrivial element,
as was to be shown. �

Compare the following application of Proposition 8.11 with the conclusions of
Theorem 7.7.

Proposition 8.12. Let M be an equicontinuous matchbox manifold, let V0 be a
transverse section in M as given in Proposition 3.4, and let x ∈ V0 be a choice of
basepoint. Let V` be defined as in Proposition 3.4, so that x ∈ V` for all ` ≥ 0.
Let G0 be the restricted holonomy group acting on V0, and let Gx

` ⊂ G0 be the
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stabilizer group of the set V`. Let Gx
= {Gx

` }`≥0 be the associated group chain in
G0 = π1(M0, x0), and let Gx

n = {G
x
` }`≥n be the associated truncated group chain.

Assume that the leaf L x containing x has nontrivial germinal holonomy. Then the
discriminant Dx

n for the chain Gx
n is nontrivial for all n ≥ 0.

Proof. Let n ≥ 0, and let Ln ⊂ Gx
n be the kernel of the restricted action 8n : Gx

n→

Homeo(Vn). Then by Lemma 8.7, the kernel K (Gx
n )⊂Gx

n is not a normal subgroup,
so Ln ⊂ K (Gx

n ) is a proper inclusion. Then by Proposition 8.11, the discriminant
group Gx

n is nontrivial also. �

This yields the proof of Theorem 1.7 of the Introduction, which we restate now.

Theorem 8.13. Let M be an equicontinuous matchbox manifold. If there exists a
leaf with nontrivial holonomy for FM, then for any choice of transversal V0 ⊂M,
the resulting Molino sequence (28) has nontrivial fiber D.

The converse to Theorem 8.13 is not true. Fokkink and Oversteegen [2002,
Theorem 35] constructed an example of a solenoid with simply connected leaves
which is nonhomogeneous. Since the leaves are simply connected, they have trivial
holonomy. In Section 10 we construct further examples of actions with nontrivial
Molino fiber and simply connected leaves.

9. Strongly quasianalytic actions

In this section, we study the condition of strong quasianalyticity, abbreviated as the
SQA condition, for equicontinuous matchbox manifolds, as defined in Definition 9.2
below. We identify classes of matchbox manifolds for which this condition holds,
and also give examples for which it does not. The generalization of Molino theory in
[Álvarez López and Moreira Galicia 2016] applies to equicontinuous foliated spaces
such that the closure of their holonomy pseudo?groups satisfies the SQA condition.
Thus, it is important to characterize the weak solenoids with this property.

9A. The strong quasianalyticity condition. The precise notion of the SQA condi-
tion has evolved in the literature, motivated by the search for a condition equivalent
to the quasianalyticity condition for the pseudo?groups of smooth foliations as intro-
duced by Haefliger [1985]. Álvarez López and Candel [2009] introduced the notion
of a quasieffective pseudo?group as part of their study of equicontinuous foliated
spaces. This terminology was replaced by the notion of a strongly quasianalytic
pseudo?group in [Álvarez López and Moreira Galicia 2016].

Definition 9.1. [Haefliger 1985] A pseudo?group G∗ acting on a locally compact
locally connected space T is quasianalytic if for every h ∈ G∗ the following holds:
Let U ⊂ Dom(h) ⊂ T be an open set, and suppose x ∈ T is in the closure of U.
Suppose the restriction h|U is the identity map. Then there is an open neighborhood
V of x such that the restriction h|V is the identity map.
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Definition 9.1 describes the properties of pseudo?groups, which were discussed
in Remark 2.1, where the action of an element is locally determined; that is, if h is
the identity on an open set, then it is the identity on a larger set. For the case where
the space T is not locally connected, Álvarez López and Candel [2009] introduced
the following modification of this notion.

Definition 9.2. A pseudo?group G∗ acting on a locally compact space T is strongly
quasianalytic, or SQA, if for every h ∈ G∗ the following holds: Let U ⊂Dom(h) be
a nonempty open set, and suppose the restriction h|U is the identity map. Then h is
the identity map on its domain Dom(h). A matchbox manifold M satisfies the SQA
condition if there exists a traversal V0 ⊂M such that the induced pseudo?group G∗F
on V0 satisfies the SQA condition.

Definition 9.2 says that the action of an equicontinuous strongly quasianalytic
pseudo?group G is locally determined. That is, if h is the identity on a nonempty
open subset of its domain, then it is the identity on Dom(h). In the case where the
transversal T is locally compact and locally connected, this condition is equivalent
to quasianalyticity by [Álvarez López and Candel 2009, Lemma 9.8]. However,
when T is totally disconnected, the SQA condition becomes a statement about the
algebraic properties of the group chain associated to the action, as we next discuss.

Recall from Proposition 3.4(1) that if M is an equicontinuous matchbox manifold,
then we can assume that the pseudo?group action on the transversal is given by
an equicontinuous minimal Cantor action (V0,G0,80). Thus, for each h ∈ G0

we have Dom(h) = V0. Moreover, the assumption that the restriction h|U is the
identity in the statement of Definition 9.2 means that the SQA condition need only
be checked for h ∈ G0 such that there exists x ∈ V0 for which 80(h)(x)= x , that
is, those elements whose action fixes at least a point.

Recall from Section 6A that the closure 80(G0)⊂ Homeo(V0) in the uniform
topology of the image 80(G0) ⊂ Homeo(V0) is called the Ellis group of the
Cantor system (V0,G0,80), which yields a Cantor system (V0,80(G0), 8̂0), where
8̂0 : 80(G0)→ Homeo(V0). Given x ∈ V0 then 80(G0)x ⊂ 80(G0) denotes the
isotropy subgroup at x for the action, and then the SQA condition must be checked
for all elements of 80(G0)x . We set 8̂0(G0)= {80(g) | g ∈ G0}, which is a dense
subgroup of 80(G0). The following result follows from the definitions.

Lemma 9.3. If (V0,80(G0), 8̂0) satisfies the SQA condition, then (V0,G0,80)

also satisfies the SQA condition. Conversely, suppose that 80(G0)x ⊂ 8̂0(G0).
Then (V0,G0,80) satisfying the SQA condition implies that (V0,80(G0), 8̂0)

satisfies the SQA condition.

Proof. Let g ∈ G0 and set ĝ = 80(g) ∈ Homeo(V0). Then ĝ ∈ 80(G0), so
that if (V0,80(G0), 8̂0) satisfies the SQA condition then so must the action of ĝ.
Conversely, suppose (V0,G0,80) satisfies the SQA condition. As noted above, the
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SQA property need only be checked for h ∈80(G0)x . By assumption, such an h
belongs to 80(G0) and so satisfies the SQA condition. �

Note that the assumption that 80(G0)x ⊂ 8̂0(G0) implies that the compact
set 80(G0)x is contained in a countable set, hence it must be finite. Thus, by
Theorem 6.1, this implies that the discriminant group Dx of the action is finite. The
converse need not be true. That is, if the discriminant 80(G0)x is finite, then it may
be possible to choose a point y ∈ V0 such that 80(G0)y has trivial intersection with
8̂0(G0); for instance, this is the case for Example 9.6. Examples in Section 10
show that it is possible to construct actions (V0,G0,80) such that 80(G0)x has
trivial intersection with 8̂0(G0) for any choice of x ∈ V0.

We next consider the SQA property for an equicontinuous minimal Cantor system
(V0,G0,80) and its associated Ellis system (V0,80(G0), 8̂0). This condition for
the system (V0,G0,80) can be formulated in terms of the group chain model
developed in Sections 4 and 6B, in which case Lemma 8.7 and Proposition 8.8
imply that the condition is a statement about the holonomy action of the kernel
K (Gx) of the chain Gx for each x ∈ V0. Examples 9.6 and 9.7 below and the
discussion in Section 10 illustrate the possibilities.

The SQA property for the system (V0,80(G0), 8̂0) can be much more subtle to
check, as now it is a condition on the action of the isotropy group 80(G0)x

∼= Dx

which depends on the algebraic properties of the closed subgroup Dx ⊂ C∞. Note
that in this case, for any x, y ∈ V0 the isotropy groups Dx and Dy are conjugate
in C∞, so it suffices to consider the condition for a fixed choice of basepoint x ∈ V0.

9B. Sufficient conditions for the SQA property. We next indicate a few classes
of solenoids which satisfy the quasianalyticity condition.

Lemma 9.4. If a matchbox manifold M is homogeneous, then there exists a sec-
tion V0 with associated presentation P such that the actions (V0,G0,80) and
(V0,80(G0), 8̂0) are SQA.

Proof. By Corollary 6.4 one can assume that V0 and P are chosen so that the
associated group chain {Gx

` }`≥0 consists of normal subgroups. Then K (Gx) is
a normal subgroup of G0, so by Lemma 8.7, each g ∈ K (Gx) defines a trivial
holonomy action on V0. Hence the action of G0 on V0 is SQA.

