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We describe presentations of braid groups of type ADE and show how these
presentations are compatible with mutation of quivers. In types A and D
these presentations can be understood geometrically using triangulated sur-
faces. We then give a categorical interpretation of the presentations, with
the new generators acting as spherical twists at simple modules on derived
categories of Ginzburg dg-algebras of quivers with potential.
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1. Introduction

Braid groups are fundamental objects in mathematics. Although they are of a
topological and geometric nature, they have an algebraic interpretation: a simple
presentation by generators and relations which is just based on adjacency of integers
[Artin 1925]. This can be encoded in a line graph, and from there one can generalize
to define a group from any finite graph, known as the Artin braid group.

The most well known groups defined from graphs are the Coxeter groups (we
restrict to the simply laced cases, for simplicity). These are closely related to Artin
braid groups: each Coxeter group is a quotient of a corresponding Artin braid group
in a natural way. In particular, the symmetric group on n letters is a quotient of the
classical braid group on n strands. Coxeter groups naturally split into two distinct
classes: those of finite type, corresponding to the Dynkin diagrams of type ADE,
and those of infinite type. Although all Artin braid groups are infinite, the Artin
braid groups of Dynkin type have a different character to those not of Dynkin type,
and are known as Artin groups of “finite type”.
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This dichotomy also arises in another area of mathematics which has generated a
lot of interest in the recent years: cluster algebras. In this theory, there is a notion of
finite-type cluster algebras, which again correspond to the Dynkin diagrams [Fomin
and Zelevinsky 2003]. Cluster algebras are specified by a directed graph, known as
a quiver, together with other information. A key ingredient in the definition is the
notion of mutation, which changes the arrows in a quiver in a nonobvious manner
which generalizes reflection at a source or sink. Barot and Marsh [2015] have given
new presentations of Coxeter groups of finite type based on quivers obtained from
Dynkin diagrams under finite sequences of mutations. Our first result generalizes
this to braid groups:

Theorem A. (Theorem 2.12) Let Q be a quiver, with vertices 1, 2, . . . , n, obtained
from a Dynkin quiver by a finite sequence of mutations. Let BQ be the group with
generators s1, s2, . . . , sn , subject to the relations

(a) si s j = s j si if there is no arrow between i and j (in either direction);

(b) si s j si = s j si s j if there is an arrow between i and j (in either direction);

(c) si1si2 ···sin si1 ···sin−2 = si2si3 ···sin si1 ···sin−1 = ··· = sin si1si2 ···sin si1si2 ···sin−3,

whenever i1→ i2→ · · · → in→ i1 is a chordless cycle in Q.

Then BQ is isomorphic to the Artin braid group of the same Dynkin type as Q.

We prove our result via isomorphisms between abstractly defined groups, which
can be thought of as mutations of groups, even though the resulting groups are
isomorphic. The Artin group presentations we obtain induce presentations of the
corresponding Coxeter groups which are distinct from those in [Barot and Marsh
2015]; we also give a compatibility result which shows the relationship between
the two presentations. Why have we chosen to use presentations which don’t agree
with the earlier work? This is explained in the following two sections of the paper,
as we now detail.

Certain cluster algebras can be understood using pictures. A (tagged) triangu-
lation of a Riemann surface with marked points on its boundary defines a quiver
[Fomin and Zelevinsky 2002; Fomin et al. 2008]; see also [Caldero et al. 2006].
Then mutation of the quiver has a natural interpretation in terms of swapping one
diagonal of a given quadrilateral for the other. So these cluster algebras have a
topological interpretation. In particular, such descriptions are available for the
infinite families of Dynkin type. It is natural to ask whether we can understand the
generators above, and the isomorphisms corresponding to mutations, in terms of
the geometry of the surface. The answer is yes, as shown by the following theorem:

Theorem B. (Theorem 3.6) Let 1 be a Dynkin diagram of type An or type Dn . In
the former case, let (X,M) be a disk with n + 3 marked points on its boundary.
In the latter case, let (X,M) be a disk with n marked points on its boundary and
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one marked point in its interior, taken to be a cone point of order two (so X is an
orbifold in this case).

