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A BIHARMONIC SCHRÖDINGER EQUATION
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We consider the fourth-order problem{
ε412u + V (x)u = P(x) f (|u|)u, x ∈ RN,

u(x)→ 0 as |x| → ∞,

where V and P are spatial distributions of external potentials. We study
the concentration phenomena of the solutions as ε → 0 using variational
methods.

1. Introduction

This work is devoted to the analysis of solutions that solve the following nonlinear
stationary biharmonic Schrödinger equation:

(1-1)
{
ε412u+ V (x)u = P(x) f (|u|)u, x ∈ RN ,

u(x)→ 0 as |x | →∞,

where ε denotes Planck’s constant, and V, P are spatial distributions of external
potentials. To simplify the idea of this work, we are going to describe certain
concentration phenomena of the solutions of (1-1) as ε→ 0, for physical purposes.

Problem (1-1) is the biharmonic version of the usual Schrödinger equation which
has been extensively studied in literature [Floer and Weinstein 1986; Coti Zelati
and Rabinowitz 1992; Rabinowitz 1992; Wang 1993; Willem 1996; del Pino and
Felmer 1996; Gui 1996; Ambrosetti et al. 1997; Bartsch et al. 2001; Sirakov 2002;
Byeon and Wang 2003; Ding and Tanaka 2003; Ni and Wei 2006; Ambrosetti
and Malchiodi 2006; Byeon and Jeanjean 2007; Ding and Szulkin 2007; Ding and
Wei 2007; Ding and Liu 2013] and references therein. In general, if we omit the
exponent 2 of the first term in (1-1), we have an equation

(1-2) (−iε∇ + A(x))2w+ V (x)w = f (x, w), w ∈ H 1(RN ,C),
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which arises when one seeks the standing wave solutions of the Schrödinger equation

(1-3) i h̄
∂ϕ

∂t
= (−i h̄∇ + A(x))2ϕ+W (x)ϕ− n(x, |ϕ|)ϕ.

Considerable effort has gone into the study of the nonlinear Schrödinger equations
without the magnetic field (i.e., A(x)= 0) for studying the existence, multiplicity
and qualitative properties of standing wave solutions. When the magnetic vector
A(x) 6≡ 0, the first work seems to be involved in [Esteban and Lions 1989] in which
the existence of solutions of (1-2) via a constrained minimization argument with
ε = 1 is studied. Later, under certain assumptions, the existence and multiplicity
of solutions of (1-2) (ε = 1) were obtained in [Arioli and Szulkin 2003; Pankov
2003; Wang 2008; Liang and Zhang 2011]. The existence and concentration
phenomena of semiclassical solutions of (1-2) were studied in [Kurata 2000], where
f (x, w)= g(|w|2)w is subcritical and infx∈RN V (x)> 0 such that the Palais–Smale
condition holds for any energy level and for any ε > 0. For the case A(x)= 0, Floer
and Weinstein [1986], proved in the one dimensional case and for f (w)=w3 that a
single spike solution concentrates around any given nondegenerate critical point of
the linear potential V (x). Oh [1988; 1990] extended this result in higher dimensions
and for f (u)= |u|p−1u (1< p< N+2/N−2). Subsequently, variational methods
were found suitable for such issues and the existence of spike layer solutions in the
semiclassical limit were established under various conditions of V (x). Particularly,
initiated by Rabinowitz [1992], the existence of positive solutions of the Schrödinger
equation for small ε > 0 is proved whenever

lim inf
|x |→∞

V (x) > inf
x∈RN

V (x).

These solutions concentrate around the global minimum points of V when ε→ 0,
as was shown by Wang [1993]. It should be pointed out that M. del Pino and P.
Felmer [1996] first succeeded in proving a localized version of the concentration
behavior of semiclassical solutions.

By using a combination of stability analysis and numerical simulations, the
role of small fourth-order dispersion has been considered in a series of papers
by Karpman and Shagalov ([2000] and the references therein), who studied the
equation

iψt(t, x)+1ψ + |ψ |2σψ + ε12ψ = 0,

in the case when ε < 0. Later, in [Ben-Artzi et al. 2000], Ben-Artzi, Koch, and Saut
obtained sharp dispersive estimates for the biharmonic Schrödinger operator in

i∂t u+12u+ ε1u+ f (|u|2)u = 0,
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namely for the linear group associated to i∂t+1
2
±1. Parallel to this, some specific

nonlinear fourth-order Schrödinger equations have received deep consideration.
Fibich, Ilan, and Papanicolaou, in [Fibich et al. 2002], analyzed self-focusing
and singularity formation in the nonlinear Schrödinger equation (NLS) with high-
order dispersion iψt ±1

qψ + |ψ |2σψ = 0, in the isotropic mixed-dispersion NLS
iψt + 1ψ + ε1

2ψ + |ψ |2σψ = 0, and in nonisotropic mixed-dispersion NLS
equations which model propagation in fiber arrays. Almost at the same time, Guo
and Wang [2002] studied the existence and scattering theory for the nonlinear
Schrödinger equations iut + (−1)

mu + f (u) = 0, with u(0, x) = φ(x), where
u(t, x) defined on R×Rn is a complex valued function, m ≥ 1 is an integer and
f is a scalar nonlinear function. Not much later, Hao, Hsiao and Wang, in [Hao
et al. 2006; 2007], discussed the Cauchy problem in a high regularity setting.
Subsequently, Segata [2006] proved scattering in the case the space dimension is
one and considered the three-dimensional motion of an isolated vortex filament by
using the method of Fourier restriction norm.

