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THE VIETORIS–RIPS COMPLEXES OF A CIRCLE

MICHAŁ ADAMASZEK AND HENRY ADAMS

Given a metric space X and a distance threshold r > 0, the Vietoris–Rips
simplicial complex has as its simplices the finite subsets of X of diameter less
than r . A theorem of Jean-Claude Hausmann states that if X is a Riemann-
ian manifold and r is sufficiently small, then the Vietoris–Rips complex is
homotopy equivalent to the original manifold. Little is known about the
behavior of Vietoris–Rips complexes for larger values of r , even though
these complexes arise naturally in applications using persistent homology.
We show that as r increases, the Vietoris–Rips complex of the circle obtains
the homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere,
etc., until finally it is contractible. As our main tool we introduce a di-
rected graph invariant, the winding fraction, which in some sense is dual
to the circular chromatic number. Using the winding fraction we classify
the homotopy types of the Vietoris–Rips complex of an arbitrary (possibly
infinite) subset of the circle, and we study the expected homotopy type of
the Vietoris–Rips complex of a uniformly random sample from the circle.
Moreover, we show that as the distance parameter increases, the ambient
Čech complex of the circle (i.e., the nerve complex of the covering of a circle
by all arcs of a fixed length) also obtains the homotopy types of the circle,
the 3-sphere, the 5-sphere, the 7-sphere, etc., until finally it is contractible.

1. Introduction

Given a metric space X and a distance threshold r > 0, the Vietoris–Rips simplicial
complex VR<(X; r) has as its simplices the finite subsets of X of diameter less
than r. As the maximal simplicial complex determined by its 1-skeleton, it is an
example of a clique (or flag) complex. Vietoris–Rips complexes were used by
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Vietoris [1927] to define a (co)homology theory for metric spaces, and by Rips
[Gromov 1987] to study hyperbolic groups.

More recently, Vietoris–Rips complexes are used in computational algebraic
topology and in topological data analysis. In this context the metric space X is
often a finite sample from some unknown subset M ⊆ Rd , and one would like to
use X to recover topological features of M. The idea behind topological persistence
is to reconstruct VR<(X; r) as the distance threshold r varies from small to large,
to disregard short-lived topological features as the result of sampling noise, and to
trust topological features which persist as being representative of the shape of M.
For example, with persistent homology one attempts to reconstruct the homology
groups of M from the homology of VR<(X; r) as r varies [Edelsbrunner and Harer
2010; Carlsson 2009; Carlsson et al. 2008].

Part of the motivation for using Vietoris–Rips complexes in applied contexts
comes from the work of Hausmann and Latschev. Hausmann [1995] proves that if M
is a closed Riemannian manifold and if r is sufficiently small compared to the injec-
tivity radius of M, then VR<(M; r) is homotopy equivalent to M. Latschev [2001]
furthermore shows that if X is Gromov–Hausdorff close to M (for example a suffi-
ciently dense finite sample) and r is sufficiently small, then VR<(X; r) recovers the
homotopy type of M. As the main idea of persistence is to allow r to vary, we would
like to understand what happens when r is beyond the “sufficiently small” range.

As the main result of this paper, we show that as the distance threshold increases,
the Vietoris–Rips complex VR<(S1

; r) of the circle obtains the homotopy types
of the odd-dimensional spheres S1, S3, S5, S7, . . . , until finally it is contractible.
To our knowledge, this is the first computation for a noncontractible connected
manifold M of the homotopy types of VR<(M; r) for arbitrary r (and also a first
computation of the persistent homology of VR<(M; r)). Our main result confirms,
for the case M = S1, a conjecture of Hausmann [1995, (3.12)] that for M a compact
Riemannian manifold, the connectivity of VR<(M; r) is a nondecreasing function
of the distance threshold r.

As our main tools we introduce cyclic graphs, a combinatorial abstraction of
Vietoris–Rips graphs for subsets of the circle, and their invariant called the winding
fraction. In a sense which we make precise, the winding fraction is a directed dual
of the circular chromatic number of a graph [Hell and Nešetřil 2004, Chapter 6]. In
[Adamaszek et al. 2016] we proved that for X ⊆ S1 finite, VR<(X; r) is homotopy
equivalent to either an odd-dimensional sphere or a wedge sum of spheres of the
same even dimension; the theory of winding fractions gives us quantitative control
over which homotopy type occurs, and also over the behavior of induced maps
between complexes. As applications we classify the homotopy types of VR<(X; r)
for arbitrary (possibly infinite) subsets X ⊆ S1, and we analyze the evolution of the
homotopy type of VR<(X; r) when X ⊆ S1 is chosen uniformly at random.
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Čech complexes are a second geometric construction producing a simplicial
complex from a metric space. The Čech complex Č<(S1

; r) is defined as the nerve
of the collection of all open arcs of length 2r in the circle of circumference 1. For
r small the nerve theorem [Hatcher 2002, Corollary 4G.3] implies that Č<(S1

; r)
is homotopy equivalent to S1. Just as we study VR<(S1

; r) in the regime where r
is too large for Hausmann’s result to apply, we also study Č<(S1

; r) in the regime
where r is too large for the nerve theorem to apply. We show that as r increases,
the ambient Čech complex Č<(S1

; r) also obtains the homotopy types of S1, S3,
S5, S7, . . . , until finally it is contractible.

All of this has analogues for the complexes VR≤(S1
; r) and Č≤(S1

; r), defined
by sets of diameter at most r, respectively closed arcs of length 2r. We have:

Main result (Theorems 7.4, 7.6, 9.7, 9.8). Let 0 < r < 1
2 . There are homotopy

equivalences ( for l = 0, 1, . . . ):

VR<(S1
; r)' S2l+1 if l

2l+1 < r ≤ l+1
2l+3 ,

Č<(S1
; r)' S2l+1 if l

2(l+1) < r ≤ l+1
2(l+2) ,

VR≤(S1
; r)'

{
S2l+1 if l

2l+1 < r < l+1
2l+3 ,∨c S2l if r = l

2l+1 ,

Č≤(S1
; r)'

{
S2l+1 if l

2(l+1) < r < l+1
2(l+2) ,∨c S2l if r = l

2(l+1) ,

Contents of the paper. In Section 2 we introduce preliminary concepts and notation,
including Vietoris–Rips complexes. We introduce cyclic graphs and develop their
invariant called the winding fraction in Section 3. In Section 4 we show how this
invariant affects the homotopy type of the clique complex of a cyclic graph. In
Section 5 we show that the homotopy type of the Vietoris–Rips complex stabilizes
for sufficiently dense samples of S1. We apply the winding fraction to study the
evolution of Vietoris–Rips complexes for random subsets of S1 in Section 6. The
main result appears in Sections 7 and 8, where we show how to compute the
homotopy types of Vietoris–Rips complexes of arbitrary (possibly infinite) subsets
of S1; in particular we describe VR<(S1

; r). In Section 9 we transfer these results
to the Čech complexes of the circle. The appendices contain proofs of auxiliary
results in linear algebra and probability.

2. Preliminaries

We refer the reader to [Hatcher 2002; Kozlov 2008] for basic concepts in topology
and combinatorial topology.
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Simplicial complexes. For K a simplicial complex, let V(K ) be its vertex set. The
link of a vertex v ∈ V(K ) is lkK (v) = {σ ∈ K | v /∈ σand σ ∪ {v} ∈ K }. We will
identify an abstract simplicial complex with its geometric realization.

Definition 2.1. For an undirected graph G the clique complex Cl(G) is the sim-
plicial complex with vertex set V(G) and with faces determined by all cliques
(complete subgraphs) of G.

Vietoris–Rips complexes. The Vietoris–Rips complex is used to capture a notion
of proximity in a metric space.

Definition 2.2. Suppose X is a metric space and r > 0 is a real number. The
Vietoris–Rips complex VR≤(X; r) is the simplicial complex with vertex set X,
where a finite subset σ ⊆ X is a face if and only if the diameter of σ is at most r.
Analogously, the complex VR<(X; r) is characterized by finite subsets whose
diameter is strictly less than r.

Every Vietoris–Rips complex is the clique complex of its 1-skeleton. We will
write VR(X; r), omitting the subscripts < and ≤, in statements which remain true
whenever either inequality is applied consequently throughout.

Conventions regarding the circle. We give the circle S1 the arc-length metric
scaled so that the circumference of S1 is 1. For x, y ∈ S1 we denote by [x, y]S1

the closed clockwise arc from x to y and by
−→

d(x, y) its length — the clockwise
distance from x to y. For a fixed choice of 0∈ S1 each point x ∈ S1 can be identified
with the real number

−→

d(0, x) ∈ [0, 1), and this will be our coordinate system on S1.
For any two numbers x, y ∈ R we define [x, y]S1 = [x mod 1, y mod 1]S1 and
−→

d(x, y)=
−→

d(x mod 1, y mod 1). Open and half-open arcs are defined similarly. If
x1, x2, . . . , xs ∈ S1 then we will write

x1 ≺ x2 ≺ · · · ≺ xs

if x1, . . . , xs appear on S1 in this clockwise order, or equivalently if they are pairwise
distinct and

∑s
i=1

−→

d(xi , xi+1)= 1, where xs+1 = x1. We define
−→

dn(i, j)= n ·
−→

d
( i

n ,
j
n

)
to be the “forward” distance from i to j in Z/n.

Directed graphs. Throughout this work a directed graph is a pair
−→

G = (V, E)
with V the set of vertices and E ⊆ V × V the set of directed edges, subject to the
conditions (v, v) 6∈ E (no loops) and (v,w) ∈ E =⇒ (w, v) 6∈ E (no edges oriented
in both directions). The edge (v,w) will also be denoted by v→ w. For a vertex
v ∈ V(

−→

G) we define the out- and in-neighborhoods

N+(
−→

G, v)= {w : v→ w} and N−(
−→

G, v)= {w : w→ v},
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as well as their closed versions

N+[
−→

G, v] = N+(
−→

G, v)∪ {v} and N−[
−→

G, v] = N−(
−→

G, v)∪ {v}.

A directed cycle of length s in
−→

G is a sequence of vertices v1, . . . , vs such that there
is an edge vi → vi+1 for all i = 1, . . . , s, where vs+1 = v1.

For a directed graph
−→

G we will denote by G the underlying undirected graph
obtained by forgetting the orientations. If G is an undirected graph we write v ∼w
when v and w are adjacent, and we define

N(G, v)= {w : w ∼ v} and N [G, v] = N(G, v)∪ {v}.

For v ∈ V let
−→

G \ v be the directed graph obtained by removing vertex v and all
of its incident edges, and for e ∈ E let

−→

G \ e be obtained by removing edge e. The
undirected versions G \ v and G \ e are defined similarly.

All graphs considered in this paper are finite.

3. Cyclic graphs, winding fractions, and dismantling

In this section we develop the combinatorial theory of cyclic graphs, dismantling,
and winding fractions.

We are going to work with the notion of a cyclic order. While there exist
definitions of a cyclic order based on the abstract ternary relation of betweenness
[Huntington 1916], the following definition will be sufficient for our purpose. A
cyclic order on a finite set S of cardinality n is a bijection h : S→ {0, . . . , n− 1}.
Denoting xi = h−1(i) we write this simply as

x0 ≺ x1 ≺ · · · ≺ xn−1.

If n ≥ 3 this gives rise to a betweenness relation: we write xi ≺ x j ≺ xk if i < j < k
or k < i < j or j < k < i . If S′ ⊆ S then any cyclic order on S restricts in an
obvious way to a cyclic order on S′.

A subinterval in such a cyclic ordering of S is either (1) the empty set, (2) a
set of the form {xi , . . . , x j } for 0 ≤ i ≤ j ≤ n − 1, or (3) a set of the form
{x j , . . . , xn−1, x0, . . . , xi } for 0 ≤ i < j ≤ n − 1. In particular, S itself is also
a subinterval.

A function f : S→ T between cyclic orders is cyclic monotone if (1) for every
t ∈ T the set f −1(t) is a subinterval of S, and (2) f (s)≺ f (s ′)≺ f (s ′′) in T implies
s ≺ s ′ ≺ s ′′ in S for any s, s ′, s ′′ ∈ S.

One easily shows that if f is cyclic monotone, s≺ s ′≺ s ′′, and f (s), f (s ′), f (s ′′)
are pairwise distinct, then f (s)≺ f (s ′)≺ f (s ′′). Moreover, if f : S→ T is cyclic
monotone then the preimage of any subinterval of T is a subinterval of S.

We will concentrate on the following class of directed graphs.
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Definition 3.1. A directed graph
−→

G is called cyclic if its vertices can be arranged
in a cyclic order v0 ≺ v1 ≺ · · · ≺ vn−1 subject to the following condition: if there is
a directed edge vi → vj , then either j ≡ i + 1 mod n or there are directed edges

vi → vj−1 mod n and vi+1 mod n→ vj .

