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CRITICALITY OF THE AXIALLY SYMMETRIC
NAVIER–STOKES EQUATIONS

ZHEN LEI AND QI S. ZHANG

Smooth solutions to the axisymmetric Navier–Stokes equations obey the fol-
lowing maximum principle:

supt≥0 ‖rv
θ (t, · )‖L∞ ≤ ‖rvθ (0, · )‖L∞ .

We prove that all solutions with initial data in H1/2 are smooth globally
in time if rvθ satisfies a kind of form boundedness condition (FBC) which
is invariant under the natural scaling of the Navier–Stokes equations. In
particular, if rvθ satisfies

supt≥0|rv
θ (t, r, z)| ≤ C∗|ln r|−2, where r ≤ δ0 ∈

(
0, 1

2

)
, C∗ <∞,

then our FBC is satisfied. Here δ0 and C∗ are independent of neither the pro-
file nor the norm of the initial data. So the gap from regularity is logarithmic
in nature. We also prove the global regularity of solutions if ‖rvθ (0, · )‖L∞

or supt≥0 ‖rvθ (t, · )‖L∞(r≤r0) is small but the smallness depends on a certain
dimensionless quantity of the initial data.

1. Introduction

The global regularity problem of three-dimensional incompressible Navier–Stokes
equations is commonly considered as supercritical because the a priori estimates
based on energy equality become worse when looking into finer and finer scales;
see, for instance, [Tao 2007]. Such a “supercriticality” barrier is one of the main
reasons why this is such a hard problem.

Recently, the axisymmetric Navier–Stokes equations have attracted tremendous
interest from experts. See, for instance, [Burke Loftus and Zhang 2010; Chae and
Lee 2002; Chen et al. 2008; 2009; 2015; Hou and Li 2008; Hou et al. 2008; Jiu
and Xin 2003; Koch et al. 2009; Lei et al. 2013; Lei and Zhang 2011b; 2011a;
Leonardi et al. 1999; Neustupa and Pokorný 2000; 2001; Pan 2016; Seregin and
Šverák 2009; Tian and Xin 1998; Zhang and Zhang 2014]. These results heavily
depend on the maximum principle of the dimensionless quantity 0 = rvθ , which
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makes the axisymmetric Navier–Stokes equations partially critical (only the swirl
component vθ of the velocity field satisfies a dimensionless a priori estimate).
Although the axially symmetric Navier–Stokes equation is a special case of the full
three-dimensional one, our level of understanding had been roughly the same, with
the previously mentioned difficulty unresolved because the effective a priori bound
available is still the energy estimate, which has positive dimension 1

2 .
The aim of this article is to show that the axisymmetric Navier–Stokes equation

is, in fact, fully critical. More precisely, we prove all solutions with initial data in
H 1/2 are smooth globally in time if rvθ satisfies a kind of FBC which is invariant
under the natural scaling of the Navier–Stokes equations. In particular, if rvθ

satisfies supt≥0|rv
θ (t, r, z)| ≤C∗|ln r |−2, where r ≤ δ0 ∈

(
0, 1

2

)
, C∗ <∞, then our

FBC is satisfied. Here δ0 and C∗ are independent of neither the profile nor the norm
of the initial data. The proof is based on the observation that the vorticity equations
can be transformed into a system such that the vortex-stretching terms are critical.
This means that the potentials in front of unknown functions scale as 1/|x |2. For
example, in (1-8) below, the function J is regarded as unknown and the potential
in front of it is −2vθ/r which scales as 1/|x |2.

We also prove the global regularity of solutions if supt≥0 ‖rv
θ (t, · )‖L∞(r≤r0)

or ‖rvθ (0, · )‖L∞ is small but the smallness depends on a certain dimensionless
quantity of the initial data. Our work is inspired by the recent interesting result
of Chen, Fang and Zhang in [Chen et al. 2015] where, among other things, global
regularity is obtained if rvθ (t, · , z) is Hölder continuous in the r variable.

To state our result more precisely, let us recall that in cylindrical coordinates
r, θ, z with (x1, x2, x3) = (r cos θ, r sin θ, z), axially symmetric solutions of the
Navier–Stokes equations are of the following form:{

v(t, x)= vr (t, r, z)er + v
θ (t, r, z)eθ + vz(t, r, z)ez,

p(t, x)= p(t, r, z).

The components vr , vθ , vz are all independent of the angle of rotation θ . Here
er , eθ , ez are the basis vectors for R3 given by

er =

( x1
r ,

x2
r , 0

)>
, eθ =

(
−x2

r ,
x1
r , 0

)>
, ez = (0, 0, 1)>.

In terms of (vr , vθ , vz, p), the axisymmetric Navier–Stokes equations are

∂tv
r
+ (vr er + v

zez) · ∇v
r
−
(vθ )2

r + ∂r p =
(
1−

1
r2

)
vr ,

∂tv
θ
+ (vr er + v

zez) · ∇v
θ
+
vrvθ

r =

(
1−

1
r2

)
vθ ,

∂tv
z
+ (vr er + v

zez) · ∇v
z
+ ∂z p =1vz,

∂rv
r
+
vr

r + ∂zv
z
= 0.

(1-1)
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It is well known that finite energy smooth solutions of the Navier–Stokes equations
satisfy the following energy identity

(1-2) ‖v(t, · )‖2L2 + 2
∫ t

0
‖∇v(s, · )‖2L2 ds = ‖v0‖

2
L2, ∀ t ≥ 0.

Set
0 = rvθ.

