Pacific Journal of Mathematics

WEAKENING IDEMPOTENCY IN \boldsymbol{K}-THEORY

VLADIMIR MANUILOV

WEAKENING IDEMPOTENCY IN \boldsymbol{K}-THEORY

Vladimir Manuilov

Abstract

We show that the K-theory of C^{*}-algebras can be defined by pairs of matrices a, b satisfying less strict relations than idempotency, namely $p(a)=p(b)$ for any polynomial p with $p(0)=p(1)=0$, which means that a and b have to be "projections" only where $a \neq b$.

1. Introduction

The K-theory of a C^{*}-algebra A is patently defined by pairs (formal differences) of idempotent matrices (projections) over A. Regretfully, projection is a very strict property, and it is usually very hard to find projections in a given C^{*}-algebra. Many famous conjectures (Kadison, Novikov, Baum-Connes, Bass, etc.) are related to projections and would become more tractable if one could provide enough projections for a given C^{*}-algebra. Our aim is to show that the K-theory can be defined using less-restrictive relations in the hope that it will be easier to find elements satisfying these relations than the genuine idempotency. We show that K-theory is generated by pairs a, b of matrices over A satisfying $p(a)=p(b)$ for any polynomial p with $p(0)=p(1)=0$, which means that a and b have to be "projections" only where $a \neq b$.

2. Definitions and some properties

Let A be a C^{*}-algebra. For $a, b \in A$, consider the relations
(1) $\|a\| \leq 1, \quad\|b\| \leq 1, \quad a, b \geq 0, \quad\left(a-a^{2}\right)(a-b)=0, \quad\left(b-b^{2}\right)(a-b)=0$.

Definition 2.1. A pair (a, b) of elements in a C^{*}-algebra is called balanced if it satisfies the relations (1).

Two balanced pairs $\left(a_{0}, b_{0}\right)$ and $\left(a_{1}, b_{1}\right)$ of elements in A are homotopy equivalent if there are paths $a=\left(a_{t}\right), b=\left(b_{t}\right):[0,1] \rightarrow A$, connecting a_{0} with a_{1} and b_{0} with b_{1} respectively, such that the pair $\left(a_{t}, b_{t}\right)$ is balanced for each $t \in[0,1]$.

A balanced pair (a, b) is homotopy trivial if it is homotopy equivalent to $(0,0)$.

[^0]Lemma 2.2. A balanced pair (a, a) is homotopy trivial for any $a \in A$.
Proof. The linear homotopy $a_{t}=t \cdot a$ would do.
Lemma 2.3. If a pair (a, b) is balanced then $f(a)=f(b)$ and $f(a)(a-b)=0$ for any $f \in C_{0}(0,1)$.
Proof. It follows from $\left(a-a^{2}\right)(a-b)=0$, or, equivalently, from $\left(a-a^{2}\right) a=$ $\left(a-a^{2}\right) b$, that

$$
\left(a-a^{2}\right) a^{2}=a\left(a-a^{2}\right) a=a\left(a-a^{2}\right) b=\left(a-a^{2}\right) b^{2}
$$

hence

$$
\left(a-a^{2}\right)\left(a-a^{2}\right)=\left(a-a^{2}\right)\left(b-b^{2}\right)
$$

Similarly,

$$
\left(b-b^{2}\right)\left(b-b^{2}\right)=\left(a-a^{2}\right)\left(b-b^{2}\right)
$$

therefore

$$
\begin{equation*}
\left(a-a^{2}\right)^{2}=\left(b-b^{2}\right)^{2} \tag{2}
\end{equation*}
$$

Then (2) and the positivity of $a-a^{2}$ and $b-b^{2}$ imply that

$$
a-a^{2}=b-b^{2}
$$

Also,

$$
\left(a-a^{2}\right) a=\left(a-a^{2}\right) b=\left(b-b^{2}\right) b
$$

Since the two functions g and h given by $g(t)=t-t^{2}$ and $h(t)=\operatorname{tg}(t)$ generate $C_{0}(0,1)$, and since $g(a)=g(b)$ and $h(a)=h(b)$, we conclude that the same holds for any $f \in C_{0}(0,1)$. Similarly, $g(a)(a-b)=0$ and $h(a)(a-b)=0$ imply $f(a)(a-b)=0$ for any $f \in C_{0}(0,1)$.

Corollary 2.4. If $\|a\|<1,\|b\|<1$ and the pair (a, b) is balanced then $a=b$; hence the pair (a, b) is homotopy trivial.
Proof. Take $f \in C_{0}(0,1)$ such that $f(t)=t \in \operatorname{Sp}(a) \cup \operatorname{Sp}(b)$ and $f(1)=0$. Then $a=f(a), b=f(b)$, and the claim follows from Lemma 2.3.
Lemma 2.5. Let $f:[0,1] \rightarrow[0,1]$ be a continuous map such that $f(0)=0$ and $f(1)=1$. If (a, b) is a balanced pair then the pair $(f(a), f(b))$ is also balanced and is homotopy equivalent to (a, b).

Proof. As the set of all functions with the stated properties is convex, it suffices to show that for any such function f, the pair $(f(a), f(b))$ satisfies the relations (1).