Motivated by the previously mentioned works, we are mainly interested in (1-1)
with the biharmonic operator

12u =
N∑

i=1

∂4

∂x4
i

u+
N∑

i 6= j

∂4

∂x2
i x2

j
u.

The biharmonic Schrödinger equation (1-1) appears when one considers the station-
ary solutions w(t, x)= eiλt u(x) of the t-dependent equation of the form

(1-4) iε∂tw− ε
412w−M(x)w+ P(x) f (|w|)w = 0,

where λ∈R. Such stationary solutions, also called standing waves, are finite energy
waveguide solutions of (1-1) after rearranging terms in (1-4). It is worth pointing out
that although there are many works dealing with problems related to (1-2), so many
problems appear when dealing with the fourth-order problem. The main reason for
this difficulty is the lack of a general maximum principle to the biharmonic operator.
This leads to a series of technical problems in trying to adapt some second-order
classical arguments.

Precisely, we formulate the fundamental assumption on the potential functions
V, P as

(VP) V, P ∈ L∞(RN ) are uniformly continuous such that infx∈RN V (x) > 0 and
infx∈RN P(x) > 0.

To obtain the concentration results, let us introduce the following restrictions on
the nonlinear function f :
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( f1) f (0)=0, f ∈C1(0,∞), f ′(s)>0 for s>0, and there is a p∈ (2, 2N/(N−4))
such that lims→∞ f (s)/s p−2 <∞,

( f2) denoting F(s)=
∫ s

0 f (t)t dt , there is θ > 2 such that 0< F(s)≤ (1/θ) f (s)s2

for s > 0.

Now we are ready to describe our concentration results. First let us set

τ : = inf
x∈RN

V (x), τ∞ : = lim inf
|x |→∞

V (x), τp : = inf
x∈P

V (x),

γ : = sup
x∈RN

P(x), γ∞ : = lim sup
|x |→∞

P(x), γv : = sup
x∈V

P(x),

V : = {x ∈ RN
: V (x)= τ }, P : = {x ∈ RN

: P(x)= γ },

and suppose that

(V) V leads the behavior, i.e., τ < τ∞ and there exists R > 0 such that γv ≥ P(x)
for any |x | ≥ R,

(P) P leads the behavior, i.e., γ > γ∞ and there exists R > 0 such that τp ≤ V (x)
for any |x | ≥ R.

Let us define for (V)

Av := {x ∈ V : P(x)= γv} ∪ {x /∈ V : P(x) > γv},

and for (P)

Ap := {x ∈ P : V (x)= τp} ∪ {x /∈ P : V (x) < τp}.

Remark that, generally, V ∩ P = ∅. And notice that, for example, V ∩ P 6= ∅
implies τ = τp and γ = γv, from which we deduce that

Av = V ∩P.

Under our assumptions (V ) and (P), Av and Ap are nonempty bounded sets in RN,
and Av = Ap = V ∩P if and only if V ∩P 6=∅; see also [Ding and Liu 2013].

To give a better description of our results, let us set

C =

{
Av if (V ) holds,
Ap if (P) holds.

We have the following results:

Theorem 1.1. Let (VP), ( f1) and ( f2) hold. Assume additionally that either (V) or
(P) holds. Then (1-1) has (at least) one ground state solution for all small ε.

And for the concentration of the solutions of (1-1) as ε→ 0, we have:
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Theorem 1.2. Let (VP), ( f1) and ( f2) hold. Assume additionally that either (V) or
(P) holds. Let uε be the solution of (1-1), given by Theorem 1.1. For any εn > 0 with
limn→∞ εn = 0, up to a subsequence, there exists xεn ∈ RN which is a maximum
point of |uεn |, such that

dist(εnxεn ,C )→ 0 as n→∞.

Let wεn (x) := uεn (εn(x + xεn )). Then wεn → w0 in H 2(RN ), where w0 is a ground
state solution of

12w+ V (x0)w = P(x0) f (|w|)w, x0 ∈ C .

Our arguments are variational with a mixture of the mountain pass technique
and Nehari Manifolds. The paper is organized as follows. In the next section, we
introduce some notations and the variational framework for such problem. We prove
the existence and concentration results for (1-1) in the remaining two sections.