Since {Gx
` }`≥0 is a chain of normal subgroups, the isotropy group 80(G0)x is

trivial by Proposition 6.3, and so the condition 80(G0)x ⊂ 8̂0(G0) is trivially
satisfied. Then by Lemma 9.3 the action (V0,80(G0), 8̂0) is SQA. �

Note that the holonomy pseudogroups associated to homogeneous solenoids, as
in Lemma 9.4, satisfy a stronger condition than SQA. Recall from [Álvarez López
and Moreira Galicia 2016, Definition 2.22] that the action of G0 on V0 is strongly
locally free if for all h ∈ G0, if h(x) = x , then h(y) = y for all y ∈ V0. If M is
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homogeneous, then the action on a local section V0, as given by Lemma 9.4, is
strongly locally free. The actions in Lemma 9.4 are the actions in [Álvarez López
and Moreira Galicia 2016, Example 2.35].

The following result gives a class of equicontinuous matchbox manifolds which
satisfy the SQA condition. This is Theorem 1.8 of the Introduction.

Theorem 9.5. Let M be an equicontinuous matchbox manifold of finite π1-type.
Then there exists a section V0 with a presentation P such that the action (V0,G0,80)

is SQA. Further, if V0 can be chosen so that the discriminant group Dx =80(G0)x
is finite, then there exists an n ≥ 0 such that the restricted action (Vn,Gx

n,8n) and
the action (Vn,8n(Gx

n), 8̂n) are both SQA.

Proof. Let V0 be a transverse section in M as given in Proposition 3.4, and let
x ∈ V0 be a choice of basepoint. By Theorem 8.4 we can assume that x is chosen so
that L x is a leaf without holonomy. As the leaves of FM are assumed to have finite
π1-type, by Lemma 8.7 and Proposition 8.8, and restricting to a smaller section is
necessary, we can assume that V0 and {Gx

` }`≥0 are chosen so that K (Gx) is a normal
subgroup of G0. Then by Proposition 8.10, K (Gx)⊆ K (G y) for all y ∈ V0, and, if
Germ(y,80) is trivial, then K (Gx)= K (G y).

Since the G0-orbit of x is dense in V0, any g ∈ G0 which is the identity on a
nonempty open set in V0 must be contained in K (Gx), and so it is the identity on V0.
Thus, (V0,G0,80) is SQA.

Now let C∞ be the Ellis group, associated to (V0,G0,80), and suppose the
discriminant group Dx ∼= 80(G0)x is finite. Suppose there exists a nontrivial
element ĝ ∈80(G0)x which fixes an open subset U of V0 around x .

Let V` be defined as in Proposition 3.4, so that x ∈ V` for all `≥ 0. Choose an
index n ≥ 0 large enough so that Vn ⊂U . Let y ∈ Vn . Then

ĝ = (gi Ci ) ∈80(G0)y,

and it follows that

ĝ ∈
⋂
y∈Vn

80(G0)y,

that is, the intersection
⋂

y∈Vn
Dy is nontrivial.

Consider the truncated chain {Gx
` }`≥n and the corresponding action (Vn,Gx

n,8n).
Recall from Section 7C that En

` = coreGx
n

Gx
` is a maximal normal subgroup of Gx

`

in Gx
n , and there is an inclusion

(45) C` ⊂ En
` ⊂ Gx

` ,

where C` is the maximal normal subgroup of Gx
` in G0. The Ellis group En

∞
of the

restricted action (Vn,Gx
n,8n) is defined by (34) as the inverse limit of coset spaces
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Gx
n/E

n
` . The inclusions (45) yield a commutative diagram

(46) Gx
n/C`

ϕn,` //

$$

Gx
n/E

n
`

zz

Gx
n/G

x
`

which is equivariant with respect to the natural action of Gx
n on its coset spaces.

Taking the inverse limits, we obtain the commutative diagram

(47) Cn
∞

ϕn,∞ //

$$

En
∞

zz

Gn
∞
∼= Vn

where Cn
∞

is the profinite subgroup of C∞, defined by (31), which is again equivari-
ant with respect to the action of Gx

n on the inverse limits, and ϕn,∞ is a surjective
group homomorphism.

Let ĝn = ϕn,∞(ĝ). We will show that ĝn acts trivially on Vn . Indeed, let
ĝ = (g`C`), where g` ∈ Gx

n . Then ĝn = (g`En
` ) for ` ≥ n. Since C` and En

` are
normal subgroups of Gx

n , the actions of g`C` and g`En
` on Gx

n/G` are well defined;
for example, for any h ∈ Gx

n we have

g`C`hGx
` = g`hC`h−1hGx

` = ghGx
` ,

and similarly for g`En
` . Since diagram (46) is a commutative diagram of equivariant

maps, we obtain that

g`C`hGx
` = hGx

` =⇒ g`En
` hGx

` = hGx
` ,

and it follows that if ĝ acts trivially on y = (hi Gx
` ) ∈ Vn , then ĝn acts trivially on y

as well.
Then by an argument similar to the one at the beginning of this proof, we obtain

that ĝn ∈
⋂

y∈Vn
Dn

y , where Dn
y is the discriminant group of the truncated action

(V0,Gx
n,8n) at y ∈ Vn . We note that

⋂
y∈Vn

Dn
y is the maximal normal subgroup

of Dn
x , and so by Proposition 6.2 it must be trivial. Therefore, ĝn = ϕn,∞(ĝ) is the

identity in En
∞

.
We note that the restricted group action (Vn,Gx

n,8n) is SQA since (V0,G0,80)

is SQA. By restricting to a smaller section and applying the above argument a finite
number of times we may assume that no element of the discriminant group Dn

x fixes
an open subset of Vn . It follows that the action (Vn,8n(Gx

n), 8̂n) of the closure
is SQA. �
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9C. SQA counterexamples. We give two classes of examples to illustrate the
above results.

Example 9.6. We first give an example of a group action, corresponding to the
holonomy of a solenoid with leaves of finite π1-type, that is not strongly locally free.

Let K be the Klein bottle, with fundamental group G0=〈a, b |bab−1
=a−1

〉, and
let K∞ = lim

←−−
{p : K → K } be the inverse limit space, as described in Example 4.11.

The solenoid K∞ contains one nonorientable leaf with one end, and every other
leaf is an open two-ended cylinder. Thus, each leaf is homotopic to a circle, and
thus has finite π1-type.

The group chain Gx, associated to the choice of basepoint as in Example 4.11,
consists of subgroups Gx

` =〈a
2`, b〉, `≥0, and K (Gx)=〈b〉. This leaf has nontrivial

holonomy, with Germ(x,8) ∼= Z2. Fokkink and Oversteegen [2002] computed
that the kernel of a group chain based at any point which is not in the orbit of x
is K (G y)= 〈b2

〉, which is easily seen to be a normal subgroup of G0. Thus for the
chosen section V0, for every point y with trivial Germ(y,8) the kernel K (G y) is
a normal subgroup of G y

` , `≥ 0, and the section satisfies Proposition 8.10. So the
action (V0,G0,8) satisfies the SQA condition.

This action is not strongly locally free. Indeed, the action of the element b fixes x ,
but it does not fix any y with trivial Germ(y,8). The nontrivial element in 8(G0)x
acts nontrivially on any open subset of V0, and so the action (V0,8(G0)x , 8̂)

satisfies the SQA condition.

Example 9.7. We next give an example of a solenoid for which the action of the
holonomy group on the fiber is not SQA for any choice of a transverse section V0.
This example is the Schori solenoid [1966]. We now recall its construction, as
described in [Clark et al. 2014].

Let X0 be a genus-2 surface. Recall that a 1-handle is a 2-torus without an open
disc, and note that the genus-2 surface X0 can be seen as the union of two 1-handles
H0 and F0 intersecting along the boundaries of the open discs taken out. Let x0 be
a point in the intersection of the handles. Recall that the fundamental group of the
genus-2 surface can be presented as

π1(X0, x0)= 〈a, b, c, d | aca−1c−1bdb−1d−1
= 1〉,

where a and b are longitudinal loops in X0.
Cut the handle H0 (resp. F0) along a closed curve C0 (resp. D0), as shown in

Figure 1, top left. Pull the cut handles apart to obtain the surface with boundary X0

(see Figure 1, top center). Take three copies of X0, denoted by X1
0, X2

0, X3
0, and

identify their boundaries as shown in Figure 1, top right. The resulting surface X1

(see Figure 1, bottom) has genus 4, and there is an obvious 3-to-1 covering map
f 1
0 : X1→ X0. Let x1 be the preimage of x0 in the second copy of the handle. We
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X0
H0 F0

C0 D0

X0
H0 F0

C ′0 C ′′0 D′0 D′′0

X3
0

X2
0

X1
0

X1
H1 F1

C1 D1

Figure 1. Construction of the Schori example. Top left: choice of
the handles H0 and F0 and closed curves C0 and D0 in X0. Top
center: the cut surface X0. Top right: identifications between X`

0,
` = 1, 2, 3. Each X i

0 is represented by a cut copy of a figure 8,
and identifications are depicted with straight lines. Bottom: the
surface X1 and the choice of the handles H1 and F1 and closed
curves C1 and D1.

note that the covering f 1
0 is not regular; that is, the image ( f 1

0 )∗π1(X1, x1) of the
fundamental group of X1 is not a normal subgroup of π1(X0, x0). Geometrically,
we can see that f 1

0 is irregular as follows: Take a longitudinal loop γ in X0, which
represents an equivalence class of loops in π1(X0, x0). The fiber of f 1

0 consists of
three points, and we see from Figure 1, top right, that depending on the initial point
of the lift, γ may lift to a loop or to a nonclosed curve [Schori 1966].

