Pacific Journal of Mathematics

ELEMENTARY CALCULATION OF THE COHOMOLOGY RINGS OF REAL GRASSMANN MANIFOLDS

RuStam Sady kov

ELEMENTARY CALCULATION OF THE COHOMOLOGY RINGS OF REAL GRASSMANN MANIFOLDS

Rustam Sady Kov

Abstract

We give elementary proofs of the Takeuchi and He theorems on the real cohomology rings and real equivariant cohomology rings of real Grassmann manifolds.

1. Introduction

In an influential paper, Borel [1953] developed a general technique of computing cohomology rings of compact symmetric spaces. However, there are some exceptional cases including those of real Grassmann manifolds of odd dimension that do not immediately fit the Borel theory. In these cases the cohomology rings with real coefficients were determined by Takeuchi [1962].

Let $\tilde{\mathrm{G}}(m, n)$ denote the Grassmann manifold of oriented planes of dimension m in \mathbb{R}^{m+n}. Its tautological m - and n-vector bundles support the total Pontrjagin classes

$$
p=1+p_{1}+\cdots+p_{\lfloor m / 2\rfloor}, \quad \bar{p}=1+\bar{p}_{1}+\cdots+\cdots \bar{p}_{\lfloor n / 2\rfloor},
$$

as well as the Euler classes e_{m} and \bar{e}_{n}. If $m n$ is odd, there is also a cohomology class r in $\tilde{\mathrm{G}}(m, n)$ of degree $m+n-1$. Let $\mathbb{P}=\mathbb{P}(m, n)$ denote the symmetric algebra over \mathbb{R} on the Pontrjagin classes p_{i}, \bar{p}_{j} subject to the relation $p \cdot \bar{p}=1$.
Theorem 1 [Takeuchi 1962]. For $m, n>1$, the cohomology algebra $H^{*} \tilde{\mathbb{G}}(m, n)$ over \mathbb{R} is isomorphic to

- $\mathbb{P} \otimes \Lambda(r)$ if $m n$ is odd,
- $\mathbb{P}\left[e_{m}\right]$ subject to $e_{m}^{2}=p_{m / 2}$ if m is even and n is odd,
- $\mathbb{P}\left[\bar{e}_{n}\right]$ subject to $\bar{e}_{n}^{2}=\bar{p}_{n / 2}$ if m is odd and n is even,
- $\mathbb{P}\left[e_{m}, \bar{e}_{n}\right]$ subject to $e_{m} \bar{e}_{n}=0, e_{m}^{2}=p_{m / 2}$ and $\bar{e}_{n}^{2}=\bar{p}_{n / 2}$, if m and n are even.

The original proof of Theorem 1 by Takeuchi [1962] relies on the Borel theory [Borel 1953] as well as the Borel-Hirzebruch theory [Borel and Hirzebruch 1958]. The algebra $H^{*} \tilde{\mathrm{G}}(m, n)$ as well as its equivariant version were also recently

[^0]computed by means of the GKM theory by He [2016]. Furthermore, there is an elegant computation of these algebras by means of pure Sullivan models by Carlson [2016] whose work relies on a model constructed by Kapovitch [2002]. We give a short elementary proof of Theorem 1 based on an observation that the total spaces of the tautological $(m-1)$-sphere bundle over $\tilde{\mathrm{G}}(m, n)$ and n-sphere bundle over $\tilde{\mathrm{G}}(n+1, m-1)$ are isomorphic. We also deduce from Theorem 1 its equivariant version, see Theorem 6.

2. Proof of Theorem 1

2.1. The case of even mn. The calculations in these three cases can be carried out directly as in the case where both m and n are odd, see Section 2.2. Alternatively, it suffices to observe that if $m n$ is even, then the Lie groups $\mathrm{SO}_{m} \times \mathrm{SO}_{n}$ and SO_{m+n} are of the same rank, and therefore, Theorem 1 follows from the Borel Theorem [Borel 1953, §26].
2.2. The case of odd mn. To simplify notation, we fix the dimension $m+n$ of the ambient space and write $\tilde{\mathrm{G}}_{m}$ for $\tilde{\mathrm{G}}(m, n)$. Let $\mathrm{S} \tilde{\mathrm{G}}_{m}$ denote the total space of the (tautological) sphere bundle associated with the tautological m-vector bundle $E \tilde{\mathrm{G}}_{m}$ over $\tilde{\mathrm{G}}_{m}$. There are isomorphisms

$$
\begin{equation*}
\tilde{\mathrm{G}}_{m-1}=\tilde{\mathrm{G}}_{n+1}, \quad \mathrm{~S} \tilde{\mathrm{G}}_{m}=\mathrm{S} \tilde{\mathrm{G}}_{n+1} \tag{1}
\end{equation*}
$$

Remark 2. Since $\tilde{\mathrm{G}}_{n+m}$ consists of two points, it is reasonable to define $\tilde{\mathrm{G}}_{0}$ to be a two-point set.