2. Variational framework

Hereafter we use the following notation:

• E := H 2(RN ) is the usual Sobolev space endowed with the standard scalar
product and norm

〈u, v〉 =
∫

RN
(1u1v+ uv) dx, ‖u‖2 =

∫
RN
(|1u|2+ u2) dx .

• Lq(�), 1≤q≤+∞, denotes a Lebesgue space. The norm in Lq(�) is denoted
by |u|q,� when � is a proper subset of RN, by | · |p when �= RN.

• For any ρ > 0 and for any z ∈ RN, Bρ(z) denotes the ball of radius ρ centered
at z, |Bρ(z)| denotes its Lebesgue measure and ∂Bρ(z) denotes its boundary.

• For ease of notation, let us set 2∗ = 2N/(N − 4). Without loss of generality,
we assume that 0 ∈ C .

By assumption (VP), the following energy functional I of (1-1) defined in E is
well defined,

I (u)= 1
2
ε4
∫

RN
|1u|2 dx + 1

2

∫
RN

V (x)|u|2 dx −
∫

RN
P(x)F(|u|) dx .

Moreover, the solutions of (1-1) are the critical points of I.

Equivalent problem. Making the change of variable x→ εx , (1-1) becomes

(2-1)
{
12z+ Vε(x)z = Pε(x) f (|z|)z, x ∈ RN ,

z ∈ E,

where Vε(x)= V (εx), Pε(x)= P(εx), and z(x)= u(εx).
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In the sequel, we will in fact focus on finding the critical points of the energy
functional associated to (2-1) which is defined by

φε(z)=
1
2

∫
RN
|1z|2 dx + 1

2

∫
RN

Vε(x)|z|2 dx −
∫

RN
Pε(x)F(|z|) dx .

Remark. Denote ‖z‖2ε =
∫

RN [|1z|2+Vε(x)|z|2] dx . Recall that τ = infx∈RN V (x).
Here norm ‖ · ‖ε is equivalent to ‖ · ‖. Indeed, by assumption (VP),

‖z‖2ε ≥
∫

RN
[|1z|2+ τ |z|2] dx ≥ δ

∫
RN
(|1z|2+ |z|2) dx = δ‖z‖2,

where
δ =min{1, τ }> 0

and also we have

‖z‖2ε ≤
∫

RN
(|1z|2+ |V |∞ · |z|2) dx

≤ (1+ |V |∞)
∫

RN
(|1z|2+ |z|2) dx = (1+ |V |∞)‖z‖2.

For notational convenience, let us write φε(z) = 1
2‖z‖

2
ε −

∫
RN Pε(x)F(|z|) dx .

We observe that φε satisfies the so-called mountain pass structure. For details, recall
that by ( f1), ( f2), we have

F̂(s) := 1
2

f (s)s2
− F(s)≥ θ−2

2θ
f (s)s2 for any s>0.

Moreover there exists δ1 small enough and c1 > 0 such that

f (s)≤ δ1+ c1s p−2.

Hence

F(s)≤
δ1

2
s2
+ c′1s p,

which implies

φε(z)=
1
2
‖z‖2ε −

∫
RN

Pε(x)F(|z|) dx ≥ 1
4
‖z‖2ε − c′′1‖z‖

p
ε ,

where we have used the Sobolev embedding theorems, E ↪→ L p(RN ), |z|p≤C ·‖z‖ε
for some positive constant C. Notice that when p > 2, then by direct computation,
we have φε(z)≥ α > 0, where z ∈ ∂Bρ(0)= {z ∈ E : ‖z‖ = ρ} for some ρ > 0.

By ( f2) we have F(s)≥ csθ − s2 for some c > 0. Thus, for any z ∈ E \ {0} and
for any positive real number t , we have

φε(t z)≤ c2t2
‖z‖2ε − c3tθ

∫
RN
|z|θ dx .
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Since p > 2, we know φε(t z) → −∞ as t → ∞. Also, φε(0) = 0. Thus
there exists a sufficiently large positive real number tz , such that ‖tzz‖ > ρ and
max{φε(0), φε(tzz)} ≤ 0< α.

Based on the above discussion, by the classical mountain pass theorem, there
exists a sequence {zn,ε : n = 1, 2, . . .} ⊆ E \ {0} such that

(2-2) φε(zn,ε)→ cε as n→∞, and φ′ε(zn,ε)→ 0 as n→∞,

where
cε = inf

γ∈0
max

t∈[0,1]
φε(γ (t))

and
0 = {γ ∈ C([0, 1], E) : γ (0)= 0, φε(γ (1)) < α}.