Proceed inductively to obtain a collection of 3-to-1 coverings f `+1
` : X`+1→ X`.

That is, we can see X` as the union of two handles H` and F`, intersecting along their
boundaries (see Figure 1, bottom) for `= 1. We cut the handle H` (resp. F`) along a
closed curve C` (resp. D`), pull the handles apart to obtain the surface with boundary
X`, take three copies of X`, denoted by X1

`, X2
`, X3

`, and identify their boundaries
in a way similar to Figure 1, top right. The resulting surface X`+1 is a 3-to-1
nonregular cover of X`. This defines a presentation P = { f `+1

` : X`+1→ X`, `≥ 0}
of the Schori solenoid SP . Let X0 be the fiber of SP at x0.

For each `≥ 0, we choose x`+1 to be a preimage of x` under the covering map
f `+1
` in the second copy of X`. Denote by Gx

= {Gx
` }`≥0 the corresponding group

chain, and recall that there is a conjugacy

ϕ : X0→ X x
∞
= lim
←−−
{G0/Gx

`+1→ G0/Gx
` , `≥ 0}.

As before, we denote by U (x, `) the cylinder set in X x
∞

containing (eGx
` ). If

y ∈ X0 is a point with ϕ(y) = (g`Gx
` ), then g` · U (x, `) = 8(g`)(U (x, `)) is
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a cylinder set containing ϕ(y). Set U y
` = ϕ

−1(g` · U (x, `)). The group chain
G y
= {G y

` = g`Gx
`g−1
` }`≥0 corresponds to a presentation P ′ of the Schori solenoid

with basepoint y.
The following result is Theorem 1.9 of the Introduction.

Theorem 9.8. In the Schori solenoid, for any choice of basepoint y ∈ X0, and any
choice of section U y

n , n ≥ 0, the holonomy action (U y
n ,G y

n,8n) is not SQA.

Proof. Let y ∈ X0, and let (U y
n ,G y

n,8n) be the holonomy action. At the end of
Section 2 we described the procedure of restricting to a smaller section, which
gives us a presentation P ′n = { f `+1

` : X`+1 → X`, ` ≥ n}. By a slight abuse of
notation, we now set G y

n = π1(Xn, yn) and G y
` = ( f `n )∗π1(X`, y`) (these groups

are isomorphic to the groups ( f `0 )∗π1(X`, y`), which we denoted by G y
` earlier).

Thus we have a homeomorphism

ϕ′n :U
y
n → X y

∞,n = lim
←−−
{G y

n/G y
`+1→ G y

n/G y
` },

which commutes with the action of G y
n on U n

y and X y
∞,n . Denote by U (y, `) the

cylinder neighborhoods of (eG y
` ) in X y

∞,n . In particular, U (y, n)= X∞,n .
The surface X` in the presentation P ′ has genus m` = 3`+ 1 (see [Clark et al.

2014]), so G y
` has m` generators, represented by longitudinal loops. In particu-

lar, there are loops γn and δn which wind around the handles Hn and Fn in Xn ,
respectively. Denote by gγ and gδ the elements represented by γn and δn in G y

n ,
respectively.

Now consider the construction of the surface Xn+1. It is obtained by the identifi-
cation of three copies X1,2,3

n of Xn similar to the identification in Figure 1, bottom
left. There is a point yn+1 in one of the copies which satisfies f n+1

n (yn+1) = yn ,
and which corresponds to our choice of the basepoint y. Denote by zn+1 and vn+1

the other two points such that

f n+1
n (zn+1)= f n+1

n (vn+1)= yn.

Denote by γyn+1 , γzn+1 , and γvn+1 the copies of γn in X1,2,3
n with respective base-

points yn+1, zn+1, and vn+1. Note that these loops are cut when constructing X1,2,3
n .

We now proceed to identify the boundaries of X1,2,3
n according to the construction,

which would close one of the loops back, and would intertwine the boundaries of
the other two loops, so as to create a single loop of twice the length of γn .

We have the following alternatives: first, suppose γzn+1 is identified into a loop,
and γyn+1 and γvn+1 are identified to make a single loop of twice the length. Then
the lift of γn with the starting point yn+1 is the curve γyn+1 which is not closed
and has vn+1 as its ending point. This means that the action of gγ on the coset
space G y

n/G y
n+1 maps eG y

n+1 onto gγG y
n , and so maps the cylinder neighborhood

U (y, n+ 1) onto the clopen set gγ (U (y, n+ 1)). At the same time, the lift of γn
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with the starting point zn+1 is a closed loop. So the action of gγ fixes the coset
γδG

y
n+1, and the clopen set gδ(U (y, n+ 1)). We note that on the subsequent steps

of the construction, when creating Xn+i , the lifts of the loop γzn+1 are never cut and
identified, which means that the action of gγ is the identity on gδ(U (y, n+ 1)).

Another alternative is that γyn+1 is identified into a loop, and γzn+1 and γvn+1 are
identified to make a single loop. Arguing similarly, in this case we obtain that the
action of gγ is the identity on U (y, n+1), and it permutes the sets gδ(U (y, n+1))
and gγ ◦gδ(U (y, n+1)). Thus in both cases we obtain an element which is the iden-
tity on a clopen subset of the section U y

n , which permutes two other subsets of U n
y ,

which means that (U y
n ,G y

n,8) is not SQA. Since the choice of y and n was arbitrary,
we conclude that the holonomy pseudogroup for the Schori solenoid is not SQA. �

From the proof of Theorem 9.8 we obtain the following corollary, which shows
that the hypotheses of Proposition 8.8 are necessary.

Corollary 9.9. In the Schori solenoid, for any choice of a transverse section V0,
and any choice of a point x , Germ(80, x) is not locally trivial.

Proof. From the proof of Theorem 9.8 we conclude that, for any choice of basepoint
y ∈ X0, and any choice of group chain G y

n = {G
y
n}i≥0, the kernel K (G y

n) is not a
normal subgroup of Gx

n . It follows that even if Germ(80, x) is trivial, it is not
locally trivial. �

10. A universal construction

In this section, we give a general method of constructing examples of group chains
with prescribed discriminant groups. This construction is inspired by the proof of
Lemma 37 in Section 8 of [Fokkink and Oversteegen 2002], which they attribute
to Hendrik Lenstra. The construction of Lenstra is given in Section 10A, and
Section 10B discusses some properties of this construction. Then in Section 10C
we give criteria for when the resulting group chains are stable.

Section 10D recalls two basic results of Lubotzky [1993]. The first, given here as
Theorem 10.4, realizes any given finite group F embedded into the profinite com-
pletion of a finitely generated, torsion-free group G. A second result of Lubotzky,
given here as Theorem 10.5, embeds the infinite product H of a collection of finite
groups as a subgroup of the profinite completion of a finitely generated, torsion-free
group G. Then in Section 10E, these constructions of Lubotzky are used to construct
the examples used in the proofs of Theorems 1.10 and 1.12 of the Introduction.

There is an extensive literature on embedding groups into the profinite completion
of a given torsion-free, finitely generated group (see [Ribes and Zalesskii 2000] for
a discussion of this topic and further references). The methods of this section apply
in this generality to yield an enormous range of equicontinuous minimal Cantor
actions with infinite, hence Cantor discriminant, groups.
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10A. A profinite construction. We first give a reformulation of the constructions
in Sections 6B and 6C, in analogy with the construction of Lenstra in [Fokkink and
Oversteegen 2002]. This alternate formulation is of strong interest in itself, as it
gives a deeper understanding of the Molino spaces introduced in this work.

Let G0 be a finitely generated group, G = {G`}`≥0 be a group chain in G0, and
C = {C`}`≥0 be the core group chain associated to G, with C∞ the core group
associated with C. Assume the kernel K (G) is trivial, so the map 8̂ : G0→ C∞
is an injective homomorphism with dense image Ĝ0 = 8̂(G0) ⊂ C∞. Then the
discriminant of G is a compact subgroup D ⊂ C∞, whose rational core as defined
in (26) is trivial by Proposition 6.2.

Let Cn,∞ ⊂ C∞ be the clopen normal subgroup neighborhood of the identity
{e} defined in (23). As

⋂
n≥1 Cn,∞ = {e}, the collection {Cn,∞ | n ≥ 1} is a clopen

neighborhood system about the identity in C∞. Observe that from the definition
(21), we have that C∞/Cn,∞ ∼= G0/Cn and Ĝ0 ∩Cn,∞ ∼= Gn . As each subgroup
Cn,∞ is normal and D is compact, the product Vn = D ·Cn,∞ ⊂ C∞ is a clopen
subgroup of C∞ containing D, and we have D =

⋂
n≥1 Vn . Thus, D is realized as

the countable intersection of clopen subgroups of C∞. It is an exercise to show that
this formulation of D agrees the definition of D as an inverse limit in (25).

We now turn the order of the above remarks around to obtain a construction of a
group chain with prescribed discriminant group.