One can easily check that

(1-3) ∂t0+ (v
r er + v

zez) · ∇0 =
(
1−

2
r ∂r

)
0.

A significant consequence of (1-3) is that smooth solutions of the axisymmetric
Navier–Stokes equations satisfy the following maximum principle; see, for instance,
[Chae and Lee 2002; Hou and Li 2008; Chen et al. 2008; Neustupa and Pokorný
2000; 2001]:

(1-4) supt ‖0(t, · )‖L∞ ≤ ‖00‖L∞ .

We emphasize that ‖0(t, · )‖L∞ is a dimensionless quantity with respect to the
natural scaling of the Navier–Stokes equations. From this point of view, the
axisymmetric Navier–Stokes equations can be seen as partially critical, while
the general Navier–Stokes equations are known to be supercritical; see [Tao 2007].

Now let us introduce the function class where vθ lives. It is defined in an integral
way which is usually called the form boundedness condition (FBC), which is similar
to a condition that a certain Hardy-type inequality holds.

Definition 1.1. We say that the angular velocity vθ (t, r, z) is in a (δ∗,C∗)-critical
class if ∫

|vθ |

r | f |
2 dx ≤ C∗

∫
|∂r f |2 dx +C0

∫
r≥r0

| f |2 dx,(1-5) ∫
|vθ |2| f |2 dx ≤ δ∗

∫
|∂r f |2 dx +C0

∫
r≥r0

| f |2 dx,(1-6)

hold for some r0 > 0, some C0 > 0 and for all t ≥ 0 and all axisymmetric scalar
and vector functions f ∈ H 1.

Clearly, under the natural scaling of the Navier–Stokes equations, namely,

vλ(t, x)= λv(λ2t, λx), pλ(t, x)= λ2 p(λ2t, λx),

the above definition of FBC is invariant: (vλ)θ satisfies (1-5)–(1-6) if vθ also does.
We now state the first result of this article.
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Theorem 1.2. For any C∗ > 1, there exists a constant δ∗ > 0 depending on C∗ such
that the following conclusion holds for all local strong solutions to the axially sym-
metric Navier–Stokes equations with initial data ‖v0‖H1/2 <∞ and ‖00‖L∞ <∞.
If the angular velocity field vθ is in the (δ∗,C∗)-critical class, i.e., vθ satisfies
the critical form boundedness condition in (1-5)–(1-6), then v is regular globally
in time.

An important corollary of Theorem 1.2 is this:

Corollary 1.3. Let δ0 ∈
(
0, 1

2

)
and C1 > 1. Let v be the local strong solution of

the axially symmetric Navier–Stokes equations with initial data v0 ∈ H 1/2 and
‖00‖L∞ <∞. If

(1-7) sup0≤t<T |0(t, r, z)| ≤ C1|ln r |−2, r ≤ δ0,

then v is regular globally in time.

We emphasize that C∗ in Theorem 1.2 and C1 in Corollary 1.3 are independent of
neither the profile nor the norm of the given initial data. The proof of this corollary
will be given at the end of Section 2. The point is that if (1-7) is satisfied, then
the FBC of (1-5)–(1-6) is true. Then one can apply Theorem 1.2 to get the desired
conclusion.

Our work is inspired by a recent very interesting work by Chen, Fang and Zhang
[2015] where, among other things, the authors proved that v is regular if 0 is Hölder
continuous. Let

�=
ωθ

r , J =−
∂zv

θ

r .

We emphasize that J was introduced in [Chen et al. 2015], while � appeared much
earlier and can be at least tracked back to the book of Majda and Bertozzi [2002].
Both of the two new variables are of great importance in our work. Following
[Majda and Bertozzi 2002; Hou and Li 2008; Chen et al. 2015], we also study the
equations for J and �:

∂t J + (b · ∇)J =
(
1+

2
r ∂r

)
J + (ωr∂r +ω

z∂z)
vr

r ,

∂t�+ (b · ∇)�=
(
1+

2
r ∂r

)
�− 2v

θ

r J.
(1-8)

Here ωθ is the angular component of the vorticity ω =∇ × v, which reads

ω(t, x)= ωr er +ω
θeθ +ωzez,

with
ωr
=−∂zv

θ , ωθ = ∂zv
r
− ∂rv

z, ωz
= ∂rvθ +

vθ

r .

Our new observation is that the axisymmetric Navier–Stokes equations exhibit
certain critical nature when being formulated in terms of a new set of unknowns,
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J and �. Our second observation is that, with the FBC assumptions (1-5)–(1-6),
the stretching term (ωr∂r + ω

z∂z)v
r/r in the equation for J could be arbitrarily

small, by using the relation of vr , vz and � in Lemma 2.1 (which was originally
proved by Hou, Lei and Li [Hou et al. 2008] in the periodic case and later on
extended to the general case by Lei [2015]. Alternatively, one may also use the
magic formula given by Miao and Zheng [2013] to prove it). Then we can derive
a closed a priori estimate for J and � using the first two observations and the
structure of the stretching term in the equation for �.

Our second goal is to prove that the smallness of supt≥0 ‖0(t, · )‖L∞(r≤r0) or
‖00‖L∞ implies the global regularity of the solutions. Recently, Chen, Fang and
Zhang [2015] proved that, among many other interesting results, if 0(t, · , z) is
Hölder continuous in the r variable, then the solution of the axisymmetric Navier–
Stokes equations is smooth. Both of the results depend on given initial data. More
precisely, the smallness of supt≥0 ‖0(t, · )‖L∞(r≤r0) or ‖00‖L∞ in our Theorem 1.4
depends on other dimensionless norms of the initial data. From this point of view,
our result improves the one in [Chen et al. 2015].