In the future all arithmetic operations on the vertex indices are understood to be
reduced modulo n; for instance we will write simply vi+k for vi+k mod n .

Two examples of cyclic graphs are shown in Figure 1. Cyclic graphs are a special
case of directed graphs with a round enumeration; the latter are defined by the
above definition when edges with double (opposite) orientations are allowed. For
a comprehensive survey of related graph classes, see [Lin and Szwarcfiter 2009],
especially Theorem 10.

We begin with some basic properties of cyclic graphs.

Lemma 3.2. Let
−→

G be a cyclic graph with n vertices in cyclic order v0≺ · · · ≺ vn−1.
Then:

(a) For every i = 0, . . . , n− 1 there exist s, s ′ ≥ 0 such that

N+[
−→

G, vi ] = {vi , vi+1, . . . , vi+s} and N−[
−→

G, vi ] = {vi−s′, . . . , vi−1, vi }.

(b) For every i = 0, . . . , n− 1 we have inclusions

N+(
−→

G, vi )⊆ N+[
−→

G, vi+1] and N−(
−→

G, vi+1)⊆ N−[
−→

G, vi ].

(c) Every induced subgraph of
−→

G is a cyclic graph.

(d) If
−→

G contains a directed cycle then vi → vi+1 for all i = 0, . . . , n− 1.

Proof. Parts (a) and (b) follow directly from the definition. The cyclic orientation
inherited from

−→

G is a cyclic orientation of any induced subgraph, which gives (c).
To prove (d), take a directed cycle and replace any edge vi → vj with j 6= i + 1 by
a path vi → vi+1→ vj . After finitely many steps of this kind we get a directed
cycle in which every edge is of the form vi → vi+1. �

The main examples of cyclic graphs of interest in this paper are provided in the
next two definitions.

Definition 3.3. For a finite subset X ⊆ S1 and real number 0< r < 1
2 , the directed

Vietoris–Rips graphs
−→

VR≤(X; r) and
−→

VR<(X; r) are defined as
−→

VR≤(X; r)=
(
X, {x1→ x2 : 0<

−→

d(x1, x2)≤ r}
)

and
−→

VR<(X; r)=
(
X, {x1→ x2 : 0<

−→

d(x1, x2) < r}
)
.
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Figure 1. Left: the coordinate system on S1. Middle: the cyclic
graph

−→

C2
6 . Right: a cyclic graph which is not a Vietoris–Rips graph.

Its odd-numbered vertices are dominated; see Definition 3.9.

It is clear that the Vietoris–Rips graph is cyclic with respect to the clockwise
ordering of X ; in particular the two meanings of the symbol ≺ denoting clockwise
order in S1 and cyclic order of the vertices of

−→

VR(X; r) agree.
As before, we will omit the subscript and write

−→

VR(X; r) in statements which
apply to both < and ≤. Not every cyclic graph is a Vietoris–Rips graph of a subset
of S1: an example is in Figure 1. Our interest in Vietoris–Rips graphs stems from
the fact that a Vietoris–Rips complex is the clique complex of the corresponding
undirected Vietoris–Rips graph, namely VR(X; r)= Cl(VR(X; r)).

Definition 3.4. For integers n and k with 0 ≤ k < 1
2 n, the directed graph

−→

Ck
n has

vertex set {0, . . . , n− 1} and edges i→ (i + s) mod n for all i = 0, . . . , n− 1 and
s = 1, . . . , k. Equivalently

i→ j if and only if 0<
−→

dn(i, j)≤ k.

The directed graphs
−→

Ck
n are cyclic with respect to the natural cyclic order of the

vertices. Note that
−→

Ck
n is a Vietoris–Rips graph of the vertex set of a regular n-gon,

or in our notation:

(1)
−→

Ck
n =

−→

VR≤
({

0, 1
n , . . . ,

n−1
n

}
;

k
n

)
.

The cyclic graphs
−→

Ck
n will play a prominent role in our analysis of the Vietoris–Rips

graphs.
A homomorphism of directed graphs f :

−→

G→
−→

H is a vertex map such that for
every edge v→w in

−→

G either f (v)= f (w) or there is an edge f (v)→ f (w) in
−→

H.
Directed graphs with homomorphisms form a category. We now define a class of
homomorphisms for the subcategory of cyclic graphs.

Definition 3.5. Suppose that
−→

G and
−→

H are cyclic graphs, with vertex ordering
v0 ≺ · · · ≺ vn−1 in

−→

G. A vertex map f :
−→

G→
−→

H is a cyclic homomorphism if f
is cyclic monotone, if f is a homomorphism of directed graphs, and if f is not
constant whenever

−→

G has a directed cycle.
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Note that if
−→

H =
−→

VR(X; r) then the condition “ f is cyclic monotone and not
constant” is equivalent to the equation

(2)
∑

i

−→

d( f (vi ), f (vi+1))= 1.

Lemma 3.6. Cyclic homomorphisms have the following properties.

(a) If f :
−→

G→
−→

H is a cyclic homomorphism and
−→

G has a directed cycle then so
does

−→

H.

(b) The composition of two cyclic homomorphisms is a cyclic homomorphism.

(c) The inclusion of a cyclic subgraph (with inherited cyclic orientation) is a cyclic
homomorphism.

Proof. For (a), note that if
−→

G has a directed cycle, then by Lemma 3.2(d) it has
a directed cycle · · · → vi → vi+1 → · · · through all its vertices. The image of
that cycle under f is not constant, and by removing adjacent repetitions one gets a
directed cycle in

−→

H.
For (b) suppose f :

−→

G →
−→

H and g :
−→

H →
−→

K are cyclic homomorphisms of
cyclic graphs. We first check that g f is cyclic monotone. Indeed, for a vertex w in
−→

K the set (g f )−1(w) is the preimage under f of the subinterval g−1(w), hence a
subinterval. If g f (v)≺ g f (v′)≺ g f (v′′), then using that f and then g are cyclic
monotone, we get v ≺ v′ ≺ v′′.

Now we only have to check that if
−→

G has a directed cycle then g f is not constant.
By part (a), all three graphs have a directed cycle. Suppose, on the contrary, that
g( f (vi )) = w for all vi ∈ V(

−→

G). Since g is not constant there is a vertex u of
−→

H
not in the image of f with g(u) 6=w, and since f is not constant there is an index i
such that f (vi ) ≺ u ≺ f (vi+1) is cyclically ordered in

−→

H. Since vi → vi+1 in
−→

G
we have f (vi )→ f (vi+1) in

−→

H. That in turn implies f (vi )→ u→ f (vi+1) in
−→

H
and therefore w→ g(u)→ w in

−→

K . This contradicts our definition of a directed
graph (no edges oriented in both directions), and hence g f is not constant.

Part (c) is clear. �

We can now define the main numerical invariant of cyclic graphs.

Definition 3.7. The winding fraction of a cyclic graph
−→

G is

wf(
−→

G)= sup
{ k

n : there exists a cyclic homomorphism
−→

Ck
n→

−→

G
}
.

For a finite subset X ⊆ S1 we also introduce the shorthand notation

wf≤(X; r)= wf(
−→

VR≤(X; r)) and wf<(X; r)= wf(
−→

VR<(X; r)).

The next proposition records the basic properties of the winding fraction.

Proposition 3.8. The winding fraction satisfies the following properties.
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(a) wf(
−→

G) > 0 if and only if
−→

G has a directed cycle.

(b) If
−→

G→
−→

H is a cyclic homomorphism then wf(
−→

G)≤ wf(
−→

H).

(c) If X ⊆ S1 is a finite set and 0< r < 1
2 then

wf≤(X; r)≤ r, wf<(X; r) < r, and wf<(X; r)≤ wf≤(X; r).

(d) wf(
−→

Ck
n)=

k
n .

Proof. For (a) note that if
−→

G has a directed cycle, then by Lemma 3.2(d) the map
i 7→ vi defines a cyclic homomorphism

−→

C1
n→

−→

G with n = |V(
−→

G)|. Conversely, if
−→

G has no directed cycle then by Lemma 3.6(a) it admits cyclic homomorphisms
only from the graphs

−→

C0
n .

Part (b) follows from the definition of the winding fraction and the fact that a
composition of cyclic homomorphisms is a cyclic homomorphism.

Now we prove the first inequality of (c). Suppose that f :
−→

Ck
n→

−→

VR≤(X; r) is
a cyclic homomorphism with k ≥ 1, which means that for every i = 0, . . . , n− 1
we have

−→

d( f (i), f (i + k))≤ r. Since every arc of the form [ f ( j), f ( j + 1)]S1 is
covered by exactly k arcs [ f (i), f (i + k)]S1 ,

nr ≥
∑

i

−→

d( f (i), f (i + k))= k
∑

j

−→

d( f ( j), f ( j + 1))= k,

where in the last equality we used (2). It follows that k
n ≤ r and wf≤(X; r)≤ r.

The second inequality has similar proof with strict inequalities and the third one
follows from (b) since we have a subgraph inclusion

−→

VR<(X; r) ↪→
−→

VR≤(X; r).
For (d), the identity automorphism of

−→

Ck
n shows wf(

−→

Ck
n)≥

k
n . Conversely, apply-

ing part (c) with X =
{
0, 1

n , . . . ,
n−1

n

}
and r = k

n gives, by (1), that wf(
−→

Ck
n)≤

k
n . �

We now describe a practical way of computing the winding fraction. The method
uses graph reductions modeled on the notion of dismantlings of undirected graphs
(called folds in [Hell and Nešetřil 2004, Section 2.11] or LC reductions in [Matoušek
2008]), and hence we use the same terminology.

Definition 3.9. Suppose
−→

G is a cyclic graph with vertex ordering v0 ≺ · · · ≺ vn−1.
A vertex vi is dominated by vi+1 (or just dominated) if N−(

−→

G, vi+1)= N−[
−→

G, vi ].

Lemma 3.10. If
−→

G is a cyclic graph and vi is dominated by vi+1, then the map
f :

−→

G→
−→

G \ vi given by

f (vj )=

{
vj if j 6= i,
vi+1 if j = i

is a cyclic homomorphism. The composition
−→

G \ vi ↪→
−→

G
f
−→

−→

G \ vi is the identity.

Proof. We first check that f is a homomorphism of directed graphs. First note the
map f preserves all edges avoiding vi . If vk → vi then vk → vi+1 because vi is
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dominated by vi+1. If vi → vk then either k = i + 1, and then f (vi ) = f (vk), or
there is also an edge vi+1→ vk because

−→

G is cyclic.
The map f is a cyclic homomorphism because it clearly preserves the cyclic

ordering, and if
−→

G has a directed cycle then it has at least three vertices, in which
case f is not constant.

The last claim is obvious. �

The removal of a dominated vertex can be repeated as long as the new graph has
a dominated vertex.

Definition 3.11. We say a cyclic graph
−→

G dismantles to an induced subgraph
−→

H if
there is a sequence of graphs

−→

G =
−→

G0,
−→

G1, . . . ,
−→

Gs =
−→

H such that
−→

Gi is obtained
from

−→

Gi−1 by removing a dominated vertex for i = 1, . . . , s.

If
−→

G dismantles to
−→

H then the composition of cyclic homomorphisms
−→

Gi→
−→

Gi+1

provided by Lemma 3.10 gives a cyclic homomorphism
−→

G→
−→

H. Moreover the
composition

−→

H ↪→
−→

G→
−→

H

is the identity of
−→

H. The next proposition answers the question of when the
dismantling process of a cyclic graph must stop.

Proposition 3.12. A cyclic graph without a dominated vertex is isomorphic to
−→

Ck
n

for some 0≤ k < 1
2 n. As a consequence every cyclic graph dismantles to an induced

subgraph of the form
−→

Ck
n .

Proof. Let
−→

G be a cyclic graph with vertex ordering v0 ≺ · · · ≺ vn−1 and with no
dominated vertex. By Lemma 3.2(a) for every j = 0, . . . , n− 1 there is an e( j)
such that N+[

−→

G, vj ] = {vj , . . . , ve( j)}. For every i = 0, . . . , n− 1,

N−[
−→

G, vi ] \ N−(
−→

G, vi+1)= {vj : e( j)= i},

where N−(
−→

G, vi+1)⊆ N−[
−→

G, vi ] by Lemma 3.2(b). It follows that∑
i

|N−[
−→

G, vi ] \ N−(
−→

G, vi+1)| = n.

Since
−→

G has no dominated vertices, all n summands above are positive and therefore
all are equal to 1. We have

|N−(
−→

G, vi+1)| = |N−[
−→

G, vi ]| − 1= |N−(
−→

G, vi )∪ {vi }| − 1= |N−(
−→

G, vi )|.