Proposition 10.1. Let C∞ be a profinite group, and let G ⊂ C∞ be a finitely
generated dense subgroup. Let D ⊂ C∞ be a compact subgroup of infinite index
which has trivial rational core,

(48) coreG D =
⋂
k∈G

kDk−1
= {e}.

Then there exists a group chain G = {G`}`≥0 with G0 = G, with discriminant
group D.

Proof. By the assumption that C∞ is a profinite group, there exists a group chain
{U` | `≥ 1} that is a clopen neighborhood system about the identity in C∞, such that

(1) each U` is normal in C∞,

(2) for each `≥ 0 there is a proper inclusion U`+1 ⊂U`,

(3)
⋂
`≥1 U` = {e}.

In particular, each quotient H `
≡ C∞/U` is a finite group. Let ι`+1

` : H `+1
→ H `

be the map induced by inclusion of cosets. Then there is a natural identification

(49) C∞ ∼= lim
←−−
{ι`+1
` : H `+1

→ H `
}.

Next, for each `≥ 1, set W` =D ·U`, which is a subgroup of C∞, as U` is normal.
Moreover, the assumption that D is compact implies that each W` is a clopen subset
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of C∞. Then set G` = G ∩W`, which is a subgroup of finite index in G, and so
G = {G`}`≥0 is a subgroup chain in G. Note that

(50) K (G)=
⋂
`≥0

G` =

⋂
`≥0

G ∩W` = G ∩
⋂
`≥0

W` = G ∩D.

We next calculate the discriminant of the chain G. Let π` : C∞→ H ` be the
quotient map. As each H ` is finite, the image D` ≡ π`(D) is a finite set. The group
G is dense in C∞ so has nontrivial intersection with each clopen set gU`. Thus,

(51) D` = π`(D)= π`(W`)= π
`(G ∩W`)= π

`(G`)⊂ H `.

The core of the group G` is the group C` ≡ coreG G` =
⋂

g∈G gG`g−1. We have

(52) π`(C`)= π`
(⋂

g∈G

g G` g−1
)

=

⋂
g∈G

π`(g)π`(G`)π
`(g)−1

=

⋂
g∈G

π`(g)π`(D)π`(g)−1

= {e`},

where e` ∈ H ` is the identity, and the last equality follows since G is dense in C∞
and the core of D is trivial. It follows that C` =G∩U`, and thus we obtain induced
maps on the quotients, π` :G/C`→ H`. Then note that π`(G`/C`)=π`(D)=D`

for all `≥ 0.
The map ι`+1

` : H
`+1
→ H ` induces a map (denoted the same), ι`+1

` :D
`+1
→D`.

Then for the inverse limits we have

(53) lim
←−−
{δ`+1
` : G`+1/C`+1→ G`/C`} = lim

←−−
{ι`+1
` : D`+1

→ D`}.

The term on the left-hand side of (53) is by definition the discriminant of the chain G,
while the term on the right-hand side of (53) is homeomorphic to the subgroup D,
as {U` | `≥ 1} is a clopen neighborhood system about the identity in C∞. �

10B. Properties of the Lenstra construction. We make some remarks about the
construction in Proposition 10.1. First, note that the proof of [Fokkink and Overstee-
gen 2002, Lemma 37] defined the chain Gn using a collection of clopen neighbor-
hoods of e ∈ C∞. However, the proof in that paper that the chain Gn is not weakly
regular used Proposition 5.6, that is, the fact that if the number of conjugacy classes
of the kernel K (Gn) is infinite, then Gn cannot be weakly regular. Our approach is
to calculate the discriminant group for the chain directly.
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Assume there is given a profinite group C∞, a compact subgroup D ⊂ C∞,
and a dense subgroup G ⊂ C∞ satisfying the hypotheses of Proposition 10.1. Set
X = C∞/D, which is a Cantor space. The left action of G on X defines a map
8 : G→ Homeo(X), which is a minimal action as G is dense in C∞. Thus, the
construction yields an equicontinuous minimal Cantor system (X,G,8).

Next, given a clopen neighborhood system {U` | `≥ 1} about the identity in C∞
which satisfies the conditions in the proof of Proposition 10.1, let G ≡ {G`}`≥0 be
the group chain in G constructed with respect to this clopen neighborhood system.
Then it is an exercise, using the techniques of the proof of Proposition 10.1, to
show that there is a G-equivariant homeomorphism of spaces

τ : X ∼= lim
←−−
{ι`+1 : G/C`+1→ G/G`} ≡ X∞.

Now suppose that {V` | ` ≥ 1} is another clopen neighborhood system about the
identity in C∞ which also satisfies the conditions in the proof of Proposition 10.1,
and let H≡ {H`}`≥0 be the group chain in G constructed with respect to this second
clopen neighborhood system. A basic property of neighborhood systems is that
given any `≥ 0 there exists `′≥ 0 such that V`′ ⊂U`, and `′′≥ 0 such that U`′′ ⊂ V`.
It follows from their definitions that the group chains G and H are equivalent in the
sense of Definition 4.3.

Suppose that G∩D={e}. Then the calculation (50) shows that the kernel K (G)=
{e} is trivial. Moreover, suppose the choice of D is made so that G ∩ ĝDĝ−1

= {e}
for all ĝ ∈ C∞. Given y ∈ X let τ(y)= (g`G`) ∈ X∞, and let G y

= {g`G`g−1
` }`≥0

be the conjugate group chain. Choose ĝ ∈ C∞ such that τ(ĝD)= (g`G`). Then

(54) K (G y)= G ∩ (ĝD ĝ−1)= {e}

so that G y also has trivial kernel. Thus, if we choose D so that G ∩ ĝDĝ−1
= {e}

for all ĝ ∈ C∞ is satisfied, then the Cantor system (X,G,8) has trivial kernel for
the group chain G y at y for all points y ∈ X . For example, suppose that G is a
torsion-free group and D is a torsion group. Then the condition G ∩ ĝDĝ−1

= {e}
for all ĝ ∈C∞ is automatically satisfied, as each nontrivial element of D, and hence
ĝDĝ−1, has finite order. We use this observation in Theorem 10.7 below.

On the other hand, given G ⊂ C∞ as in Proposition 10.1, suppose that the
compact subgroup D ⊂ C∞ is chosen so that G ∩ ĝDĝ−1

6= {e} for some ĝ ∈ C∞.
Then by Proposition 8.11 there exists y ∈ X such that the Cantor system (X,G,8)
has nontrivial kernel K (G y) for the group chain G y about y. It then follows that
the germinal holonomy group Germ(8, y) is nontrivial, so this method can also be
used to construct examples with nontrivial germinal holonomy groups.

10C. Stable actions. Recall from Definition 7.5 that a group chain G = {G`}`≥0

is said to be stable if there exists n0 ≥ 0 such that the maps ψn,m : Dn
→ Dm
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defined in (39) are isomorphisms for all m ≥ n ≥ n0. We consider the problem
of when a group chain G = {G`}`≥0 constructed using the method in the proof of
Proposition 10.1 is stable.

We assume the hypotheses of Proposition 10.1, and the constructions of its
proof. Fix n > 0, and consider the truncated group chain Gn = {G`}`≥n . Then the
calculation of the kernel K (Gn)=G∩D is the same as (50). Also, note that D⊂W`

for all ` ≥ 0, so the calculations in (51) also proceed analogously. However, the
last equality in (52) requires the additional assumption

(55) coreU D =
⋂
k∈U

kDk−1
= {e}

for the clopen neighborhoods U =U` of the identity in order to conclude that D
is the discriminant group for Gn . In other words, we require that the subgroup D
is “totally not-normal” for every neighborhood of the identity in Ĝ. The above
remarks yield:

Proposition 10.2. Let C∞ be a profinite group, let G ⊂ C∞ be a finitely generated
dense subgroup, and let D ⊂ C∞ be a compact subgroup of infinite index, such that
(55) holds for every clopen neighborhood {e} ∈ U ⊂ C∞. Choose a group chain
{U` | `≥ 1} which is a clopen neighborhood system about the identity in C∞. Then
the associated group chain G = {G`}`≥0 with G0 = G has discriminant group D
and is stable.

Finally, in the case where D ⊂ C∞ is a compact subgroup of infinite index, but
need not satisfy the condition that its core is trivial, then noting that the core is
a normal subgroup, we can modify the construction above as follows to obtain a
minimal Cantor action.

Corollary 10.3. Let C ′
∞

be a profinite group, G ′⊂C ′
∞

be a finitely generated dense
subgroup, and D′ ⊂ C ′

∞
be a nontrivial compact subgroup of infinite index, and let

coreG ′ D′ denote the rational core of D′ as in (55), which is a normal subgroup of
C ′
∞

as G ′ is dense. Set

C∞ = C ′
∞
/(coreG ′ D′), G = G ′/(G ′ ∩ coreG ′ D′), D = D′/coreG ′ D′.

Then there exists a group chain G={G`}`≥0 with G0=G and discriminant group D.