We define
V = vθ
√

r
.

Here is the second main result:

Theorem 1.4. Let r0 > 0. Suppose that v0 ∈ H 1/2 such that �0 ∈ L2, V 2
0 ∈ L2 and

00 ∈ L2
∩ L∞. Denote (

‖�0‖L2 +‖V 2
0 ‖L2

)
‖00‖L2 = M0

and (
‖V 2

0 ‖L2 +‖�0‖L2 + r−2
0 ‖v0‖L2‖00‖

3/2
L∞
)
‖00‖L2 = M1.

There exists an absolute positive (small) constant δ > 0 such that if either

‖00‖L∞ ≤ δM−1
0 ,

or
supt≥0 ‖0(t, · )‖L∞(r≤r0) ≤ δM−1

1 ,

then the axially symmetric Navier–Stokes equations are globally well-posed.

The proof of Theorem 1.4 is based on a new formulation of the axisymmetric
Navier–Stokes equations (1-1) in terms of V and�=ωθ/r , and also on the estimate
of vr/r in terms of � and its derivative (see Lemma 2.1).

Now let us recall some highlights on the study of the axisymmetric Navier–
Stokes equations. It has been known since the late 1960s (see [Ladyzhenskaya
1968; Ukhovskii and Iudovich 1968]) that if the swirl vθ = 0, then finite energy
solutions to (1-1) are smooth for all time. See also [Leonardi et al. 1999], by



174 ZHEN LEI AND QI S. ZHANG

Leonardi, Málek, Nečas and Pokorný. In the presence of swirl, it is not known
in general if finite energy solutions blow up or not in finite time. Hou and Li
[2008] constructed a family of large solutions based on some deep insights on a
one-dimensional model. See also some extended results in [Hou et al. 2008] by
Hou, Lei and Li. We also mention various a priori estimates of smooth solutions
by Chae and Lee [2002] and Burke Loftus and Zhang [2010]. To the best of our
knowledge, the best a priori bound of the velocity field is given in [Lei et al. 2013]:

|v(t, x)| ≤ C∗r−2
|ln r |1/2.

In [Chen et al. 2008], Chen, Strain, Tsai and Yau obtained a lower bound for the
possible blow up rate of singularities: if

|v(t, x)| ≤ C∗
r ,

then v is regular. This seems to be the first time that people have been able to exclude
possible singularities in the presence of assumptions on |x |−1-type nonsmallness
quantities. Soon afterward, Chen, Strain, Yau and Tsai [Chen et al. 2009] and Koch,
Nadirashvili, Seregin and Šverák [Koch et al. 2009] extended the result of [Chen
et al. 2008] and in particular, excluded the possibility of type I singularities of v.
See also a local version by Seregin and Šverák [2009] and various extensions by
Pan [2016]. We also mention that Lei and Zhang [2011b] excluded the possibility
of singularities under

vr er + v
zez ∈ L∞([0, T ],BMO−1)

based on an observation in [Lei and Zhang 2011a]. This solves the regularity
problem of L∞

(
[0, T ],BMO−1) solutions of Navier–Stokes equations in the ax-

isymmetric case. Moreover, it extends the result of [Chen et al. 2008] and [Koch
et al. 2009] since the assumptions on the axial component of velocity |vz

| ≤ C∗r−1

itself imply vr er + v
zez ∈ L∞([0, T ],BMO−1) (see [Lei et al. 2013] for details).

Let us also mention that Neustupa and Pokorný [2000] proved that the regularity
of one component (either vr or vθ ) implies regularity of the other components
of the solution. The work of Jiu and Xin [2003] also proves regularity under an
assumption of sufficiently small zero-dimension scaled norms. See more refined
results in [Neustupa and Pokorný 2001] and the work of Ping Zhang and Ting
Zhang [Zhang and Zhang 2014]. Chae and Lee [2002] also proved regularity results
assuming finiteness of another certain zero-dimensional integral. Tian and Xin
[1998] constructed a family of singular axially symmetric solutions with singular
initial data.

The remainder of the paper is simply organized as follows. In Section 2 we recall
two basic lemmas and prove Corollary 1.3 by assuming the validity of Theorem 1.2.
In Section 3 we prove Theorem 1.2. Section 4 is devoted to the proof of Theorem 1.4.
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Remark. This paper was posted on the arXiv in May 2015. In August 2015, Dongyi
Wei [2016] improved one of our regularity conditions by a factor of

√

|ln r |.

2. Notations and lemmas

For abbreviation, we denote
b(t, x)= vr er + v

zez.

The last equation in (1-1) shows that b is divergence-free. The Laplacian operator
1 and the gradient operator ∇ in the cylindrical coordinate are

1= ∂2
r +

1
r ∂r +

1
r2 ∂

2
θ + ∂

2
z , ∇ = er∂r +

eθ
r ∂θ + ez∂z.

For the scalar axisymmetric function f (t, r, z), we often use the commutation
property:

∇∂r f (r, z)= ∂r∇ f (r, z).

Throughout the proof, we will denote

‖ f ‖2L2 =

∫
| f |2r dr dz, dx = r dr dz.

The estimate in Lemma 2.1 will be used often. It was originally proved in [Hou
et al. 2008] in the periodic case and then extended to the general case in [Lei 2015]
(see (4.5)–(4.6) there, noting the relation vr

=−∂zψ
θ ). Alternatively, one may also

use the magic formula given by Miao and Zheng [2013] to prove it.

