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ELEMENTARY CALCULATION OF THE COHOMOLOGY
RINGS OF REAL GRASSMANN MANIFOLDS

RUSTAM SADYKOV

We give elementary proofs of the Takeuchi and He theorems on the real
cohomology rings and real equivariant cohomology rings of real Grassmann
manifolds.

1. Introduction

In an influential paper, Borel [1953] developed a general technique of computing
cohomology rings of compact symmetric spaces. However, there are some excep-
tional cases including those of real Grassmann manifolds of odd dimension that do
not immediately fit the Borel theory. In these cases the cohomology rings with real
coefficients were determined by Takeuchi [1962].

Let G̃(m, n) denote the Grassmann manifold of oriented planes of dimension
m in Rm+n. Its tautological m- and n-vector bundles support the total Pontrjagin
classes

p = 1+ p1+ · · ·+ pbm/2c, p = 1+ p1+ · · ·+ · · · pbn/2c,

as well as the Euler classes em and en . If mn is odd, there is also a cohomology
class r in G̃(m, n) of degree m + n − 1. Let P = P(m, n) denote the symmetric
algebra over R on the Pontrjagin classes pi , p j subject to the relation p · p = 1.

Theorem 1 [Takeuchi 1962]. For m, n > 1, the cohomology algebra H∗G̃(m, n)
over R is isomorphic to

• P⊗3(r) if mn is odd,

• P[em] subject to e2
m = pm/2 if m is even and n is odd,

• P[en] subject to e2
n = pn/2 if m is odd and n is even,

• P[em, en] subject to emen = 0, e2
m = pm/2 and e2

n = pn/2, if m and n are even.

The original proof of Theorem 1 by Takeuchi [1962] relies on the Borel the-
ory [Borel 1953] as well as the Borel–Hirzebruch theory [Borel and Hirzebruch
1958]. The algebra H∗G̃(m, n) as well as its equivariant version were also recently
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computed by means of the GKM theory by He [2016]. Furthermore, there is an
elegant computation of these algebras by means of pure Sullivan models by Carlson
[2016] whose work relies on a model constructed by Kapovitch [2002]. We give a
short elementary proof of Theorem 1 based on an observation that the total spaces
of the tautological (m− 1)-sphere bundle over G̃(m, n) and n-sphere bundle over
G̃(n+ 1,m− 1) are isomorphic. We also deduce from Theorem 1 its equivariant
version, see Theorem 6.

2. Proof of Theorem 1

2.1. The case of even mn. The calculations in these three cases can be carried out
directly as in the case where both m and n are odd, see Section 2.2. Alternatively, it
suffices to observe that if mn is even, then the Lie groups SOm ×SOn and SOm+n

are of the same rank, and therefore, Theorem 1 follows from the Borel Theorem
[Borel 1953, §26].

2.2. The case of odd mn. To simplify notation, we fix the dimension m+n of the
ambient space and write G̃m for G̃(m, n). Let SG̃m denote the total space of the
(tautological) sphere bundle associated with the tautological m-vector bundle EG̃m

over G̃m . There are isomorphisms

(1) G̃m−1 = G̃n+1, SG̃m = SG̃n+1.

Remark 2. Since G̃n+m consists of two points, it is reasonable to define G̃0 to be a
two-point set.

The multiplication by en+1 defines an endomorphism of H∗G̃n+1. By the result
in Section 2.1, its cokernel I is the quotient of the algebra P[em−1] by the ideal
generated by e2

m−1 − pbm/2c, while its kernel K is the ideal em−1 I. Let r be a
cohomology class in SG̃m such that δ(r) = em−1, where δ is the coboundary
homomorphism in the Gysin exact sequence

(*) · · ·
`en+1−−−→ H∗G̃n+1

i∗
−→ H∗ SG̃m

δ
−→ H∗−nG̃n+1

`en+1−−−→· · ·

of the tautological sphere bundle over G̃n+1 with total space SG̃n+1 = SG̃m .

Proposition 3. The cohomology algebra of SG̃m is isomorphic to I ⊗3(r).