Let T be a tagged triangulation of (X,M). Let GT be the graph in (X,M) dual
to T . For each vertex i of the quiver QT associated to T as in [Fomin and Zelevinsky
2002; Fomin et al. 2008], let σi be the braid of (X,M) associated to the edge of
GT crossing the tagged arc in T corresponding to i (see Definition 3.3). Then there
is an isomorphism between the subgroup HT of the braid group generated by the
σi and the group BQ defined above, taking σi to si .

Furthermore, in type An , the subgroup HT coincides with the braid group
of (X,M), while in type Dn , it is of index two in the braid group of (X,M).

As well as the original combinatorial and commutative algebraic approach to
cluster algebras, and the geometric approach described above, there is a third
approach which has proved very powerful: the representation theoretic approach
[Buan et al. 2006; Caldero et al. 2006]. This approach uses finite-dimensional
(noncommutative) algebras and ideas from categorification to better understand
cluster algebras, and has received intense study. Braid groups also appear in
representation theory and categorification [Rouquier and Zimmermann 2003; Seidel
and Thomas 2001]: in many important situations there are actions of braid groups
on derived categories via spherical twists. One example of this is given by certain
derived categories of differential graded algebras [Ginzburg 2007; Keller and Yang
2011] which are known to cover the categories appearing in the representation
theoretic approach to cluster algebras [Amiot 2009]. One might hope that these
categorical braid group actions are related to our presentations of braid groups, and
we show that this is indeed the case.

First, we make a connection between the categorical and the geometric situations.
The relevant differential graded algebras are defined by use of a quiver together with
a formal sum of cycles in that quiver known as a potential [Ginzburg 2007]. Mutation
of quivers of potential has been defined [Derksen et al. 2008] and, in the situations
where our cluster algebra comes from a Riemann surface, the mutation of potentials
also has a geometric interpretation [Labardini-Fragoso 2009]. Relying heavily on
results of Labardini-Fragoso [2009; 2016], we observe that the potential defined on
mutation-Dynkin quivers according to the geometric procedure is equivalent to the
“obvious” potential that one might guess (Proposition 4.4). So, while the potential
is important, it is in fact entirely determined by the quiver in types A and D. Note
that this result could also be proved relatively easily via a direct calculation.

Next we show that we do indeed obtain an action of the groups BQ (defined using
mutation-Dynkin quivers) on derived categories of Ginzburg differential graded
algebras in which the generators act via spherical twists. After setting up all the
technical machinery correctly, the main difficulty in proving this is to check that
the mutation procedure for the groups BQ , which relates the group associated to a
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quiver to the group associated to a mutated quiver, actually lifts to the categorical
setting as a natural isomorphism of functors. We do this, using important results of
Keller and Yang [2011]. From here, we can use the earlier theory developed here
to show that the generators si of finite type Artin braid groups from Theorem A
can be viewed as derived autoequivalences:

Theorem C. (Theorem 4.16) Let (Q,W ) be a mutation-Dynkin quiver with po-
tential of type ADE, and let 0Q,W be the corresponding Ginzburg differential
graded algebra. Let Dfd(0Q,W ) denote the full subcategory of the derived category
D(0Q,W ) on objects with finite-dimensional total homology. Then there is a group
homomorphism

BQ→ Aut Dfd(0Q,W ), si 7→ Fi

sending the group generator associated to the vertex i of Q to the spherical twist
Fi at the simple 0Q,W -module Si .

Since we started work on this project, we have become aware of independent
work by other authors. A. King and Y. Qiu have a related project, and were aware
of the new relations between spherical twists and a topological interpretation of
the spherical twist group; see [Qiu 2016], especially Section 10.1. In particular, an
independent proof of a version of Theorem 2.10 in types A and D was announced
in [Qiu 2016]. A key difference in our approach is the use of an orbifold with
cone point of degree two in type D. In [Nagao 2010, §2.2], K. Nagao refers to an
action of the mapping class group of a marked surface on the derived category of a
Ginzburg dg-algebra associated to a triangulation.

Since we released the first draft of this article, the preprint [Haley et al. 2014] has
appeared, where the authors give a presentation (different from the one given here)
of the Artin braid group for each diagram of finite type (in the cluster-theoretic
sense). This includes the non-simply-laced cases (not considered here) but does not
include a topological or categorical interpretation.

