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WEAKENING IDEMPOTENCY IN K -THEORY

VLADIMIR MANUILOV

We show that the K -theory of C∗-algebras can be defined by pairs of matri-
ces a, b satisfying less strict relations than idempotency, namely p(a)= p(b)

for any polynomial p with p(0)= p(1)= 0, which means that a and b have
to be “projections” only where a 6= b.

1. Introduction

The K -theory of a C∗-algebra A is patently defined by pairs (formal differences)
of idempotent matrices (projections) over A. Regretfully, projection is a very strict
property, and it is usually very hard to find projections in a given C∗-algebra. Many
famous conjectures (Kadison, Novikov, Baum–Connes, Bass, etc.) are related
to projections and would become more tractable if one could provide enough
projections for a given C∗-algebra. Our aim is to show that the K -theory can
be defined using less-restrictive relations in the hope that it will be easier to find
elements satisfying these relations than the genuine idempotency. We show that
K -theory is generated by pairs a, b of matrices over A satisfying p(a)= p(b) for
any polynomial p with p(0) = p(1) = 0, which means that a and b have to be
“projections” only where a 6= b.

2. Definitions and some properties

Let A be a C∗-algebra. For a, b ∈ A, consider the relations

(1) ‖a‖≤ 1, ‖b‖≤ 1, a, b≥ 0, (a−a2)(a−b)= 0, (b−b2)(a−b)= 0.

Definition 2.1. A pair (a, b) of elements in a C∗-algebra is called balanced if it
satisfies the relations (1).

Two balanced pairs (a0, b0) and (a1, b1) of elements in A are homotopy equivalent
if there are paths a = (at), b= (bt) : [0, 1]→ A, connecting a0 with a1 and b0 with
b1 respectively, such that the pair (at , bt) is balanced for each t ∈ [0, 1].

A balanced pair (a, b) is homotopy trivial if it is homotopy equivalent to (0, 0).
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Lemma 2.2. A balanced pair (a, a) is homotopy trivial for any a ∈ A.

Proof. The linear homotopy at = t · a would do. �

Lemma 2.3. If a pair (a, b) is balanced then f (a) = f (b) and f (a)(a − b) = 0
for any f ∈ C0(0, 1).

Proof. It follows from (a − a2)(a − b) = 0, or, equivalently, from (a − a2)a =
(a− a2)b, that

(a− a2)a2
= a(a− a2)a = a(a− a2)b = (a− a2)b2

;

hence
(a− a2)(a− a2)= (a− a2)(b− b2).

Similarly,
(b− b2)(b− b2)= (a− a2)(b− b2);

therefore

(2) (a− a2)2 = (b− b2)2.

Then (2) and the positivity of a− a2 and b− b2 imply that

a− a2
= b− b2.

Also,
(a− a2)a = (a− a2)b = (b− b2)b.

Since the two functions g and h given by g(t)= t − t2 and h(t)= tg(t) generate
C0(0, 1), and since g(a)= g(b) and h(a)= h(b), we conclude that the same holds
for any f ∈ C0(0, 1). Similarly, g(a)(a − b) = 0 and h(a)(a − b) = 0 imply
f (a)(a− b)= 0 for any f ∈ C0(0, 1). �

Corollary 2.4. If ‖a‖ < 1, ‖b‖ < 1 and the pair (a, b) is balanced then a = b;
hence the pair (a, b) is homotopy trivial.

Proof. Take f ∈ C0(0, 1) such that f (t)= t ∈ Sp(a)∪Sp(b) and f (1)= 0. Then
a = f (a), b = f (b), and the claim follows from Lemma 2.3. �

Lemma 2.5. Let f : [0, 1] → [0, 1] be a continuous map such that f (0)= 0 and
f (1)= 1. If (a, b) is a balanced pair then the pair ( f (a), f (b)) is also balanced
and is homotopy equivalent to (a, b).

Proof. As the set of all functions with the stated properties is convex, it suffices to
show that for any such function f , the pair ( f (a), f (b)) satisfies the relations (1).