10D. Constructing embedded groups. We next recall the remarkable constructions
of Lubotzky, which when combined with the techniques of Proposition 10.1, make
possible the construction of a wide class of equicontinuous minimal Cantor actions
by a finitely generated, torsion-free, residually finite group G, with prescribed
discriminant group D. There are two cases of the construction.
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Theorem 10.4 [Lubotzky 1993, Theorem 2(b)]. Let F be a nontrivial finite group,
and set Fi = F for all integers i ≥1. Let F=

∏
Fi denote the infinite cartesian prod-

uct of F. Then there exists a finitely generated, residually finite, torsion-free group
G ⊂ SLn(Z) for n ≥ 3 sufficiently large whose profinite completion Ĝ contains F.

Proof. We give just an outline of the construction used in the proof of Theorem 2(b)
in [Lubotzky 1993], with details as required for the constructions of our examples.
First recall some basic facts. For n ≥ 3, let 0n = SLn(Z) denote the n× n integer
matrices. The group 0n is finitely generated and residually finite, and hence so are
all finite index subgroups of 0n . Let 0n(m) denote the congruence subgroup

0n(m)≡ Ker{ϕm : SLn(Z)→ SLn(Z/mZ)}.

For m ≥ 3, 0n(m) is torsion-free. Moreover, by the congruence subgroup property,
every finite index subgroup of 0n contains 0n(m) for some nonzero m. Then this
implies

(56) ŜLn(Z)∼= lim
←−−

SLn(Z/mZ)∼= SLn(Ẑ)∼=
∏

p

SLn(Zp),

where Ẑ is the profinite completion of Z, and we use that Ẑ=
∏

p Zp, where Zp is the
ring of p-adic integers, and the product is taken over all primes. Note that the factors
in the cartesian product on the right-hand side of (56) commute with each other.

Let G ⊂ 0n be a finite index, torsion-free subgroup, which is then finitely
generated, and its profinite completion Ĝ is an open subgroup of ŜLn(Z). Then
there exists a cofinite subgroup P(G) of the primes such that

(57)
∏

p∈P(G)

SLn(Zp)⊂ Ĝ.

Let dF = |F | denote the cardinality of F, and let n ≥ |F | + 2. Then F embeds
in the alternating group Alt(n) on n symbols. Then F being nontrivial implies that
n ≥ 4 > 3. For each p ∈ P(F), the group Alt(n) embeds into SLn(Zp), and thus
we obtain an embedding

(58) ι∞ : F ∼=
∏

p∈P(G)

Fp ⊂
∏

p∈P(G)

Alt(n) ⊂
∏

p∈P(G)

SLn(Zp)⊂ Ĝ,

where Fp = F for each p ∈ P(G). This completes the construction. �

Lubotzky [1993, Theorem 1] extended the above construction to obtain an
embedding for a group D which is an infinite product of possibly distinct finite
groups {Hi | i = 1, 2, . . . }. The extension is highly nontrivial, as if all of the
groups Hi are distinct, then the degrees |Hi | must tend to infinity, and so the above
straightforward strategy for embedding no longer works.
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Theorem 10.5 [Lubotzky 1993, Theorem 1]. Let {Hi | i = 1, 2, . . . } be an infinite
collection of nontrivial finite groups, and let H =

∏
Hi denote their cartesian

product. Then there exists a finitely generated, residually finite, torsion-free group G
whose profinite completion Ĝ contains H .

Proof. Again, we only sketch some key aspects of the proof from [Lubotzky 1993].
Let G⊂0n be the finitely generated, torsion-free, residually finite group constructed
on page 330 of [Lubotzky 1993], and let Ĝ be its profinite completion. Lubotzky
constructs by induction an increasing sequence of primes {pn | n ≥ 3} such that

(59)
∞∏

n=3

SLn(Zpn )⊂ Ĝ.

For i ≥ 1, let di = |Hi | denote the cardinality of Hi . Then each Hi embeds in
the alternating group Alt(di + 2) on di + 2 symbols. Now choose an increasing
sequence of integers {ni | i ≥ 1} such that ni ≥ di + 2. Then for each i ≥ 1, the
group Alt(di + 2) embeds into the alternating group Alt(ni ) by taking only the
permutations on the first di + 2 symbols. For each i ≥ 1 the group Alt(ni ) embeds
into SLni (Zpni

). Thus, we have embeddings Hi ⊂ Alt(ni )⊂ SLni (Zpni
).

The product in (59) is over all n ≥ 3, while the group Hn = Hni if n = ni for
some ni as chosen above. For n 6= ni for some i , let Hn be the trivial group. Set
An = Alt(ni ) if n = ni for some ni and let An be the trivial group otherwise. Then
we obtain an embedding of the infinite product H,

(60) ι∞ : D ∼=
∏
n≥3

Hn ⊂
∏
n≥3

An ⊂
∏
i≥1

SLni (Zpni
)⊂ Ĝ.

This completes the construction. �

10E. Constructing stable actions. We next use Theorems 10.4 and 10.5, and ob-
servations from their proofs in [Lubotzky 1993], to construct examples of stable
equicontinuous minimal Cantor group actions.

We first require a simple observation. For n ≥ 2, the alternating group Alt(n) on
n symbols embeds into the alternating group Alt(4n) on 4n symbols, by considering
Alt(n) as acting on the first n symbols and fixing the remaining 3n symbols. We
thus consider Alt(n)⊂ Alt(4n) as a subgroup.

Lemma 10.6. The core of Alt(n) in Alt(4n) is the trivial group.

Proof. There exists an element σ ∈ Alt(4n) which swaps the first 2n symbols for
the last 2n symbols. Then σ−1Alt(n)σ is contained in the alternating group which
permutes the last 2n symbols, and hence is disjoint from the subgroup Alt(n). �

Lemma 10.6 is used to ensure that the chains constructed below satisfy the
conditions of Section 10C.
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Theorem 10.7. Let F be a finite group. Then there exists a finite index, torsion-free
group G ⊂ SLn(Z) and an embedding of F into the profinite completion Ĝ, so that
the resulting group chain GK = {G`}`≥0 constructed as in Section 10A yields an
equicontinuous minimal Cantor system (X∞,G,8) whose discriminant group for
the truncated group chain {G`}`≥k is isomorphic to F for all k ≥ 0. Hence the
action is stable and irregular. Moreover, the germinal holonomy group for each
x ∈ X is trivial.

Proof. As noted in the proof of Theorem 10.4, if F is a nontrivial finite group
of order dF = |F |, then F embeds in the alternating group Alt(dF + 2). We then
embed Alt(dF+2) in the alternating group Alt(n) for n≥ 4(dF+2), by considering
Alt(n) as acting on the first n symbols, as in the proof of Lemma 10.6. We identify
F with its image, and then note that the core of F in Alt(n) is the trivial group.
Note that dF ≥ 2, so we have that n ≥ 16. Also note that if F ′ is any other finite
group of order at most dF , then it also embeds into Alt(dF + 2), and hence the
following construction is universal for all finite groups F ′ with |F ′| ≤ |F |.

For n≥ 4(dF+2), let G⊂0n =SLn(Z) be the finite index, torsion-free subgroup
constructed in the proof of Theorem 10.4. Set H`=Alt(n) for all integers `≥ 1, and
let H =

∏
H` denote their cartesian product. Then the embedding (58) becomes

(61) ι∞ : H ∼=
∏

p∈P(G)

Altp(n) ⊂
∏

p∈P(G)

SLn(Zp)⊂ Ĝ,

where Altp(n)= Alt(n) for each prime p.
For each i ≥ 1, we have the embedding

F ⊂ Alt(dF + 2)⊂ Alt(n)= H`.

Let F→ H be the diagonal embedding into the infinite product, which then yields
an embedding ιF : F→ Ĝ into the profinite completion of G, with image denoted
by D = ιF (F).

Next, use the method of Section 10A to construct a group chain in G. The group
G is residually finite, so there exists a clopen neighborhood system {U` | ` ≥ 1}
about the identity in Ĝ, where each U` is normal in Ĝ. Note that G is dense in Ĝ
and each U` is closed, so the closure of G∩U` in Ĝ is equal to U`. Set W`=D ·U`

for `≥ 1, and G` = G ∩W`. Let GF = {G`}`≥0 denote the resulting group chain.
Let {e} ∈U ⊂ Ĝ be a normal clopen neighborhood of the identity, so that Ĝ/U

is a finite group with cardinality |Ĝ/U |. We claim coreU D = {e}. The normal
subgroup U has finite index; hence, as argued in the proof of [Lubotzky 1993,
Theorem 2], there exists a cofinite subset of primes P(G,U )⊂ P(G) of the list in
the product in (61) such that∏

p∈P(G,U )

Altp(n) ⊂
∏

p∈P(G,U )

SLn(Zp)⊂U ⊂ Ĝ.
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For p ∈ P(G,U ), note that for the diagonal embedding of F into H, the projection
to each factor of H is an isomorphism. For the image of F in the p-th factor, we
have

F ⊂ Alt(dF + 2)⊂ Alt(n)= Altp(n)⊂ SLn(Zp).

The image group has trivial core by Lemma 10.6. The projection of D to F⊂Altp(n)
is an isomorphism, so this implies that D has trivial core in U as well. Then by
Proposition 10.2, for all k ≥ 0, the discriminant group for the truncated group chain
{G`}`≥k is isomorphic to F. In particular, GF is a stable group chain.