Set $f_{0}(t)=f(t)-t$. Then $f_{0} \in C_{0}(0,1)$. As $f_{0}(a)=f_{0}(b)$ by Lemma 2.3,

$$
f(a)-f(b)=a-b
$$

Set

$$
g(t)=t-t^{2}+f_{0}(t)-f_{0}^{2}(t)-2 t f_{0}(t)
$$

Then $g \in C_{0}(0,1)$ and

$$
\begin{aligned}
& \left(f(a)-f^{2}(a)\right)(f(a)-f(b))=g(a)(a-b)=0, \\
& \left(f(b)-f^{2}(b)\right)(f(a)-f(b))=g(a)(a-b)=0 .
\end{aligned}
$$

Corollary 2.6. If a pair (a, b) is balanced then $\operatorname{Sp}(a) \backslash\{0,1\}=\operatorname{Sp}(b) \backslash\{0,1\}$.
Proof. The inner points of $[0,1]$ in the two spectra must coincide by Lemma 2.3.
Let $M_{n}(A)$ denote the $n \times n$ matrix algebra over A. Two balanced pairs (a_{0}, b_{0}) and $\left(a_{1}, b_{1}\right)$, where $a_{0}, a_{1}, b_{0}, b_{1} \in M_{n}(A)$, are equivalent if there is a homotopy trivial balanced pair $(a, b), a, b \in M_{m}(A)$ for some integer m, such that the balanced pairs $\left(a_{0} \oplus a, b_{0} \oplus b\right)$ and $\left(a_{1} \oplus a, b_{1} \oplus b\right)$ are homotopy equivalent in $M_{n+m}(A)$. Using the standard inclusion $M_{n}(A) \subset M_{n+k}(A)$ (as the upper-left corner) we may speak about the equivalence of balanced pairs of different matrix size.

Let $[(a, b)]$ denote the equivalence class of the balanced pair $(a, b), a, b \in M_{n}(A)$. For two balanced pairs $(a, b), a, b \in M_{n}(A)$, and $(c, d), c, d \in M_{m}(A)$, set

$$
[(a, b)]+[(c, d)]=[(a \oplus c, b \oplus d)]
$$

The result obviously doesn't depend on the choice of representatives. Also $[(a, b)]+$ $[(c, d)]=[(a, b)]$ when (c, d) is homotopy trivial.

Lemma 2.7. The addition is commutative and associative.
Proof. If $\left(u_{t}\right)_{t \in[0,1]}$ is a path of unitaries in A with $u_{1}=1$ and $u_{0}=u$, then $\left[\left(u^{*} a u, u^{*} b u\right)\right]=[(a, b)]$ for any $a, b \in A$, as the relations (1) are not affected by unitary equivalence. The standard argument with a unitary path connecting $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ proves commutativity. A similar argument proves associativity.

Lemma 2.8. $[(a, b)]+[(b, a)]=[(0,0)] \quad$ for any a, b.
Proof. Set

$$
U_{t}=\left(\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right), \quad B_{t}=U_{t}^{*}\left(\begin{array}{ll}
b & 0 \\
0 & a
\end{array}\right) U_{t}
$$

We claim that the pair $\left(\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), B_{t}\right)$ is balanced for all t.
One has
(3) $\quad B_{t}=\left(\begin{array}{ll}b \cos ^{2} t+a \sin ^{2} t & (a-b) \cos t \sin t \\ (a-b) \cos t \sin t & b \sin ^{2} t+a \cos ^{2} t\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)+(a-b) C_{t}$,
where

$$
C_{t}=\left(\begin{array}{cc}
-\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \cos ^{2} t
\end{array}\right)
$$

Then

$$
\begin{aligned}
\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)^{2}\right)\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-B_{t}\right) & =\left(\begin{array}{cc}
a-a^{2} & 0 \\
0 & b-b^{2}
\end{array}\right)(a-b) C_{t} \\
& =\left(\begin{array}{cc}
\left(a-a^{2}\right)(a-b) & 0 \\
0 & \left(b-b^{2}\right)(a-b)
\end{array}\right) C_{t}=0
\end{aligned}
$$

It remains to show that

$$
A=\left(B_{t}-B_{t}^{2}\right)\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-B_{t}\right)=0
$$

Using (3) we have

$$
\left.\left.\begin{array}{rl}
A & =\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+(a-b) C_{t}-\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)+(a-b) C_{t}\right)^{2}\right)(a-b) C_{t} \\
& =\left(\left(\begin{array}{cc}
a-a^{2} & 0 \\
0 & b-b^{2}
\end{array}\right)+(a-b) C_{t}-\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)(a-b) C_{t}\right. \\
\left.-C_{t}(a-b)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-(a-b)^{2} C_{t}^{2}\right)(a-b) C_{t} \\
& =\left((a-b) C_{t}-\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)(a-b) C_{t}-C_{t}(a-b)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)-(a-b)^{2} C_{t}^{2}\right.
\end{array}\right)(a-b) C_{t}\right)\left(\begin{array}{cc}
0 \\
0 & a-b-b a+b^{2}
\end{array}\right) C_{t}-C_{t}(a-b)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) .
$$

$=0$.
Thus, the balanced pair $(a \oplus b, b \oplus a)$ is homotopy equivalent to the balanced pair $(a \oplus b, a \oplus b)$, and the latter is homotopy trivial by Lemma 2.2.

So we see that the equivalence classes of balanced pairs in matrix algebras over A form an abelian group for any C^{*}-algebra A. Let us denote this group by $L(A)$.

Note that pairs of projections are patently balanced. If A is a unital C^{*}-algebra then $K_{0}(A)$ consists of formal differences $[p]-[q]$ with p, q projections in matrices
over A. Then

$$
\iota([p]-[q])=[(p, q)]
$$

gives rise to a morphism $\iota: K_{0}(A) \rightarrow L(A)$.
In the nonunital case, ι can be defined after unitalization. But, as we shall see, unlike K_{0}, there is no need to unitalize for L. The following example shows the reason for that in the commutative case.

Example 2.9. Let X be a compact Hausdorff space, $x \in X, Y=X \backslash\{x\}, A=C_{0}(Y)$, $A^{+}=C(X)$. Let $[p]-[q] \in K_{0}(A)$, where $p, q \in M_{n}\left(A^{+}\right)$are projections. Then $p=p_{0}+\alpha$ and $q=p_{0}+\beta$, where p_{0} is constant on X and $\alpha, \beta \in M_{n}(A)$. Without loss of generality we may assume that $\alpha, \beta=0$ not only at the point x, but also in a small neighborhood U of x. Let $h \in C(X)$ satisfy $0 \leq h \leq 1, h(x)=0$ and $h(z)=1$ for any $z \in X \backslash U$. Set $a=h p_{0}+\alpha, b=h p_{0}+\beta$. Then $a, b \in M_{n}(A)$ and $[(a, b)] \in L(A)$.