Set f0(t)= f (t)− t . Then f0 ∈ C0(0, 1). As f0(a)= f0(b) by Lemma 2.3,

f (a)− f (b)= a− b.
Set

g(t)= t − t2
+ f0(t)− f 2

0 (t)− 2t f0(t).
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Then g ∈ C0(0, 1) and

( f (a)− f 2(a))( f (a)− f (b))= g(a)(a− b)= 0,

( f (b)− f 2(b))( f (a)− f (b))= g(a)(a− b)= 0. �

Corollary 2.6. If a pair (a, b) is balanced then Sp(a) \ {0, 1} = Sp(b) \ {0, 1}.

Proof. The inner points of [0, 1] in the two spectra must coincide by Lemma 2.3. �

Let Mn(A) denote the n×n matrix algebra over A. Two balanced pairs (a0, b0)

and (a1, b1), where a0, a1, b0, b1 ∈ Mn(A), are equivalent if there is a homotopy
trivial balanced pair (a, b), a, b∈Mm(A) for some integer m, such that the balanced
pairs (a0⊕ a, b0⊕ b) and (a1⊕ a, b1⊕ b) are homotopy equivalent in Mn+m(A).
Using the standard inclusion Mn(A)⊂ Mn+k(A) (as the upper-left corner) we may
speak about the equivalence of balanced pairs of different matrix size.

Let [(a, b)] denote the equivalence class of the balanced pair (a, b), a, b∈Mn(A).
For two balanced pairs (a, b), a, b ∈ Mn(A), and (c, d), c, d ∈ Mm(A), set

[(a, b)] + [(c, d)] = [(a⊕ c, b⊕ d)].

The result obviously doesn’t depend on the choice of representatives. Also [(a, b)]+
[(c, d)] = [(a, b)] when (c, d) is homotopy trivial.

Lemma 2.7. The addition is commutative and associative.

Proof. If (ut)t∈[0,1] is a path of unitaries in A with u1 = 1 and u0 = u, then
[(u∗au, u∗bu)] = [(a, b)] for any a, b ∈ A, as the relations (1) are not affected by
unitary equivalence. The standard argument with a unitary path connecting

(
1 0
0 1

)
and

(
0 1
1 0

)
proves commutativity. A similar argument proves associativity. �

Lemma 2.8. [(a, b)] + [(b, a)] = [(0, 0)] for any a, b.

Proof. Set

Ut =

(
cos t −sin t
sin t cos t

)
, Bt =U∗t

(
b 0
0 a

)
Ut .

We claim that the pair
((

a 0
0 b

)
, Bt

)
is balanced for all t .

One has

(3) Bt =

(
b cos2 t + a sin2 t (a− b) cos t sin t
(a− b) cos t sin t b sin2 t + a cos2 t

)
=

(
a 0
0 b

)
+ (a− b)Ct ,

where

Ct =

(
−cos2 t cos t sin t

cos t sin t cos2 t

)
.
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Then((
a 0
0 b

)
−

(
a 0
0 b

)2 )((a 0
0 b

)
− Bt

)
=

(
a− a2 0

0 b− b2

)
(a− b)Ct

=

(
(a− a2)(a− b) 0

0 (b− b2)(a− b)

)
Ct = 0.

It remains to show that

A = (Bt − B2
t )

((
a 0
0 b

)
− Bt

)
= 0.

Using (3) we have

A=
((

a 0
0 b

)
+(a−b)Ct−

((
a 0
0 b

)
+(a−b)Ct

)2 )
(a−b)Ct

=

((
a−a2 0

0 b−b2

)
+(a−b)Ct−

(
a 0
0 b

)
(a−b)Ct

−Ct(a−b)
(

a 0
0 b

)
−(a−b)2C2

t

)
(a−b)Ct

=

(
(a−b)Ct−

(
a 0
0 b

)
(a−b)Ct−Ct(a−b)

(
a 0
0 b

)
−(a−b)2C2

t

)
(a−b)Ct

=

((
a−b−a2

+ab 0
0 a−b−ba+b2

)
Ct−Ct(a−b)

(
a 0
0 b

)
−(a−b)2 cos2 t

(
1 0
0 1

))
(a−b)Ct

=

((
−b+ab 0

0 a−ba

)
Ct−Ct

(
a−ba 0

0 ab−b

)
−(a−b)2 cos2 t

(
1 0
0 1

))
(a−b)Ct

=

((
(ab+ba−a−b) cos2 t 0

0 (ab+ba−a−b) cos2 t

)
−

(
(a−b)2 cos2 t 0

0 (a−b)2 cos2 t

))
(a−b)Ct

= 0.