Lemma 2.1. Let vr be the radial component of the velocity field and � = ωθ/r .
Then there exists an absolute positive constant K0 > 0 such that∥∥∥∇ vr

r

∥∥∥
L2
≤ K0‖�‖L2,

∥∥∥∇2 v
r

r

∥∥∥
L2
≤ K0‖∂z�‖L2 .

Lemma 2.2 gives the uniform decay estimate for the angular component of
vorticity in the r direction for large r . We point out that a weaker estimate for ωθ

has appeared in [Chae and Lee 2002]. Even though we don’t need to use the estimate
for ωr and ωz in this paper, we will include them below for possible future use.

Lemma 2.2. Suppose that v0 ∈ L2 is an axially symmetric divergence-free vector
and (rωr

0, r
2ωθ0, rω

z
0)∈ L2. Then the smooth solution of the Navier–Stokes equation

with initial data v0 satisfies the following a priori estimates:

(2-1) sup
0≤t<T

(
‖rωr (t, · )‖2L2, ‖rωz(t, · )‖2L2

)
+

∫ T

0

(
‖∇[rωr (t, · )]‖2L2, ‖∇[rωz(t, · )]‖2L2

)
dt

≤ ‖rωr
0‖

2
L2 +‖rωz

0‖
2
L2 + 4(‖00‖

2
L∞ + 1)‖v0‖

2
L2,
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and

(2-2) sup
0≤t<T

‖r2ωθ (t, · )‖2L2 +

∫ T

0
‖∇(r2ωθ )‖2L2 dt

≤ C0

(
‖r2ωθ0‖

2
L2 +

(
‖v0‖

4
L2 +‖00‖

2
L3

)
‖v0‖

2
L2

)
exp

{
T

‖00‖
2
L3+‖v0‖

4
L2

}
,

where C0 is a generic positive constant.

Proof. First of all, let us recall that

(2-3)


∂tω

r
+ b · ∇ωr

− ∂rv
rωr
=

(
1−

1
r2

)
ωr
+ ∂zv

rωz,

∂tω
θ
+ b · ∇ωθ − v

r

r ω
θ
=

(
1−

1
r2

)
ωθ + ∂z

(vθ )2

r ,

∂tω
z
+ b · ∇ωz

− ∂zv
zωz
=1ωz

+ ∂rv
zωr .

Let us first prove (2-1). Taking the L2 inner product of the first equation of (2-3)
with r2ωr , and of the third equation with r2ωz , we have

1
2

d
dt

∫
(ωr )2r2 dx−

∫
r2ωr

(
1−

1
r2

)
ωr dx

=−

∫
r2ωr b · ∇ωr dx +

∫
r2∂rv

r (ωr )2 dx +
∫

r2ωr∂zv
rωz dx

and

1
2

d
dt

∫
(ωz)2r2 dx−

∫
r2ωz1ωz dx

=−

∫
r2ωzb · ∇ωz dx +

∫
r2∂zv

z(ωz)2 dx +
∫

r2ωz∂rv
zωr dx .

Using integration by parts, we have

−

∫
r2ωr

(
1−

1
r2

)
ωr dx =

∫
|∇(rωr )|2 dx

and

−

∫
r2ωz1ωz dx =

∫
|∇(rωz)|2 dx − 2

∫
|ωz
|
2 dx .

Using integration by parts and the incompressibility constraint, one has

−

∫
r2ωr b · ∇ωr dx −

∫
r2ωzb · ∇ωz dx +

∫
r2∂rv

r (ωr )2dx +
∫

r2∂zv
z(ωz)2dx

=

∫
(rvr
+ r2∂rv

r )(ωr )2+ (rvr
+ r2∂zv

z)(ωz)2 dx

=−

∫ [
∂zv

z(rωr )2+ ∂rv
r (rωz)2

]
dx .
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Consequently, we have

1
2

d
dt

∫ [
(ωr )2+ (ωz)2

]
r2 dx +

∫ (
|∇(rωr )|2+ |∇(rωz)|2

)
dx

=

∫
|ωz
|
2 dx−

∫ [
∂zv

z(rωr )2+∂rv
r (rωz)2

]
dx+

∫ (
r2ωr∂zv

rωz
+r2ωz∂rv

zωr) dx

≤ 2
∫
|ωz
|
2 dx +‖∇b‖L2

(
‖rωr
‖

2
L4 +‖rωz

‖
2
L4

)
.

Note that by Gagliardo–Nirenberg’s inequality and the maximum principle ‖0‖L∞≤

‖00‖L∞ , one has

‖rωr
‖

2
L4 +‖rωz

‖
2
L4 = ‖∇0‖

2
L4

=

(∫
−0∇ · (∇0|∇0|2) dx

)1/2

≤ 3‖0‖L∞‖10‖L2

≤ 3‖00‖L∞
(
‖∂r (rωz)‖L2 +‖∂z(rωr )‖L2 +‖ωz

‖L2
)
.

Hence, by Hölder’s inequality, we have

d
dt

∫ [
(ωr )2+(ωz)2

]
r2 dx+

∫ (
|∇(rωr )|2+|∇(rωz)|2

)
dx≤4

(
‖00‖

2
L∞+1

)
‖∇b‖2L2 .

Integrating the above differential inequality with respect to time and recalling the
basic energy estimate, one gets (2-1).