Moreover, by (2-2), we have

on(1)‖zn,ε‖ = φ
′

ε(zn,ε)zn,ε = ‖zn,ε‖
2
ε −

∫
RN

Pε(x) f (|zn,ε |)z2
n,ε dx,

cε + on(1)‖zn,ε‖ = φε(zn,ε)−
1
2
φ′ε(zn,ε)zn,ε =

∫
RN

Pε(x)F̂(|zn,ε |) dx .

It follows that
‖zn,ε‖

2
ε ≤ M + on(1)‖zn,ε‖

for some M > 0. Thus {zn,ε : n = 1, 2, . . .} is a bounded sequence and ‖zn,ε‖ ≥ D
for some positive constant D, n = 1, 2, . . . .

The limiting equation. Now we consider the special form of the equation (2-1)

(2-3)
{
12z+µz = λ f (|z|)z, x ∈ RN ,

z ∈ E,

where µ > 0 and λ > 0 are both constants.
Then the energy functional of (2-3) is

φµ,λ(z)=
1
2

∫
RN
|1z|2 dx + µ

2

∫
RN
|z|2 dx − λ

∫
RN

F(|z|) dx .

Denote ‖z‖2µ=
∫

RN (|1z|2+µ|z|2) dx . Then similarly, norm ‖·‖µ is also equivalent
to ‖ · ‖.

Rewrite φµ,λ(z) = 1
2‖z‖

2
µ − λ

∫
RN F(|z|) dx . Similarly, φµ,λ also satisfies the

conditions of the mountain pass theorem, i.e.,

• there exists ρ, α > 0 such that φµ,λ|∂Bρ(0) ≥ α,

• there exists e ∈ E, ‖e‖> ρ such that max{φµ,λ(0), φµ,λ(e)}< α.
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By the mountain pass lemma, there exists a sequence {zn,µ,λ :n=1,2,...}⊆E\{0}
such that

(2-4) φµ,λ(zn,µ,λ)→ cµ,λ as n→∞, and φ′µ,λ(zn,µ,λ)→ 0 as n→∞,

where

cµ,λ = inf
γ∈0

max
t∈[0,1]

φµ,λ(γ (t))

and

0 = {γ ∈ C([0, 1], E) : γ (0)= 0, γ (1)= e}.

Similarly, {zn,µ,λ : n= 1, 2, . . .} is also a bounded sequence, and ‖zn,µ,λ‖≥ Dµ,λ

for some positive constant Dµ,λ, n = 1, 2, . . . .
A standard concentration compactness argument shows that there exists R > 0,

α > 0 and {xn : n = 1, 2, . . .} ⊆ RN, such that∫
BR(xn)

|zn,µ,λ|
2 dx ≥ α.

Let be z̃n,µ,λ(x) = zn,µ,λ(x + xn). Then {z̃n,µ,λ : n = 1, 2, . . .} is also a bounded
sequence and ‖z̃n,µ,λ‖ ≥ Dµ,λ, n = 1, 2, . . . . Thus, up to a subsequence, we have
z̃n,µ,λ⇀ zµ,λ ∈ E . Particularly, zµ,λ 6= 0. Indeed, by Sobolev embedding theorems,
z̃n,µ,λ⇀ zµ,λ in E implies z̃n,µ,λ→ zµ,λ in L2

loc(R
N ). Together with∫

BR(0)
|z̃n,µ,λ|

2 dx =
∫

BR(xn)

|zn,µ,λ|
2 dx ≥ α,

we have ∫
BR(0)
|zµ,λ|2 dx ≥ α,

i.e., zµ,λ 6= 0.
By using the weak sequential continuity of φ′µ,λ : E → E∗, we know that

φ′µ,λ(zµ,λ)zµ,λ = 0, i.e., zµ,λ is a critical point of the functional φµ,λ which is a
weak solution of (2-3).

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Initially, we would like to collect some
useful results concerning the limiting equation. A first observation is that if γµ,λ
denotes the ground state energy of φµ,λ, we have

cµ,λ = γµ,λ = φµ,λ(zµ,λ).
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Indeed, since φ′µ,λ(zµ,λ)zµ,λ = 0, we have

φµ,λ(zµ,λ)= φµ,λ(zµ,λ)− 1
2φ
′

µ,λ(zµ,λ)zµ,λ

= λ

∫
RN

F̂(|zµ,λ|) dx

≤ lim inf
n→∞

λ

∫
RN

F̂(|z̃n,µ,λ|) dx

= lim inf
n→∞

[
φµ,λ(z̃n,µ,λ)−

1
2φ
′

µ,λ(z̃n,µ,λ)z̃n,µ,λ
]

= cµ,λ,

the above inequality follows from the Fatou’s lemma. Now we consider the Nehari
manifold

Nµ,λ := {z ∈ E \ {0} : φ′µ,λ(z)z = 0}.

By a direct observation, for any z ∈ E \ {0}, there exists tz > 0, such that tzz ∈Nµ,λ.
Notice that

max
t>0

φµ,λ(t z)= φµ,λ(tzz).