Thus, the balanced pair (a⊕ b, b⊕ a) is homotopy equivalent to the balanced
pair (a⊕ b, a⊕ b), and the latter is homotopy trivial by Lemma 2.2. �

So we see that the equivalence classes of balanced pairs in matrix algebras over
A form an abelian group for any C∗-algebra A. Let us denote this group by L(A).

Note that pairs of projections are patently balanced. If A is a unital C∗-algebra
then K0(A) consists of formal differences [p]−[q]with p, q projections in matrices
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over A. Then
ι([p] − [q])= [(p, q)]

gives rise to a morphism ι : K0(A)→ L(A).
In the nonunital case, ι can be defined after unitalization. But, as we shall see,

unlike K0, there is no need to unitalize for L . The following example shows the
reason for that in the commutative case.

Example 2.9. Let X be a compact Hausdorff space, x ∈ X , Y = X \{x}, A=C0(Y ),
A+ = C(X). Let [p] − [q] ∈ K0(A), where p, q ∈ Mn(A+) are projections. Then
p= p0+α and q = p0+β, where p0 is constant on X and α, β ∈ Mn(A). Without
loss of generality we may assume that α, β = 0 not only at the point x , but also
in a small neighborhood U of x . Let h ∈ C(X) satisfy 0 ≤ h ≤ 1, h(x) = 0 and
h(z)= 1 for any z ∈ X \U . Set a = hp0+α, b= hp0+β. Then a, b ∈ Mn(A) and
[(a, b)] ∈ L(A).

Lemma 2.10. L(C)∼= Z.

Proof. Let a, b ∈ Mn , and let the pair (a, b) be balanced. Let e1, . . . , en (resp.
e′1, . . . , e′n) be an orthonormal basis of eigenvectors for a (resp. for b) with eigen-
values λ1, . . . , λn (resp. λ′1, . . . , λ

′
n). Let 0 < λi < 1. Then ei is an eigenvector

for a − a2 with a nonzero eigenvalue λi − λ
2
i . As (a − a2)(a − b) = 0, we have

(a− b)(a− a2)= 0; hence

(a− b)(a− a2)(ei )= (λi − λ
2
i )(a− b)(ei )= 0.

Thus (a− b)(ei )= 0, or, equivalently, a(ei )= b(ei ). As ei is an eigenvector for a,
it is an eigenvector for b as well: b(ei )= λi ei . So the eigenvectors, corresponding
to the eigenvalues 6= 0, 1, are the same for a and b.

Reorder, if necessary, the eigenvalues so that

λ1, . . . , λk ∈ (0, 1), λk+1, . . . , λn ∈ {0, 1},

and denote the linear span of e1, . . . , ek by L . Similarly, assume that

λ′1, . . . , λ
′

k′ ∈ (0, 1), λ′k′+1, . . . , λ
′

n ∈ {0, 1},

and denote the linear span of e′1, . . . , e′k′ by L ′. As e1, . . . , ek ∈ L ′ and, symmetri-
cally, e′1, . . . , e′k′ ∈ L , we have dim L = dim L ′, k = k ′, and λi = λ

′

i for i = 1, . . . , k.
Then L⊥ is an invariant subspace for both a and b, and the restrictions a|L⊥ and

b|L⊥ are projections (as their eigenvalues equal 0 or 1). We may write a and b as
matrices with respect to the decomposition L ⊕ L⊥:

(4) a =
(

c 0
0 p

)
, b =

(
c 0
0 q

)
,
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where p, q are projections. The linear homotopy

at =

(
tc 0
0 p

)
, bt =

(
tc 0
0 q

)
, t ∈ [0, 1],

connects the pair (a, b) with the pair (p, q)+ (0, 0). Therefore, L(C) is a quotient
of Z (which is the set of homotopy classes of pairs of projections modulo stable
equivalence). To see that L(C) is exactly Z, note that (4) implies that tr(a− b) ∈ Z

for any balanced pair (a, b), so this integer is homotopy invariant. �

Remark 2.11. One may think that the relations (1) imply that balanced pairs (a, b)
are something like projections plus a common part and can be reduced to just a pair
of projections by cutting out the common part. The following example shows that
this is not that simple.

Example 2.12. Let A=C(X), and let Y, Z be closed subsets in X with Y ∩ Z = K .
Let p, q ∈Mn(C(Y )) be projection-valued functions on Y such that p|K = q|K = r ,
where r cannot be extended to a projection-valued function on Z due to a K -theory
obstruction, but can be extended to a matrix-valued function s ∈ Mn(C(Z)) on Z
(with 0≤ s ≤ 1). Then set

a =
{

p on Y,
s on Z ,

and b =
{

q on Y,
s on Z .

3. Universal C∗-algebra for relations (1)

Let (a, b) be a balanced pair in a C∗-algebra A. Denote the C∗-subalgebra generated
by a and b by C∗(a, b). The universal C∗-algebra for the relations (1) is a C∗-
algebra D generated by elements a, b ∈ D satisfying the relations (1) such that for
any balanced pair (a, b) there is a surjective ∗-homomorphism ϕ : D→ C∗(a, b)
with ϕ(a)= a and ϕ(b)= b; see [Loring 1997].

Let I ⊂ C∗(a, b) denote the ideal generated by a − a2, and let C∗(a, b)/I be
the quotient C∗-algebra. Then C∗(a, b)/I is generated by ȧ = q(a) and ḃ = q(b),
where q is the quotient map. But since q(a − a2) = q(b− b2) = 0, ȧ and ḃ are
projections, and C∗(a, b)/I is generated by two projections.

Then the C∗-algebra C∗(a, b) is completely determined by the ideal I , by the
quotient C∗(a, b)/I , and by the Busby invariant τ :C∗(a, b)/I→ Q(I ) (we denote
by M(I ) the multiplier algebra of I and by Q(I ) = M(I )/I the outer multiplier
algebra). The latter is defined by the two projections τ(ȧ), τ (ḃ)∈ Q(C0(Y )), where
X =Sp(a), Y = X \{0, 1}. Let Cb(Y ) denote the C∗-algebra of bounded continuous
functions on Y and let

π : Cb(Y )→ Cb(Y )/C0(Y )= Q(C0(Y ))
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be the quotient map. Using Gelfand duality, we identify a with the function id on
Sp(a). Let f ∈ C0(Y ). Then

τ(ȧ)π( f (a))= τ(ḃ)π( f (a))= π(a f (a)),

so we can easily calculate these two projections.
If 1 /∈ X then τ(ȧ) = τ(ḃ) = 0; if X = {1} then I = 0; if 1 ∈ X and X has at

least one more point x then τ(ȧ)= τ(ḃ) is the class of functions f on X such that
f (1)= 1 and f (t)= 0 for all t ≤ x .

Let M1 ⊂ M2 denote the upper-left corner in the 2-by-2 matrix algebra. Set

D=
{

f ∈C([−1,1];M2) : f (−1)=0, f (1) is diagonal, f (t)∈M1 for t ∈(−1,0]
}
,

and let a, b be functions in C([−1, 1];M2) defined by

a(t)=



(
cos2 π

2 t 0

0 0

)
for t ∈ [−1, 0],(

1 0

0 0

)
for t ∈ [0, 1],

(5)

b(t)=



(
cos2 π

2 t 0

0 0

)
for t ∈ [−1, 0],(

cos2 π
2 t cos π2 t sin π

2 t

cos π2 t sin π
2 t sin2 π

2 t

)
for t ∈ [0, 1].