Next, let us prove (2-2). Let us first write the second equation of (2-3) as:

∂t (r2ωθ )+ b · ∇(r2ωθ )− 3rvrωθ =
∂z0

2

r +1(r2ωθ )−
4
r ∂r (r2ωθ )+ 3ωθ.

The standard energy estimate gives that

1
2

d
dt
‖r2ωθ‖2L2+‖∇(r2ωθ )‖2L2=3

∫
rvrωθr2ωθ dx+

∫
∂z0

2rωθ dx+3
∫
ωθr2ωθ dx .

It is easy to estimate that∫
∂z0

2rωθ dx ≤ 2‖0‖L3 ‖∇vθ‖L2 ‖r2ωθ‖L6

≤ 4‖00‖
2
L3 ‖∇v

θ
‖

2
L2 +

1
4‖∇(r

2ωθ )‖2L2 .

Next, one also has∫
ωθr2ωθ dx ≤ ‖ωθ‖2L2(r≤R(t))R

2(t)+‖r2ωθ‖2L2(r>R(t))R
−2(t)

≤ ‖ωθ‖2L2 R2(t)+‖r2ωθ‖2L2 R−2(t).
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Finally, we estimate that∫
rvrωθr2ωθ dx ≤ ‖vr

‖L2 ‖(r2ωθ )3/2
‖L4 ‖(ωθ )1/2

‖L4

≤ ‖v0‖
4
L2 ‖ω

θ
‖

2
L2 +

1
4‖∇(r

2ωθ )‖2L2 .

By taking R(t)= ‖00‖L3 +‖u0‖
2
L2 , we arrive at

d
dt
‖r2ωθ‖2L2 +‖∇(r2ωθ )‖2L2

.
(
‖00‖

2
L3 +‖v0‖

4
L2

)
‖∇v‖2L2 +

(
‖00‖

2
L3 +‖u0‖

4
L2

)−1
‖r2ωθ‖2L2 .

Clearly, (2-2) follows by the basic energy estimate and applying Gronwall’s in-
equality to the above differential inequality. �

Finally, let us prove Corollary 1.3 by using Theorem 1.2.

Proof. It suffices to check the validity of FBC in (1-5)–(1-6) under the assumptions
in Corollary 1.3. Let δ0∈

(
0, 1

2

)
and C1>1 be arbitrarily large. Noting ‖00‖L∞<∞

and using the maximum principle, we have

‖0(t, · )‖L∞ ≤ ‖00‖L∞ .

Take a smooth cut-off function of r such that

φ ≡ 1 if 0≤ r ≤ 1, φ ≡ 0 if r ≥ 2.

For all δ < δ0/2, using (1-7), one has∫
|vθ |

r

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz ≤

∫
C1

r2|ln r |2

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz.

Using integration by parts, one has∫
1

r2|ln r |2

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz

=

∫ ∣∣∣φ(r
δ

)
f
∣∣∣2d|ln r |−1 dz =

∫
|ln r |−1φ

(r
δ

)
f ∂r

[
φ
(r
δ

)
f
]

dr dz

≤
1
2

∫
1

r2|ln r |2

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz+ 1

2

∫ ∣∣∣∂r

[
φ
(r
δ

)
f
]∣∣∣2r dr dz.

Hence, we have∫
1

r2|ln r |2

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz ≤

∫ ∣∣∣∂r

[
φ
(r
δ

)
f
]∣∣∣2r dr dz,

which further gives that∫
|vθ |

r

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz ≤ C1

∫ ∣∣∣∂r

[
φ
(r
δ

)
f
]∣∣∣2r dr dz.
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On the other hand, it is easy to see that∫
|vθ |

r

∣∣∣[1−φ(r
δ

)]
f
∣∣∣2r dr dz ≤ ‖00‖L∞δ

−2
∫ ∣∣∣[1−φ(r

δ

)]
f
∣∣∣2r dr dz.

Consequently, we have

(2-4)
∫
|vθ |

r
| f |2r dr dz

≤ 2C1

∫ ∣∣∣∂r

[
φ
(r
δ

)
f
]∣∣∣2r dr dz+2‖00‖L∞δ

−2
∫ ∣∣∣[1−φ(r

δ

)]
f
∣∣∣2r dr dz

≤ 4C1

∫
|∂r f |2r dr dz+Cδ−2

∫
r≥δ
| f |2r dr dz.

Here and in the next inequality we use C to denote some generic positive constant
whose value may change from line to line and which may depend on ‖00‖L∞

and C1.
Next, using (2-4), we have

(2-5)
∫
|vθ |2| f |2r dr dz

≤ 2
∫
|rvθ |
|vθ |

r

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz+2

∫
|rvθ |2r−2

∣∣∣[1−φ(r
δ

)]
f
∣∣∣2r dr dz

≤ 2C1|ln δ|−2
∫
|vθ |

r

∣∣∣φ(r
δ

)
f
∣∣∣2r dr dz+2‖00‖

2
L∞δ
−2
∫

r≥δ
| f |2r dr dz

≤ Cδ−2
∫

r≥δ
| f |2r dr dz+8C2

1 |ln δ|
−2
∫
|∂r f |2r dr dz.