Denote the common value of |N−(
−→

G, vi )| by k. Using Lemma 3.2(a) again we see
that N−[

−→

G, vi ] = {vi−k, . . . , vi } for all i , and so
−→

G is isomorphic to
−→

Ck
n . �

Remark 3.13. In [Adamaszek et al. 2017] we prove that, regardless of the choices
of a dominated vertex made in the process, every dismantling of a cyclic graph ends
up with the same subgraph. Such strong uniqueness is not needed in this paper.
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Our notion is modeled on the more classical dismantling of undirected graphs;
see [Hell and Nešetřil 2004]. In that setting the end result of the dismantling process
is unique only up to isomorphism; see [Matoušek 2008] or [Hell and Nešetřil 2004,
Theorem 2.60].

We can now give a recipe for computing the winding fraction.

Proposition 3.14. If a cyclic graph
−→

G dismantles to
−→

Ck
n then wf(

−→

G)= k
n .

Proof. The graph
−→

G has both cyclic homomorphisms
−→

Ck
n ↪→

−→

G and
−→

G→
−→

Ck
n , so

the claim follows from Proposition 3.8 parts (b) and (d). �

The following result gives the converse of Proposition 3.8(b).

Proposition 3.15. There is a cyclic homomorphism f :
−→

G →
−→

H if and only if
wf(

−→

G)≤ wf(
−→

H).

Proof. The “only if” part is handled by Proposition 3.8(b).
For any 0≤ k < 1

2 n and d ≥ 1 consider two maps ι :
−→

Ck
n→

−→

Ckd
nd and τ :

−→

Ckd
nd→

−→

Ck
n

given by
ι(i)= di, and τ( j)=

⌊ j
d

⌋
.

It is easy to see that ι and τ are cyclic homomorphisms.
To prove the “if” part, suppose that

−→

G dismantles to
−→

Ck
n and

−→

H dismantles to
−→

Ck′
n′ .

Proposition 3.14 and the assumption wf(
−→

G)≤ wf(
−→

H) imply k
n ≤

k′
n′ . Then we have

a cyclic homomorphism

−→

G→
−→

Ck
n

ι
−→

−→

Ckn′
nn′ ↪→

−→

Cnk′
nn′

τ
−→

−→

Ck′
n′ ↪→

−→

H,

where the first and last map come from dismantling, and the middle map is a
subgraph inclusion since kn′ ≤ nk ′. �

The winding fraction is in a sense dual to the well-studied concept of circular
chromatic number; see [Hell and Nešetřil 2004, Chapter 6]. For an arbitrary
undirected graph G the circular chromatic number χc(G) is defined as the infimum
over numbers n

k such that there is a map V(G)→ Z/n which maps every edge to a
pair of numbers at least k apart. By Proposition 3.15 we have

wf(
−→

G)= inf
{ k

n : there exists a cyclic homomorphism
−→

G→
−→

Ck
n
}

which leads to the following description: wf(
−→

G) is the infimum over numbers k
n

such that there is an order-preserving map V(G)→ Z/n which maps every edge to
a pair of numbers at most k apart.
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4. Winding fractions determine homotopy types

We now analyze the influence of the winding fraction wf(
−→

G) on the topology of the
clique complex Cl(G).

A homomorphism f : G→ H of undirected graphs is a vertex map such that
v ∼ w implies f (v)= f (w) or f (v)∼ f (w). Every homomorphism of directed
graphs

−→

G→
−→

H determines a homomorphism of the underlying undirected graphs
G → H , and in turn also a simplicial map Cl(G) → Cl(H). The assignment
−→

G 7→ Cl(G) is a functor from the category of directed graphs to topological spaces,
and also a functor from the subcategory of cyclic graphs to topological spaces.

Lemma 4.1. If
−→

G is a cyclic graph and vi is a dominated vertex, then the cyclic
homomorphisms

−→

G \ vi ↪→
−→

G and
−→

G→
−→

G \ vi from Lemma 3.10 induce homotopy
equivalences of clique complexes.

Proof. Using the conditions listed in Lemma 3.2(b) and Definition 3.9 we get

N [G, vi ] = N−[
−→

G, vi ] ∪ N+(
−→

G, vi )⊆ N−(
−→

G, vi+1)∪ N+[
−→

G, vi+1] = N [G, vi+1].

Hence the link lkCl(G)(vi ) is a cone with apex vi+1, or in other words, Cl(G) is
obtained from Cl(G \ vi ) by attaching a cone over a cone. It follows that the
inclusion Cl(G \ vi ) ↪→ Cl(G) is a homotopy equivalence. Since the composition
Cl(G \ vi ) ↪→ Cl(G) → Cl(G \ vi ) is the identity, also

−→

G →
−→

G \ vi induces a
homotopy equivalence. �

Corollary 4.2. If a cyclic graph
−→

G dismantles to
−→

H then the maps of clique com-
plexes induced by

−→

H ↪→
−→

G and
−→

G→
−→

H are homotopy equivalences.

To determine the homotopy types of Cl(G) for arbitrary cyclic graphs
−→

G we
recall the following result, proved with different methods in [Adamaszek 2013] and
[Adamaszek et al. 2016].

Theorem 4.3. For 0≤ k < 1
2 n there are homotopy equivalences

Cl(Ck
n)'

{
S2l+1 if l

2l+1 <
k
n <

l+1
2l+3 for some l = 0, 1, . . . ,∨n−2k−1 S2l if k

n =
l

2l+1 for some l = 0, 1, . . . .

By convention an empty wedge sum is a point. We immediately obtain the
following result.

Theorem 4.4. If
−→

G is a cyclic graph then

Cl(G)'

{
S2l+1 if l

2l+1 < wf(
−→

G) < l+1
2l+3 for some l = 0, 1, . . . ,∨n−2k−1 S2l if wf(

−→

G)= l
2l+1 and

−→

G dismantles to
−→

Ck
n .
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Proof. Graph
−→

G dismantles to some
−→

Ck
n for 0 ≤ k < 1

2 n by Proposition 3.12, and
then we have Cl(G) ' Cl(Ck

n) by Corollary 4.2. From Proposition 3.14 we get
wf(

−→

G)= k
n , and plugging this into Theorem 4.3 gives the result. �

Corollary 4.5. If X ⊆ S1 is a finite set and 0≤ r < 1
2 then

VR(X;r)'

{
S2l+1 if l

2l+1 < wf(X; r) < l+1
2l+3 for some l = 0, 1, . . . ,∨n−2k−1 S2l if wf(X;r)= l

2l+1 and
−→

VR(X;r) dismantles to
−→

Ck
n .

Proof. For the cyclic graph
−→

VR(X; r) we have VR(X; r)= Cl(VR(X; r)). �

Remark 4.6. A circular-arc graph (CA) is an intersection graph of a collection
of arcs in S1. A circular-arc graph is proper (PCA) if no arc contains another and
unit (UCA) if all arcs have the same length. We have inclusions of graph classes
UCA ( PCA ( CA. If

−→

G is a cyclic graph then one can show G is a PCA graph,
and if X ⊆ S1 is finite and 0≤ r < 1

2 then the Vietoris–Rips graph VR(X; r) is a
UCA graph. In [Adamaszek et al. 2016] we proved that the clique complex of any
CA graph has the homotopy type of S2l+1 or a wedge of copies of S2l for some
l ≥ 0. The theory of winding fractions refines the result by providing quantitative
control over which homotopy type occurs, and by allowing us to understand induced
maps. These features will be crucial for the applications we present in the following
sections.

There is a clear difference in the behavior of Cl(G) when wf(
−→

G) is one of the
singular values l

2l+1 , l=0, 1, . . . as opposed to a generic value l
2l+1 <wf(

−→

G)< l+1
2l+3 .

We now discuss additional properties of Cl(G) in the generic situation. The next
lemmas describe the effect of a vertex or edge removal on the homotopy type
of Cl(G).

Lemma 4.7. Suppose that
−→

G is a cyclic graph and v ∈ V(
−→

G). If

l
2l+1 < wf(

−→

G \ v)≤ wf(
−→

G) < l+1
2l+3 ,

then the inclusion
−→

G \ v ↪→
−→

G induces a homotopy equivalence of clique complexes.

Proof. By Theorem 4.4 the complexes Cl(G \ v) and Cl(G) are both homotopy
equivalent to S2l+1. Let

−→

Gv denote the cyclic subgraph of
−→

G induced by N(G, v),
so lkCl(G)(v)=Cl(Gv). The decomposition Cl(G)=Cl(G \v)∪Cl(Gv) (Cl(Gv)∗v)

yields a Mayer–Vietoris long exact sequence of homology groups whose only
nontrivial part is

(3) 0 // H̃2l+1(Cl(Gv)) // H̃2l+1(Cl(G \ v)) // H̃2l+1(Cl(G)) // H̃2l(Cl(Gv)) // 0

‖ ‖

Z Z
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Since
−→

Gv is cyclic, by Theorem 4.4 the homology H̃∗(Cl(Gv)) is free and concen-
trated in at most one dimension. In view of (3) this is possible only if H̃∗(Cl(Gv))=0
and the middle map in (3) is an isomorphism. So

−→

G \ v ↪→
−→

G induces a homology
isomorphism between spaces homotopy equivalent to S2l+1, and hence is a homotopy
equivalence by the Hurewicz and Whitehead theorems. �

Lemma 4.8. Suppose that
−→

G is a cyclic graph and e ∈ E(
−→

G) is an edge such that
−→

G \ e is also a cyclic graph. If

l
2l+1 < wf(

−→

G \ e)≤ wf(
−→

G) < l+1
2l+3 ,

then the inclusion
−→

G \ e ↪→
−→

G induces a homotopy equivalence of clique complexes.

Proof. Let e = (a, b) and denote by
−→

Ge the cyclic subgraph of
−→

G induced by
N(G, a)∩ N(G, b). Then we have a decomposition

Cl(G)= Cl(G \ e)∪Cl(Ge)∗{a,b} (Cl(Ge) ∗ e)= Cl(G \ e)∪6 Cl(Ge) (Cl(Ge) ∗ e).

By Mayer–Vietoris this yields the exact sequence

0 // H̃2l(Cl(Ge)) // H̃2l+1(Cl(G \ e)) // H̃2l+1(Cl(G)) // H̃2l−1(Cl(Ge)) // 0

‖ ‖

Z Z

where H̃k(Cl(Ge)) = H̃k+1(6 Cl(Ge)). The proof can now be completed as in
Lemma 4.7. �

Proposition 4.9. Suppose f :
−→

G→
−→

H is a cyclic homomorphism and

l
2l+1 < wf(

−→

G)≤ wf(
−→

H) < l+1
2l+3 .

Then f induces a homotopy equivalence of clique complexes.

Proof. We proceed in three stages. First, suppose that f :
−→

G→
−→

H is injective on
the vertices, i.e., it is an inclusion of a subgraph (not necessarily induced). In that
case f can be factored as a composition of cyclic homomorphisms

−→

G =
−→

G0 ↪→
−→

G1 ↪→ · · · ↪→
−→

Gs =
−→

H

where each inclusion
−→

Gi ↪→
−−−→

Gi+1 is an extension by a single vertex or by a single
edge. Since l

2l+1 < wf(
−→

G) ≤ wf(
−→

Gi ) ≤ wf(
−→

H) < l+1
2l+3 , the result follows from

Lemmas 4.7 and 4.8.
Next, we prove the statement for an arbitrary cyclic homomorphism f :

−→

Ck
n→

−→

Ck′
n′

with
l

2l+1 <
k
n ≤

k′
n′ <

l+1
2l+3 .

Our first goal is to find a factorization f = τ ◦ fd where fd :
−→

Ck
n→

−→

Cdk′
dn′ is injective

and τ :
−→

Cdk′
dn′→

−→

Ck′
n′ is given by τ( j)=

⌊ j
d

⌋
.
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Let j0 ≺ · · · ≺ js , with 1 ≤ s ≤ n− 1, be the cyclically ordered vertices of the
image of f in

−→

Ck′
n′ . Since f is a cyclic homomorphism, each preimage f −1( jq) is

an interval modulo n. Now define the cyclically ordered vertices i0 ≺ · · · ≺ is in
−→

Ck
n by f −1( jq) = {iq , . . . , iq+1− 1}. Choose d ≥ max{| f −1( jq)| : q = 0, . . . , s}

and define a map fd :
−→

Ck
n→

−→

Cdk′
dn′ by

fd(i)= d jq +
−→

dn(iq , i) for i ∈ {iq , . . . , iq+1− 1}.

Note that 0 ≤ i − iq < | f −1( jq)| ≤ d; therefore fd preserves the cyclic ordering
and hence is a cyclic homomorphism so long as it is a homomorphism of directed
graphs. It suffices to check that for every i = 0, . . . , n− 1 we have

−→

ddn′( fd(i), fd(i + k))≤ dk ′.

Suppose that i ∈ f −1( jq) and i + k ∈ f −1( jq ′); necessarily
−→

dn′( jq , jq ′) ≤ k ′. If
−→

dn′( jq , jq ′)≤ k ′− 1 then
−→

ddn′( fd(i), fd(i + k))≤
−→

ddn′(d jq , d jq ′ + d)≤ dk ′.