(6)

Then a, b ∈ D, the pair (a, b) is balanced, and D = C∗(a, b) is generated by these
a and b.

Like all C∗-algebras of the form C∗(a, b) defined by balanced pairs (a, b), the
C∗-algebra D is an extension. It contains the ideal

J = { f ∈ D : f (t)= 0 for t ∈ [0, 1]} ∼= C0(−1, 0),

which is generated by a− a2. Note that multiplication by a or by b determines
the same multiplier ma = mb ∈ M(J ), and that the C∗-algebra J generated by
J and by ma is isomorphic to C0(−1, 0]. It is the universal C∗-algebra for the
relation 0≤ a ≤ 1, so there exists a surjective ∗-homomorphism α from J to the
nonunital C∗-algebra generated by a such that α′(ma)= ma , where ma ∈ M(I ) is
the multiplier defined by multiplication by a on A. The restriction α = α|J maps J
onto I , and α( f (a))= f (a) for any f ∈ C0(0, 1).

The quotient D/J is the universal (nonunital) C∗-algebra

(7) D/J = C ∗C= {m ∈ C([0, 1],M2) : m(1) is diagonal, m(0) ∈ M1}
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generated by two projections ȧ and ḃ [Raeburn and Sinclair 1989]. Therefore, D/J
surjects onto any C∗-algebra generated by two projections in a canonical way. Note
that D/J is an extension of C by the C∗-algebra

qC= {m ∈ C0((0, 1],M2) : m(1) is diagonal}

used in the Cuntz picture of K -theory.

Lemma 3.1. The C∗-algebra D is universal for the relations (1).

Proof. For any balanced pair (a, b), the universality of J and of D/J implies the
existence of surjective ∗-homomorphisms α : J → I and γ : D/J → C∗(a, b)/I
such that α(a) = a and γ (ȧ) = ȧ, γ (ḃ) = ḃ. Since α is surjective, it induces
∗-homomorphisms M(α) :M(J )→M(I ) and Q(α) : Q(J )→ Q(I ) in a canonical
way, and M(α)|J = α. One has

D ∼= {(m, f ) : m ∈ M(J ), f ∈ D/J, qJ (m)= τ( f )},(8)

C∗(a, b)∼= {(n, g) : n ∈ M(I ), g ∈ C∗(a, b)/I, qI (n)= σ(g)},(9)

where q• : M( • )→ Q( • ) is the quotient map; hence the map ϕ : D→ C∗(a, b)
can be defined by ϕ(m, f ) = (M(α)(m), γ ( f )). This map is well defined if the
diagram

D/J τ
//

γ

��

Q(J )

Q(α)
��

C∗(a, b)/I σ
// Q(I )

commutes. It does commute. The case X = Sp(a) = {1} is trivial. For the other
cases, notice that the image of τ lies in C0(0, 1]/C0(0, 1)⊂ Q(J ), and the image
of σ lies in C(X)/C0(X \ {0}), which is either C or 0 (when 1 ∈ X or 1 /∈ X ,
respectively), and the restriction of Q(α) from the image of τ to the image of σ is
induced by the inclusion X ⊂ [0, 1]. So, there is a surjective ∗-homomorphism ϕ

from D to C∗(a, b).
Under the identification (8), a ∈ D corresponds to the pair (ma, ȧ); hence

ϕ(a)= (M(α)(ma), γ (ȧ))= (α′(ma), ȧ)= (ma, ȧ), and the latter corresponds to
a under the identification (9). Similarly, one can check that ϕ(b)= b. �

The C∗-algebra D allows one more description. Set A0 = C2 and F = C⊕M2,
and define a ∗-homomorphism γ : A0→ F ⊕ F by γ = γ0 ⊕ γ1, where γ0, γ1 :

C2
→ C⊕M2 are given by

γ0(λ, µ)= λ⊕

(
λ 0
0 0

)
, γ1(λ, µ)= 0⊕

(
λ 0
0 µ

)
, λ, µ ∈ C.
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Let ∂ : C([0, 1]; F)→ F ⊕ F be the boundary map given by ∂( f )= f (0)⊕ f (1),
f ∈ C([0, 1]; F). Then D can be identified with the pullback

D = A1 //

��

A0

γ

��

C([0, 1]; F) ∂
// F ⊕ F ,

D = {( f, a) : f ∈ C([0, 1]; F), a ∈ A0, ∂( f )= γ (a)}.