Lemma 2.10.
 $$
L(\mathbb{C}) \cong \mathbb{Z}
$$

Proof. Let $a, b \in M_{n}$, and let the pair (a, b) be balanced. Let e_{1}, \ldots, e_{n} (resp. $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$) be an orthonormal basis of eigenvectors for a (resp. for b) with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (resp. $\lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}$). Let $0<\lambda_{i}<1$. Then e_{i} is an eigenvector for $a-a^{2}$ with a nonzero eigenvalue $\lambda_{i}-\lambda_{i}^{2}$. As $\left(a-a^{2}\right)(a-b)=0$, we have $(a-b)\left(a-a^{2}\right)=0$; hence

$$
(a-b)\left(a-a^{2}\right)\left(e_{i}\right)=\left(\lambda_{i}-\lambda_{i}^{2}\right)(a-b)\left(e_{i}\right)=0
$$

Thus $(a-b)\left(e_{i}\right)=0$, or, equivalently, $a\left(e_{i}\right)=b\left(e_{i}\right)$. As e_{i} is an eigenvector for a, it is an eigenvector for b as well: $b\left(e_{i}\right)=\lambda_{i} e_{i}$. So the eigenvectors, corresponding to the eigenvalues $\neq 0,1$, are the same for a and b.

Reorder, if necessary, the eigenvalues so that

$$
\lambda_{1}, \ldots, \lambda_{k} \in(0,1), \quad \lambda_{k+1}, \ldots, \lambda_{n} \in\{0,1\}
$$

and denote the linear span of e_{1}, \ldots, e_{k} by L. Similarly, assume that

$$
\lambda_{1}^{\prime}, \ldots, \lambda_{k^{\prime}}^{\prime} \in(0,1), \quad \lambda_{k^{\prime}+1}^{\prime}, \ldots, \lambda_{n}^{\prime} \in\{0,1\}
$$

and denote the linear span of $e_{1}^{\prime}, \ldots, e_{k^{\prime}}^{\prime}$ by L^{\prime}. As $e_{1}, \ldots, e_{k} \in L^{\prime}$ and, symmetrically, $e_{1}^{\prime}, \ldots, e_{k^{\prime}}^{\prime} \in L$, we have $\operatorname{dim} L=\operatorname{dim} L^{\prime}, k=k^{\prime}$, and $\lambda_{i}=\lambda_{i}^{\prime}$ for $i=1, \ldots, k$.

Then L^{\perp} is an invariant subspace for both a and b, and the restrictions $\left.a\right|_{L^{\perp}}$ and $\left.b\right|_{L^{\perp}}$ are projections (as their eigenvalues equal 0 or 1). We may write a and b as matrices with respect to the decomposition $L \oplus L^{\perp}$:

$$
a=\left(\begin{array}{ll}
c & 0 \tag{4}\\
0 & p
\end{array}\right), \quad b=\left(\begin{array}{ll}
c & 0 \\
0 & q
\end{array}\right)
$$

where p, q are projections. The linear homotopy

$$
a_{t}=\left(\begin{array}{cc}
t c & 0 \\
0 & p
\end{array}\right), \quad b_{t}=\left(\begin{array}{cc}
t c & 0 \\
0 & q
\end{array}\right), \quad t \in[0,1]
$$

connects the pair (a, b) with the pair $(p, q)+(0,0)$. Therefore, $L(\mathbb{C})$ is a quotient of \mathbb{Z} (which is the set of homotopy classes of pairs of projections modulo stable equivalence). To see that $L(\mathbb{C})$ is exactly \mathbb{Z}, note that (4) implies that $\operatorname{tr}(a-b) \in \mathbb{Z}$ for any balanced pair (a, b), so this integer is homotopy invariant.

Remark 2.11. One may think that the relations (1) imply that balanced pairs (a, b) are something like projections plus a common part and can be reduced to just a pair of projections by cutting out the common part. The following example shows that this is not that simple.

Example 2.12. Let $A=C(X)$, and let Y, Z be closed subsets in X with $Y \cap Z=K$. Let $p, q \in M_{n}(C(Y))$ be projection-valued functions on Y such that $\left.p\right|_{K}=\left.q\right|_{K}=r$, where r cannot be extended to a projection-valued function on Z due to a K-theory obstruction, but can be extended to a matrix-valued function $s \in M_{n}(C(Z))$ on Z (with $0 \leq s \leq 1$). Then set

$$
a=\left\{\begin{array}{ll}
p & \text { on } Y, \\
s & \text { on } Z,
\end{array} \quad \text { and } \quad b= \begin{cases}q & \text { on } Y \\
s & \text { on } Z\end{cases}\right.
$$

3. Universal C^{*}-algebra for relations (1)

Let (a, b) be a balanced pair in a C^{*}-algebra A. Denote the C^{*}-subalgebra generated by a and b by $C^{*}(a, b)$. The universal C^{*}-algebra for the relations (1) is a C^{*} algebra D generated by elements $\boldsymbol{a}, \boldsymbol{b} \in D$ satisfying the relations (1) such that for any balanced pair (a, b) there is a surjective $*$-homomorphism $\varphi: D \rightarrow C^{*}(a, b)$ with $\varphi(\boldsymbol{a})=a$ and $\varphi(\boldsymbol{b})=b$; see [Loring 1997].