Hence, one may choose δ small enough so that 16C2
1 |ln δ|

−2
≤ δ∗ and choose

C∗ = 4C1. Then it is clear from (2-4) and (2-5) that the assumptions in equations
(1-5)–(1-6) are satisfied. Using Theorem 1.2, one concludes that v is smooth for
all t > 0. �

3. Criticality of axisymmetric Navier–Stokes equations

Proof of Theorem 1.2. First of all, for initial data v0 ∈ H 1/2, by the classical results of
Leray [1934] and Fujita and Kato [1964], there exists a unique local strong solution
v to the Navier–Stokes equations (1-1). Moreover, v(t, · ) ∈ H s for any s ≥ 0, at
least on a short time interval [ε, 2ε]. In particular, ∇ω(t, · ) ∈ L2, at least on a short
time interval [ε, 2ε]. A consequence is that ∇ωr , ∇ωθ , ∇ωz , ωr/r , ωθ/r are all
L2-functions. In particular, recalling that

J = ω
r

r and �=
ωθ

r ,
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one has J (t, · ) ∈ L2 and �(t, · ) ∈ L2 for t ∈ [ε, 2ε]. Inductively, one also has
J (t, · ) ∈ H 2 and �(t, · ) ∈ H 2. Without loss of generality, we may assume that

J0 ∈ H 2 and �0 ∈ H 2.

Otherwise we may start from t = ε. As long as the solution is still smooth, one has

‖J (t, · )‖L2 +‖�(t, · )‖L2 <∞, ‖∇ J (t, · )‖2L2 +‖∇�(t, · )‖2L2 <∞

and ∫
∞

−∞

(
|J (t, 0, z)|2+ |�(t, 0, z)|2

)
dz . ‖J (t, · )‖2H2 +‖�(t, · )‖2H2 <∞.

So all calculations below are legal as long as the solution is still smooth. Our task
is to derive a certain sufficiently strong a priori estimate.

By applying the standard energy estimate to the first equation in (1-8), we have

1
2

d
dt
‖J‖2L2 =−

∫
J (b · ∇)Jr dr dz+

∫
J
(
1+

2
r ∂r

)
J

+

∫
J (ωr∂r +ω

z∂z)
vr

r r dr dz.

Using the incompressibility constraint, one has

−

∫
J (b · ∇)Jr dr dz = 1

2

∫
J 2
∇ · br dr dz = 0.

On the other hand, by direct calculations, one has∫
J
(
1+

2
r ∂r

)
J =−‖∇ J‖2L2 −

∫
|J (t, 0, z)|2 dz.

Consequently, we have

(3-1) 1
2

d
dt
‖J‖2L2+‖∇ J‖2L2+

∫
∞

−∞

|J (t, 0, z)|2 dz=
∫

J (ωr∂r+ω
z∂z)

vr

r r dr dz.

Similarly, by applying the energy estimate to the second equation in (1-8), one
obtains that

(3-2) 1
2

d
dt
‖�‖2L2 +‖∇�‖

2
L2 +

∫
∞

−∞

|�(t, 0, z)|2 dz =−2
∫
vθ

r J�r dr dz.

In the remaining part of the proof of Theorem 1.2, we will use C to denote a
generic positive constant whose value may change from line to line and which
may depend on ‖00‖L∞ , C0, C∗ and r0. Using ‖0‖L∞ ≤ ‖00‖L∞ and the form
boundedness condition in (1-5), one has
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(3-3)
∣∣∣∣∫ vθ

r
J�r dr dz

∣∣∣∣
≤

1
4C∗

∫ ∣∣∣vθr ∣∣∣�2r dr dz+C∗

∫ ∣∣∣vθr ∣∣∣J 2r dr dz

≤
1
4

∫
|∂r�|

2r dr dz+C2
∗

∫
|∂r J |2r dr dz+C

∫
r≥r0

(
|J |2+|�|2

)
r dr dz.

Inserting (3-3) into (3-2), one has

(3-4) d
dt
‖�‖2L2 +‖∇�‖

2
L2 + 2

∫
∞

−∞

|�(t, 0, z)|2 dz ≤ 2C2
∗
‖∇ J‖2L2 +C‖ω‖2L2 .

Next, we estimate that∣∣∣∣∫ J (ωr∂r +ω
z∂z)

vr

r dx
∣∣∣∣= ∣∣∣∣∫ [∇ × (vθeθ )] · (J∇ v

r

r

)
dx
∣∣∣∣

≤ ‖∇ J‖L2

∥∥∥vθ∇ vr

r

∥∥∥
L2
.

Again, using the form boundedness condition in (1-6), one has∥∥∥vθ∇ vr

r

∥∥∥2

L2
≤ δ∗

∥∥∥∂r∇
vr

r

∥∥∥2

L2
+C0

∫
r≥r0

∣∣∣∇ vr

r

∣∣∣2 dr dr dz.

Using Lemma 2.1 and the identity

∇
vr

r =
∇vr

r − er
vr

r2 =
∇vr

r + er
∂rv

r
+ ∂zv

z

r ,

we have

(3-5)
∣∣∣∣∫ J (ωr∂r +ω

z∂z)
vr

r r dr dz
∣∣∣∣

≤
1
2‖∇ J‖2L2 +

δ∗

2

∥∥∥∂r∇
vr

r

∥∥∥2

L2
+

C0

2

∫
r≥r0

∣∣∣∇ vr

r

∣∣∣2 dr dr dz

≤
1
2‖∇ J‖2

L2 +
K0δ∗

2
‖∂z�‖

2
L2 +C

∫
|∇v|2 dr dr dz.