Such a pullback is called a 1-dimensional noncommutative CW complex (NCCW
complex) in [Eilers et al. 1998]; in this terminology, A0 is a 0-dimensional NCCW
complex.

Recall [Blackadar 1985] that a C∗-algebra B is semiprojective if for any C∗-
algebra A and increasing chain of ideals In ⊂ A, n ∈N, with I =

⋃
n In and for any

∗-homomorphism ϕ : B→ A/I there exist n and ϕ̂ : B→ A/In such that ϕ = q ◦ ϕ̂,
where q : A/In→ A/I is the quotient map.

Corollary 3.2. The C∗-algebra D is semiprojective.

Proof. Essentially, this is Theorem 6.2.2 of [Eilers et al. 1998], where it is proved
that all unital 1-dimensional NCCW complexes are semiprojective. The nonunital
case is dealt with in Theorem 3.15 of [Thiel 2009], where is it noted that if A1 is
a 1-dimensional NCCW complex then A+1 is a 1-dimensional NCCW complex as
well, and semiprojectivity of A1 is equivalent to semiprojectivity of A+1 . �

One more picture of D can be given in terms of an amalgamated free product:
D = C(0, 1] ∗C0(0,1) C(0, 1].

4. Identifying L with K0

Our definition of L(A) can be reformulated in terms of the universal C∗-algebra D as

L(A)= lim
−−→
[D,Mn(A)],

where [−,−] denotes the set of homotopy classes of ∗-homomorphisms. Recall
that semiprojectivity is equivalent to stability of relations that determine D [Loring
1997, Theorem 14.1.4]. The latter means that for any ε > 0 there exists δ > 0 such
that whenever c, d ∈ A satisfy

‖c‖≤ 1, ‖d‖≤ 1, c, d ≥ 0, ‖(c−c2)(c−d)‖<δ, ‖(d−d2)(c−d)‖<δ,

there exist a, b ∈ A such that ‖a − c‖ < ε, ‖b − d‖ < ε, and a, b satisfy the
relations (1). Stability of the relations (1) implies that

L(A)= [D, A⊗K] = [[D, A⊗K]],
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where K denotes the C∗-algebra of compact operators and [[ · , · ]] is the set of
homotopy classes of asymptotic homomorphisms.

Lemma 4.1. The functor L is half-exact.

Proof. Let

0−→ I i
−→ B p

−→ A −→ 0

be a short exact sequence of C∗-algebras. It is obvious that p∗◦ i∗= 0, so it remains
to check that Ker p∗⊂ Im i∗. Suppose that a, b∈Mn(B), the pair (a, b) is balanced,
and (p(a), p(b)) = 0 in L(A). This means that there is a homotopy connecting
(p(a), p(b)) to (0, 0) in Mk(A) for some k≥ n such that the whole path satisfies (1).
This homotopy is given by a ∗-homomorphism ψ : D→ C([0, 1],Mk(A)) such
that ev1 ◦ψ = 0, where evt denotes the evaluation map at t ∈ [0, 1].

When D is a semiprojective C∗-algebra, the homotopy lifting theorem [Blackadar
2016, Theorem 5.1] asserts that given a commuting diagram

D

ϕ
))

ψ

##

κ

,,C([0, 1];Mk(B)) ev0

//

pk
��

Mk(B)

pk

��

C([0, 1];Mk(A))
ev0 // Mk(A),

where pk and pk are the ∗-homomorphisms induced by a surjection p, there exists
a ∗-homomorphism ϕ completing the diagram. Replacing A and B by matrices
over these C∗-algebras, we get a lifting ϕ for the given homotopy. It follows from
ev1 ◦ψ = 0 that ev1 ◦ϕ maps D to Mk(I ). Thus (a, b) lies in the image of i∗. �

In the standard way, set Ln(A) = L(Sn A), where S A denotes the suspension
over A. Then, by Theorem 21.4.3 of [Blackadar 1986], Ln(A), being homotopy
invariant and half-exact, is a homology theory. Also, by Theorem 22.3.6 of that
paper and by Lemma 2.10, it coincides with the K -theory on the bootstrap category
of C∗-algebras. We shall show now that it coincides with the K -theory for any
C∗-algebra.