If jq ′ = jq + k ′ then
−→

ddn′( fd(i), fd(i + k))= dk ′+
−→

dn(iq ′, i + k)−
−→

dn(iq , i)

= dk ′+
−→

dn(i, i + k)−
−→

dn(iq , iq ′)= dk ′+ k−
−→

dn(iq , iq ′).

We have
−→

dn(iq , iq ′)≥ k, for otherwise
−→

dn(iq−1, iq ′)≤ k and
−→

dn′( f (iq−1), f (iq ′))=
−→

dn′( jq−1, jq ′)≥ k ′+ 1 would contradict the fact that f is a homomorphism. This
ends the proof that fd is a cyclic homomorphism.

Consider the cyclic homomorphisms ι :
−→

Ck′
n′→

−→

Cdk′
dn′ and τ :

−→

Cdk′
dn′→

−→

Ck′
n′ given by

ι(i)= di and τ( j)=
⌊ j

d

⌋
.

We have a commutative diagram

−→

Ck
n

f
&&

fd

'

// −→Cdk′
dn′

τ
��

−→

Ck′
n′

ι

'

oo

'

id
xx−→

Ck′
n′

where ' indicates the map induces a homotopy equivalence of clique complexes;
for the inclusions fd and ι this follows from the first part of the proof. From the
diagram we conclude that f induces a homotopy equivalence.

Finally, to prove the general case, suppose that
−→

G dismantles to
−→

Ck
n and

−→

H
dismantles to

−→

Ck′
n′ with wf(

−→

G)= k
n ≤

k′
n′ = wf(

−→

H). The composition

−→

Ck
n
� � ' // −→G

f // −→H ' // −→Ck′
n′
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induces a homotopy equivalence of clique complexes, and therefore so does f . �

We defer until Section 8 a further study of the combinatorics of Cl(G) when
wf(

−→

G)= l
2l+1 is a singular value.

5. Density implies stability

In this section we make precise the heuristic observation that the winding fraction
wf(X; r) increases with the density of X in S1. For this we recall the notion of
covering from metric geometry.

Definition 5.1. A subset X of a metric space M is an ε-covering if every point of
M is within distance less than ε from some point in X.

A finite subset X ⊆ S1 is an ε-covering of S1 if and only if every two cyclically
consecutive points in X are less than 2ε apart.

As motivation for this section, we note that if 0< r < 1
3 and X ⊆ S1 is a finite

subset, then VR<(X; r)' S1 if and only if X is an
( r

2

)
-covering of S1. The next

proposition is an analogue of this observation for bigger winding fractions and
therefore for higher-dimensional homotopy types of VR<(X; r).

Proposition 5.2. Suppose that 0< r < 1
2 and X ⊆ S1 is a finite subset. If X is an

ε-covering of S1 for some ε > 0 then wf<(X; r) > r − 2ε.

Proof. We can assume that r −2ε > 0. There exists an ε′ < ε such that X is also an
ε′-covering. It suffices to show that whenever 0< k

n < r − 2ε′ then there is a cyclic
homomorphism

−→

Ck
n→

−→

VR<(X; r), since then we get

wf<(X; r)≥ r − 2ε′ > r − 2ε.

Fix 0< k
n < r − 2ε′. For every i = 0, . . . , n− 1 let xi ∈ X be the point closest

to i
n . (The uniqueness of each xi can be assured by an infinitesimal rotation, if

necessary) Then x0, . . . xn−1 appear on S1 in this clockwise order (possibly with
repetitions) and, since ε′ < 1

2r < 1
4 , not all of the xi are the same. By the triangle

inequality

d(xi , xi+k)≤ d
(
xi ,

i
n

)
+ d

( i
n ,

i+k
n

)
+ d

( i+k
n , xi+k

)
< ε′+ k

n + ε
′
=

k
n + 2ε′ < r.

It follows that the map i 7→ xi determines a cyclic homomorphism
−→

Ck
n→

−→

VR<(X; r),
and the proof is complete. �

This leads to the following conclusion.
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Proposition 5.3. Suppose that l
2l+1 < r ≤ r ′ < l+1

2l+3 and δ = r − l
2l+1 . If X and Y

are finite subsets of S1, X ⊆ Y , and X is a δ
2 -covering of S1, then in the diagram

VR≤(X; r) �
� // VR≤(Y ; r ′)

VR<(X; r)
� � //

?�

OO

VR<(Y ; r ′)
?�

OO

all spaces are homotopy equivalent to S2l+1 and all maps are homotopy equiva-
lences.

For the spaces in the bottom row and the bottom map the same conclusion holds
under the weaker assumption l

2l+1 < r ≤ r ′ ≤ l+1
2l+3 .

Proof. Proposition 5.2 gives wf<(X; r) > r − δ = l
2l+1 and by Lemma 3.2(b) we

have wf≤(Y ; r ′)≤ r ′ < l+1
2l+3 . Hence the four cyclic graphs underlying the diagram

have their winding fractions in the open interval
( l

2l+1 ,
l+1
2l+3

)
. The statement now

follows from Proposition 4.9.
If r ′ = l+1

2l+3 then by Proposition 3.8(c) we still have wf<(Y ; r ′) < r ′ = l+1
2l+3 and

Proposition 4.9 applies in the bottom row. �

We end this section with a partial converse of Proposition 5.2.

Proposition 5.4. Suppose that l
2l+1 < r and δ = r − l

2l+1 . If X ⊆ S1 is a finite
subset with wf<(X; r) > l

2l+1 then X is a
((

l + 1
2

)
δ
)
-covering of S1.

Proof. Suppose that
−→

VR<(X; r) dismantles to
−→

Ck
n with k

n >
l

2l+1 . Let x0≺· · ·≺ xn−1

be the points of X which induce the subgraph
−→

Ck
n ↪→

−→

VR<(X; r). The proof will
be complete if we show the following claim: for every i there exists a j 6= i such
that

−→

d(xi , x j ) < (2l + 1)δ. Without loss of generality it suffices to prove this for
i = 0. We can assume that (2l + 1)δ < 1, for otherwise the claim is trivial.

Consider the directed path in
−→

VR<(X; r):

x0→ xk→ x2k→ · · · → x(2l+1)k .

Since (2l + 1)k > nl this path makes at least l revolutions around the circle, hence

2l∑
i=0

−→

d(xik, x(i+1)k) > l.

On the other hand
2l∑

i=0

−→

d(xik, x(i+1)k) < (2l + 1)r = l + (2l + 1)δ < l + 1.

It follows that the directed path covers exactly l full circle lengths plus the arc
[x0, x(2l+1)k]S1 whose length, by the last inequality, is less than (2l + 1)δ. That
proves the claim. �
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The results of this section can be summarized as follows. Suppose that l
2l+1 <

r < l+1
2l+3 and δ = r − l

2l+1 . Then we know by Proposition 3.8(c) that for any finite
subset X ⊆ S1 we have wf<(X; r) < r < l+1

2l+3 . If we think of X as an evolving
(increasing) set, then the homotopy type of VR<(X; r) stabilizes at S2l+1 at the
same time when X becomes an ε-covering for some ε ∈

[1
2δ,

(
l + 1

2

)
δ
]
. If l is

constant this is a very tight window as δ→ 0.

6. Evolution of random samples

We now apply the winding fraction to study the evolution of Vietoris–Rips complexes
of random subsets of S1. Let Xn ⊆ S1 be a subset obtained by sampling n points
uniformly and independently from S1. The connectivity of the graph VR(Xn; r)
when r = r(n)→ 0 as n→∞ has been extensively studied by many authors; see
[Imany-Nabiyyi 2008] and the references therein. We obtain asymptotic thresholds
for the higher-dimensional connectivity of VR(Xn; r) when r is large. In particular,
we analyze how many random samples are required until the homotopy type of
VR(Xn; r) matches that of VR(S1

; r), extending Latschev’s approximation result
[2001] for S1 to r values that are no longer sufficiently small.

In this section we always assume that l ≥ 0 is fixed and l
2l+1 < r < l+1

2l+3 . We
define δ = r − l

2l+1 . The probability that two points of Xn are in distance exactly r
for any fixed r is 0, and therefore all results hold for VR< as well as VR≤. Just as
nontrivial asymptotic results about the connectedness of the graph VR(Xn; r) can
be obtained for r→ 0 as n→∞, in our higher-dimensional regime it makes sense
to assume that r→ l

2l+1 , that is δ→ 0, as n→∞. We use the standard asymptotic
notation f (δ)=2(g(δ)) as δ→ 0 when there are constants C1,C2 > 0 (which can
depend on l) such that C1g(δ)≤ f (δ)≤ C2g(δ).

Let M(r) and N(r) be the random variables counting the number n of random
points in S1 until wf(Xn; r) reaches, resp. exceeds, the value l

2l+1 . Formally,
consider the random process (X1,X2, . . . ) where Xi+1 is obtained from Xi by
adding a single uniformly random point. Define

M(r)=min
{
n : wf(Xn; r)≥ l

2l+1

}
and N(r)=min

{
n : wf(Xn; r) > l

2l+1

}
,

where min∅ = ∞. The random variables M(r) and N(r) describe the last two
transition points in the evolution of VR(Xn; r), since M(r) ≤ n < N(r) means
VR(Xn; r) is homotopy equivalent to a wedge of copies of S2l, and n ≥ N(r) gives
VR(Xn; r)' S2l+1. We will determine the asymptotic expectations E[M(r)] and
E[N(r)].

Theorem 6.1. Let l
2l+1 < r < l+1

2l+3 for some fixed l ≥ 0 and let δ = r − l
2l+1 . Then

E[M(r)] =2
(( 1
δ

) 2l
2l+1
)

and E[N(r)] =2
( 1
δ

log 1
δ

)
as δ→ 0.
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Figure 2. The evolution of VR(Xn; r) with r = 0.432; see
Example 6.2. The red curve is the average winding fraction, the
blue curve is the average intrinsic dimension, and the green curves
are the average Betti numbers b4, b5, b6, b7 (from left to right).
Note the support of b6 (for example) mostly coincides with the
average intrinsic dimension being close to 6.

In particular, the expected number of random points n until VR(Xn; r)' S2l+1 is
2
(1
δ

log 1
δ

)
as δ→ 0.

Note that the winding fraction of l
2l+1 is achieved much sooner than it is exceeded

(in fact E[M(r)] is sublinear in 1/δ). It means that we are expecting a long interval
of n for which VR(Xn; r) is a wedge of 2l-spheres, before reaching the final
homotopy type of S2l+1.

Example 6.2. Suppose 3
7 < r = 0.432< 4

9 with l = 3, δ ≈ 0.00343, and 1/δ ≈ 291.
Figure 2 shows the average evolution of VR(Xn; r) for 1≤ n≤ 1000. The red curve
plots the average winding fraction, which rapidly approaches 3

7 and then exceeds it
around n = 600 to approach r. The homotopy type then stabilizes at S7. For clarity
of the presentation the blue curve depicts the average intrinsic dimension, which
we define as 2l when wf( · )= l

2l+1 and as 2l + 1 when l
2l+1 < wf( · ) < l+1

2l+3 .

We first prove the second claim of Theorem 6.1. For ε> 0 let C(ε) be the random
variable which counts the number of steps until Xn becomes a

( 1
2ε
)
-covering of S1.
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By Propositions 5.2 and 5.4 we have

(4) C((2l + 1)δ)≤ N(r)≤ C(δ).

It is well known that

(5) E[C(ε)] =2(ε−1 log ε−1)

as ε→ 0; see [Solomon 1978, Equation (4.16)], which gives a more precise answer.
The asymptotics of (5) can also be seen heuristically as follows. Divide S1 into
K = 2(ε−1) arcs of length 2(ε). Think of the random process Xn as throwing
balls into K urns (arcs) independently. Then the event that Xn is a ε-covering
coincides with the event that each urn contains a ball. By the classical coupon
collector’s problem this happens, in expectation, after n = 2(K log K ) balls as
K →∞. Combining (5) with (4) gives E[N(r)] =2(δ−1 log δ−1) as δ→ 0.

To prove the first statement of Theorem 6.1 we need some auxiliary results. A
subset Y ⊆ S1 will be called (ε,m)-regular if |Y |=m and there is a bijection from Y
to the vertices of some regular inscribed m-gon which moves each point by distance
less than ε. We previously showed that achieving wf(X; r) > l

2l+1 coincides with X
being a 2(δ)-covering, and the next lemma shows that wf(X; r)≥ l

2l+1 is achieved
when X contains a (2(δ), 2l + 1)-regular subset.

Lemma 6.3. Let l
2l+1 < r < l+1

2l+3 and δ = r − l
2l+1 . For a finite subset X ⊆ S1:

(a) If X has a
( 1

2δ, 2l + 1
)
-regular subset then wf(X; r)≥ l

2l+1 .

(b) If wf(X; r)≥ l
2l+1 then X has a (4lδ, 2l + 1)-regular subset.