2. Presentations of braid groups

Braid groups. Let 1 be a graph of ADE Dynkin type, i.e., 1 is a graph of type An

for n ≥ 1, of type Dn for n ≥ 4, or of type E6, E7 or E8.

Type An: •
1

•
2

•
3

•
n−1

•
n

Type Dn:

•
1

•
2

•
3

•
4

•
n−1

•
n
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In particular, 1 has no double edges or cycles. Let I be the set of vertices of 1.
We can associate a group B1 to 1, which we call the braid group of 1. It has a
distinguished set of generators S1 = {si }i∈I , and the relations depend on whether
or not two vertices are connected by an edge. They are

(i) si s j = s j si if i and j are not connected by an edge;

(ii) si s j si = s j si s j if i and j are connected by an edge.

If 1 is of type An then we recover the “usual” braid group, sometimes denoted
Bn+1. Its generators can be visualized as

si =

•
1

•
2

•
i

•
i+1

•
n

•
n+1

•
1

•
2

•
i

•
i+1

•
n

•
n+1

and the relations of type (i) record the fact that crossings of adjacent pairs of strings
which are far apart commute, while relations of type (ii) record a Reidemeister 3
move.

If we also impose the relation that s2
i = 1 for all i ∈ I then we recover the Coxeter

group of type 1. More information on Coxeter groups and braid groups can be
found in [Humphreys 1990; Kassel and Turaev 2008].

Mutation of quivers. A quiver is just a directed graph. Throughout this article we
will only work with quivers with finitely many vertices and finitely many arrows
that have no loops or oriented 2-cycles. For a given quiver Q, we again denote its
set of vertices by I.

There is a procedure to obtain one quiver from another, called quiver mutation,
due to Fomin and Zelevinsky [2002, §4]. Fix Q and let k ∈ I. Then we obtain the
mutated quiver µk(Q) as follows:

(i) for each pair of arrows i→ k→ j through k, add a formal composite i→ j ;

(ii) reverse the orientation of all arrows incident with k;

(iii) remove a maximal set of 2-cycles (we may have created 2-cycles in the previous
two steps).

It is a basic but important observation that quiver mutation does not change the set
of vertices. One can also check that mutation is an involution.

We call a cycle in an unoriented graph (or in the underlying unoriented graph
of a quiver) chordless if the full subgraph on the vertices of the cycle contains no
edges which are not part of the cycle. We call a quiver Dynkin if its underlying
unoriented graph is a Dynkin graph of type ADE, and mutation-Dynkin if it can be
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obtained by mutating a Dynkin quiver finitely many times. By a theorem of Fomin
and Zelevinsky [2003, Theorem 1.4], there are only finitely many quivers that can
be obtained by mutating a given Dynkin quiver.

The following fact, due to Fomin and Zelevinsky, will be useful to us:

Proposition 2.1. In any mutation-Dynkin quiver, there are no double arrows and
all chordless cycles are oriented.

Proof. By [Fomin and Zelevinsky 2003, Theorem 1.8], the entries in the correspond-
ing exchange matrix B satisfy |Bxy Byx | ≤ 3 for all x, y (known as being 2-finite).
Hence there cannot be any double arrows in the quiver.

Now let Q be a mutation-Dynkin quiver and C a chordless cycle in Q. Then,
since Q is 2-finite, so is C . By Proposition 9.7 of the same paper, C must be an
oriented cycle. �

Groups from quivers. Let Q be a mutation-Dynkin quiver.

Definition 2.2. Let BQ be the group with generators SQ = {si }i∈I subject to the
following relations:

(i) si s j = s j si whenever i and j are vertices with no arrow between them,

(ii) si s j si = s j si s j whenever i and j are vertices of Q and there is an arrow
between them (in either direction);

(iii) s1s2 · · · sns1s2 · · · sn−2 = s2s3 · · · sns1 · · · sn−1
...

= sns1s2 · · · sns1s2 · · · sn−3

whenever Q contains an oriented chordless n-cycle

1 // 2
��

n

OO

.
.
.

oo

Remark 2.3. If Q is a Dynkin quiver, then BQ is (isomorphic to) the Artin braid
group of the corresponding Dynkin type.

This presentation is symmetric but not minimal:

Lemma 2.4. For each single chordless n-cycle, in the presence of the relations of
type (i) and (ii), any one of the relations of type (iii) implies all the others.