The multiplication by \bar{e}_{n+1} defines an endomorphism of $H^{*} \tilde{\mathrm{G}}_{n+1}$. By the result in Section 2.1, its cokernel I is the quotient of the algebra $\mathbb{P}\left[e_{m-1}\right]$ by the ideal generated by $e_{m-1}^{2}-p_{\lfloor m / 2\rfloor}$, while its kernel K is the ideal $e_{m-1} I$. Let r be a cohomology class in SG_{m} such that $\delta(r)=e_{m-1}$, where δ is the coboundary homomorphism in the Gysin exact sequence

$$
\begin{equation*}
\cdots \xrightarrow{\smile \bar{e}_{n+1}} H^{*} \tilde{\mathrm{G}}_{n+1} \xrightarrow{i^{*}} H^{*} \mathrm{~S} \tilde{\mathrm{G}}_{m} \xrightarrow{\delta} H^{*-n} \tilde{\mathrm{G}}_{n+1} \xrightarrow{\smile \bar{e}_{n+1}} \cdots \tag{*}
\end{equation*}
$$

of the tautological sphere bundle over $\tilde{\mathrm{G}}_{n+1}$ with total space $\mathrm{S} \tilde{\mathrm{G}}_{n+1}=\mathrm{S} \tilde{\mathrm{G}}_{m}$.

Proposition 3. The cohomology algebra of S_{m} is isomorphic to $I \otimes \Lambda(r)$.

Proof. Since the restriction of i^{*} to I is injective, we will identify its image with I. By the Leibniz formula [Dold 1972, VII.8.10], the restriction of δ to the vector space $r I$ is an isomorphism onto K. It follows now from (*) that the vector space $H^{*} \mathrm{~S} \tilde{\mathrm{G}}_{m}$ is isomorphic to $I \oplus r I$. Finally, the class $r \smile r$ is trivial since r is of odd degree.
Proof in the case of odd mn. In the Gysin exact sequence of the tautological sphere bundle over $\tilde{\mathrm{G}}_{m}$,

$$
\begin{equation*}
\cdots \xrightarrow{0} H^{*} \tilde{\mathrm{G}}_{m} \xrightarrow{i^{*}} H^{*} \mathrm{~S} \tilde{\mathrm{G}}_{m} \xrightarrow{\bar{\delta}} H^{*-m+1} \tilde{\mathrm{G}}_{m} \xrightarrow{0} \cdots \tag{**}
\end{equation*}
$$

the (surjective) coboundary homomorphism $\bar{\delta}$ restricted to $I=\mathbb{P} \oplus e_{m-1} \mathbb{P} / \sim$ is trivial on \mathbb{P} and takes $e_{m-1} p$ to p for all $p \in \mathbb{P}$; compare $\bar{\delta}$ with the coboundary homomorphism in the Gysin exact sequence of the tautological sphere bundle over BSO_{m}, see [Milnor and Stasheff 1974, p.180]. Since the Euler class e_{m} of the tautological bundle over $\tilde{\mathrm{G}}_{m}$ is trivial, the group $H^{n} \tilde{\mathrm{G}}_{m}$ is a subgroup of the trivial group $H^{n} \mathrm{~S} \tilde{\mathrm{G}}_{m}$. Hence $\bar{\delta}(r) \in H^{n} \tilde{\mathrm{G}}_{m}$ is trivial, and therefore r extends to a class in $H^{*} \tilde{\mathrm{G}}_{m}$. This completes the proof of Theorem 1 in the case of odd $m n$.
Remark 4. There is a free involution σ on $\tilde{\mathrm{G}}(m, n)$ whose orbit space is the Grassmann manifold $\mathrm{G}(m, n)$ of nonoriented planes. Hence $H^{*} \mathrm{G}(m, n)$ is isomorphic to the subring of $H^{*} \tilde{\mathrm{G}}(m, n)$ of σ-invariant classes. Casian and Kodama [2013, Theorem 3.2] gave a description of the adjacencies of Schubert cells in G (m, n), from which it follows that the class r corresponds to the Schubert cell with the Young diagram $(n) \times 1^{m-1}$; alternatively, it also follows from the Ehresmann's adjacency formulas.

Remark 5. From Giambelli's formula, the mod 2 reduction of r is $\bar{w}_{n} w_{m-1}=$ $\bar{w}_{n-1} w_{m}$.