Indeed, denote f (t)=φµ,λ(t z). Then it is easy to check that f (t)→−∞ as t→∞,
f (0) = 0 and there is small t such that f (t) > 0. Since f ′(tz) = φ

′

µ,λ(tzz)z = 0
and f ′′(t) < 0, we know that tz is the unique critical point of f (t). Therefore
max
t>0

φµ,λ(t z)= φµ,λ(tzz). Let

c̄µ,λ = inf
z∈E\{0}

max
t>0

φµ,λ(t z).

Then a standard argument shows that

φµ,λ(zµ,λ)≤ cµ,λ ≤ c̄µ,λ = inf
z∈Nµ,λ

φµ,λ(z)≤ φµ,λ(zµ,λ).

Thus φµ,λ(zµ,λ)= cµ,λ.
The following lemma is a direct application of the above observation:

Lemma 3.1. If µ2 ≥ µ1 and λ2 ≤ λ1, then cµ2,λ2 ≥ cµ1,λ1 . Particularly, if

max{µ2−µ1, λ1− λ2}> 0,

then cµ2,λ2 > cµ1,λ1 .

Proof. Let zµ2,λ2 ∈ E \ {0} be the critical point such that

φµ2,λ2(zµ2,λ2)= cµ2,λ2 .

A standard argument implies that

cµ2,λ2 =max
t>0

φµ2,λ2(t zµ2,λ2).
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Observe that if µ2 ≥ µ1 and λ2 ≤ λ1, then

φµ2,λ2(z)≥ φµ1,λ1(z), for all z ∈ E \ {0}.

Thus

cµ2,λ2=max
t>0

φµ2,λ2(t zµ2,λ2)≥max
t>0

φµ1,λ1(t zµ2,λ2)≥ inf
z∈E\{0}

max
t>0

φµ1,λ1(t z)=cµ1,λ1 .

Particularly, if max{µ2−µ1, λ1− λ2} > 0, then cµ2,λ2 > cµ1,λ1 follows from the
following equality:

φµ2,λ2(z)= φµ1,λ1(z)+
µ2−µ1

2
|z|22+ (λ1− λ2)

∫
RN

F(|z|) dx . �

By assumption (VP), we have

(3-1) Vε(x)= V (εx)→ V (0) and Pε(x)= P(εx)→ P(0) in L2
loc(R

N )

as ε→ 0. Let be µ0 = V (0) and λ0 = P(0). The following lemma is the key to the
concentration behavior:

Lemma 3.2. lim sup
ε→0

cε ≤ cµ0,λ0 .

Proof. It is equivalent to prove that

cε ≤ cµ0,λ0 + oε(1).

Let z0 be the critical point such that φµ0,λ0(z0) = cµ0,λ0 . A standard argument
implies that there exists t0 > 0, such that φµ0,λ0(t0z0) <−1. For any t ∈ [0, t0], let

f0(t)= φµ0,λ0(t z0) and fε(t)= φε(t z0).

Claim: For each z ∈ E fixed,

(3-2) φε(z)→ φµ0,λ0(z).

First observe that, in view of the Sobolev embedding theorems, z ∈ E implies that
z ∈ L p(RN ), p ∈ [2, 2∗]. Thus, for any η > 0, we have for large ρ

(3-3) |z|22,RN \Bρ(0)
< η and |z|pp,RN \Bρ(0)

< η.

Furthermore, considering (3-1), we can assert that for any x ∈ Bρ(0), the relations

(3-4) |Vε(x)−µ0|< η and |Pε(x)− λ0|< η

hold for small ε.
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Hence, by using (3-3) and (3-4), we deduce, for small ε,

|φε(z)−φµ0,λ0(z)|

=

∣∣∣∣12
∫

RN
[Vε(x)−µ0]|z|2 dx −

∫
RN
[Pε(x)− λ0]F(|z|) dx

∣∣∣∣
≤

1
2

∫
RN
|Vε(x)−µ0| · |z|2 dx +

∫
RN
|Pε(x)− λ0|F(|z|) dx

=
1
2

∫
Bρ(0)
|Vε(x)−µ0| · |z|2 dx + 1

2

∫
RN \Bρ(0)

|Vε(x)−µ0| · |z|2 dx

+

∫
Bρ(0)
|Pε(x)− λ0|F(|z|) dx +

∫
RN \Bρ(0)

|Pε(x)− λ0|F(|z|) dx

≤ c · η,

proving (3-2).
Now together with φµ0,λ0(t0z0) <−1, we have for small ε, φε(t0z0) <−

1
2 . This

implies that fε admits a maximum in (0, t0). Observe that { fε}ε>0 and { f ′ε}ε>0 are
both uniformly bounded.