Proof. For (a) let {x0, . . . , x2l} ⊆ X be the
( 1

2δ, 2l + 1
)
-regular subset. We can

assume xi ∈
( i

2l+1 −
1
2δ,

i
2l+1 +

1
2δ
)

S1 . Since δ < 1
2l+1 we have x0 ≺ x1 ≺ · · · ≺ x2l

cyclically ordered in S1 as well as in
−→

VR(X; r). We have
−→

d(xi , xi+l) <
l

2l+1 + 2 · 1
2δ = r

and hence a cyclic homomorphism
−→

C l
2l+1 ↪→

−→

VR(X; r).
To prove (b) suppose wf(X; r)≥ l

2l+1 . By Proposition 3.15 there is a directed
homomorphism f :

−→

C l
2l+1→

−→

VR(X; r). Denote xi = f (i). For every i = 0, . . . , 2l,
−→

d(xi , xi+1)= 1−
−→

d(xi+1, xi+l+1)−
−→

d(xi+l+1, xi ) > 1− 2r = 1
2l+1 − 2δ.

It follows that for j = 1, . . . , 2l,
−→

d(xi , xi+ j ) >
j

2l+1 − 2 jδ ≥ j
2l+1 − 4lδ

and in turn
−→

d(xi , xi+ j )= 1−
−→

d(xi+ j , xi ) < 1− 2l+1− j
2l+1 + 4lδ = j

2l+1 + 4lδ.
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It follows that each x j lies in distance less than 4lδ from the j-th vertex of the
regular (2l + 1)-gon with x0 as a vertex. �

Let Rm(ε) be the random variable which counts the number of steps until Xn

contains a (ε,m)-regular subset. In Section B we show that for every fixed m

(6) E[Rm(ε)] =2
(
ε−

m−1
m
)

as ε→ 0.

Here we only give a heuristic explanation using our previous urn model with
K =2(ε−1) urns identified with arcs of length 2(ε). Divide the urns into K/m
groups of size m, each group consisting of arcs centered approximately around the
vertices of a regular m-gon. Then the event that Xn has an (ε,m)-regular subset
coincides with the event that every urn in some group contains a ball. This can
be correlated with the generalized birthday paradox, where we require one urn to
contain m balls (the case m = 2 is the classical birthday paradox). The expected
waiting time for this to happen is 2

(
K

m−1
m
)

as K→∞; see [Klamkin and Newman
1967, Theorem 2].

This proves the first claim of Theorem 6.1 since by Lemma 6.3 we have

R2l+1(4lδ)≤ N(r)≤ R2l+1
( 1

2δ
)
.

The proof of Theorem 6.1 is now complete.

7. Vietoris–Rips complexes for subsets of S1

The definition of the Vietoris–Rips complex VR(X; r) makes sense for an arbitrary
metric space X, not necessarily finite nor discrete. Hausmann [1995] studied the
case when X is a closed Riemannian manifold. In this section we show that for an
arbitrary subset X ⊆ S1 and r > 0, the complex VR(X; r) has the homotopy type
of an odd-dimensional sphere or a wedge of even-dimensional spheres. We will
also study the complexes VR<(S1

; r) and VR≤(S1
; r) in more detail.

For an arbitrary metric space X the geometric realization of VR(X; r) is given
the topology of a CW-complex, that is the weak topology with respect to finite-
dimensional skeleta, or equivalently, the weak topology with respect to subcom-
plexes induced by finite subsets of X. Formally, let F(X) be the poset of all
finite subsets of X ordered by inclusion. Then for each r we have a functor
VR(−; r) : F(X)→ Top and

VR(X; r)= colimY∈F(X) VR(Y ; r)' hocolimY∈F(X) VR(Y ; r),

where the last equivalence is a consequence of the fact that all maps VR(Y ; r) ↪→
VR(Y ′; r) for Y ⊆ Y ′ are inclusions of closed subcomplexes, hence cofibrations.
See [Welker et al. 1999, Section 3] for the statements of all diagram comparison
theorems used in this section.
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For a finite subset Y0 ⊆ X let F(X; Y0) be the subposet of F(X) consisting of
all sets which contain Y0. Since this poset is cofinal in F(X), we also have

VR(X; r)= colimY∈F(X;Y0) VR(Y ; r)' hocolimY∈F(X;Y0) VR(Y ; r).

For an arbitrary subset ∅ 6= X ⊆ S1 and 0< r < 1
2 we define

(7)
wf<(X; r)= sup{wf<(Y ; r) : Y ⊆ X, |Y |<∞},

wf≤(X; r)= sup{wf≤(Y ; r) : Y ⊆ X, |Y |<∞}.

The supremum in (7) need not be attained when X is infinite. When X is finite then
wf(X; r) agrees with our previous definition of this symbol since the supremum
is attained by Y = X. The following proposition shows that in the generic case,
VR(X; r) has the homotopy type of an odd-dimensional sphere.

Proposition 7.1. Suppose that ∅ 6= X ⊆ S1 and 0< r < 1
2 . Either of the conditions

(1) l
2l+1 < wf(X; r) < l+1

2l+3 , or

(2) wf(X; r)= l+1
2l+3 and the supremum is not attained,

for some l = 0, 1, . . . , implies that VR(X; r)' S2l+1.
Moreover, if r ′≥ r is another value of the distance parameter for which (1) or (2)

hold with the same l, then the inclusion VR(X; r) ↪→ VR(X; r ′) is a homotopy
equivalence.

Proof. Either of the two conditions (1) or (2) implies there is a finite subset Y0 ⊆ X
such that for every finite subset Y with Y0⊆Y ⊆ X, we have l

2l+1 <wf(Y ; r)< l+1
2l+3 .

By Proposition 4.9 all maps in the diagram VR(−; r) : F(X; Y0) → Top are
homotopy equivalences between spaces homotopy equivalent to S2l+1, and therefore

VR(X; r)' hocolimY∈F(X,Y0) VR(Y ; r)' S2l+1.

Furthermore, l
2l+1 < wf(Y ; r) ≤ wf(Y ; r ′) < l+1

2l+3 , hence the same is true for
VR(X; r ′). The maps VR(Y ; r)→ VR(Y ; r ′) now define a natural transformation
of diagrams VR(−; r)→ VR(−; r ′) which is a levelwise homotopy equivalence
by Proposition 4.9. It follows that the induced map of (homotopy) colimits is a
homotopy equivalence. �

Remark 7.2. The same argument shows that under the assumptions of the last
proposition the map VR(Y0; r) ↪→ VR(X; r) is a homotopy equivalence whenever
Y0 ⊆ X is a finite set with wf(Y0; r) > l

2l+1 .

As the next lemma shows, the winding fractions behave in the expected way for
dense subsets of the circle.

Lemma 7.3. If X is dense in S1 and 0< r < 1
2 then wf<(X; r)= wf≤(X; r)= r.

In the case of wf< the supremum is not attained.
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Proof. For every ε > 0 the set X contains a finite ε-covering of S1. Proposition 5.2
now gives wf(X; r) ≥ r. The reverse inequality and the second statement of the
lemma follow from Proposition 3.8(c). �

We can now give a complete description of the homotopy types of VR<(S1
; r)

for arbitrary r.

Theorem 7.4. If X is dense in S1 (in particular when X = S1) and 0< r < 1
2 , then

VR<(X; r)' S2l+1 for l
2l+1 < r ≤ l+1

2l+3 , l = 0, 1, . . . .

Moreover, if l
2l+1 < r ≤ r ′ ≤ l+1

2l+3 then the inclusion VR<(X; r) ↪→ VR<(X; r ′) is
a homotopy equivalence.

Proof. By Lemma 7.3 we have wf<(X; r)= r and the supremum is not attained,
meaning that either (1) or (2) in Proposition 7.1 is satisfied. �

Proposition 7.1 describes the homotopy types of the complex VR(X; r) in all
generic situations. The only singular cases it does not cover occur when wf(X; r)
is of the form l

2l+1 and this value is in fact attained by some finite subset Y0 ⊆ X.
We deal with this in the next two statements.

Proposition 7.5. Suppose that ∅ 6= X ⊆ S1 and 0< r < 1
2 . If wf(X; r)= l

2l+1 for
some l = 0, 1, . . . and the supremum in the definition of wf(X; r) is attained, then
VR(X; r) is homotopy equivalent to a wedge sum of spheres of dimension 2l.

Theorem 7.6. For 0≤ r < 1
2 we have a homotopy equivalence

VR≤(S1
; r)'

{
S2l+1 if l

2l+1 < r < l+1
2l+3 , l = 0, 1, . . . ,∨c S2l if r = l

2l+1 ,

where c is the cardinality of the continuum. Moreover, if l
2l+1 < r ≤ r ′ < l+1

2l+3 then
the inclusion VR≤(S1

; r) ↪→ VR≤(S1
; r ′) is a homotopy equivalence.

We delay the proofs of Proposition 7.5 and Theorem 7.6 until Section 8. Note
that Theorems 7.4 and 7.6 together provide a complete description of the homotopy
types of VR(S1

; r) for arbitrary r. They also give the persistent homology of
VR(S1

; r), where we refer the reader to [Chazal et al. 2014] for information on the
persistent homology of Vietoris–Rips complexes.

Corollary 7.7. The persistent homology of VR<(S1
; r) contains a single interval( l

2l+1 ,
l+1
2l+3

]
in each homological dimension 2l + 1, and the persistent homology of

VR≤(S1
; r) contains a single interval

( l
2l+1 ,

l+1
2l+3

)
in each homological dimension

2l + 1.

Remark 7.8. Hausmann [1995, (3.12)] conjectured that if M is a compact Riemann-
ian manifold then the connectivity conn(VR<(M; r)) is a nondecreasing function
of r, and our results confirm this conjecture for M = S1. Hausmann [op. cit., (3.11)]
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furthermore conjectured that for r sufficiently small, VR<(M; r) is homotopy
equivalent to VR<(Y0; r) for some finite subset Y0 ⊆ M. For M = S1 we confirm
this conjecture for all r, sufficiently small or otherwise.

8. Singular winding fractions

In this section we return to study cyclic graphs for which wf(
−→

G) = l
2l+1 is a

singular value. Our aim is to describe a convenient structure in the homology group
H̃2l(Cl(G)), which we then use to prove Proposition 7.5 and Theorem 7.6.

We consider first a cyclic graph
−→

Ck
n with k

n =
l

2l+1 . Since l and 2l+1 are coprime
we have (k, n)= (dl, d(2l + 1)) for some integer d ≥ 1. We have d = n− 2k and
so by Theorem 4.4 we can write

Cl(Cdl
d(2l+1))'

d−1∨
S2l.

When (k, n) = (l, 2l + 1) the graph C l
2l+1 is a clique and Cl(C l

2l+1) is the full
simplex with 2l + 1 vertices.

The next case, d = 2 and (k, n)= (2l, 2(2l + 1)), is particularly interesting for
our purposes. The nonedges of the graph C2l

2(2l+1) are pairs of the form {i, i+2l+1},
which are the antipodal pairs in the evenly-spaced model

C2l
2(2l+1) = VR≤

({ i
2(2l+1) : i = 0, . . . , 4l + 1

}
;

l
2l+1

)
.

It follows that the clique complex Cl(C2l
2(2l+1)) is isomorphic to the standard trian-

gulation of S2l as the boundary of the cross-polytope of dimension 2l + 1. We fix
the 2l-dimensional cycle in Cl(C2l

2(2l+1)):

(8)

ι2l = (−1)l(l+3)/2
· ([0] − [2l + 1])∧ ([1] − [2l + 2])∧ · · · ∧ ([2l] − [4l + 1])

= [0, 2, . . . , 4l] − [1, 3, . . . , 4l + 1] ± · · · ,

which is (up to sign) the fundamental cycle of the boundary of the cross-polytope.
Here [x0] ∧ · · · ∧ [xk] denotes the oriented simplex [x0, . . . , xk], and we have
chosen the sign so that the oriented simplices [0, 2, . . . , 4l] and [1, 3, . . . , 4l + 1]
appear with coefficients +1 and −1 respectively. Indeed, in the oriented cycle
([0]− [2l+ 1])∧ · · ·∧ ([2l]− [4l+ 1]) the sign on [0, 2l+ 2, 2, . . . , 2l− 2, 4l, 2l]
is (−1)l, and then after l(l+1)

2 transpositions this gives the sign (−1)l(l+3)/2 on
[0, 2, . . . , 4l]. The argument for [1, 3, . . . , 4l + 1] is similar. The corresponding
homology class ι2l ∈ H̃2l(Cl(C2l

2(2l+1)))=Z is a generator. (Here and in the following
we will use the same symbol to denote a (co)cycle and its (co)homology class, and
sometimes also the map which induces the given class.)
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Definition 8.1. Suppose that
−→

G is a cyclic graph. A nonzero homology class
α ∈ H̃2l(Cl(G)) is called cross-polytopal if there is a cyclic homomorphism
f :
−→

C2l
2(2l+1)→

−→

G such that α = f∗(ι2l).