Next, observe that D being compact implies that the closure G` of G` in Ĝ
equals W`, and D =

⋂
G`. For the kernel of GF as defined in Section 4B, we then

have

(62) K (GF )=
⋂
`≥0

G` ⊂

⋂
`≥0

G` = D.

The group D is finite, hence every element of D has finite order, while K (GF ) is a
torsion-free subset of G. Thus, K (GF )⊂ D∩G = {e}; hence K (GF ) is the trivial
group. Moreover, for each ĝ ∈ Ĝ let

G ĝ
F = {ĝ G` ĝ−1

}`≥0

denote the conjugate group chain. Then by the same reasoning, we also have
K (G ĝ

F )={e}, as ĝ−1D ĝ⊂ Ĝ is again a finite subgroup, hence has trivial intersection
with G.

Let (X,G,8) be the equicontinuous minimal Cantor system with X = Ĝ/D
with the associated group chain GF , as discussed in Section 10B. The discriminant
group of GF is D, and each nontrivial element h ∈ D is torsion, hence its image
in Ĝ is torsion, and thus any conjugate of it is not contained in the torsion-free
subgroup G. Thus, for each y ∈ X , the action 8 has trivial germinal holonomy at y.

The discriminant group of the truncated chain {G`}`≥k is isomorphic to F for
all k ≥ 0. Thus, GF cannot be a weakly regular group chain. This establishes all of
the claims of Theorem 10.7. �

Note that the action (X,G,8) satisfies the SQA condition by default, as all
germinal holonomy groups are trivial. The action of Ĝ on X = Ĝ/D satisfies
the SQA condition by Theorem 9.5. Corollary 1.11 now follows by using the
construction in Section 2B to obtain a matchbox manifold with section V0 ∼= X and
induced holonomy action (X,G,8).

We remark that it is tempting to use the fact that G ⊂ SLn(Z) ⊂ SLn(R) is a
torsion-free subgroup, and then use the quotient space M0 = SLn(R)/G as the
base of a presentation for a weak solenoid SP . However, this quotient space is
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not compact, and we do not have a “theory of weak solenoids” over noncompact
manifolds.

We next use Theorem 10.5 to construct two types of embeddings of Cantor
groups into profinite groups. Theorem 10.8 embeds a profinite group such that
the resulting action is stable. Theorem 10.10 embeds a Cantor group such that the
resulting action is not virtually regular.

Theorem 10.8. Let K be a separable profinite group. There exists a finitely gener-
ated, residually finite, torsion-free group G, and an embedding of K into its profinite
completion Ĝ, such that the resulting group chain GK = {G`}`≥0 constructed as
in Section 10A yields an equicontinuous minimal Cantor system (X,G,8) whose
discriminant group for the truncated group chain {G`}`≥k is isomorphic to K for
all k ≥ 0. Hence the action is stable and irregular.

Proof. Let G ⊂ 0n be the finitely generated, torsion-free, residually finite group
used in the proof of Theorem 10.5, as constructed on page 330 of [Lubotzky 1993],
and let Ĝ be its profinite completion.

The assumption that K is a separable profinite group implies that K is isomorphic
to an inverse system of finite groups

(63) K ∼= lim
←−−
{ϕ`+1
` : K`+1→ K` | `≥ 0} ⊂ K ∼=

∏
K`,

where each K` is a finite group, and the bonding maps ϕ`+1
` are epimorphisms for

all ` ≥ 0, but not isomorphisms. Thus, their cardinalities {|K`| | ` ≥ 0} form an
increasing sequence of integers. Note that we have isomorphisms for all k > 0,
induced by the shift map σi on indices,

(64) σi : K ∼= lim
←−−
{ϕ`+1
` : K`+1→ K` | `≥ k}.

For each `≥ 0, set d`= 4(|K`|+2). Then as in the construction in Theorem 10.7,
there is an embedding of K` into the alternating group, K`⊂Alt(|K`|+2)⊂Alt(d`).
Choose an increasing sequence of integers {n` | `≥ 1} so that n` ≥ d` for all `≥ 1.

Then as in the proof of Theorem 10.5, we set Hn =Alt(d`) if n= n` for some n`
as chosen above. If n 6= n` for all `, let Hn be the trivial group. Set An = Alt(n`)
if n = n` for some n`, and let An be the trivial group otherwise. Then we obtain an
embedding of the infinite product,

(65) H ≡
∏
n≥3

Hn ⊂ A≡
∏
n≥3

An ⊂
∏
`≥1

SLn`(Zpn`
)⊂ Ĝ.

Now observe that the inverse limit presentation in (63), along with the above
embedding (65), gives an embedding

(66) 1K : K ⊂
∏

K` ⊂
∏
n≥3

Hn ⊂
∏
n≥3

An ⊂ Ĝ.
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Set D = 1K (K ) ⊂ Ĝ. Then as in the proof of Theorem 10.7, use the method
of Section 10A to construct a group chain in G. The group G is residually finite,
so there exists a clopen neighborhood system {U` | `≥ 1} about the identity in Ĝ,
where each U` is normal in Ĝ. Set W` = D ·U` for `≥ 1, and G` = G ∩W`. Let
GK = {G`}`≥0 denote the resulting group chain.

Let {e} ∈U ⊂ Ĝ be a normal clopen neighborhood of the identity, so that Ĝ/U
is a finite group with cardinality |Ĝ/U |. We claim coreU D = {e}. Note that for
m ≥ 5, the alternating group Alt(m) is simple, and its cardinality |Alt(m)| = 1

2 m!
tends to infinity as m increases. As the sequence {n`} is increasing, for some
`0 > 0, we have ` ≥ `0, and Am = Alt(n`) being nontrivial implies that Hm has
order |Hm | =

1
2(n`)! > |Ĝ/U |. Thus, the projection Am ⊂ Ĝ→ Ĝ/U cannot be

an injection, and as Am is a simple group, it must be contained in the kernel, so
Am ⊂U. Let πm : A→ Am be the projection onto the m-th factor. We have that
D ⊂ H ⊂ A. Let Dm ⊂ Am denote its image. By the choice of m, and because
n` ≥ d`= 4(|K`|+2), Lemma 10.6 implies the subgroup Dm has trivial core in Am .
It follows that D has trivial core in U.

Then by Proposition 10.2, for all k ≥ 0, the discriminant group for the truncated
group chain {G`}`≥k is isomorphic to K . In particular, GK is a stable group chain
and is not weakly normal.

The rest of the proof proceeds as for that of Theorem 10.7. �

Note that in the above proof, we cannot assert that all leaves of the suspended
foliation FM have trivial holonomy, as examples show that some conjugate of D in
Ĝ may intersect G nontrivially.

Our final example, which is again based on the application of Theorem 10.5,
answers a question posed in [Dyer et al. 2016]. In that work, the notion of a virtually
regular action (X,G,8) with group chain G = {G`}`≥0 was introduced:

Definition 10.9. [Dyer et al. 2016, Definition 1.12] A group chain G = {G`}`≥0

is said to be virtually regular if there exists a normal subgroup G ′0 ⊂ G0 of finite
index such that the restricted chain G′ = {G ′`}`≥0, where G ′` = G` ∩G ′0, is weakly
normal in G ′0.

There is an alternate definition of this concept, which was shown in [Dyer et al.
2016] to be equivalent: a matchbox manifold M is virtually regular if there exists
a homogeneous matchbox manifold M′ and a finite-to-one normal covering map
h : M′ → M. Thus, the notion of virtually regular is a natural property of a
matchbox manifold M, and can be checked by considering a group chain model
for the holonomy action of the foliation FM.

The following example is the first known to the authors which is not virtually
regular, and gives a natural paradigm for the construction of group chains which
are not virtually regular.
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Theorem 10.10. There exists a finitely generated, residually finite, torsion-free
group G with profinite completion Ĝ such that for any infinite collection {F`}`≥1 of
nontrivial finite simple groups, their cartesian product F =

∏
F` can be embedded

into Ĝ, so that the resulting group chain GF={G`}`≥0 constructed as in Section 10A
yields an equicontinuous minimal Cantor system (X,G,8) whose discriminant
group for the group chain GF is isomorphic to F. Moreover, GF is not virtually
regular.

Proof. The proof follows the same approach as that used in the proof of Theorem 10.8.
Let G ⊂ 0n be the finitely generated, torsion-free, residually finite group used in
the proof of Theorem 10.5, as constructed on page 330 of [Lubotzky 1993], and let
Ĝ be its profinite completion.

For each `≥ 0, set d` = 4(|F`| + 2). Then there is an embedding of F` into the
alternating groups, F` ⊂ Alt(|F`| + 2)⊂ Alt(d`), as in the proof of Theorem 10.8.
Choose an increasing sequence of integers {n` | `≥ 1} so that n` ≥ d` for all `≥ 1.
Let Alt(d`)⊂Alt(n`) be the embedding as the permutations on the first d` symbols.
Then we obtain an embedding ιF : F→ Ĝ, of the infinite product F into Ĝ, given
by the composition

(67) ιF : F ∼=
∏
`≥1

F` ⊂
∏
`≥1

Alt(d`)⊂
∏
`≥1

Alt(n`)⊂
∏
`≥1

SLn`(Zpn`
)⊂ Ĝ.