Inserting (3-5) into (3-1), we have

(3-6) d
dt
‖J‖2L2 +‖∇ J‖2L2 + 2

∫
∞

−∞

|J (t, 0, z)|2 dz

≤ K0δ∗‖∂z�‖
2
L2 +C

∫
|∇v|2 dr dr dz.
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Multiplying (3-6) by 3C2
∗

and then adding it to (3-4), we have

d
dt
(
3C2
∗
‖J‖2L2 +‖�‖

2
L2

)
+
(
C2
∗
‖∇ J‖2L2 +‖∇�‖

2
L2

)
+

∫
∞

−∞

(
6C2
∗
|J (t, 0, z)|2+ 2|�(t, 0, z)|2

)
dz

≤ 3C2
∗

K0δ∗‖∇�‖
2
L2 +C

∫
|∇v|2r drdz.

Integrating the above inequality with respect to time, we have

3C2
∗
‖J (t, · )‖2L2 +‖�(t, · )‖2L2 +

∫ t

0

(
C2
∗
‖∇ J‖2L2 +‖∇�‖

2
L2

)
ds

+

∫ t

0

∫
∞

−∞

(
6C2
∗
|J (t, 0, z)|2+ 2|�(t, 0, z)|2

)
dzds

≤ CC2
∗

(
‖J0‖

2
L2 +‖�0‖

2
L2

)
+ 3C2

∗
K0δ∗

∫ t

0
‖∇�‖2L2 ds+C‖v0‖L2 .

Here we used the basic energy identity (1-2). Recall that K0 is an absolute positive
constant determined in Lemma 2.1. Hence, we may take δ∗ so that 3C2

∗
K0δ∗ <

1
2 .

Consequently, we have

(3-7) sup
0≤t<T

(
‖J (t)‖2L2+‖�(t)‖2L2

)
+

∫ T

0

(
‖∇ J‖2L2+‖∇�‖

2
L2

)
dt

+

∫ T

0

∫
∞

−∞

(
|J (t,0,z)|2+|�(t,0,z)|2

)
dzdt<∞

for all T <∞.
Clearly, the a priori estimate (3-7) and Sobolev imbedding theorem imply that

(3-8) sup0≤t<T ‖b(t, · )‖L p(r≤1) <∞, 3≤ p ≤ 6, T <∞.

Remark 3.1. There are several ways to prove the regularity of v from here. For
instance, the easiest way is just to use the result in [Neustupa and Pokorný 2000].
If one would like to assume further decay properties on the initial data so that the
conditions in Lemma 2.2 are satisfied, then one can easily derive an L∞

(
[0, T ], L p

)
estimate for b when r ≥ 1 and 3≤ p ≤ 6, by using the basic energy estimate and
Sobolev imbedding theorem. This, combined with the local L p estimate of v
in (3-8), immediately gives that b is in L∞

(
[0, T ], L3

)
for any T <∞. Using the

Sobolev imbedding theorem once more, one has b ∈ L∞
(
[0, T ],BMO−1). Then

the result in [Lei and Zhang 2011b] implies that v is regular up to time T .

Let us give an alternative and self-contained proof. We first derive an L4 a priori
estimate for vθ without using the result of [Lei and Zhang 2011b] and Lemma 2.2.
Using the equation of vθ in (1-1) and the standard energy estimate, one has
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d
dt
‖vθ‖4L4 +‖∇(v

θ )2‖2L2 +‖r−1(vθ )2‖2L2 ≤ C
∣∣∣∣∫ vr (vθ )4

r r dr dz
∣∣∣∣

≤ C‖r−1vr
‖L∞ ‖v

θ
‖

4
L4 .

Hence, by using Lemma 2.1 and the three-dimensional interpolation inequality
‖ f ‖2L∞ . ‖∇ f‖L2 ‖∇

2 f‖L2 , one has∥∥∥vr

r

∥∥∥
L∞
.
∥∥∥∇∂z

ψθ

r

∥∥∥1/2

L2

∥∥∥∇2∂z
ψθ

r

∥∥∥1/2

L2
=

∥∥∥∇ vr

r

∥∥∥1/2

L2

∥∥∥∇2 v
r

r

∥∥∥1/2

L2
. ‖�‖1/2

L2 ‖∂z�‖
1/2

L2 ,

and using (3-7), one concludes from Gronwall’s inequality that

‖vθ‖L4 <∞, and
∫ T

0
‖r−1(vθ )2‖2L2 dt <∞, 0≤ t ≤ T .

Then we use the second equation of (2-3) to derive that

d
dt
‖ωθ‖2L2 + 2‖∇ωθ‖2L2 + 2‖r−1ωθ‖2L2

=−

∫
vr

r (ω
θ )2r dr dz+

∫
ωθ∂z

(vθ )2

r r dr dz

≤ C‖r−1vr
‖L∞ ‖ω

θ
‖

2
L2 +‖∂zω

θ
‖

2
L2 +

1
4‖r
−1(vθ )2‖2L2 .

Hence, Gronwall’s inequality similarly gives that

ωθ ∈ L2, T <∞.

By the basic energy identity (1-2) and Sobolev imbedding, one has

b ∈ L p, 2≤ p ≤ 6.

Hence, v∈ L∞T (L
4
x). So the Serrin-type criterion implies v is regular up to time T . �

4. Small ‖00‖L∞ or ‖0(t, · )‖L∞(r≤r0) global regularity

This section is devoted to proving Theorem 1.4.

Proof of Theorem 1.4. Recall that

V = vθ
√

r
, �=

ωθ

r .

Let us first formulate the axisymmetric Navier–Stokes equations (1-1) in terms of
V and � as follows:

(4-1)


∂t V + b · ∇V + 3vr

2r
V =

(
1+

1
r ∂r −

3
4r2

)
V,

∂t�+ b · ∇�=
(
1+

2
r ∂r

)
�+

2∂z V 2

r .