An immediate consequence of the definition is that the image of a cross-polytopal
class under a cyclic homomorphism

−→

G →
−→

H is again cross-polytopal, unless it
is zero. Note that if f is not injective on the vertices then f∗(ι2l) = 0 because a
homology class of degree 2l in a clique complex must be supported on at least
4l + 2 vertices; see for instance [Kahle 2009, Lemma 5.3].

Our aim is to classify all cross-polytopal homology classes for cyclic graphs.
We begin with the description of a class of cyclic homomorphisms.

Lemma 8.2. Let d ≥ 1 and (k, n)= (dl, d(2l + 1)).

(a) Every cyclic homomorphism
−→

C l
2l+1 →

−→

Ck
n is of the form θa for some a =

0, . . . , n− 1, where
θa(i)≡ a+ di mod n.

(b) Every injective cyclic homomorphism
−→

C2l
2(2l+1)→

−→

Ck
n is of the form αa,b for

some a = 0, . . . , n− 1 and b = a+ 1, . . . , a+ d − 1, where

αa,b(i)=
{

a+ d · i
2 mod n if i is even,

b+ d · i−1
2 mod n if i is odd.

Remark 8.3. Every cyclic homomorphism θ in part (a) is determined by the choice
of a = θ(0) and the condition θ(i + 1) = θ(i)+ d mod n. Similarly, in part (b)
every cyclic homomorphism is determined by the two initial values a = α(0) and
b = α(1), together with the requirement that α(i + 2)≡ α(i)+ d mod n.

Proof. To prove (a) let θ :
−→

C l
2l+1→

−→

Ck
n be a cyclic homomorphism with l > 0, since

the case l = 0 is clear. Then

(2l + 1)k ≥
2l∑

i=0

−→

dn(θ(i), θ(i + l))= l ·
2l∑

i=0

−→

dn(θ(i), θ(i + 1))= ln,

where the last equality follows from (2). Since the two extremes are in fact equal,
we must have

−→

dn(θ(i), θ(i + l))= k for all i , which implies
−→

dn(θ(i), θ(i+1))=n−
−→

dn(θ(i+1), θ(i+l+1))−
−→

dn(θ(i+l+1), θ(i))=n−2k=d,

as required. Clearly every θa is a cyclic homomorphism, hence (a) is proved.
Part (b) follows immediately, since

−→

C2l
2(2l+1) contains two induced copies of

−→

C l
2l+1 with vertex sets {0, 2, . . . , 4l} and {1, 3, . . . , 4l + 1}. For an injective cyclic

homomorphism α we must have α(0)≺ α(1)≺ α(2) cyclically ordered in
−→

Ck
n , i.e.,

a ≺ b ≺ a+ d , which yields the restrictions on b. �
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The cyclic homomorphism αa,b evaluated on the fundamental cycle ι2l determines
a cycle as well as a homology class in H̃2l(Cl(Cdl

d(2l+1))). We will continue to denote
both with αa,b. The chain representation of the cycle αa,b starts with

(9) αa,b = [a, a+ d, . . . , a+ 2l · d] − [b, b+ d, . . . , b+ 2l · d] ± · · ·

Compare this to (8). The homology classes αa,b for various pairs (a, b) satisfy a
number of relations worked out in the proof of the next proposition, which is the
main result concerning cyclic graphs with wf(

−→

G)= l
2l+1 .

Proposition 8.4. Suppose
−→

G is a cyclic graph which dismantles to
−→

Cdl
d(2l+1). Then

the homology group H̃2l(Cl(G)) = Zd−1 has a basis {e1, . . . , ed−1} such that all
the cross-polytopal elements in H̃2l(Cl(G)) are

±e1, . . . ,±ed−1

and
ei − ej , 1≤ i, j ≤ d − 1, i 6= j.

In particular, there are exactly d(d − 1) cross-polytopal elements in H̃2l(Cl(G)).

Proof. In the first step we will prove the result for
−→

G =
−→

Cdl
d(2l+1). Denote (k, n)=

(dl, d(2l + 1)).
For an oriented simplex σ in a simplicial complex K let σ∨ denote the cochain

which assigns 1 to σ , −1 to σ with opposite orientation, and 0 to all other oriented
simplices of K . For every a = 0, . . . , n− 1 define a cochain βa in Cl(Ck

n) by

βa = [a, a+ d, . . . , a+ 2l · d]∨.

Since the face [a, a + d, . . . , a + 2l · d] is maximal in Cl(Ck
n), the cochain βa is

in fact a cocycle, and it determines a cohomology class which we denote with the
same symbol. Using (9) we verify that for 1≤ i, j ≤ d − 1,

βi (α j,d)=

{
1 if i = j,
0 if i 6= j.

Since the groups H̃2l(Cl(Ck
n)) and H̃ 2l(Cl(Ck

n)) are both free abelian of rank d−1,
the above implies that {α1,d , . . . , αd−1,d} is a basis of homology and {β1, . . . , βd−1}

is its dual basis of cohomology. In particular, every element v ∈ H̃2l(Cl(Ck
n)) has a

decomposition

(10) v =

d−1∑
i=1

βi (v) ·αi,d .

Note that βi (αa,b) depends only on the evaluation of βi on the two leading terms
in (9), since βi evaluates to 0 on all the omitted terms. The oriented simplices
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appearing in αa,b and αa+d,b+d differ by a cyclic shift, hence by an even number
of 2l transpositions, and are therefore equal. That means we have the identity

αa+d,b+d = αa,b.

It follows that all cross-polytopal classes can be written as αa,b with 0≤ a ≤ d − 1
and a+ 1≤ b ≤ a+ d − 1.

If a= 0 then 1≤ b≤ d−1 and the only nonzero pairing in (10) is βb(α0,b)=−1,
and hence α0,b =−αb,d .

If 1≤a<b≤d−1 then βa(αa,b)=1 and βb(αa,b)=−1; hence αa,b=αa,d−αb,d .
If 1≤ a ≤ d − 1 and b = d then αa,b = αa,d is itself one of the generators.
If 1≤ a ≤ d − 1 and d + 1≤ b ≤ a+ d − 1 then 1≤ b− d < a ≤ d − 1. Using

the cyclic shift argument we obtain βa(αa,b) = 1 and βb−d(αa,b) = −1, hence
αa,b = αa,d −αb−d,d .

It follows that the proposition is true with ei = αi,d for i = 1, . . . , d − 1.
Now suppose

−→

G is an arbitrary cyclic graph which dismantles to
−→

Ck
n . By

Corollary 4.2 the cyclic homomorphisms
−→

Ck
n

ι
−→

−→

G
π
−→

−→

Ck
n induce isomorphisms

H̃2l(Cl(Ck
n))

∼=
−→ H̃2l(Cl(G))

∼=
−→ H̃2l(Cl(Ck

n))

with the composition being the identity. It follows that the cross-polytopal classes
ι∗(e1), . . . , ι∗(ed−1) form a basis of H̃2l(Cl(G)) and that±ι∗(ei ) and ι∗(ei )−ι∗(ej ),
i 6= j , are cross-polytopal. Moreover, if α ∈ H̃2l(Cl(G)) is cross-polytopal then
π∗(α) is one of ±ei or ei − ej , i 6= j , and therefore α must be one of ±ι∗(ei ) or
ι∗(ei )− ι∗(ej ), i 6= j . That completes the proof. �

We are now prepared to prove Proposition 7.5, using the algebraic fact in
Proposition A.1 of the appendix.

Proof of Proposition 7.5. Let Y0⊆ X be a finite subset that achieves wf(Y0; r)= l
2l+1 .

Then we have wf(Y ; r) = l
2l+1 for any finite subset Y with Y0 ⊆ Y ⊆ X. By

Corollary 4.5 every space in the diagram

VR(X; r)= colimY∈F(X;Y0) VR(Y ; r)

is homotopy equivalent to a finite wedge sum of 2l-spheres. It follows immediately
that VR(X; r) is simply-connected and its homology is torsion-free and concentrated
in degree 2l. It remains to show that the group H̃2l(VR(X; r)) is free abelian. Indeed,
if this is the case then VR(X; r) is a model of the Moore space M(

⊕κ
Z, 2l), unique

up to homotopy and equivalent to
∨κ S2l, for some cardinal number κ.

A nonzero homology class in H̃2l(VR(X; r)) will be called cross-polytopal if it
is the image under the inclusion VR(Y ; r) ↪→ VR(X; r) of a cross-polytopal class
in H̃2l(VR(Y ; r)) for some finite Y ∈ F(X; Y0). Since the groups H̃2l(VR(Y ; r))
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are generated by cross-polytopal classes, the same is true about their colimit,
H̃2l(VR(X; r)).

A subset B of an abelian group G is called independent if for every finite
subset {b1, . . . , bs} ⊆ B the identity

∑s
i=1 ai bi = 0, with a1, . . . , as ∈ Z, implies

a1 = · · · = as = 0. An independent set B generates a free abelian subgroup of G
with basis B. Now let B be the family of all subsets B ⊆ H̃2l(VR(X; r)) such that

(a) all elements of B are cross-polytopal,

(b) B is independent.

The family B is nonempty and closed under increasing unions. Using Zorn’s
lemma pick an inclusionwise maximal set B satisfying (a) and (b). If B generates
H̃2l(VR(X; r)) then we are done, since the group 〈B〉 generated by B is free abelian.

We suppose for a contradiction that B does not generate H̃2l(VR(X; r)), and
hence there exists a cross-polytopal class v 6∈ 〈B〉 since H̃2l(VR(X; r)) is generated
by cross-polytopal classes. By maximality of B the set B ∪ {v} violates (b), and
hence there exists a nontrivial linear relation involving v and a finite number of
elements b1, . . . , bs ∈ B. In other words, some nontrivial multiple of v lies in the
subgroup of H̃2l(VR(X; r)) generated by b1, . . . , bs . The same relation holds for
the cross-polytopal representatives v, b1, . . . , bs at some finite stage H̃2l(VR(Y ; r))
of the colimit, where VR(Y ; r) dismantles to

−→

Cdl
d(2l+1). Changing signs if necessary

we may assume that each of the elements v, b1, . . . , bs ∈ H̃2l(VR(Y ; r))= Zd−1 is
of the form ei or ei−ej , i< j , for the basis {e1, . . . , ed−1} from Proposition 8.4. Now
Proposition A.1 implies that v itself lies in the subgroup of H̃2l(VR(Y ; r)) generated
by b1, . . . , bs , and hence in the subgroup of H̃2l(VR(X; r)) generated by b1, . . . , bs .
This contradiction shows that in fact H̃2l(VR(X; r))= 〈B〉 is free abelian. �

The last item in this section is the proof of Theorem 7.6.

Proof of Theorem 7.6. By Lemma 7.3 we have wf≤(S1
; r)= r, and so all statements

concerning the generic values of r and r ′ follow from part (1) of Proposition 7.1.
If r = l

2l+1 then the value of wf≤
(
S1
;

l
2l+1

)
=

l
2l+1 is attained by the vertex set of

any regular (2l + 1)-gon. Proposition 7.5 implies that VR≤
(
S1
;

l
2l+1

)
is homotopy

equivalent to a wedge of copies of S2l , and so it remains to count the number of
wedge summands. For t ∈

(
0, 1

2l+1

)
S1 let

Yt =
{ i

2l+1 , t + i
2l+1 : i = 0, . . . , 2l

}
.

We have an isomorphism
−→

VR≤
(
Yt ;

l
2l+1

)
=
−→

C2l
2(2l+1), hence each inclusion

jt : VR≤
(
Yt ;

l
2l+1

)
↪→ VR≤

(
S1
;

l
2l+1

)
determines a homology class αt = jt∗(ι2l) in the complex VR≤

(
S1
;

l
2l+1

)
. Each

simplex βt =
[
t + i

2l+1 : i = 0, . . . , 2l
]

is a maximal face of VR≤
(
S1
;

l
2l+1

)
, which
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appears in the support of αt but not in any other αs for s 6= t . This implies that the
classes αt are independent, and hence H̃2l

(
VR≤

(
S1
;

l
2l+1

))
contains a free abelian

group of rank c. We get a corresponding upper bound by noting that the cardinality
of the set of 2l-simplices in VR≤

(
S1
;

l
2l+1

)
is also c, and hence the cardinality of

the wedge sum is c. �

Remark 8.5. Chambers et al. [2010, Section 6(1)] asked if for all k ≥ 2 and any
finite subset X ⊆ R2 the homology group H̃k(VR(X; r)) is generated by induced
k-dimensional cross–polytopal spheres (for all k these are complexes of the form
Cl(Ck

2k+2), where we considered k = 2l in this section). Proposition 8.4 confirms
this when k = 2l for subsets X ⊆ S1

⊆ R2. When k = 2l + 1 is odd the claim fails
already for X ⊆ S1. For example, one can check that for 1

3 <
k
n <

3
8 the graph Ck

n does
not contain an induced subgraph isomorphic to C3

8 , yet H̃3(Cl(Ck
n))= H̃3(S3) 6= 0

by Theorem 4.3.