Set D = ιF(F)⊂ Ĝ. Use the method of Section 10A to construct a group chain
in G. The group G is residually finite, so there exists a clopen neighborhood system
{U` | `≥ 1} about the identity in Ĝ, where each U` is normal in Ĝ. Set W`=D ·U`

for `≥ 1, and G` = G ∩W`. Let GF = {G`}`≥0 denote the resulting group chain.
Let U ⊂ Ĝ be a normal clopen neighborhood of the identity. For example, given

a normal subgroup G ′ ⊂ G with finite index, we can take U to be the profinite
completion of G ′ in Ĝ. Let GU

F ={G
′

`}`≥0 be the group chain defined by G ′`=G`∩U
for `≥ 0. Then D∩U =

⋂
(U` ∩U ).

We next show that the normal core, coreU D ⊂ D, of D ∩U in U is a finite
subgroup, and then apply Corollary 10.3 to conclude that the discriminant of the
action defined by the group chain GU

F is a nontrivial Cantor group. The following
argument is similar to that used in the proof of Theorem 10.8, and uses that the
alternating group Alt(m) is simple for m ≥ 5 and has order |Alt(m)| = 1

2 m!. Let
dU = |Ĝ/U | be the order of the finite group.

Choose `U ≥ 1 such that n`U ≥ 5 and |Alt(n`U )| =
1
2(n`U )!> dU . Then for all

` ≥ `U , the factor Alt(n`) in the product in (67) is contained in the kernel of the
projection Ĝ→ Ĝ/U , and thus, F` ⊂ Alt(n`)⊂U. Consequently, we have that

(68) D`U ≡

∏
`≥`U

F` ⊂ A`U ≡

∏
`≥`U

Alt(n`)⊂ D∩U.
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In particular, this shows that D∩U contains a nontrivial Cantor group. Moreover,
by applying Lemma 10.6 to each factor of the product in D`U , we see that D`U has
trivial core in U` as well. Thus, we have

(69) coreU D ⊂
∏

1≤`<`U

F`,

and so coreU D is a finite normal subgroup of U.
By Corollary 10.3, the quotient group chain {(G` ∩U )/(coreU D)}`≥0 has a

nontrivial discriminant group D/(coreU D) which contains a subgroup isomorphic
to the nontrivial Cantor group D`U . For ` > 0, apply this to the case U = U`

to obtain that the quotient chain {(G` ∩U`)/(coreU`
D)}`≥0 is not equivalent to a

normal chain. Now suppose that the restricted group chain GU`

F is equivalent to a
normal chain. Then as coreU`

D is a normal subgroup of U`, this implies that the
quotient group chain {(G` ∩U`)/(coreU`

D)}`≥0 is equivalent to a normal chain,
hence has trivial discriminant, which is a contradiction. Thus, the group chain GF
is not virtually regular. �

10F. Open problems. There are many variations of the above method that can be
considered, and open questions about the resulting minimal Cantor actions. First, it
is interesting to understand the answer to the following.

Problem 10.11. Given a separable profinite group Ĥ and an embedding into a
profinite group Ĝ with trivial rational core, constructed using the methods of
[Lubotzky 1993], give criteria for when the resulting equicontinuous minimal
Cantor system (X,G,8) is weakly normal, and whether the action is stable or
wild. Furthermore, when do the resulting actions satisfy the SQA condition of
Section 9A?

There is also an extensive literature for the construction of embeddings of groups
H into the profinite completions of torsion-free, finitely generated nilpotent and
solvable groups. For example, [Crawley-Boevey et al. 1988] showed that if G is a
finitely generated, torsion-free nilpotent group, then the profinite completion Ĝ is
torsion-free, so if D ⊂ Ĝ is a closed subgroup, then it must be a Cantor group.

On the other hand, [Evans 1990; Kropholler and Wilson 1993] showed that there
exists a countable, torsion-free, residually finite, metabelian group G such that its
profinite completion contains a nontrivial torsion subgroup. Quick [2001] studied
the profinite topology of nilpotent groups of class two and finitely generated center-
by-metabelian groups, and used this to construct embeddings of finite groups into the
profinite completions of these classes of groups. However, the embedding obtained
in [Quick 2001] is contained in the center of G, so does not satisfy the trivial core
condition. We conclude with an open question, suggested by the examples and
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results of [Dyer 2015; Dyer et al. 2016; 2017; Fokkink and Oversteegen 2002;
Rogers and Tollefson 1971b; Schori 1966].

Problem 10.12. Determine which groups H can be embedded as a closed subgroup
of Ĝ with trivial rational core, where G is a finitely generated, torsion-free amenable
group.

References

[Aarts and Martens 1988] J. M. Aarts and M. Martens, “Flows on one-dimensional spaces”, Fund.
Math. 131:1 (1988), 53–67. MR Zbl

[Aarts and Oversteegen 1991] J. M. Aarts and L. G. Oversteegen, “Flowbox manifolds”, Trans. Amer.
Math. Soc. 327:1 (1991), 449–463. MR Zbl

[Aarts and Oversteegen 1995] J. M. Aarts and L. G. Oversteegen, “Matchbox manifolds”, pp. 3–14
in Continua (Cincinnati, OH, 1994), edited by H. Cook et al., Lecture Notes in Pure and Appl. Math.
170, Dekker, New York, 1995. MR Zbl

[Álvarez López and Barral Lijó 2016] J. A. Álvarez López and R. Barral Lijó, “Molino’s description
and foliated homogeneity”, preprint, 2016. arXiv

[Álvarez López and Candel 2009] J. A. Álvarez López and A. Candel, “Equicontinuous foliated
spaces”, Math. Z. 263:4 (2009), 725–774. MR Zbl

[Álvarez López and Candel 2010] J. A. Álvarez López and A. Candel, “Topological description of
Riemannian foliations with dense leaves”, Pacific J. Math. 248:2 (2010), 257–276. MR Zbl

[Álvarez López and Moreira Galicia 2016] J. Álvarez López and M. F. Moreira Galicia, “Topological
Molino’s theory”, Pacific J. Math. 280:2 (2016), 257–314. MR Zbl

[Auslander 1988] J. Auslander, Minimal flows and their extensions, North-Holland Mathematics
Studies 153, North-Holland, Amsterdam, 1988. MR Zbl

[Candel and Conlon 2000] A. Candel and L. Conlon, Foliations, I, Graduate Studies in Mathematics
23, American Mathematical Society, Providence, RI, 2000. MR Zbl

[Cass 1985] D. M. Cass, “Minimal leaves in foliations”, Trans. Amer. Math. Soc. 287:1 (1985),
201–213. MR Zbl

[Clark and Hurder 2011] A. Clark and S. Hurder, “Embedding solenoids in foliations”, Topology
Appl. 158:11 (2011), 1249–1270. MR Zbl

[Clark and Hurder 2013] A. Clark and S. Hurder, “Homogeneous matchbox manifolds”, Trans. Amer.
Math. Soc. 365:6 (2013), 3151–3191. MR Zbl

[Clark et al. 2013a] A. Clark, S. Hurder, and O. Lukina, “Classifying matchbox manifolds”, preprint,
2013. arXiv

[Clark et al. 2013b] A. Clark, S. Hurder, and O. Lukina, “Voronoi tessellations for matchbox mani-
folds”, Topology Proc. 41 (2013), 167–259. MR Zbl

[Clark et al. 2014] A. Clark, R. Fokkink, and O. Lukina, “The Schreier continuum and ends”, Houston
J. Math. 40:2 (2014), 569–599. MR Zbl

[Crawley-Boevey et al. 1988] W. W. Crawley-Boevey, P. H. Kropholler, and P. A. Linnell, “Torsion-
free soluble groups, completions, and the zero divisor conjecture”, J. Pure Appl. Algebra 54:2-3
(1988), 181–196. MR Zbl

http://msp.org/idx/mr/970914
http://msp.org/idx/zbl/0677.54032
http://dx.doi.org/10.2307/2001851
http://msp.org/idx/mr/1042286
http://msp.org/idx/zbl/0768.54027
http://msp.org/idx/mr/1326831
http://msp.org/idx/zbl/0826.54029
http://msp.org/idx/arx/1610.07682
http://dx.doi.org/10.1007/s00209-008-0432-4
http://dx.doi.org/10.1007/s00209-008-0432-4
http://msp.org/idx/mr/2551597
http://msp.org/idx/zbl/1177.53026
http://dx.doi.org/10.2140/pjm.2010.248.257
http://dx.doi.org/10.2140/pjm.2010.248.257
http://msp.org/idx/mr/2741247
http://msp.org/idx/zbl/1207.53033
http://dx.doi.org/10.2140/pjm.2016.280.257
http://dx.doi.org/10.2140/pjm.2016.280.257
http://msp.org/idx/mr/3453564
http://msp.org/idx/zbl/1337.57060
http://msp.org/idx/mr/956049
http://msp.org/idx/zbl/0654.54027
http://msp.org/idx/mr/1732868
http://msp.org/idx/zbl/0936.57001
http://dx.doi.org/10.2307/2000405
http://msp.org/idx/mr/766214
http://msp.org/idx/zbl/0559.57020
http://dx.doi.org/10.1016/j.topol.2011.04.010
http://msp.org/idx/mr/2806360
http://msp.org/idx/zbl/1259.57007
http://dx.doi.org/10.1090/S0002-9947-2012-05753-9
http://msp.org/idx/mr/3034462
http://msp.org/idx/zbl/1285.57017
http://msp.org/idx/arx/1311.0226
http://tinyurl.com/shurder
http://tinyurl.com/shurder
http://msp.org/idx/mr/2979961
http://msp.org/idx/zbl/1276.52023
http://tinyurl.com/fokkink
http://msp.org/idx/mr/3248654
http://msp.org/idx/zbl/1311.57039
http://dx.doi.org/10.1016/0022-4049(88)90029-1
http://dx.doi.org/10.1016/0022-4049(88)90029-1
http://msp.org/idx/mr/963543
http://msp.org/idx/zbl/0666.16007