Proof. It is enough to show that if the relation

(1) s1s2 · · · sns1s2 · · · sn−2 = s2s3 · · · sns1s2 · · · sn−1

holds then
s1s2 · · · sns1s2 · · · sn−2 = s3s4 · · · sns1s2 · · · sn.
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So, we assume that (1) holds. Then we have

s−1
2 s1s2 · · · sns1s2 · · · sn−2sn = s3 · · · sns1s2 · · · sn−1sn.

The left-hand side can be rewritten, using relations of type (i) and (ii), as

s−1
2 s1s2 ···sns1s2 ···sn−2sn = s1s2s−1

1 s3 ···sns1s2 ···sn−2sn

= s1s2s3 ···sn−1s−1
1 sns1s2 ···sn−2sn

= s1s2 ···sn−1sns1s−1
n s2 ···sn−2sn = s1s2 ···sns1s2 ···sn−2,

and the result follows. �

Though the relations look different, by taking an appropriate quotient we can
obtain the groups defined by Barot and Marsh [2015] directly:

Lemma 2.5. If , along with the relations of types (i) and (ii), we also impose the
relations s2

i = 1 for all i ∈ I, then the group BQ becomes isomorphic to the group
0U (Q) defined in [Barot and Marsh 2015, Section 3], where U (Q) is the underlying
graph of Q.

Proof. As our definition is the usual definition of the braid group for a Dynkin
quiver, this follows from results in [Barot and Marsh 2015] and the results below
on how our groups change with quiver mutation, but since it is straightforward to
give a direct proof, we do so.

We need to show that, in the presence of relations (i), (ii), and s2
i = 1 for all i ∈ I,

our extra relation (iii) holds if and only if the relation

(s1s2 · · · sn−1snsn−1 · · · s2)
2
= 1

and its rotations hold for each n-cycle 1→ 2→ · · · → n→ 1. By symmetry, it is
enough to check that the relation above is equivalent to s1s2 · · · sns1s2 · · · sn−2 =

s2s3 · · · sns1 · · · sn−1.

Using that si = s−1
i , we see our relation is equivalent to

s1s2 · · · sns1s2 · · · sn−2sn−1sn−2 · · · s1sn · · · s3s2 = 1.

Multiplying out the relation from Barot and Marsh, we see that it is equivalent to

s1s2 · · · sn−1snsn−1 · · · s2s1s2 · · · sn−1snsn−1 · · · s2 = 1.

Cancelling out n terms on the left and n − 1 terms on the right of these two
expressions, it just remains to show

s1s2 · · · sn−2sn−1sn−2 · · · s2s1 = sn−1sn−2 · · · s2s1s2 · · · sn−2sn−1.

As there is an arrow i→ i + 1 for each i and the cycle is chordless, the symmetric
group on n letters maps onto the subgroup generated by s1, . . . , sn−1 with the
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(a)

◦

i
◦

j

•
k

µk

◦

i
◦

j

•
k

(b)

◦

i
◦

j

•
k

µk

◦

i
◦

j

•
k

Figure 1. Mutation of a quiver of mutation Dynkin type.

transposition which swaps i and i + 1 being sent to si . It is easy to see that the
corresponding relation holds in the symmetric group, with both sides of the equation
representing the transposition which swaps 1 and n. �

We will justify our choice of relations in Remark 4.19.

Mutation of groups. Let BQ be the group associated to the mutation-Dynkin
quiver Q, as above, and let k be a vertex of Q. Denote µk(Q) by Q′. Our aim
in this section is to show that BQ is isomorphic to BQ′ . We will do this by using
a group homomorphism ϕk : BQ → BQ′ defined using a formula which lifts the
formula used in [Barot and Marsh 2015, §5].

The following lemma follows from results in [Fomin and Zelevinsky 2003] (see
[Barot and Marsh 2015, §2]).

Lemma 2.6. Let Q be a quiver of mutation-Dynkin type, and fix a vertex k of Q.
Suppose that k has two neighbouring vertices. Then the possibilities for the induced
subquiver of Q containing vertex k and its neighbours are shown in Figure 1. The
effect of mutation is shown in each case.