Let $I \subset C^{*}(a, b)$ denote the ideal generated by $a-a^{2}$, and let $C^{*}(a, b) / I$ be the quotient C^{*}-algebra. Then $C^{*}(a, b) / I$ is generated by $\dot{a}=q(a)$ and $\dot{b}=q(b)$, where q is the quotient map. But since $q\left(a-a^{2}\right)=q\left(b-b^{2}\right)=0, \dot{a}$ and \dot{b} are projections, and $C^{*}(a, b) / I$ is generated by two projections.

Then the C^{*}-algebra $C^{*}(a, b)$ is completely determined by the ideal I, by the quotient $C^{*}(a, b) / I$, and by the Busby invariant $\tau: C^{*}(a, b) / I \rightarrow Q(I)$ (we denote by $M(I)$ the multiplier algebra of I and by $Q(I)=M(I) / I$ the outer multiplier algebra). The latter is defined by the two projections $\tau(\dot{a}), \tau(\dot{b}) \in Q\left(C_{0}(Y)\right)$, where $X=\operatorname{Sp}(a), Y=X \backslash\{0,1\}$. Let $C_{b}(Y)$ denote the C^{*}-algebra of bounded continuous functions on Y and let

$$
\pi: C_{b}(Y) \rightarrow C_{b}(Y) / C_{0}(Y)=Q\left(C_{0}(Y)\right)
$$

be the quotient map. Using Gelfand duality, we identify a with the function id on $\operatorname{Sp}(a)$. Let $f \in C_{0}(Y)$. Then

$$
\tau(\dot{a}) \pi(f(a))=\tau(\dot{b}) \pi(f(a))=\pi(a f(a))
$$

so we can easily calculate these two projections.
If $1 \notin X$ then $\tau(\dot{a})=\tau(\dot{b})=0$; if $X=\{1\}$ then $I=0$; if $1 \in X$ and X has at least one more point x then $\tau(\dot{a})=\tau(\dot{b})$ is the class of functions f on X such that $f(1)=1$ and $f(t)=0$ for all $t \leq x$.

Let $M_{1} \subset M_{2}$ denote the upper-left corner in the 2-by-2 matrix algebra. Set
$D=\left\{f \in C\left([-1,1] ; M_{2}\right): f(-1)=0, f(1)\right.$ is diagonal, $f(t) \in M_{1}$ for $\left.t \in(-1,0]\right\}$, and let $\boldsymbol{a}, \boldsymbol{b}$ be functions in $C\left([-1,1] ; M_{2}\right)$ defined by

$$
\begin{align*}
& \boldsymbol{a}(t)= \begin{cases}\left(\begin{array}{cc}
\cos ^{2} \frac{\pi}{2} t & 0 \\
0 & 0
\end{array}\right) & \text { for } t \in[-1,0], \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \text { for } t \in[0,1],\end{cases} \tag{5}\\
& \boldsymbol{b}(t)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
\cos ^{2} \frac{\pi}{2} t & 0 \\
0 & 0
\end{array}\right) & \text { for } t \in[-1,0], \\
\left(\begin{array}{cc}
\cos ^{2} \frac{\pi}{2} t & \cos \frac{\pi}{2} t \sin \frac{\pi}{2} t \\
\cos \frac{\pi}{2} t \sin \frac{\pi}{2} t & \sin ^{2} \frac{\pi}{2} t
\end{array}\right) & \text { for } t \in[0,1] .
\end{array}\right. \tag{6}
\end{align*}
$$

Then $\boldsymbol{a}, \boldsymbol{b} \in D$, the pair $(\boldsymbol{a}, \boldsymbol{b})$ is balanced, and $D=C^{*}(\boldsymbol{a}, \boldsymbol{b})$ is generated by these \boldsymbol{a} and \boldsymbol{b}.

Like all C^{*}-algebras of the form $C^{*}(a, b)$ defined by balanced pairs (a, b), the C^{*}-algebra D is an extension. It contains the ideal

$$
J=\{f \in D: f(t)=0 \text { for } t \in[0,1]\} \cong C_{0}(-1,0)
$$

which is generated by $\boldsymbol{a}-\boldsymbol{a}^{2}$. Note that multiplication by \boldsymbol{a} or by \boldsymbol{b} determines the same multiplier $m_{\boldsymbol{a}}=m_{\boldsymbol{b}} \in M(J)$, and that the C^{*}-algebra \bar{J} generated by J and by m_{a} is isomorphic to $C_{0}(-1,0]$. It is the universal C^{*}-algebra for the relation $0 \leq a \leq 1$, so there exists a surjective $*$-homomorphism $\bar{\alpha}$ from \bar{J} to the nonunital C^{*}-algebra generated by a such that $\alpha^{\prime}\left(m_{a}\right)=m_{a}$, where $m_{a} \in M(I)$ is the multiplier defined by multiplication by a on A. The restriction $\alpha=\left.\bar{\alpha}\right|_{J}$ maps J onto I, and $\alpha(f(\boldsymbol{a}))=f(a)$ for any $f \in C_{0}(0,1)$.

The quotient D / J is the universal (nonunital) C^{*}-algebra

$$
\text { (7) } D / J=\mathbb{C} * \mathbb{C}=\left\{m \in C\left([0,1], M_{2}\right): m(1) \text { is diagonal, } m(0) \in M_{1}\right\}
$$

generated by two projections $\dot{\boldsymbol{a}}$ and $\dot{\boldsymbol{b}}$ [Raeburn and Sinclair 1989]. Therefore, D / J surjects onto any C^{*}-algebra generated by two projections in a canonical way. Note that D / J is an extension of \mathbb{C} by the C^{*}-algebra

$$
q \mathbb{C}=\left\{m \in C_{0}\left((0,1], M_{2}\right): m(1) \text { is diagonal }\right\}
$$