9. Čech complexes

The Čech complex is another simplicial complex commonly associated with a
metric space. For a point x in a metric space M, let B<(x; r) and B≤(x; r) denote
the open and closed balls in M with center x and radius r.

Definition 9.1. For a subset X ⊆ M of an ambient metric space M and r > 0, the
Čech complex Č<(X,M; r) is the simplicial complex with vertex set X, where a
finite subset σ ⊆ X is a face if and only if

⋂
x∈σ B<(x; r) 6=∅. Analogously, the

faces of the complex Č≤(X,M; r) satisfy
⋂

x∈σ B≤(x; r) 6=∅.

As before, we will omit the subscript in statements which apply to both <
and ≤. An equivalent definition of Č(X,M; r) is as the nerve of the family of balls
{B(x; r) : x ∈ X}. Chazal, de Silva, and Oudot [Chazal et al. 2014] refer to these
complexes as ambient Čech complexes with landmark set X and witness set M. We
have the inclusion Č(X,M; r/2)⊆ VR(X; r), and if M is a geodesic space then
VR(X; r) is the 1-skeleton not only of VR(X; r) but also of Č(X,M; r/2).

Notation 9.2. If X ⊆ S1 then we write Č(X; r) for Č(X, S1
; r).

If M = S1 then the balls are open or closed arcs, and one can see that finite
σ ⊆ X is a face of Č(X; r) if and only if σ is contained in some arc of length 2r.

One can develop a parallel theory of dismantling, winding fractions, and homo-
topy types for the complexes Č(X; r) with X ⊆ S1, leading to straightforward ana-
logues of all the results from this paper. We note that the sequence of critical values(
0, 1

3 ,
2
5 ,

3
7 , . . . ,

l
2l+1 , . . .

)
determining the transitions of homotopy types will be re-

placed in the case of Čech complexes with the sequence
(
0, 1

4 ,
2
6 ,

3
8 , . . . ,

l
2(l+1) , . . .

)
,

and we refer the reader to [Adamaszek et al. 2016] for some results in the case
of finite X. Instead of pursuing the parallel theory of winding fractions for Čech



30 MICHAŁ ADAMASZEK AND HENRY ADAMS

0

2r

a1

a2

a3

b1

b2

A

B

0

2r
1+2r

1
1+2r

a′1

a′2
a′3

b′1b′2

a′′1

a′′2

a′′3 A′A′′

B′

Figure 3. The action of the operator Tr from Theorem 9.3. Left: a set
X split as X = AtB, where A= X ∩[0, 2r)S1 and B = X ∩[2r, 1)S1 .
Right: Tr (X)= A′tB ′tA′′, where A′, A′′, and B ′ are suitably rescaled
and shifted copies of A and B. The map πr : Tr (X)→ X sends back
A′ to A, B ′ to B, and A′′ to A.

complexes, we provide a direct transformation from Vietoris–Rips complexes to
Čech complexes. This transformation recovers most but not all of the results that
could be obtained with the parallel theory, and we believe it is of independent
interest. To our knowledge, Theorems 9.7 and 9.8 are the first computation for a
noncontractible connected manifold M of the homotopy types of Č(M,M; r) for
arbitrary r.

Let P(S1) denote the power set of S1. If X ⊆ S1 and a, b ∈ R then we write
aX + b = {(ax + b) mod 1 : x ∈ X}, where it is understood that each point x is
represented by a real number in [0, 1).

Theorem 9.3. For each 0< r < 1
2 let Tr : P(S1)→ P(S1) be given by

Tr (X)= 1
1+2r X ∪

( 1
1+2r · (X ∩ [0, 2r)S1)+ 1

1+2r

)
.

Then the (noncontinuous) map πr : S1
→ S1 defined by

πr (y)= (1+ 2r)y mod 1 for y ∈ [0, 1)

induces a simplicial homotopy equivalence

πr : VR≤
(
Tr (X); 2r

1+2r

) '
−→ Č≤(X; r).

Proof. We first verify that πr (Tr (X)) = X. Take any y ∈ Tr (X). If y = 1
1+2r x

for x ∈ X then πr (y) = x . If y = 1
1+2r x + 1

1+2r for some x ∈ X ∩ [0, 2r)S1 then
πr (y)≡ x+1≡ x mod 1. It means that πr restricts to a surjection πr : Tr (X)→ X.

Next we check that πr induces a map of simplicial complexes. Let σ be any face
of the complex VR≤

(
Tr (X); 2r

1+2r

)
and let x0 =min(σ ), so that σ ∩ [0, x0)S1 =∅.
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To prove that the subset πr (σ ) is a face of Č≤(X; r) we need to show that it is
contained in a closed arc of length 2r. There are three cases:

• x0 ∈
[ 1

1+2r , 1
)

S1 . Then σ ⊆
[ 1

1+2r , 1
)

S1 and πr (σ )⊆ [0, 2r)S1 .

• x0 ∈
[ 2r

1+2r ,
1

1+2r

)
S1 . Then the only way x0 can be in distance at most 2r

1+2r
from the other points in σ is if that distance is measured clockwise from x0.
It means that σ ⊆

[
x0, x0 +

2r
1+2r

]
S1 with x0 +

2r
1+2r < 1 as well as πr (σ ) ⊆

[(1+ 2r)x0, (1+ 2r)x0+ 2r mod 1]S1 .

• x0 ∈
[
0, 2r

1+2r

)
S1 . Note that

(
x0−

2r
1+2r

)
mod 1= x0+

1
1+2r , hence we can write

σ ⊆
[
x0, x0+

2r
1+2r

]
S1 ∪

[
x0+

1
1+2r , 1

)
S1 . An application of πr gives

πr (σ )⊆ [(1+ 2r)x0, (1+ 2r)x0+ 2r ]S1 ∪ [(1+ 2r)x0, 2r)S1

⊆ [(1+ 2r)x0, (1+ 2r)x0+ 2r ]S1 .

To prove that πr is a homotopy equivalence it suffices to check that the preimage
π−1

r (τ ) of every face τ ∈ Č≤(X; r) is contractible. The conclusion is then pro-
vided by the simplicial version of Quillen’s Theorem A due to Barmak [2011,
Theorem 4.2]. Suppose that

τ = {a1, . . . , as} ∪ {b1, . . . , bt },

where possibly s = 0 or t = 0, and

0≤ a1 < · · ·< as < 2r ≤ b1 < · · ·< bt < 1.

The preimage π−1
r (τ ) is the subcomplex of VR≤

(
Tr (X); 2r

1+2r

)
induced by the

vertex set

V(π−1
r (τ ))= {a′1, . . . , a′s} ∪ {b

′

1, . . . , b′t } ∪ {a
′′

1 , . . . , a′′s }

where a′i =
1

1+2r ai , b′i =
1

1+2r bi , and a′′i =
1

1+2r ai +
1

1+2r ; see Figure 3.
Note that {−→

d(a′i , b′j )=
1

1+2r
−→

d(ai , bj ) for all i, j,
−→

d(b′i , a′′j )=
1

1+2r
−→

d(bi , aj ) for all i, j .

Moreover, 
−→

d(b′i , b′j )=
1

1+2r
−→

d(bi , bj ) for i < j,
−→

d(a′i , a′′j )=
1

1+2r
−→

d(ai , aj ) for i > j,
−→

d(a′′i , a′i )=
2r

1+2r .

Since τ is contained in an arc of length 2r, there is a vertex x0 ∈ τ such that
τ ⊆ [x0, x0+ 2r ]S1 . We find a vertex y0 ∈ V(π−1

r (τ )) such that y0 is at most 2r
1+2r

away from every other vertex of V(π−1
r (τ )). This will end the proof, since then

π−1
r (τ ) is a cone with apex y0. We need to consider four cases.
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• If x0 = aq for some 1≤ q ≤ s then y0 = a′q . The arc [aq , aq + 2r ]S1 contains
all points of τ , therefore [

a′q , a′q +
2r

1+2r

]
S1

contains all points of V(π−1
r (τ )) up to the point preceding a′′q . Moreover

−→

d(a′′q , a′q)=
2r

1+2r and [a′′q , a′q ]S1 covers the remaining points.

• If x0 = b1 and s = 0 then take y0 = b′1. Since
−→

d(b1, bt) ≤ 2r, we have
−→

d(b′1, b′t)≤
2r

1+2r .

• If x0 = b1 and s > 0 then take y0 = a′′s . From
−→

d(b1, as) ≤ 2r we get the
inequality

−→

d(b′1, a′′s )≤
2r

1+2r ; also
−→

d(a′′s , as)=
2r

1+2r . This covers the distances
from a′′s to all points of V(π−1

r (τ )).

• The last case, x0 = bq with q ≥ 2, is impossible since
−→

d(bq , bq−1) > 2r. �

Remark 9.4. Theorem 9.3 has no variant for VR< and Č<, since the set Tr (X)
contains pairs of points in distance exactly 2r

1+2r whose existence is essential for
the proof.

In many natural circumstances maps of Čech complexes can be lifted to maps of
Vietoris–Rips complexes via πr . Below we describe the case of inclusions.

Proposition 9.5. Suppose X ⊆ S1 and 0< r ≤ r ′ < 1
2 . Then the (noncontinuous)

map η : S1
→ S1 given by

η(y)= 1+2r
1+2r ′ · y for y ∈ [0, 1)

determines a map of Vietoris–Rips complexes which makes the following diagram
commute:

VR≤
(
Tr (X); 2r

1+2r

) η //

πr '

��

VR≤
(
Tr ′(X); 2r ′

1+2r ′
)

πr ′ '

��
Č≤(X; r) �

� ⊆ // Č≤(X; r ′)

Proof. We first verify that η gives a well-defined map of Vietoris–Rips complexes
in the top row of the diagram; it suffices to check this map on vertices and edges.
For vertices, pick any y ∈ Tr (X). If y = 1

1+2r x for x ∈ X then η(y) = 1
1+2r ′ x ∈

Tr ′(X). If y = 1
1+2r x + 1

1+2r for x ∈ X ∩ [0, 2r), then η(y)= 1
1+2r ′ x +

1
1+2r ′ with

x ∈ X ∩[0, 2r)⊆ X ∩[0, 2r ′), and hence also in this case η(y) ∈ Tr ′(X). For edges,
we suppose that 0≤ y < y′ < 1. If

−→

d(y, y′)≤ 2r
1+2r then

−→

d(η(y), η(y′))≤ 2r
1+2r ·

1+2r
1+2r ′ ≤

2r ′
1+2r ′ .

If
−→

d(y′, y)≤ 2r
1+2r then

−→

d(y, y′)≥ 1
1+2r , hence we get

−→

d(η(y), η(y′))≥ 1
1+2r ·

1+2r
1+2r ′ =

1
1+2r ′ ,
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and therefore
−→

d(η(y′), η(y))≤ 2r ′
1+2r ′ .

Commutativity of the diagram follows from a direct calculation:

πr ′(η(y))≡ (1+ 2r ′) · 1+2r
1+2r ′ · y ≡ (1+ 2r)y ≡ πr (y) mod 1. �

For arbitrary X ⊆ S1 Theorem 9.3 allows one to determine the homotopy type of
Č≤(X; r) from an efficiently constructible instance of the Vietoris–Rips complex.
Here are some examples.

Example 9.6. Let Xn =
{
0, 1

n , . . . ,
n−1

n

}
⊆ S1. Then Č≤(Xn;

k
2n ) is the complex

whose maximal faces are generated from
{
0, 1

n , . . . ,
k
n

}
via rotations by 1

n . If r = k
2n

then 2r
1+2r =

k
n+k and Tr (Xn)= Xn+k . We obtain a homotopy equivalence

Cl(Ck
n+k)= VR≤

(
Xn+k;

k
n+k

) '
−→ Č≤

(
Xn;

k
2n

)
.

This special case was proved in [Adamaszek et al. 2016, Theorem 8.5].

Theorem 9.7. For 0< r < 1
2 we have a homotopy equivalence

Č≤(S1
; r)'

{
S2l+1 if l

2(l+1) < r < l+1
2(l+2) , l = 0, 1, . . . ,∨cS2l if r = l

2(l+1) .

Moreover, if l
2(l+1) < r ≤ r ′ < l+1

2(l+2) then the inclusion Č≤(S1
; r) ↪→ Č≤(S1

; r ′) is
a homotopy equivalence.