The following lemma follows from [Barot and Marsh 2015, Lemma 2.5].

Lemma 2.7. Let Q be a quiver of mutation-Dynkin type, and fix a vertex k of Q.
Let C be an oriented cycle in Q. Then C is one of the following. In each case we
indicate what happens locally under mutation at k.

(a)
◦

i
◦

j

•
k

C
µk

◦

i
◦

j

•
k

(b) ◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦

C

µk

◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦
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(c) ◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦

C

µk

◦i1 ◦ ir

•
k

◦i2

◦

◦ ir−1

◦

(d) An oriented cycle containing exactly one neighbour of k. Mutation at k reverses
the arrow between k and its neighbour in C.

(e) An oriented cycle containing no neighbours of k. Mutation at k does not
affect C.

Recall that BQ is defined using generators si for i ∈ I. We denote the correspond-
ing generating set for BQ′ by ti , i ∈ I. Let FQ be the free group on the generators
si for i ∈ I.

Definition 2.8. Let ϕk : FQ→ BQ′ be the group homomorphism defined by

ϕk(si )=

{
tk ti t−1

k if i→ k in Q;
ti otherwise.

Proposition 2.9. The group homomorphism ϕk induces a group homomorphism
(which we also denote by ϕk) from BQ to BQ′ .

Proof. Let us write s̃i = ϕk(si ). We must show that the elements s̃i in BQ′ satisfy
the defining relations of BQ . Note that the ti satisfy the defining relations for BQ′ .

Firstly, we check the relations (ii) for an arrow incident with k. Suppose that
there is an arrow i→ k. Using the fact that ti tk ti = tk ti tk ,

s̃i s̃k s̃i = tk ti tk ti t−1
k = t2

k ti tk t−1
k

= t2
k ti .

Also,
s̃k s̃i s̃k = t2

k tk ti t−1
k tk = t2

k ti .

So
s̃i s̃k s̃i = s̃k s̃i s̃k,

as required.
If there is an arrow i← k, then

s̃i s̃k s̃i = ti tk ti = tk ti tk = s̃k s̃i s̃k .

Next, we consider relations (i) and (ii) for all other arrows in Q. Relations of this
kind involving pairs of vertices which are not neighbours of k follow immediately
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from the corresponding relations in BQ . If only one of the vertices in the relation is
a neighbour of k, the relation again follows immediately since tk commutes with
any generator corresponding to a vertex not incident with k in Q′ (or equivalently,
in Q). So we only need to consider the case where both of the vertices in the pair
are incident with k and we can use Lemma 2.6.

Going in either direction in part (a) of Lemma 2.6, the relation s̃i s̃ j = s̃ j s̃i follows
from the relation ti t j = t j ti in BQ′ , so we consider part (b), firstly from left to right.
The cycle in Q′ gives the relation tk ti = t j tk ti t j t−1

k t−1
j . Also applying the relation

t−1
k t−1

j t−1
k = t−1

j t−1
k t−1

j , we obtain

s̃i s̃ j = tk ti t−1
k t j = t j tk ti t j t−1

k t−1
j t−1

k t j

= t j tk ti t−1
k = s̃ j s̃i .

Going from right to left in part (b), we have, using t j tk t j = tk t j tk , ti t j = t j ti and
ti tk ti = tk ti tk ,

s̃ j s̃i s̃ j = tk t j t−1
k ti tk t j t−1

k = t−1
j tk t j ti t−1

j tk t j

= t−1
j tk ti tk t j = t−1

j ti tk ti t j

= ti t−1
j tk t j ti = ti tk t j t−1

k ti
= s̃i s̃ j s̃i .

Next, we have to check that the s̃i satisfy the relations of type (iii) for Q, so we
need to consider each type of cycle described in Lemma 2.7. By Lemma 2.4, it is
enough to check that, for any given cycle in Q, one of the relations in (iii) holds.