used in the Cuntz picture of K-theory.
Lemma 3.1. The C^{*}-algebra D is universal for the relations (1).
Proof. For any balanced pair (a, b), the universality of \bar{J} and of D / J implies the existence of surjective $*$-homomorphisms $\alpha: J \rightarrow I$ and $\gamma: D / J \rightarrow C^{*}(a, b) / I$ such that $\bar{\alpha}(\boldsymbol{a})=a$ and $\gamma(\dot{\boldsymbol{a}})=\dot{a}, \gamma(\dot{\boldsymbol{b}})=\dot{b}$. Since α is surjective, it induces *-homomorphisms $M(\alpha): M(J) \rightarrow M(I)$ and $Q(\alpha): Q(J) \rightarrow Q(I)$ in a canonical way, and $\left.M(\alpha)\right|_{\bar{J}}=\bar{\alpha}$. One has

$$
\begin{align*}
D & \cong\left\{(m, f): m \in M(J), f \in D / J, q_{J}(m)=\tau(f)\right\}, \tag{8}\\
C^{*}(a, b) & \cong\left\{(n, g): n \in M(I), g \in C^{*}(a, b) / I, q_{I}(n)=\sigma(g)\right\}, \tag{9}
\end{align*}
$$

where $q_{\bullet}: M(\bullet) \rightarrow Q(\bullet)$ is the quotient map; hence the map $\varphi: D \rightarrow C^{*}(a, b)$ can be defined by $\varphi(m, f)=(M(\alpha)(m), \gamma(f))$. This map is well defined if the diagram

commutes. It does commute. The case $X=\operatorname{Sp}(a)=\{1\}$ is trivial. For the other cases, notice that the image of τ lies in $C_{0}(0,1] / C_{0}(0,1) \subset Q(J)$, and the image of σ lies in $C(X) / C_{0}(X \backslash\{0\}$), which is either \mathbb{C} or 0 (when $1 \in X$ or $1 \notin X$, respectively), and the restriction of $Q(\alpha)$ from the image of τ to the image of σ is induced by the inclusion $X \subset[0,1]$. So, there is a surjective $*$-homomorphism φ from D to $C^{*}(a, b)$.

Under the identification (8), $\boldsymbol{a} \in D$ corresponds to the pair ($m_{\boldsymbol{a}}, \dot{\boldsymbol{a}}$); hence $\varphi(\boldsymbol{a})=\left(M(\alpha)\left(m_{\boldsymbol{a}}\right), \gamma(\dot{\boldsymbol{a}})\right)=\left(\alpha^{\prime}\left(m_{\boldsymbol{a}}\right), \dot{a}\right)=\left(m_{a}, \dot{a}\right)$, and the latter corresponds to a under the identification (9). Similarly, one can check that $\varphi(\boldsymbol{b})=b$.

The C^{*}-algebra D allows one more description. Set $A_{0}=\mathbb{C}^{2}$ and $F=\mathbb{C} \oplus M_{2}$, and define a $*$-homomorphism $\gamma: A_{0} \rightarrow F \oplus F$ by $\gamma=\gamma_{0} \oplus \gamma_{1}$, where γ_{0}, γ_{1} : $\mathbb{C}^{2} \rightarrow \mathbb{C} \oplus M_{2}$ are given by

$$
\gamma_{0}(\lambda, \mu)=\lambda \oplus\left(\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right), \quad \gamma_{1}(\lambda, \mu)=0 \oplus\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right), \quad \lambda, \mu \in \mathbb{C} .
$$

Let $\partial: C([0,1] ; F) \rightarrow F \oplus F$ be the boundary map given by $\partial(f)=f(0) \oplus f(1)$, $f \in C([0,1] ; F)$. Then D can be identified with the pullback

$$
D=\left\{(f, a): f \in C([0,1] ; F), a \in A_{0}, \partial(f)=\gamma(a)\right\} .
$$

Such a pullback is called a 1-dimensional noncommutative CW complex (NCCW complex) in [Eilers et al. 1998]; in this terminology, A_{0} is a 0 -dimensional NCCW complex.

Recall [Blackadar 1985] that a C^{*}-algebra B is semiprojective if for any C^{*} algebra A and increasing chain of ideals $I_{n} \subset A, n \in \mathbb{N}$, with $I=\overline{\bigcup_{n} I_{n}}$ and for any $*$-homomorphism $\varphi: B \rightarrow A / I$ there exist n and $\hat{\varphi}: B \rightarrow A / I_{n}$ such that $\varphi=q \circ \hat{\varphi}$, where $q: A / I_{n} \rightarrow A / I$ is the quotient map.

Corollary 3.2. The C^{*}-algebra D is semiprojective.
Proof. Essentially, this is Theorem 6.2.2 of [Eilers et al. 1998], where it is proved that all unital 1-dimensional NCCW complexes are semiprojective. The nonunital case is dealt with in Theorem 3.15 of [Thiel 2009], where is it noted that if A_{1} is a 1-dimensional NCCW complex then A_{1}^{+}is a 1 -dimensional NCCW complex as well, and semiprojectivity of A_{1} is equivalent to semiprojectivity of A_{1}^{+}.

One more picture of D can be given in terms of an amalgamated free product: $D=C(0,1] *_{C_{0}(0,1)} C(0,1]$.

4. Identifying L with K_{0}

Our definition of $L(A)$ can be reformulated in terms of the universal C^{*}-algebra D as

$$
L(A)=\underset{\longrightarrow}{\lim }\left[D, M_{n}(A)\right],
$$

where $[-,-]$ denotes the set of homotopy classes of $*$-homomorphisms. Recall that semiprojectivity is equivalent to stability of relations that determine D [Loring 1997, Theorem 14.1.4]. The latter means that for any $\varepsilon>0$ there exists $\delta>0$ such that whenever $c, d \in A$ satisfy
$\|c\| \leq 1, \quad\|d\| \leq 1, \quad c, d \geq 0, \quad\left\|\left(c-c^{2}\right)(c-d)\right\|<\delta, \quad\left\|\left(d-d^{2}\right)(c-d)\right\|<\delta$, there exist $a, b \in A$ such that $\|a-c\|<\varepsilon,\|b-d\|<\varepsilon$, and a, b satisfy the relations (1). Stability of the relations (1) implies that

$$
L(A)=[D, A \otimes \mathbb{K}]=\llbracket D, A \otimes \mathbb{K} \rrbracket,
$$

where \mathbb{K} denotes the C^{*}-algebra of compact operators and $\mathbb{\llbracket} \cdot, \cdot \rrbracket$ is the set of homotopy classes of asymptotic homomorphisms.