By a simple application of Arzela–Ascoli theorem, we have that { fε}ε>0 ⊆

C([0, t0]) is compact. Our claim implies that fε converges pointwise to f0. The
compactness of { fε}ε>0 tells us | fε − f0|∞→ 0 as ε→ 0. Together with t0 > 1
and φε(t0z0) <−

1
2 , we deduce that

cε = inf
z∈E\{0}

max
t>0

φε(t z)≤ max
t∈[0,t0]

φε(t z0)

= max
t∈[0,t0]

fε(t)

≤ max
t∈[0,t0]

f0(t)+ oε(1)

= max
t∈[0,t0]

φµ0,λ0(t z0)+ oε(1)= cµ0,λ0 + oε(1). �

The following lemma is our main result, which shows that (2-1) has (at least)
one ground state solution for all small ε.

Lemma 3.3. Under the assumptions of Theorem 1.1, if ε > 0 is small enough, then
cε is attained.

Proof. Ekeland’s variational principle implies that there exists

{zn : n = 1, 2, . . .} ⊆Nε,

such that

(3-5) φε(zn)→ cε as n→∞, and φ′ε(zn)→ 0 as n→∞.
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We also know that {zn : n = 1, 2, . . .} is bounded. Thus zn ⇀ zε for some zε ∈ E .
Notice that if zε 6= 0, we are done. Indeed, since φ′ε(zn)→ 0 as n→∞, for any

v ∈ E , we have

〈zn, v〉ε −

∫
RN

Pε(x) f (|zn|)znv dx = φ′ε(zn)v→ 0

as n→∞. By using of zn ⇀ zε and the Sobolev embedding theorem, we have that

φ′ε(zε)v = 〈zε, v〉ε −
∫

RN
Pε(x) f (|zε |)zεv dx

= lim
n→∞

[
〈zn, v〉ε −

∫
RN

Pε(x) f (|zn|)znv dx
]
= 0

holds for any v ∈ E , which implies that zε ∈Nε . Furthermore, in view of Fatou’s
lemma, (3-5) implies

φε(zε)≥ inf
z∈Nε

φε(z)= cε = φε(zn)+ on(1)

= φε(zn)−
1
2φ
′

ε(zn)zn + on(1)

=

∫
RN

Pε(x)F̂(|zn|) dx + on(1)

≥

∫
RN

Pε(x)F̂(|zε |) dx = φε(zε).

Thus cε = φε(zε).
Now assume for contradiction that zε = 0 for all small ε. Here we assume that V

leads the behavior. Similarly, we can deal with the case where P leads the behavior.
Take κ ∈ (τ, τ∞) and let be η := γv. Denote

V κ(x)=max{κ, V (x)}, V κ
ε (x)= V κ(εx).

Pη(x)=min{η, P(x)}, Pηε (x)= Pη(εx).

Let

φκ,ηε (z)= 1
2

∫
RN
[|1z|2+ V κ

ε (x)|z|
2
] dx −

∫
RN

Pηε (x)F(|z|) dx,

and cκ,ηε = infz∈N κ,η
ε
φ
κ,η
ε (z), where N κ,η

ε is the Nehari manifold corresponding to
φ
κ,η
ε . Then

φε(z)= φκ,ηε (z)+ 1
2

∫
RN
[Vε(x)− V κ

ε (x)]|z|
2 dx −

∫
RN
[Pε(x)− Pηε (x)]F(|z|) dx .

Denote

O = {x ∈ RN
: V (x)≤ κ}, Oε = {x ∈ RN

: εx ∈O}.

O′ = {x ∈ RN
: P(x) > η}, O′ε= {x ∈ RN

: εx ∈O′}.
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Notice that Oε and O′ε are both bounded for given ε, and for any zn , there exists a
positive real number tn , such that tnzn ∈N

κ,η
ε . Since {zn : n = 1, 2, . . .} is bounded

and the distance between 0 and N κ,η
ε is strictly positive, we know that the sequence

of positive numbers {tn : n = 1, 2, . . .} is also bounded. Without loss of generality,
assume that tn ≤ D for some constant D, n = 1, 2, . . ..

By the Sobolev embedding theorem, we have a compact embedding E ↪→

Lq
loc(R

N ), where q ∈ [2, 2∗), thus zn ⇀ zε = 0 implies that zn → 0 in Lq
loc(R

N ).
Since V and P are both L∞-functions, we have by Hölder’s inequalities∣∣∣∣12

∫
Oε

[Vε(x)− V κ
ε (x)]|tnzn|

2 dx
∣∣∣∣≤ D2

|V |∞

∫
Oε

|zn|
2 dx→ 0,

as n→∞. Thus

1
2

∫
Oε

[Vε(x)− V κ
ε (x)]|tnzn|

2 dx = on(1).

Similarly, ∣∣∣∣∫
O′ε
[Pε(x)− Pηε (x)]F(|tnzn|) dx

∣∣∣∣→ 0 as n→∞.