Set

P =
(

1− b f (a)
f (a) a

)
, Q =

(
1− b f (a)
f (a) b

)
,

where a, b are generators for D ((5)–(6)), and f ∈ C0(0, 1) is given by f (t) =
(t − t2)1/2. Then P, Q ∈ M2(D+), where D+ denotes the unitalization of D.



WEAKENING IDEMPOTENCY IN K -THEORY 391

By Lemma 2.3, f (a)= f (b) and a f (a)= b f (a), so P and Q are projections.
One also has P − Q ∈ M2(D); hence

x = [P] − [Q] ∈ K0(D).

Lemma 4.2. K0(D)∼= Z with x as a generator.

Proof. Consider the short exact sequence

0−→ J −→ D π
−→C ∗C−→ 0,

where C∗C is the universal (nonunital) C∗-algebra (7) generated by two projections,
p and q [Raeburn and Sinclair 1989], and π is given by restriction to [0, 1],
π(a) = p, π(b) = q. We have π(P) = (1− q)⊕ p and π(Q) = (1− q)⊕ q,
so π∗(x) = [p] − [q] ∈ K0(C ∗C). For t ∈ [−1, 0], one has P(t) = Q(t); hence,
for the boundary (exponential) map δ : K0(C∗C)→ K1(J ), we have δ(P)= δ(Q).
Recall that J ∼= C0(−1, 0). Direct calculation shows that δ(P)= δ(Q) 6= 0. The
claim follows now from the K -theory exact sequence

0= K0(J )−→ K0(D)
π∗
−→ K0(C ∗C)

δ
−→ K1(J )∼= Z. �

Let us define a map κ : L(A)→ K0(A). If l = [(a, b)] ∈ L(A) then the balanced
pair (a, b) determines a ∗-homomorphism ϕ :D→Mn(A) by ϕ(a)=a and ϕ(b)=b.
So, l ∈ L(A) determines a ∗-homomorphism ϕ up to homotopy (for some n). Put

κ(l)= ϕ∗(x) ∈ K0(A).

It is easy to see that the map κ is a well-defined group homomorphism.
Recall that there is also a map ι : K0(A)→ L(A) given by ι([p]−[q])=[(p, q)],

where [p] − [q] ∈ K0(A).

Lemma 4.3. For any unital C∗-algebra A, one has κ ◦ι= idK0(A) and ι◦κ = idL(A);
hence L(A)= K0(A).

Proof. To show the first identity, let z ∈ K0(A) and let p, q ∈ Mn(A) be projections
such that z = [p]− [q]. Let ϕ : D→ Mn(A) be a ∗-homomorphism determined by
the pair (p, q). Then, due to the universality of C ∗C, ϕ factorizes through C ∗C,
ϕ = ψ ◦ π , where π : D→ C ∗C is the quotient map and ψ : C ∗C→ Mn(A)
is determined by ψ(i1(1)) = p and ψ(i2(1)) = q, where i1, i2 : C→ C ∗ C are
inclusions onto the first and the second copy of C. Then

ϕ(x)= ψ∗
(
[i1(1)] − [i2(1)]

)
= [p] − [q];

hence κ(ι(z))= z.
Let us show the second identity. For [(a, b)] ∈ L(A), let ϕ : D → Mn(A)

be a ∗-homomorphism defined by the balanced pair (a, b) (i.e., by ϕ(a) = a
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and ϕ(b) = b), and let ϕ+ : D+ → Mn(A) be its extension, ϕ+(1) = 1. Then
ι(κ([(a, b)]))= [(ϕ+2 (P), ϕ

+

2 (Q))], where ϕ+2 = ϕ
+
⊗ idM2 .