Lemma 4.1. The functor L is half-exact.

Proof. Let

$$
0 \longrightarrow I \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be a short exact sequence of C^{*}-algebras. It is obvious that $p_{*} \circ i_{*}=0$, so it remains to check that $\operatorname{Ker} p_{*} \subset \operatorname{Im} i_{*}$. Suppose that $a, b \in M_{n}(B)$, the pair (a, b) is balanced, and $(p(a), p(b))=0$ in $L(A)$. This means that there is a homotopy connecting ($p(a), p(b))$ to $(0,0)$ in $M_{k}(A)$ for some $k \geq n$ such that the whole path satisfies (1). This homotopy is given by a $*$-homomorphism $\psi: D \rightarrow C\left([0,1], M_{k}(A)\right)$ such that $\mathrm{ev}_{1} \circ \psi=0$, where ev_{t} denotes the evaluation map at $t \in[0,1]$.

When D is a semiprojective C^{*}-algebra, the homotopy lifting theorem [Blackadar 2016, Theorem 5.1] asserts that given a commuting diagram

where \bar{p}_{k} and p_{k} are the $*$-homomorphisms induced by a surjection p, there exists a $*$-homomorphism φ completing the diagram. Replacing A and B by matrices over these C^{*}-algebras, we get a lifting φ for the given homotopy. It follows from $\mathrm{ev}_{1} \circ \psi=0$ that $\mathrm{ev}_{1} \circ \varphi$ maps D to $M_{k}(I)$. Thus (a, b) lies in the image of i_{*}.

In the standard way, set $L_{n}(A)=L\left(S^{n} A\right)$, where $S A$ denotes the suspension over A. Then, by Theorem 21.4.3 of [Blackadar 1986], $L_{n}(A)$, being homotopy invariant and half-exact, is a homology theory. Also, by Theorem 22.3.6 of that paper and by Lemma 2.10, it coincides with the K-theory on the bootstrap category of C^{*}-algebras. We shall show now that it coincides with the K-theory for any C^{*}-algebra.

Set

$$
P=\left(\begin{array}{cc}
1-\boldsymbol{b} & f(\boldsymbol{a}) \\
f(\boldsymbol{a}) & \boldsymbol{a}
\end{array}\right), \quad Q=\left(\begin{array}{cc}
1-\boldsymbol{b} & f(\boldsymbol{a}) \\
f(\boldsymbol{a}) & \boldsymbol{b}
\end{array}\right)
$$

where $\boldsymbol{a}, \boldsymbol{b}$ are generators for $D((5)-(6))$, and $f \in C_{0}(0,1)$ is given by $f(t)=$ $\left(t-t^{2}\right)^{1 / 2}$. Then $P, Q \in M_{2}\left(D^{+}\right)$, where D^{+}denotes the unitalization of D.

By Lemma 2.3, $f(\boldsymbol{a})=f(\boldsymbol{b})$ and $\boldsymbol{a} f(\boldsymbol{a})=\boldsymbol{b} f(\boldsymbol{a})$, so P and Q are projections. One also has $P-Q \in M_{2}(D)$; hence

$$
x=[P]-[Q] \in K_{0}(D)
$$

Lemma 4.2. $K_{0}(D) \cong \mathbb{Z}$ with x as a generator.
Proof. Consider the short exact sequence

$$
0 \longrightarrow J \longrightarrow D \xrightarrow{\pi} \mathbb{C} * \mathbb{C} \longrightarrow 0
$$

where $\mathbb{C} * \mathbb{C}$ is the universal (nonunital) C^{*}-algebra (7) generated by two projections, p and q [Raeburn and Sinclair 1989], and π is given by restriction to [0, 1], $\pi(\boldsymbol{a})=p, \pi(\boldsymbol{b})=q$. We have $\pi(P)=(1-q) \oplus p$ and $\pi(Q)=(1-q) \oplus q$, so $\pi_{*}(x)=[p]-[q] \in K_{0}(\mathbb{C} * \mathbb{C})$. For $t \in[-1,0]$, one has $P(t)=Q(t)$; hence, for the boundary (exponential) map $\delta: K_{0}(\mathbb{C} * \mathbb{C}) \rightarrow K_{1}(J)$, we have $\delta(P)=\delta(Q)$. Recall that $J \cong C_{0}(-1,0)$. Direct calculation shows that $\delta(P)=\delta(Q) \neq 0$. The claim follows now from the K-theory exact sequence

$$
0=K_{0}(J) \longrightarrow K_{0}(D) \xrightarrow{\pi_{*}} K_{0}(\mathbb{C} * \mathbb{C}) \xrightarrow{\delta} K_{1}(J) \cong \mathbb{Z} .
$$

Let us define a map $\kappa: L(A) \rightarrow K_{0}(A)$. If $l=[(a, b)] \in L(A)$ then the balanced pair (a, b) determines a $*$-homomorphism $\varphi: D \rightarrow M_{n}(A)$ by $\varphi(\boldsymbol{a})=a$ and $\varphi(\boldsymbol{b})=b$. So, $l \in L(A)$ determines a $*$-homomorphism φ up to homotopy (for some n). Put

$$
\kappa(l)=\varphi_{*}(x) \in K_{0}(A)
$$

It is easy to see that the map κ is a well-defined group homomorphism.
Recall that there is also a map $\iota: K_{0}(A) \rightarrow L(A)$ given by $\iota([p]-[q])=[(p, q)]$, where $[p]-[q] \in K_{0}(A)$.
Lemma 4.3. For any unital C^{*}-algebra A, one has $\kappa \circ \iota=\mathrm{id}_{K_{0}(A)}$ and $\iota \kappa=\mathrm{id}_{L(A)}$; hence $L(A)=K_{0}(A)$.