Now taking all the above into one package, together with φε(tnzn)≤ φε(zn) and
(3-5), we have

cκ,ηε = inf
z∈N κ,η

ε

φκ,ηε (z)≤ φκ,ηε (tnzn)

= φε(tnzn)−
1
2

∫
RN
[Vε(x)− V κ

ε (x)]|tnzn|
2 dx

+

∫
RN
[Pε(x)− Pηε (x)]F(|tnzn|) dx

≤ φε(zn)−
1
2

∫
Oε

[Vε(x)− V κ
ε (x)]|tnzn|

2 dx

+

∫
O′ε
[Pε(x)− Pηε (x)]F(|tnzn|) dx

= cε + on(1).

Thus cκ,ηε ≤ cε .
Observe that

φκ,ηε (z)≥ 1
2

∫
RN
(|1z|2+ κ|z|2) dx − η

∫
RN

F(|z|) dx = φκ,η(z).

From this, we deduce that

cκ,η = inf
z∈E\{0}

max
t>0

φκ,η(t z)≤ inf
z∈E\{0}

max
t>0

φκ,ηε (t z)= cκ,ηε .
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This holds for any small ε, which implies that

cκ,η ≤ lim inf
ε→0

cκ,ηε ≤ lim sup
ε→0

cκ,ηε ≤ cκ,η,

the last inequality followed by our key lemma (Lemma 3.2) since

V κ(0)=max{κ, V (0)} =max{κ, τ } = κ

and
Pη(0)=min{η, P(0)} =min{η, γv} = η.

Thus cκ,ηε → cκ,η as ε→ 0. We have already seen that cκ,ηε ≤ cε . Letting ε→ 0,
we have

cκ,η ≤ lim inf
ε→0

cε ≤ lim sup
ε→0

cε ≤ cτ,η,

the last inequality is also followed by Lemma 3.2. The above inequality contradicts
our Lemma 3.1 since κ > τ . Thus zε 6= 0, which is a ground state solution. �

Proof of Theorem 1.1. This theorem is another description of Lemma 3.3; that is,
(2-1) has (at least) one ground state solution for small ε. �

4. Proof of Theorem 1.2

Now, using the same notation as in the previous section, we are now ready to show
the concentration of the ground state solution given in Theorem 1.1.

Here we recall the description of Theorem 1.2.

Proposition 4.1. Let (VP), ( f1) and ( f2) hold. Assume additionally that either (V)
or (P) holds. Let zε be the solution of (2-1), given by Lemma 3.3. For any εεn > 0
with limn→∞ εn = 0, up to a subsequence, there exists xεn ∈RN which is a maximum
point of |zεn |, such that

dist(εnxεn ,C )→ 0 as n→∞.

Let wεn (x) := zεn (x + xεn ). Then wεn → w0 in E , where w0 is a ground state
solution of

12z+ V (x0)z = P(x0) f (|z|)z, x0 ∈ C .

Proof. Without loss of generality, we assume (V) holds. Clearly, {zε} ⊆ Nε is
bounded.

Claim 1: {zε} is nonvanishing.
Suppose for contradiction {zε} is vanishing. This means zε → 0 as ε→ 0 in

L p(RN ). Then

‖zε‖2ε =
∫

RN
Pε(x) f (|zε |)z2

ε dx→ 0, as ε→ 0,
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which contradicts the fact that 0 is bounded away from Nε . Hence, the sequence {zε}
is nonvanishing. Thus we know there exist R > 0, α > 0 and {xε} ⊆ RN such that∫

BR(xε)
|zε |2 dx ≥ α.

Claim 2: Let {xε} be the nonvanishing points found in Claim 1. Then {εxε} is
bounded.

Suppose for contradiction that |εxε | →∞. Up to a subsequence, we have

Vε(xε)→ V∞ and Pε(xε)→ P∞,

for some positive numbers V∞ and P∞. Let

wε(x) := zε(x + xε), Ṽε(x) := Vε(x + xε) and P̃ε(x) := Pε(x + xε).

Notice that the boundedness of zε implies that of {wε}, thus, up to a subsequence,
we have wε ⇀ w0 ∈ E . Particularly, w0 6= 0. Indeed, by Sobolev embedding
theorems, wε ⇀w0 in E implies wε→ w0 in L2

loc(R
N ). Together with∫

BR(0)
|wε |

2 dx =
∫

BR(xε)
|zε |2 dx ≥ α,

we have
∫

BR(0)
|w0|

2 dx ≥ α, i.e., w0 6= 0.
Observe that wε is a ground state solution to the following equation:

12w+ Ṽε(x)w = P̃ε(x) f (|w|)w.

Now for any ϕ ∈ C∞c (R
N ), by using the dominated convergence theorem, we have

0= lim
ε→0

∫
RN
[12wε + Ṽε(x)wε − P̃ε(x) f (|wε |)wε]ϕ dx

=

∫
RN
(12w0+ V∞w0− P∞ f (|w0|)w0)ϕ dx

= φ′V∞,P∞(w0)ϕ.