3. Equivariant case

Recall that $\tilde{\mathrm{G}}=\tilde{\mathrm{G}}(m, n)$ can be identified with the quotient of $\mathrm{SO}(m+n)$ by $\mathrm{SO}(m) \times \mathrm{SO}(n)$. Let T denote the maximal torus of the latter group. There is a left action of $T<\mathrm{SO}(m+n)$ on the Grassmann manifold $\tilde{\mathrm{G}}$. Let k be the dimension of T; it equals $\lfloor(m+n) / 2\rfloor$ if $m n$ is even, and $\lfloor(m+n-1) / 2\rfloor$ if $m n$ is odd. In this section we give a short computation of the equivariant cohomology ring $H_{T}^{*} \tilde{\mathrm{G}}$ which was earlier computed by He [2016] and Carlson [2016].

Recall that the equivariant cohomology ring $H_{T}^{*} \tilde{\mathrm{G}}$ is defined to be the cohomology ring of $\tilde{\mathrm{G}}_{T}=E T \times_{T} \tilde{\mathrm{G}}$, where $E T$ is the total space of the principle T-bundle $E T \rightarrow B T$. In the cohomology ring of $\tilde{\mathrm{G}}_{T}$ there are total Pontrjagin classes $\tilde{\sim}^{T}$ and \bar{p}^{T} and Euler classes e_{m}^{T} and \bar{e}_{n}^{T} of the tautological vector bundles over $\tilde{\mathrm{G}}_{T}$, as well as the first Chern classes t_{1}, \ldots, t_{k} of the k complex line bundles L_{1}, \ldots, L_{k} that are pulled back from the tautological complex line bundles over $B T=\mathbb{C} P^{\infty} \times \cdots \times \mathbb{C} P^{\infty}$. Since the sum of the two tautological vector bundles over $\tilde{\mathrm{G}}_{T}$ is stably equivalent to $L_{1} \oplus \cdots \oplus L_{k}$, we have a relation $p^{T} \bar{p}^{T}=\Pi\left(1+t_{i}^{2}\right)$. Similarly, $e_{m}^{T} \bar{e}_{n}^{T}=\prod t_{i}$ if m and n are even and $m+n=2 k$, and $e_{m-1}^{T} \bar{e}_{n+1}^{T}=0$ if m and n are odd and $m+n=2 k+2$. Let \mathbb{P}^{T} denote the symmetric algebra over \mathbb{R} generated by the Pontrjagin classes $p_{i}^{T}, \bar{p}_{i}^{T}$ as well as the Chern classes t_{i} subject to the relation $p^{T} \bar{p}^{T}=\prod\left(1+t_{i}^{2}\right)$. When $m n$ is odd, the equivariant version of the Gysin exact sequence $\left({ }^{*}\right)$ defines a cohomology class \tilde{r} in $\mathrm{S} \tilde{\mathrm{G}}_{m}$, while from the equivariant version of the Gysin exact sequence $\left({ }^{* *}\right)$ it follows that \tilde{r} extends to a class in $\tilde{\mathrm{G}}_{m}$.

Theorem 6 [He 2016; Carlson 2016]. For $m, n>1$, the algebra $H_{T}^{*} \tilde{\mathrm{G}}(m, n)$ is isomorphic to

- $\mathbb{P}^{T} \otimes \Lambda(\tilde{r})$ if $m n$ is odd,
- $\mathbb{P}^{T}\left[e_{m}^{T}\right]$ subject to $\left(e_{m}^{T}\right)^{2}=p_{m / 2}^{T}$ if m is even and n is odd,
- $\mathbb{P}^{T}\left[\bar{e}_{n}^{T}\right]$ subject to $\left(\bar{e}_{n}^{T}\right)^{2}=\bar{p}_{n / 2}$ if m is odd and n is even,
- $\mathbb{P}^{T}\left[e_{m}, \bar{e}_{n}^{T}\right]$ subject to $e_{m}^{T} \bar{e}_{n}^{T}=\prod t_{i},\left(e_{m}^{T}\right)^{2}=p_{m / 2}$ and $\left(\bar{e}_{n}^{T}\right)^{2}=\bar{p}_{n / 2}$ if m and n are even.

Proof. We have seen that all cohomology classes of the fiber $\tilde{\mathrm{G}}$ of the fiber bundle $\tilde{\mathrm{G}}_{T} \rightarrow B T$ extend over the total space. Thus, $H_{T}^{*} \tilde{\mathrm{G}}$ is a free $H^{*} B T$-module on the set of generators given by a basis of the vector space $H^{*} \tilde{\mathrm{G}}$. In particular, in $H_{T}^{*} \tilde{\mathrm{G}}$ there are no relations besides those listed in Theorem 6. Indeed, assume to the contrary that there is a trivial algebraic combination y of classes $\tilde{r}, e_{m}^{T}, \bar{e}_{n}^{T}, p_{i}, \bar{p}_{i}$ and t_{i} not in the ideal \mathcal{I} generated by the relations in Theorem 6. Using relations in Theorem 6 we can reduce y to an $H^{*} B T$-linear combination of basis vectors of $H^{*} \tilde{\mathrm{G}}$. Since y is trivial, all coefficients in the reduced linear combination are zero. Hence $y \in \mathcal{I}$ contrary to the assumption.