MOLINO THEORY FOR MATCHBOX MANIFOLDS 149

[van Dantzig 1930] D. van Dantzig, “Über topologisch homogene Kontinua”, Fund. Math. 15:1
(1930), 102–125. JFM

[Dyer 2015] J. C. Dyer, Dynamics of equicontinuous group actions on Cantor sets, Ph.D. thesis,
University of Illinois at Chicago, 2015, available at http://tinyurl.com/dyerthesis.

[Dyer et al. 2016] J. Dyer, S. Hurder, and O. Lukina, “The discriminant invariant of Cantor group
actions”, Topology Appl. 208 (2016), 64–92. MR Zbl

[Dyer et al. 2017] J. Dyer, S. Hurder, and O. Lukina, “Growth and homogeneity of matchbox
manifolds”, Indag. Math. 28:1 (2017), 145–169. MR Zbl

[Ellis 1960] R. Ellis, “A semigroup associated with a transformation group”, Trans. Amer. Math. Soc.
94 (1960), 272–281. MR Zbl

[Ellis 1969] R. Ellis, Lectures on topological dynamics, W. A. Benjamin, New York, 1969. MR Zbl

[Ellis and Ellis 2014] D. B. Ellis and R. Ellis, Automorphisms and equivalence relations in topological
dynamics, London Mathematical Society Lecture Note Series 412, Cambridge Univ. Press, 2014.
MR Zbl

[Ellis and Gottschalk 1960] R. Ellis and W. H. Gottschalk, “Homomorphisms of transformation
groups”, Trans. Amer. Math. Soc. 94 (1960), 258–271. MR Zbl

[Epstein et al. 1977] D. B. A. Epstein, K. C. Millett, and D. Tischler, “Leaves without holonomy”, J.
London Math. Soc. (2) 16:3 (1977), 548–552. MR Zbl

[Evans 1990] M. J. Evans, “Torsion in pro-finite completions of torsion-free groups”, J. Pure Appl.
Algebra 65:2 (1990), 101–104. MR Zbl

[Fokkink and Oversteegen 2002] R. Fokkink and L. Oversteegen, “Homogeneous weak solenoids”,
Trans. Amer. Math. Soc. 354:9 (2002), 3743–3755. MR Zbl

[Ghys 1999] É. Ghys, “Laminations par surfaces de Riemann”, pp. 49–95 in Dynamique et géométrie
complexes (Lyon, 1997), Panoramas & Synthèses 8, Soc. Math. France, Paris, 1999. MR Zbl

[Haefliger 1985] A. Haefliger, “Pseudogroups of local isometries”, pp. 174–197 in Differential
geometry (Santiago de Compostela, 1984), edited by L. A. Cordero, Res. Notes in Math. 131, Pitman,
Boston, 1985. MR Zbl

[Haefliger 1989] A. Haefliger, “Feuilletages riemanniens”, exposé 707, pp. 183–197 in Séminaire
Bourbaki, 1988/1989, Astérisque 177-178, Soc. Mat. de France, Paris, 1989. MR Zbl

[Hurder 2013] S. Hurder, “Lipshitz matchbox manifolds”, 2013. To appear in Geometry, dynamics,
and foliations (Tokyo, 2013), Mathematical Society of Japan. arXiv

[Inaba 1977] T. Inaba, “On stability of proper leaves of codimension one foliations”, J. Math. Soc.
Japan 29:4 (1977), 771–778. MR Zbl

[Inaba 1983] T. Inaba, “Reeb stability for noncompact leaves”, Topology 22:1 (1983), 105–118. MR
Zbl

[Kropholler and Wilson 1993] P. H. Kropholler and J. S. Wilson, “Torsion in profinite completions”,
J. Pure Appl. Algebra 88:1-3 (1993), 143–154. MR Zbl

[Levitt 2015a] G. Levitt, “Generalized Baumslag–Solitar groups: rank and finite index subgroups”,
Ann. Inst. Fourier (Grenoble) 65:2 (2015), 725–762. MR Zbl

[Levitt 2015b] G. Levitt, “Quotients and subgroups of Baumslag–Solitar groups”, J. Group Theory
18:1 (2015), 1–43. MR Zbl

[Lubotzky 1993] A. Lubotzky, “Torsion in profinite completions of torsion-free groups”, Quart. J.
Math. Oxford Ser. (2) 44:175 (1993), 327–332. MR Zbl

http://eudml.org/doc/212336
http://msp.org/idx/jfm/56.1130.01
http://tinyurl.com/dyerthesis
http://dx.doi.org/10.1016/j.topol.2016.05.005
http://dx.doi.org/10.1016/j.topol.2016.05.005
http://msp.org/idx/mr/3506971
http://msp.org/idx/zbl/06588718
http://dx.doi.org/10.1016/j.indag.2016.11.007
http://dx.doi.org/10.1016/j.indag.2016.11.007
http://msp.org/idx/mr/3597041
http://msp.org/idx/zbl/06676133
http://dx.doi.org/10.1090/S0002-9947-1960-0123636-3
http://msp.org/idx/mr/0123636
http://msp.org/idx/zbl/0094.17402
http://msp.org/idx/mr/0267561
http://msp.org/idx/zbl/0193.51502
http://dx.doi.org/10.1017/CBO9781107416253
http://dx.doi.org/10.1017/CBO9781107416253
http://msp.org/idx/mr/3242163
http://msp.org/idx/zbl/1322.37001
http://dx.doi.org/10.1090/S0002-9947-1960-0123635-1
http://dx.doi.org/10.1090/S0002-9947-1960-0123635-1
http://msp.org/idx/mr/0123635
http://msp.org/idx/zbl/0094.17401
http://msp.org/idx/mr/0464259
http://msp.org/idx/zbl/0381.57007
http://dx.doi.org/10.1016/0022-4049(90)90112-U
http://msp.org/idx/mr/1068248
http://msp.org/idx/zbl/0705.20020
http://dx.doi.org/10.1090/S0002-9947-02-03017-9
http://msp.org/idx/mr/1911519
http://msp.org/idx/zbl/0998.54018
http://msp.org/idx/mr/1760843
http://msp.org/idx/zbl/1018.37028
http://msp.org/idx/mr/864868
http://msp.org/idx/zbl/0656.58042
http://eudml.org/doc/110107
http://msp.org/idx/mr/1040573
http://msp.org/idx/zbl/0703.57012
http://msp.org/idx/arx/1309.1512
http://dx.doi.org/10.2969/jmsj/02940771
http://msp.org/idx/mr/0515734
http://msp.org/idx/zbl/0356.57021
http://dx.doi.org/10.1016/0040-9383(83)90047-2
http://msp.org/idx/mr/682061
http://msp.org/idx/zbl/0508.57022
http://dx.doi.org/10.1016/0022-4049(93)90018-O
http://msp.org/idx/mr/1233319
http://msp.org/idx/zbl/0829.20044
http://dx.doi.org/10.5802/aif.2943
http://msp.org/idx/mr/3449166
http://msp.org/idx/zbl/06496593
http://dx.doi.org/10.1515/jgth-2014-0028
http://msp.org/idx/mr/3297728
http://msp.org/idx/zbl/1317.20030
http://dx.doi.org/10.1093/qmath/44.3.327
http://msp.org/idx/mr/1240475
http://msp.org/idx/zbl/0829.20043


150 JESSICA DYER, STEVEN HURDER AND OLGA LUKINA

[Lyubich and Minsky 1997] M. Lyubich and Y. Minsky, “Laminations in holomorphic dynamics”, J.
Differential Geom. 47:1 (1997), 17–94. MR Zbl

[Massey 1991] W. S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics
127, Springer, New York, 1991. MR Zbl

[Matsumoto 2010] S. Matsumoto, “The unique ergodicity of equicontinuous laminations”, Hokkaido
Math. J. 39:3 (2010), 389–403. MR Zbl

[McCord 1965] M. C. McCord, “Inverse limit sequences with covering maps”, Trans. Amer. Math.
Soc. 114 (1965), 197–209. MR Zbl

[Meskin 1972] S. Meskin, “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc. 164
(1972), 105–114. MR Zbl
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