For s ∈ [0, 1], set

Ps = Cs PCs, Qs = Cs QCs, where Cs =

(
s · 1 0

0 1

)
.

Then

Ps, Qs ∈ M2(D+), Ps − Qs ∈ M2(D), 0≤ Ps, Qs ≤ 1,

(Ps − P2
s )(Ps − Qs)= 0, (Qs − Q2

s )(Ps − Qs)= 0

for all s ∈ [0, 1], P0, Q0 ∈ M2(D), and

P1 = P, Q1 = Q, P0 =

(
0 0
0 a

)
, Q0 =

(
0 0
0 b

)
.

Therefore, (ϕ+2 (Ps), ϕ
+

2 (Qs)) provides a homotopy connecting (ϕ+2 (P), ϕ
+

2 (Q))
with (0⊕ a, 0⊕ b); hence, the balanced pair (ϕ+2 (P), ϕ

+

2 (Q)) is equivalent to the
balanced pair (a, b). �

Theorem 4.4. The functors L and K0 coincide for any C∗-algebra A.

Proof. Both functors are half-exact and coincide for unital C∗-algebras, so the claim
follows. �

Remark 4.5. Similarly to D, one can define a C∗-algebra DB for any C∗-algebra
B as an appropriate extension of B ∗ B by CB, where CB is the cone over B (or by
DB = CB ∗SB CB). Then one gets the group [DB, A⊗K]. Regretfully, DB has no
nice presentation (unlike D = DC), so we don’t pursue here the bivariant version.

5. Yet another picture for K -theory

Consider the relations

(10) a∗ = a, b∗ = b, a− a2
= b− b2, a(a− a2)= b(b− b2).

This is equivalent to

a∗ = a, b∗ = b, f (a)= f (b)

for any polynomial (or, equivalently, for any continuous function) f such that

(11) f (0)= f (1)= 0.

As before, for a C∗-algebra A we can define a group L ′(A) of homotopy classes
of pairs (a, b), where a, b are matrices over A satisfying the relations (10) instead
of (1). Note that the relations (10) do not impose any bound for norms of a, b;
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hence they do not determine a universal C∗-algebra. Nevertheless, the relations
(10) give the same functor.

Proposition 5.1. The group L ′(A) is canonically isomorphic to K0(A).

Proof. Let us construct maps i : L(A)→ L ′(A) and j : L ′(A)→ L(A). In the proof
of Lemma 2.3 it was shown that if (a, b) is balanced then they satisfy (10) too, so
we can define i([(a, b)])= [(a, b)]. For r ≥ 0, set

cr (t)=


−r for t <−r,
t for − r ≤ t ≤ r + 1,
r + 1 for t > r + 1.

It is obvious that the pair (cr (a), cr (b)) satisfies (10) for any r ≥ 0.
We claim that the pair (c0(a), c0(b)) is balanced. Indeed, first we obviously have

c0(a), c0(b) ≥ 0 and ‖c0(a)‖, ‖c0(b)‖ ≤ 1. Then, c0(a)− c0(a)2 = f (a), where
the function

f (t)=
{

t − t2 for t ∈ [0, 1],
0 for t /∈ [0, 1]

satisfies (11); so c0(a)−c0(a)2= c0(b)−c0(b)2. Similarly, c0(a)(c0(a)−c0(a)2)=
c0(b)(c0(b)− c0(b)2). Then

(c0(a)− c0(a)2)(c0(a)− c0(b))= c0(a)2− c0(a)3− (c0(a)− c0(a)2)c0(b)

= c0(b)2− c0(b)3− (c0(b)− c0(b)2)c0(b)= 0.

Therefore, we can set j ([(a, b)]) = [(c0(a), c0(b))]. Obviously, j ◦ i is the
identity map, so it remains to check that i ◦ j is the identity map as well. Set

as =

{
a for s = 1,
ctan π2 s(a) for s ∈ [0, 1).

Then (as, bs), s ∈ [0, 1], is a required continuous homotopy that connects the
balanced pairs (a, b) and (c0(a), c0(b)). �
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