Proof. To show the first identity, let $z \in K_{0}(A)$ and let $p, q \in M_{n}(A)$ be projections such that $z=[p]-[q]$. Let $\varphi: D \rightarrow M_{n}(A)$ be a $*$-homomorphism determined by the pair (p, q). Then, due to the universality of $\mathbb{C} * \mathbb{C}, \varphi$ factorizes through $\mathbb{C} * \mathbb{C}$, $\varphi=\psi \circ \pi$, where $\pi: D \rightarrow \mathbb{C} * \mathbb{C}$ is the quotient map and $\psi: \mathbb{C} * \mathbb{C} \rightarrow M_{n}(A)$ is determined by $\psi\left(i_{1}(1)\right)=p$ and $\psi\left(i_{2}(1)\right)=q$, where $i_{1}, i_{2}: \mathbb{C} \rightarrow \mathbb{C} * \mathbb{C}$ are inclusions onto the first and the second copy of \mathbb{C}. Then

$$
\varphi(x)=\psi_{*}\left(\left[i_{1}(1)\right]-\left[i_{2}(1)\right]\right)=[p]-[q] ;
$$

hence $\kappa(\iota(z))=z$.
Let us show the second identity. For $[(a, b)] \in L(A)$, let $\varphi: D \rightarrow M_{n}(A)$ be a $*$-homomorphism defined by the balanced pair (a, b) (i.e., by $\varphi(\boldsymbol{a})=a$
and $\varphi(\boldsymbol{b})=b$), and let $\varphi^{+}: D^{+} \rightarrow M_{n}(A)$ be its extension, $\varphi^{+}(1)=1$. Then $\iota(\kappa([(a, b)]))=\left[\left(\varphi_{2}^{+}(P), \varphi_{2}^{+}(Q)\right)\right]$, where $\varphi_{2}^{+}=\varphi^{+} \otimes \operatorname{id}_{M_{2}}$.

For $s \in[0,1]$, set

$$
P_{s}=C_{s} P C_{s}, \quad Q_{s}=C_{s} Q C_{s}, \quad \text { where } C_{s}=\left(\begin{array}{cc}
s \cdot 1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\begin{gathered}
P_{s}, Q_{s} \in M_{2}\left(D^{+}\right), \quad P_{s}-Q_{s} \in M_{2}(D), \quad 0 \leq P_{s}, Q_{s} \leq 1 \\
\left(P_{s}-P_{s}^{2}\right)\left(P_{s}-Q_{s}\right)=0, \quad\left(Q_{s}-Q_{s}^{2}\right)\left(P_{s}-Q_{s}\right)=0
\end{gathered}
$$

for all $s \in[0,1], P_{0}, Q_{0} \in M_{2}(D)$, and

$$
P_{1}=P, \quad Q_{1}=Q, \quad P_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & \boldsymbol{a}
\end{array}\right), \quad Q_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & \boldsymbol{b}
\end{array}\right)
$$

Therefore, $\left(\varphi_{2}^{+}\left(P_{s}\right), \varphi_{2}^{+}\left(Q_{s}\right)\right)$ provides a homotopy connecting $\left(\varphi_{2}^{+}(P), \varphi_{2}^{+}(Q)\right)$ with $(0 \oplus a, 0 \oplus b)$; hence, the balanced pair $\left(\varphi_{2}^{+}(P), \varphi_{2}^{+}(Q)\right)$ is equivalent to the balanced pair (a, b).
Theorem 4.4. The functors L and K_{0} coincide for any C^{*}-algebra A.
Proof. Both functors are half-exact and coincide for unital C^{*}-algebras, so the claim follows.

Remark 4.5. Similarly to D, one can define a C^{*}-algebra D_{B} for any C^{*}-algebra B as an appropriate extension of $B * B$ by $C B$, where $C B$ is the cone over B (or by $D_{B}=C B *_{S B} C B$). Then one gets the group [$D_{B}, A \otimes \mathbb{K}$]. Regretfully, D_{B} has no nice presentation (unlike $D=D_{\mathbb{C}}$), so we don't pursue here the bivariant version.

5. Yet another picture for \boldsymbol{K}-theory

Consider the relations

$$
\begin{equation*}
a^{*}=a, \quad b^{*}=b, \quad a-a^{2}=b-b^{2}, \quad a\left(a-a^{2}\right)=b\left(b-b^{2}\right) \tag{10}
\end{equation*}
$$

This is equivalent to

$$
a^{*}=a, \quad b^{*}=b, \quad f(a)=f(b)
$$

for any polynomial (or, equivalently, for any continuous function) f such that

$$
\begin{equation*}
f(0)=f(1)=0 \tag{11}
\end{equation*}
$$

As before, for a C^{*}-algebra A we can define a group $L^{\prime}(A)$ of homotopy classes of pairs (a, b), where a, b are matrices over A satisfying the relations (10) instead of (1). Note that the relations (10) do not impose any bound for norms of a, b;
hence they do not determine a universal C^{*}-algebra. Nevertheless, the relations (10) give the same functor.