Proof. Note that r 7→ 2r
1+2r is a monotone map which takes the interval

[ l
2(l+1) ,

l+1
2(l+2)

)
to
[ l

2l+1 ,
l+1
2l+3

)
. Since Tr (S1)= S1 we get a homotopy equivalence

VR≤
(
S1
;

2r
1+2r

) '
−→ Č≤(S1

; r),

and the statement of homotopy types now follows from Theorem 7.6.
The statement about inclusions will follow from Proposition 9.5 if we show that

the map VR≤
(
S1
;

2r
1+2r

) η
−→ VR≤

(
S1
;

2r ′
1+2r ′

)
is a homotopy equivalence. Pick a

finite set Y0 ⊆ S1 with wf≤
(
Y0;

2r
1+2r

)
> l

2l+1 . We have a commutative diagram

VR≤
(
Y0;

2r
1+2r

) η //
� _

��

VR≤
(
Y0 ∪ η(Y0);

2r ′
1+2r ′

)
� _

��
VR≤

(
S1
;

2r
1+2r

) η // VR≤
(
S1
;

2r ′
1+2r ′

)
.

The vertical inclusions are homotopy equivalences by Remark 7.2. The map η is
injective and preserves the clockwise order of points on S1, hence it is a cyclic
homomorphism of the cyclic graphs underlying the top row of the diagram. As

l
2l+1 <wf≤

(
Y0;

2r
1+2r

)
≤wf≤

(
Y0∪η(Y0);

2r ′
1+2r ′

)
< l+1

2l+3 , the top row is a homotopy
equivalence by Proposition 4.9. �
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The following is an analogue of Theorem 7.4 for Čech complexes in the case
when X = S1.

Theorem 9.8. For 0< r < 1
2 we have a homotopy equivalence

Č<(S1
; r)' S2l+1 for l

2(l+1) < r ≤ l+1
2(l+2) , l = 0, 1, . . . .

Moreover, if l
2(l+1) < r ≤ r ′ ≤ l+1

2(l+2) then the inclusion Č<(S1
; r) ↪→ Č<(S1

; r ′) is
a homotopy equivalence.

Proof. Fix l
2(l+1) < r ≤ l+1

2(l+2) and note that Č<

(
S1, S1

; r
)
= colimn Č≤

(
S1
; r − 1

n

)
.

All inclusions
Č≤
(
S1
; r − 1

n

)
↪→ Č≤

(
S1
; r − 1

n+1

)
are cofibrations and by Theorem 9.7 they are self-homotopy equivalences of S2l+1

for sufficiently large n. That proves the statement of homotopy types.
For the statement about inclusions, note the inclusions

Č≤
(
S1
; r − 1

n

)
↪→ Č≤

(
S1
; r ′− 1

n

)
define a natural transformation of diagrams which is a levelwise homotopy equiva-
lence for sufficiently large n by Theorem 9.7. It follows that the induced map of
(homotopy) colimits Č<(S1

; r) ↪→ Č<(S1
; r ′) is a homotopy equivalence. �

10. Concluding remarks

A natural generalization of our results would be to investigate the complexes
VR(M; r) and Č(M,M; r) for Riemannian manifolds M other than S1, though
very little is known along these lines. Intriguing examples include the spheres Sn and
tori (S1)n for n≥ 2. One difficulty is that it is not known whether the homotopy type
of VR(M; r) can be approximated by those of complexes VR(X; r) for sufficiently
dense subsets X ⊆ M. Furthermore, already for M = S2 the complete list of
homotopy types of complexes VR(X; r) for finite subsets X ⊆ S2 is not known.

Towards the goal of understanding Vietoris–Rips complexes of more spaces, we
briefly describe two results, the homotopy types of annuli and of tori equipped with
the `∞ metric, which can be derived from our computation of VR(S1

; r) using
known tools.

Proposition 10.1. Consider the annulus D(ρ, ρ̃)={(x, y)∈R2
:ρ2
≤ x2
+y2
≤ ρ̃2
}

with the Euclidean metric. Then for any r > 0 the space VR<(D(ρ, ρ̃); r) is
homotopy equivalent to an odd-dimensional sphere or to a point.

Proof. The homotopy which radially deforms the annulus onto its inner boundary
does not increase distances, and so it is a crushing map in the sense of Hausmann
[1995]. By Proposition (2.2) of that reference, the inclusion of the Vietoris–Rips



THE VIETORIS–RIPS COMPLEXES OF A CIRCLE 35

complex of S1 into that of D(ρ, ρ̃) is a homotopy equivalence, and so the result
follows from Theorem 7.4. �

We include a proof of a result for which we were unable to find a published
reference.

Proposition 10.2. Suppose (M1, d1), . . . , (Mn, dn) are metric spaces and M =
M1× · · ·×Mn is their product equipped with the supremum metric

`∞((x1, . . . , xn), (y1, . . . , yn))=max{di (xi , yi ) : i = 1, . . . , n}.

Then for any r > 0 we have a homotopy equivalence

VR(M; r)' VR(M1; r)× · · ·×VR(Mn; r).

Proof. For simplicial complexes K1, . . . , Kn the categorical product [Kozlov 2008,
Definition 4.25] (in the category of abstract simplicial complexes) is the complex∏

i Ki with vertex set V(K1)× · · ·× V(Kn) and with faces given by the condition:
σ ∈

∏
i Ki if and only if σ ⊆ σ1×· · ·×σn for some σi ∈ Ki , i = 1, . . . , n. Since a

subset of M has diameter equal to the maximum of the diameters of its coordinate
projections, we get an isomorphism of simplicial complexes

VR(M; r)=
n∏

i=1

VR(Mi ; r).

There is a homotopy equivalence
∏

i Ki ' K1× · · ·× Kn when each Ki is a finite
simplicial complex [Kozlov 2008, Proposition 15.23], and one can see that the
finiteness assumption is not necessary by combining the same proof with a version
of the nerve lemma for infinite simplicial complexes [Björner 1995, Theorem 10.6].
That ends the proof. �

Applied to the torus Tn
= (S1)n the last proposition yields the homotopy types

of VR(Tn
; r) for the `∞ metric on Tn. It would be interesting to investigate the

homotopy types of VR(Tn
; r) for other `p metrics on Tn, especially for the `2

metric.

Appendix A

We prove the following algebraic fact, which is used in the proof of Proposition 7.5.

Proposition A.1. Suppose that V = {e1, . . . , en} is a basis of the free abelian
group Zn . Consider the set of n+

(n
2

)
vectors

Ṽ = {e1, . . . , en} ∪ {ei − ej : 1≤ i < j ≤ n}.

For an arbitrary choice v, v1, . . . , vk ∈ Ṽ, if the subgroup of Zn generated by
{v1, . . . , vk} contains some nonzero multiple of v, then it also contains v.
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Proof. We can assume v, v1, . . . , vk are pairwise distinct. Let A = {v, v1, . . . , vk}.
Note that when expressed in the basis {e1, . . . , en}, any two vectors in Ṽ have at
most one nonzero coordinate in common. By symmetry it suffices to consider the
cases v = e1 and v = e1− e2.

First suppose v = e1. We have the identity

pe1 =
∑

vi∈A\{e1}

aivi

for some p, a1, . . . , ak ∈ Z with p 6= 0. Consider a labeled graph G with vertex
set A, where two vectors are connected by an edge with label i (1 ≤ i ≤ n) if
they both have nonzero i-th coordinate. Let A1 be the vertex set of the connected
component of G containing e1. Then we still have the identity

pe1 =
∑

vi∈A1\{e1}

aivi

because the vectors in A1 and A \ A1 contribute to two nonoverlapping sets of
coordinates.

It is not possible that all the vectors in A1 \ {e1} are of the form ei − ej . Indeed,
any linear combination of such vectors has the sum of its coordinates equal to 0,
whereas pe1 does not. Hence the connected component A1 contains some vector
el with l 6= 1. Consider the shortest path in G from el to e1. It is easy to see that
no edge label appears along this path more than once and that all the intermediate
vertices are vectors of the form ei − ej . The shortest path has the form

el = el0 →±(el0 − el1)→±(el1 − el2)→ · · · →±(els−1 − els )→ els = e1

for some s ≥ 1, where l0 = l and ls = 1, all li are pairwise distinct, and ±(ei − ej )

stands for emin(i, j)− emax(i, j). Now we obtain a presentation

e1 = el0 + (el1 − el0)+ (el2 − el1)+ · · ·+ (els − els−1)

of e1 as a linear combination of elements of A1 \ {e1} (with coefficients ±1). That
ends the proof of the proposition for v = e1.

The other case, v = e1− e2, can be reduced to the previous one as follows. Set
e′1 = e1− e2, e′2 =−e2, e′3 = e3− e2, . . . , e′n = en − e2. The set V ′ = {e′1, . . . , e′n}
is a basis of Zn . Moreover, up to signs, the sets Ṽ ′ and Ṽ coincide. The assumption
that p(e1 − e2) is a combination of v1, . . . , vk ∈ Ṽ is therefore equivalent to the
assumption that pe′1 is a combination of ±v1, . . . ,±vk ∈ Ṽ ′. From the previous
case we get that e′1 = e1− e2 is also a linear combination of v1, . . . , vk . �
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Appendix B

In this section we prove (6) which gives the expected waiting time for the appearance
of an (ε,m)-regular subset in a random sampling of S1.

We will first determine the waiting times for some occupancy problems in the
“balls into bins” model. Let K ≥ 1 be the number of bins and fix a constant m ≥ 1.
Consider the following random experiments.

(a) We throw balls independently and uniformly at random into K bins until one
of the bins contains m balls. Let Am(K ) be the random variable denoting the
number of balls thrown. By [Klamkin and Newman 1967, Theorem 2],

E[Am(K )] =2(K
m−1

m ) as K →∞.

This is known as the generalized birthday paradox, the case m=2 (and K =365
in the folklore formulation) being the classical birthday paradox.

(b) We throw balls as before, but each time a ball is thrown we assign it, uniformly
at random, with one of m colors. When a bin with m balls appears, we call
the sequence of colors in that bin, in the order in which they were thrown,
the outcome of the experiment. The outcome is good if all of the m balls
have different colors. The number of balls thrown is still given by the random
variable Am(K ), since the colors do not influence the stopping condition. Since
the balls were colored independently and uniformly, each outcome is equally
likely. In particular, the probability of a good outcome is m!/mm.

(c) We repeat the experiment of (b) until we obtain a good outcome, each time
starting with a fresh set of empty bins. Let τ be the random variable counting
the number of repetitions and let Bm(K ) be the total number of balls thrown.
We have

Bm(K )= Am(K )1+ · · ·+ Am(K )τ ,

where the Am(K )i are independent random variables with the distribution of
Am(K ). Clearly τ is a stopping time with respect to these variables, and by
the discussion in (b) we have E[τ ] = mm/m!. Now Wald’s equation gives

E[Bm(K )] = E[Am(K )] ·E[τ ] = E[Am(K )] ·
mm

m!
=2(K

m−1
m ) as K →∞.

(d) We throw balls independently and uniformly at random into K bins and we
color each ball uniformly with one of m colors, until some bin contains at least
one ball of each color. If Cm(K ) is the random variable counting the number
of balls thrown then Am(K )≤ Cm(K )≤ Bm(K ) and

E[Cm(K )] =2(K
m−1

m ) as K →∞.
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In the classical case m = 2 this is known as the birthday paradox with two
types (a boy sharing a birthday with a girl); we were unable to find a literature
reference for this result with arbitrary m.

Recall that Rm(ε) is the number of points chosen uniformly at random from S1

until an (ε,m)-regular subset appears. We claim that for any integer K ≥ 1,

(11) Rm

( 1
K m

)
≤ Cm(K ).

To see this divide S1 into arcs of length 1
K m . Each union of m arcs whose centers

form a regular m-gon represents one of our K bins. A uniformly random point
x ∈ S1 can be chosen by picking a uniformly random point y ∈

[
0, 1

m

)
S1 and a

random number i ∈ {0, . . . ,m− 1} and setting x = y+ i
m ; note y determines the

bin and i determines the color of the ball. When some bin contains a ball of each
color, the corresponding points are within 1

K m

(
in fact even 1

2K m

)
from the vertices

of a regular m-gon.
Next, we claim that

(12) E[Am(K )] ≤ 2E
[
Rm
( 1

4K m

)]
.

Let P1 be the collection of arcs and bins as above, and let P2 be the same collection
rotated by 1

2K m . If Y is
( 1

4K m ,m
)
-regular then all points of Y belong to the same

bin with respect to P1 or with respect to P2 (or both). Let p1 (resp., p2) be the
probability that the first time a

( 1
4K m

)
-regular set emerges in the random process

(X1,X2, . . . ), it is contained in one bin with respect to P1 (resp., P2). By symmetry
p1 = p2, therefore p1 ≥

1
2 . If we repeat the whole process until it ends with a set in

P1 then the expected number of repetitions is E[τ ] = 1
p1
≤ 2. An argument similar

to that in (c) above proves (12).
Letting K →∞ in (11) and (12) and using the asymptotics of E[Am(K )] and

E[Cm(K )] we obtain

E[Rm(ε)] =2
(( 1

ε

)m−1
m
)

as ε→ 0,

which proves (6).
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