Acknowledgment

I am grateful to Toru Ohmoto; this project accidentally came out of our conversations at a Sapporo onsen during my visiting Hokkaido University. Ohmoto could not be convinced to coauthor the note.

I am thankful to the referee who informed me about the papers [Takeuchi 1962] and [He 2016], made many helpful comments and shared with me a copy of [Takeuchi 1962]. I am grateful to Osamu Saeki for many references, and to László Fehér for letting me know about his unpublished work. Namely, Fehér [2013] observed that the Schubert calculus of the Grassmann manifold $\mathrm{G}(2 m, 2 n)$ is analogous to the Schubert calculus of the Grassmann manifold of complex m planes in \mathbb{C}^{n}.

References

[Borel 1953] A. Borel, "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts", Ann. of Math. (2) 57 (1953), 115-207. MR Zbl
[Borel and Hirzebruch 1958] A. Borel and F. Hirzebruch, "Characteristic classes and homogeneous spaces, I", Amer. J. Math. 80 (1958), 458-538. MR Zbl
[Carlson 2016] J. D. Carlson, "The Borel equivariant cohomology of real Grassmannians", preprint, 2016. arXiv
[Casian and Kodama 2013] L. Casian and Y. Kodama, "On the cohomology of real Grassmann manifolds", preprint, 2013. arXiv
[Dold 1972] A. Dold, Lectures on algebraic topology, Grundlehren der math. Wissenschaften 200, Springer, 1972. MR Zbl
[Fehér 2013] L. Fehér, "Real Schubert calculus", web page, Math Overflow, 2013, available at http:// mathoverflow.net/questions/119273/real-schubert-calculus.
[He 2016] C. He, "GKM theory, characteristic classes and the equivariant cohomology ring of real Grassmannian", preprint, 2016. arXiv
[Kapovitch 2002] V. Kapovitch, "A note on rational homotopy of biquotients", preprint, 2002, available at http://www.math.toronto.edu/vtk/biquotient.pdf.
[Milnor and Stasheff 1974] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton Univ. Press, 1974. MR Zbl
[Takeuchi 1962] M. Takeuchi, "On Pontrjagin classes of compact symmetric spaces", J. Fac. Sci. Univ. Tokyo Sect. I 9:1962 (1962), 313-328. MR Zbl

Received August 30, 2015. Revised February 5, 2017.
Rustam Sady kov
Mathematics Department
Kansas State University
138 Cardwell Hall
Manhattan, KS 66503
United States
rstsdk@gmail.com

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@ math.ucla.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@ math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Igor Pak
Department of Mathematics University of California
Los Angeles, CA 90095-1555
pak.pjm@gmail.com
Paul Yang
Department of Mathematics Princeton University Princeton NJ 08544-1000 yang@math.princeton.edu

Daryl Cooper
Department of Mathematics University of California Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV. OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

[^1]The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2017 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

$$
\text { Volume } 289 \quad \text { No. } 2 \quad \text { August } 2017
$$

Regular representations of completely bounded maps 257
B. V. Rajarama Bhat, Nirupama Mallick and K. Sumesh
Ball convex bodies in Minkowski spaces 287
Thomas Jahn, Horst Martini and Christian Richter
Local constancy of dimension of slope subspaces of automorphic 317
forms
JOACHIM MAHNKOPF
Weakening idempotency in K-theory 381
Vladimir Manuilov
On Langlands quotients of the generalized principal series isomorphic 395
to their Aubert duals
Ivan Matić
Exact Lagrangian fillings of Legendrian $(2, n)$ torus links 417
Yu Pan
Elementary calculation of the cohomology rings of real Grassmann 443 manifolds
RUSTAM SADYKOV
Cluster tilting modules and noncommutative projective schemes 449
Kenta Ueyama
Concentration for a biharmonic Schrödinger equation 469
Dong WANG
Global existence of smooth solutions to exponential wave maps in 489
FLRW spacetimesChang-Hua Wei and Ning-An Lai

[^0]: MSC2010: primary 14M15, 57T15; secondary 22C05.
 Keywords: Grassmann manifolds, equivariant cohomology.

[^1]: See inside back cover or msp.org/pjm for submission instructions.
 The subscription price for 2017 is US $\$ 450 /$ year for the electronic version, and $\$ 625 /$ year for print and electronic.
 Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