By the energy estimate, one has
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(4-2) 1
2

d
dt
‖�‖2L2 +‖∇�‖

2
L2 ≤

1
2‖∂z�‖

2
L2 +

1
2

∥∥r−1
|V |2

∥∥2
L2 .

Let us first prove the global regularity under

‖00‖L∞ ≤ δM−1
0 .

Using Lemma 2.1, one has ∥∥∥vr

r

∥∥∥
L∞
. ‖�‖1/2L2 ‖∂z�‖

1/2

L2 .

Noting that

‖V ‖4L4 .
∥∥r−1
|V |2

∥∥3/2

L2 ‖0‖L4,

one can apply the L4 energy estimate for V to get

(4-3) d
dt
∥∥|V |2∥∥2

L2 +
∥∥∇|V |2∥∥2

L2 +
∥∥r−1
|V |2

∥∥2
L2

.
∥∥∥vr

r

∥∥∥
L∞
‖V ‖4L4 . ‖�‖

1/2

L2 ‖∂z�‖
1/2

L2

∥∥r−1
|V |2

∥∥3/2

L2 ‖0‖L4

. ‖�‖1/2

L2 ‖0‖
1/2

L2 ‖0‖
1/2
L∞
(
‖∂z�‖

2
L2 +

∥∥r−1
|V |2

∥∥2
L2

)
.

Combining (4-2) and (4-3), we arrive at

(4-4) d
dt

(∥∥|V |2∥∥2
L2 +‖�‖

2
L2

)
+

(∥∥∇|V |2∥∥2
L2 +‖∇�‖

2
L2

)
+
∥∥r−1
|V |2

∥∥2
L2

. ‖�‖1/2

L2 ‖0‖
1/2

L2 ‖0‖
1/2
L∞

(
‖∂z�‖

2
L2 +

∥∥r−1
|V |2

∥∥2
L2

)
.

Recall that we have the following a priori estimate:

‖0‖L2 ≤ ‖00‖L2, ‖0‖L∞ ≤ ‖00‖L∞ .

Hence, under the condition of the theorem, there exists T > 0 such that∥∥|V |2∥∥2
L2 +‖�‖

2
L2 < 2

∥∥|V0|
2∥∥2

L2 + 2‖�0‖
2
L2, ∀ 0≤ t < T .

If δ is a suitably small positive constant and

‖00‖L∞ ≤ δM−1
0

is satisfied, then we have

‖�‖
1/2

L2 ‖0‖
1/2

L2 ‖0‖
1/2
L∞ . M 1/2

0 (δM−1
0 )1/2 . δ1/2, ∀ 0≤ t < T .

Hence, by (4-4), we derive that

d
dt

(∥∥|V |2∥∥2
L2 +‖�‖

2
L2

)
≤ 0, ∀ 0≤ t < T,

which implies that
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L2 +‖�‖

2
L2 ≤

∥∥|V0|
2∥∥2

L2 +‖�0‖
2
L2, 0≤ t ≤ T .

The above argument implies, by the standard continuation method that∥∥|V |2∥∥2
L2 +‖�‖

2
L2 ≤

∥∥|V0|
2∥∥2

L2 +‖�0‖
2
L2, ∀ t ≥ 0.

Hence the proof for first part of the theorem is finished.
On the other hand, if

‖0(t, · )‖L∞(r≤r0) ≤ δM−1
1

is satisfied, then one may treat (4-3) as follows:

d
dt
∥∥|V |2∥∥2

L2 +
∥∥∇|V |2∥∥2

L2 +
∥∥r−1
|V |2

∥∥2
L2

.
∥∥∥vr

r

∥∥∥
L∞
‖V ‖4L4(r≤r0)

+

∫
r≥r0

∣∣∣vr

r
(vθ )4

r2

∣∣∣r dr dz

. ‖�‖1/2

L2 ‖0‖
1/2

L2 ‖0‖
1/2
L∞(r≤r0)

(
‖∂z�‖

2
L2 +

∥∥r−1
|V |2

∥∥2
L2

)
+ r−4

0

∥∥∥vr

r

∥∥∥
L2

∥∥∥vθr ∥∥∥L2
‖0‖3L∞(r≥r0)

,

which, combined with (4-2), gives that∥∥|V (t, · )|2∥∥2
L2 +‖�(t, · )‖2L2 +

∫ t

0

(∥∥∇|V |2∥∥2
L2 +‖∇�‖

2
L2

)
ds

.
∥∥|V0|

2∥∥2
L2 +‖�0‖

2
L2 + r−4

0 ‖v0‖
2
L2 ‖00‖

3
L∞

+
(
‖0‖L∞(r≤r0) ‖00‖L2 sup0≤s≤t ‖�(s, · )‖L2

)1/2(
‖∂z�‖

2
L2 +

∥∥r−1
|V |2

∥∥2
L2

)
.

Here r0 > 0 is arbitrary. Then similar continuation arguments as in the proof used
in the first part imply that if δ is a suitable small absolute positive constant, then
the solution v is regular. Here M1 is given in the statement of Theorem 1.4. This
shows that the smallness of 0 locally in r implies the regularity of the solutions. �

Remark. Since
∥∥|V0|

2
∥∥

L2 and ‖�0‖L2 have dimension− 3
2 , and ‖00‖L2 has dimen-

sion 3
2 , the constant M0 in Theorem 1.4 has dimension 0. Similarly, one can check

that M1 is also dimensionless if one assigns r0 dimension 1.
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