For part (a),
s̃k s̃i s̃ j s̃k = tk ti tk t j t−1

k tk = tk ti tk t j ,

while
s̃i s̃ j s̃k s̃i = ti tk t j t−1

k tk ti = ti tk t j ti
= ti tk ti t j ,

which is equal to s̃k s̃i s̃ j s̃k as required.
For part (b), applying a relation for the cycle in Q′ in the fourth step,

s̃i1 s̃i2 · · · s̃ir s̃i1 s̃i2 · · · s̃ir−2 = tk ti1 t−1
k ti2 · · · tir tk ti1 t−1

k ti2 · · · tir−2

= t−1
i1

tk ti1 ti2 · · · tir tk ti1 t−1
k ti2 · · · tir−2

= t−1
i1

tk ti1 ti2 · · · tir tk ti1 ti2 · · · tir−2 t−1
k

= t−1
i1

ti1 ti2 · · · tir tk ti1 ti2 · · · tir−2 tir−1 t−1
k

= ti2 · · · tir tk ti1 t−1
k ti2 · · · tir−2 tir−1

= s̃i2 · · · s̃ir s̃i1 s̃i2 · · · s̃ir−2 s̃ir−1 .
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For part (c), applying a relation for the cycle in Q′ in the fourth step,

s̃i1 s̃i2 · · · s̃ir−1 s̃ir s̃k s̃i1 · · · s̃ir−1 = ti1 ti2 · · · tir−1 tk tir t−1
k tk ti1 · · · tir−1

= ti1 ti2 · · · tir−1 tk tir ti1 · · · tir−1

= ti1 tk ti2 · · · tir−1 tir ti1 · · · tir−1

= ti1 tk ti1 ti2 · · · tir−1 tir ti1 · · · tir−2

= tk ti1 tk ti2 · · · tir−1 tir ti1 · · · tir−2

= tk ti1 ti2 · · · tir−1 tk tir t−1
k tk ti1 · · · tir−2

= s̃k s̃i1 s̃i2 · · · s̃ir−1 s̃ir s̃k s̃i1 · · · s̃ir−2,

and we are done. �

Theorem 2.10. The map ϕk : BQ→ BQ′ is a group isomorphism.

Proof. As mutation is an involution, we can consider the composition

ϕk : BQ
ϕk
−→ BQ′

ϕk
−→ BQ .

Fix some i ∈ I. Note that mutation at k does not change whether i and k are
connected in the quiver; it just swaps the direction of any arrow that may exist
between i and k. So if we have i → k, then si 7→ tk ti t−1

k 7→ sksi s−1
k . If we have

i ← k, then si 7→ ti 7→ sksi s−1
k . And if there is no arrow between i and k then

si 7→ ti 7→ si . But in this case si and sk commute, so si = sksi s−1
k . Hence in every

case ϕk(si )= sksi s−1
k , so ϕk is just a conjugation map and therefore ϕk : BQ→ BQ′

is an isomorphism. �

Remark 2.11. The inverse of ϕk is the group isomorphism ϕ−1
k : BQ′ −→

∼ BQ

defined by

ϕ−1
k (ti )=

{
s−1

k si sk if i→ k in Q;
si otherwise.

Noting Remark 2.3, we have the following:

Theorem 2.12. If Q is a mutation-Dynkin quiver of type 1 then BQ ∼= B1.

3. Topological interpretation of the generators

Braid groups. In this section we consider quivers Q which are mutation-equivalent
to an orientation of the Dynkin diagram of type 1, where 1 = An or Dn . By
Theorem 2.12, BQ is isomorphic to the Artin braid group B1 of the same Dynkin
type. In other words, BQ gives a presentation of B1. In this section we give a
geometric interpretation of this presentation.

We associate an oriented Riemann surface S (with boundary), together with
marked points M , to 1 as follows. If 1= An , we take S to be a disk with n− 3
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FG

1 2

3

1 2

3

1 2

3 4

3 4

1

2

Figure 2. Type I (left) and type II (right) puzzle pieces for tagged
triangulations in types An and Dn and the corresponding quivers.

marked points on its boundary, as in [Fomin and Zelevinsky 2002; 2003]. If1= Dn ,
we take S to be a disk with one marked point in its interior and n marked points on
its boundary, as in [Fomin et al. 2008; Schiffler 2008]. In each case, it was shown
that every quiver of the corresponding mutation type arises from a triangulation of
(S,M) (tagged, in the type Dn case) in the following way. We follow [Fomin et al.
2008], in a generality great enough to cover both cases (noting that there is at most
one interior marked point).