Proof. Since the restriction of i∗ to I is injective, we will identify its image with I.
By the Leibniz formula [Dold 1972, VII.8.10], the restriction of δ to the vector space
r I is an isomorphism onto K. It follows now from (*) that the vector space H∗SG̃m

is isomorphic to I⊕r I. Finally, the class r ` r is trivial since r is of odd degree. �

Proof in the case of odd mn. In the Gysin exact sequence of the tautological sphere
bundle over G̃m ,

(**) · · ·
0
−→ H∗G̃m

i∗
−→ H∗ SG̃m

δ
−→ H∗−m+1G̃m

0
−→· · ·
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the (surjective) coboundary homomorphism δ restricted to I = P⊕ em−1P/∼ is
trivial on P and takes em−1 p to p for all p ∈ P; compare δ with the coboundary
homomorphism in the Gysin exact sequence of the tautological sphere bundle over
BSOm , see [Milnor and Stasheff 1974, p.180]. Since the Euler class em of the
tautological bundle over G̃m is trivial, the group H nG̃m is a subgroup of the trivial
group H n SG̃m . Hence δ(r) ∈ H nG̃m is trivial, and therefore r extends to a class in
H∗G̃m . This completes the proof of Theorem 1 in the case of odd mn. �

Remark 4. There is a free involution σ on G̃(m, n) whose orbit space is the Grass-
mann manifold G(m, n) of nonoriented planes. Hence H∗G(m, n) is isomorphic
to the subring of H∗G̃(m, n) of σ -invariant classes. Casian and Kodama [2013,
Theorem 3.2] gave a description of the adjacencies of Schubert cells in G(m, n),
from which it follows that the class r corresponds to the Schubert cell with the
Young diagram (n)× 1m−1; alternatively, it also follows from the Ehresmann’s
adjacency formulas.

Remark 5. From Giambelli’s formula, the mod 2 reduction of r is wnwm−1 =

wn−1wm .

3. Equivariant case

Recall that G̃ = G̃(m, n) can be identified with the quotient of SO(m + n) by
SO(m)×SO(n). Let T denote the maximal torus of the latter group. There is a left
action of T < SO(m+ n) on the Grassmann manifold G̃. Let k be the dimension
of T ; it equals b(m + n)/2c if mn is even, and b(m + n− 1)/2c if mn is odd. In
this section we give a short computation of the equivariant cohomology ring H∗T G̃
which was earlier computed by He [2016] and Carlson [2016].

Recall that the equivariant cohomology ring H∗T G̃ is defined to be the cohomology
ring of G̃T = ET ×T G̃, where ET is the total space of the principle T -bundle
ET → BT. In the cohomology ring of G̃T there are total Pontrjagin classes
pT and pT and Euler classes eT

m and eT
n of the tautological vector bundles over

G̃T , as well as the first Chern classes t1, . . . , tk of the k complex line bundles
L1, . . . , Lk that are pulled back from the tautological complex line bundles over
BT = CP∞× · · · ×CP∞. Since the sum of the two tautological vector bundles
over G̃T is stably equivalent to L1⊕· · ·⊕Lk , we have a relation pT pT

=
∏
(1+ t2

i ).
Similarly, eT

meT
n =

∏
ti if m and n are even and m+ n = 2k, and eT

m−1eT
n+1 = 0 if

m and n are odd and m+ n = 2k+ 2. Let PT denote the symmetric algebra over R

generated by the Pontrjagin classes pT
i , pT

i as well as the Chern classes ti subject
to the relation pT pT

=
∏
(1+ t2

i ). When mn is odd, the equivariant version of the
Gysin exact sequence (*) defines a cohomology class r̃ in SG̃m , while from the
equivariant version of the Gysin exact sequence (**) it follows that r̃ extends to a
class in G̃m .
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Theorem 6 [He 2016; Carlson 2016]. For m, n > 1, the algebra H∗T G̃(m, n) is
isomorphic to

• PT
⊗3(r̃) if mn is odd,

• PT
[eT

m] subject to (eT
m)

2
= pT

m/2 if m is even and n is odd,

• PT
[eT

n ] subject to (eT
n )

2
= pn/2 if m is odd and n is even,

• PT
[em, eT

n ] subject to eT
meT

n =
∏

ti , (eT
m)

2
= pm/2 and (eT

n )
2
= pn/2 if m and

n are even.

Proof. We have seen that all cohomology classes of the fiber G̃ of the fiber bundle
G̃T → BT extend over the total space. Thus, H∗T G̃ is a free H∗BT -module on the
set of generators given by a basis of the vector space H∗G̃. In particular, in H∗T G̃
there are no relations besides those listed in Theorem 6. Indeed, assume to the
contrary that there is a trivial algebraic combination y of classes r̃ , eT

m, eT
n , pi , pi

and ti not in the ideal I generated by the relations in Theorem 6. Using relations
in Theorem 6 we can reduce y to an H∗BT -linear combination of basis vectors of
H∗G̃. Since y is trivial, all coefficients in the reduced linear combination are zero.
Hence y ∈ I contrary to the assumption. �
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