Proposition 5.1. The group $L^{\prime}(A)$ is canonically isomorphic to $K_{0}(A)$.
Proof. Let us construct maps $i: L(A) \rightarrow L^{\prime}(A)$ and $j: L^{\prime}(A) \rightarrow L(A)$. In the proof of Lemma 2.3 it was shown that if (a, b) is balanced then they satisfy (10) too, so we can define $i([(a, b)])=[(a, b)]$. For $r \geq 0$, set

$$
c_{r}(t)= \begin{cases}-r & \text { for } t<-r \\ t & \text { for }-r \leq t \leq r+1 \\ r+1 & \text { for } t>r+1\end{cases}
$$

It is obvious that the pair $\left(c_{r}(a), c_{r}(b)\right)$ satisfies (10) for any $r \geq 0$.
We claim that the pair $\left(c_{0}(a), c_{0}(b)\right)$ is balanced. Indeed, first we obviously have $c_{0}(a), c_{0}(b) \geq 0$ and $\left\|c_{0}(a)\right\|,\left\|c_{0}(b)\right\| \leq 1$. Then, $c_{0}(a)-c_{0}(a)^{2}=f(a)$, where the function

$$
f(t)= \begin{cases}t-t^{2} & \text { for } t \in[0,1] \\ 0 & \text { for } t \notin[0,1]\end{cases}
$$

satisfies (11); so $c_{0}(a)-c_{0}(a)^{2}=c_{0}(b)-c_{0}(b)^{2}$. Similarly, $c_{0}(a)\left(c_{0}(a)-c_{0}(a)^{2}\right)=$ $c_{0}(b)\left(c_{0}(b)-c_{0}(b)^{2}\right)$. Then

$$
\begin{aligned}
\left(c_{0}(a)-c_{0}(a)^{2}\right)\left(c_{0}(a)-c_{0}(b)\right) & =c_{0}(a)^{2}-c_{0}(a)^{3}-\left(c_{0}(a)-c_{0}(a)^{2}\right) c_{0}(b) \\
& =c_{0}(b)^{2}-c_{0}(b)^{3}-\left(c_{0}(b)-c_{0}(b)^{2}\right) c_{0}(b)=0
\end{aligned}
$$

Therefore, we can set $j([(a, b)])=\left[\left(c_{0}(a), c_{0}(b)\right)\right]$. Obviously, $j \circ i$ is the identity map, so it remains to check that $i \circ j$ is the identity map as well. Set

$$
a_{s}= \begin{cases}a & \text { for } s=1 \\ c_{\tan \frac{\pi}{2} s}(a) & \text { for } s \in[0,1)\end{cases}
$$

Then $\left(a_{s}, b_{s}\right), s \in[0,1]$, is a required continuous homotopy that connects the balanced pairs (a, b) and $\left(c_{0}(a), c_{0}(b)\right)$.

References

[Blackadar 1985] B. Blackadar, "Shape theory for C^{*}-algebras", Math. Scand. 56:2 (1985), 249-275. MR Zbl
[Blackadar 1986] B. Blackadar, K-theory for operator algebras, Mathematical Sciences Research Institute Publications 5, Springer, New York, 1986. MR Zbl
[Blackadar 2016] B. Blackadar, "The homotopy lifting theorem for semiprojective C^{*}-algebras", Math. Scand. 118:2 (2016), 291-302. MR Zbl
[Eilers et al. 1998] S. Eilers, T. A. Loring, and G. K. Pedersen, "Stability of anticommutation relations: an application of noncommutative CW complexes", J. Reine Angew. Math. 499 (1998), 101-143. MR Zbl
[Loring 1997] T. A. Loring, Lifting solutions to perturbing problems in C^{*}-algebras, Fields Institute Monographs 8, American Mathematical Society, Providence, RI, 1997. MR Zbl
[Raeburn and Sinclair 1989] I. Raeburn and A. M. Sinclair, "The C^{*}-algebra generated by two projections", Math. Scand. 65:2 (1989), 278-290. MR Zbl
[Thiel 2009] H. Thiel, One-dimensional C^{*}-algebras and their K-theory, Diplomarbeit, Westfälische Wilhelms-Universität Münster, 2009, available at http://tinyurl.com/hannesthiel.

Received November 10, 2015. Revised August 20, 2016.
Vladimir Manuilov
Department of Mechanics and Mathematics
Moscow State University
LEninskie Gory
Moscow
119991
RUSSIA
manuilov@mech.math.msu.su

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@ math.ucla.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@ math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Igor Pak
Department of Mathematics University of California
Los Angeles, CA 90095-1555
pak.pjm@gmail.com
Paul Yang
Department of Mathematics Princeton University Princeton NJ 08544-1000 yang@math.princeton.edu

Daryl Cooper
Department of Mathematics University of California Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV. OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

[^1]The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2017 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

$$
\text { Volume } 289 \quad \text { No. } 2 \quad \text { August } 2017
$$

Regular representations of completely bounded maps 257
B. V. Rajarama Bhat, Nirupama Mallick and K. Sumesh
Ball convex bodies in Minkowski spaces 287
Thomas Jahn, Horst Martini and Christian Richter
Local constancy of dimension of slope subspaces of automorphic 317
forms
JOACHIM MAHNKOPF
Weakening idempotency in K-theory 381
Vladimir Manuilov
On Langlands quotients of the generalized principal series isomorphic 395
to their Aubert duals
Ivan Matić
Exact Lagrangian fillings of Legendrian $(2, n)$ torus links 417
Yu Pan
Elementary calculation of the cohomology rings of real Grassmann 443 manifolds
RUSTAM SADYKOV
Cluster tilting modules and noncommutative projective schemes 449
Kenta Ueyama
Concentration for a biharmonic Schrödinger equation 469
Dong WANG
Global existence of smooth solutions to exponential wave maps in 489
FLRW spacetimesChang-Hua Wei and Ning-An Lai

[^0]: The author acknowledges partial support by the RFBR Grant No. 16-01-00357.
 MSC2010: 19K99, 46L80, 46L05.
 Keywords: K-theory, C^{*}-algebra, projection.

[^1]: See inside back cover or msp.org/pjm for submission instructions.
 The subscription price for 2017 is US $\$ 450 /$ year for the electronic version, and $\$ 625 /$ year for print and electronic.
 Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