A (simple) arc in (S,M) is a curve in S (considered up to isotopy) whose
endpoints are marked points in M and which does not have any self-crossings,
except possibly at its endpoints. Apart from these endpoints, it must be disjoint
from M and the boundary of S, and it must not cut out an unpunctured one- or
two-sided polygon.

Two arcs are said to be compatible if they are noncrossing in the interior of S. A
maximal set of compatible arcs is a triangulation.

A tagged arc in (S,M) is an arc which does not cut out a once-punctured
monogon; each of its ends is tagged, either plain or notched. Plain tags are omitted,
while notched tags are displayed using the bow-tie symbol FG. An end incident
with a boundary marked point is always tagged plain. Two tagged arcs α, β are
compatible if

(i) the untagged arcs underlying α and β are compatible, and

(ii) if the untagged versions of α and β are different but share an endpoint, then
the corresponding ends of α and β are tagged in the same way.
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A tagged triangulation T of (S,M) is a maximal collection of tagged arcs in (S,M).
Note that if none of the marked points in M lies in the interior of S, every end of
an arc in a tagged triangulation must be tagged plain, and tagged triangulations of
S can be identified with triangulations of S.

The set M of marked points divides the boundary components of (S,M) into
connected components, which we call boundary arcs. Note that the boundary arcs
do not lie in a triangulation or tagged triangulation of (S,M), by definition.

The tagged triangulation T can be built up by gluing together puzzle pieces of
the two types shown in Figure 2 (see [Fomin et al. 2008, Remark 4.2]) by gluing
together along boundary arcs. Note that the puzzle piece of type II can only occur
in the type Dn case, and then it occurs exactly once.

If α is an arc in a tagged triangulation T , then the flip of T at α is the unique
tagged triangulation containing T \{α} but not containing α. By [Fomin et al. 2008],
the set of tagged triangulations of (S,M) is connected under flips.

The quiver QT of a tagged triangulation T has vertices corresponding to the
arcs in T . The quiver is built up by associating a quiver to each puzzle piece; see
Figure 2. If a boundary arc in the puzzle piece is also a boundary arc of (S,M),
then the corresponding vertex in the quiver is omitted, together with all incident
arrows. The quivers are then glued together by identifying vertices whenever the
corresponding edges are glued together in the puzzle pieces.

In order to discuss braid groups, we need to consider more general curves in
(S,M). We define a path in (S,M) to be a (possibly nonsimple) curve whose
endpoints lie in S (not necessarily in M).

Definition 3.1. Let T be a tagged triangulation of (S,M). We associate a graph
to T , which we call the braid graph GT of T , as follows. The vertices VT of GT
are in bijection with the connected components of the complement of T in (S,M)
and, whenever two such connected components have a common tagged arc on their
boundaries, there is an edge in GT between the corresponding vertices. Thus the
edges in GT are in bijection with the arcs in T .

We choose an embedding ι of GT into (S,M), mapping each vertex to an interior
point of the corresponding connected component of the complement of T in (S,M)
and each edge to a path between the images of its endpoints transverse to the
corresponding edge in T . We identify GT with its image under ι.

Note that in the type A case the braid graph is the tree from Section 3.1 of
[Caldero et al. 2006].

We associate an orbifold X to S as follows. In the type An case, we just take
X = S, and in the type Dn case we take X to be S with the interior marked point
of S interpreted as a cone point of order two. In each case, the set M of marked
points induces a corresponding set of marked points in X , which we also denote
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v1 v2

γv1

γv2

Figure 3. Thickening of the path π (the middle path).

by M. Each arc or tagged arc α in (S,M) induces a corresponding arc or tagged
arc in (X,M) which we also denote by α. Thus each (tagged) triangulation T of
(S,M) induces a corresponding set T of (tagged) arcs in (X,M).

Note also that orbifolds have been used to model cluster algebras in [Felikson
et al. 2012]. In this approach, the model for Bn is an orbifold with a cone point
of order two, regarded as a folding of Dn , where Dn is modelled by a disk with a
single interior marked point (see also Lecture 15 of [Thurston 2012], which was
given by A. Felikson).