It follows from this that

cε = φε(zε)=
1
2

∫
RN
[|1zε |2+ Vε(x)|zε |2] dx −

∫
RN

Pε(x)F(|zε |) dx

=
1
2

∫
RN
[|1wε |

2
+ Ṽε(x)|wε |2] dx −

∫
RN

P̃ε(x)F(|wε |) dx

=

∫
RN

P̃ε(x)F̂(|wε |) dx

≥

∫
RN

P∞ F̂(|w0|) dx = φV∞,P∞(w0)≥ cV∞,P∞ .
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Together with cε ≤ cτ,η+ oε(1) and max{V∞− τ, η− P∞}> 0, we have a contra-
diction with Lemma 3.1. Thus {εxε} is bounded.

Claim 3: dist(εxε,Av)→ 0.
Suppose for contradiction, up to a subsequence, εxε→ x0 /∈ Av as ε→ 0 since
{εxε} is bounded.

Denote

Vε(xε)→ V (x0) and Pε(xε)→ P(x0),

as ε→ 0. Then similarly to the proof of Claim 2, we have cε ≥ cV (x0),P(x0). Recall
that

Av := {x ∈ V : P(x)= γv} ∪ {x /∈ V : P(x) > γv}.

It is easy to check that x0 /∈ Av implies that max{V (x0) − τ, η − P(x0)} > 0.
Together with cε ≤ cτ,η + oε(1), we have a contradiction with Lemma 3.1. Thus
dist(εxε,Av)→ 0. At this point, as was argued in Claim 2, the transformed solution
wε(x) := zε(x + xε) will converge weakly (up to a subsequence) to w0 which is
a ground state solution of

12z+ V (x0)z = P(x0) f (|z|)z, x0 ∈ Av.

Claim 4: For any εn > 0 with limn→∞ εn = 0, up to a subsequence, we have
wεn → w0 as n→∞ in E \ {0}.

Let yn := wεn −w0, then yn ⇀ 0 as n→∞. Recall that we have

12wεn + Ṽεn (x)wεn = P̃εn (x) f (|wεn |)wεn ,

12w0+ V (x0)w0 = P(x0) f (|w0|)w0

It follows that∫
RN
[1wεn1yn + Ṽεn (x)wεn yn] dx =

∫
RN

P̃εn (x) f (|wεn |)wεn yn dx,∫
RN
[1w01yn + V (x0)w0 yn] dx =

∫
RN

P(x0) f (|w0|)w0 yn dx

Notice that

〈V (x0)w0, yn〉2 = 〈w0, V (x0)yn〉2

= 〈w0, Ṽεn (x)yn + [V (x0)− Ṽεn (x)]yn〉2

= 〈w0, Ṽεn (x)yn〉2+〈w0, [V (x0)− Ṽεn (x)]yn〉2

= 〈Ṽεn (x)w0, yn〉2+ oεn (1).
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Now we have∫
RN
[1wεn1yn + Ṽεn (x)wεn yn] dx =

∫
RN

P̃εn (x) f (|wεn |)wεn yn dx,∫
RN
[1w01yn + Ṽεn (x)w0 yn] dx =

∫
RN

P(x0) f (|w0|)w0 yn dx + oεn (1)

Then, by ( f1), ( f2), it is easy to check∫
RN
[1yn1yn + Ṽεn (x)y

2
n ] dx = oεn (1),

which implies ‖yn‖εn = oεn (1), ending the proof. �

Final remark

Our approach can be described in a more abstract way to deal with some general
variational problems. Indeed, if we rewrite (2-1) as{

(12
+α)z+ (Vε(x)−α)z = Pε(x) f (|z|)z, x ∈ RN ,

z(x)→ 0 as |x | →∞,

where 0< α < infx∈RN V (x), then we are led to the abstract equation of the form

(4-1) Lz+Mε(x)z = Pε(x)∇G(z),

in which L is a positive defined differential operator on L2(RN ) and M(x), P(x)
satisfy the condition (VP). Let E := D(L1/2) be equipped with the scalar product

〈u, v〉 = 〈L1/2u, L1/2v〉2

and the induced norm ‖u‖ = 〈u, u〉1/2. Then the associated energy functional of
(4-1) is of the form

φε(z)=
1
2
‖z‖2+ 1

2

∫
RN

Mε(x)|z|2 dx −
∫

RN
Pε(x)G(z) dx,

and our arguments are in general feasible to such problems under some suitable
assumptions on the nonlinear function G.

In fact, (4-1) is related to several equations appearing in quantum physics,
including the Schrödinger equations and the fractional Schrödinger equations, etc.
Therefore, our approach covers the semiclassical behavior of different equations
under a general class of subcritical nonlinearities.
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