We denote by X◦ the orbifold X with the cone point (if there is one) removed
(so X◦ = X in type An). Given any set V of vertices in X◦, we may consider the
corresponding braid group, 0(X, V ) following [Allcock 2002]. Each element of
0(X, V ) (or braid ) can be regarded as a permutation g of V together with a tuple
γ = (γv)v∈V of paths γv : [0, 1] → X◦ such that γv(0) = v and γv(1) = g(v) for
each v ∈ V. In addition, for each t ∈ [0, 1], the points γv(t) for v ∈ V must all be
distinct for all v ∈ V. Braids are considered up to isotopy, and two braids can be
multiplied by composing the paths in a natural way; we compose braids from right
to left, as for functions.

Remark 3.2. Suppose V and V ′ are two sets of points in X◦ and there is a bijection
ρ : V → V ′. Suppose also that there is a set of paths δv : [0, 1] → X◦, for v ∈ V,
with δv(0)= v and δv(1)= ρ(v) for all v ∈ V. Suppose furthermore that the points
γv(t) for v ∈ V and t ∈ [0, 1] are all distinct. Then the maps δv induce a natural
isomorphism between 0(X, V ) and 0(X, V ′).

Definition 3.3. Each path π in X◦ with endpoints v1, v2 in V determines a braid σπ
in 0(X, V ) as follows (see [Fox and Neuwirth 1962, §7]). We thicken the path π
along its length (avoiding the other vertices), closing it off at the end points to form
a (topological) disk. We give the boundary of the disk the clockwise orientation.
The vertices v1 and v2 divide the boundary of the disk into two paths, one from v1

to v2 and the other from v2 to v1. We define γv1 to be the former and γv2 to be the
latter. See Figure 3. For v ∈ V such that v 6= v1, v2, we define γv(t) to be v for all
t ∈ [0, 1]. Then σπ is the braid (γv)v∈V . Note that σπ only depends on the isotopy
class of the image of π in (X, V ). In particular, it is unchanged if π is reversed.
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π

π

Figure 4. The braid σπ .

An example of a braid σπ is displayed as a picture (in the same way as in [Allcock
2002]) in Figure 4. In this figure only, we display π as a dashed line to distinguish
it from the braid σπ .

Interpretation of the generators. Let T be a triangulation of (S,M). Let QT be
the quiver of T . Then QT has vertices I corresponding to the arcs in T . We denote
the arc in T associated to i ∈ I by αi . The corresponding edge in GT is denoted πi .
Let σi = σπi ∈ 0(X, VT ) be the corresponding braid. We define HT to be the
subgroup of 0(X, VT0) generated by the braids σi for i ∈ I.

Let T0 be an initial triangulation of (S,M) defined as follows. In the type An

case, we choose a marked point P in M and take noncrossing arcs between P and
each of the other marked points in M not incident with a boundary arc incident
with P. In the type Dn case, we choose two marked points P, Q on the boundary
of S. We take two arcs between the interior marked point and Q, one tagged plain
at the interior marked point and the other one tagged notched, and an arc between P
and Q (not homotopic to a boundary arc). We then take (noncrossing) arcs between
P and every other marked point in M on the boundary of S not incident with a
boundary arc incident with P. See Figure 5. Then the quiver QT0 associated to
QT0 is a Dynkin quiver of type 1. By Remark 2.3, BQT0

is isomorphic to the Artin
braid group of type 1.

Proposition 3.4. Let T0 be the triangulation of (X,M) defined as above. Then
there is an isomorphism from HT0 to BQT0

taking the braid σi to the generator
si of BQT0

. Furthermore, in type An , the subgroup HT0 coincides with 0(X, VT0),
while in type Dn , it is a subgroup of 0(X, VT0) of index two.

Proof. For type An , see [Fox and Neuwirth 1962] and the explanation in [Allcock
2002, §4]. For type Dn , note that the elements σi for i ∈ I coincide with the
generators hi defined in [Allcock 2002, §1] (via an isomorphism of the kind in
Remark 3.2). The result then follows from [Allcock 2002, Theorem 1]. �

The following lemma appears in [Sergiescu 1993, Théorème, part (iv)].

Lemma 3.5. Let A, B,C be three distinct points in X◦ and suppose there is a topo-
logical disk in X◦, with A, B and C lying in order clockwise around its boundary.
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Figure 5. Initial triangulations and the corresponding braid graphs
and quivers.

Let AB denote the arc on this boundary between A and B. We define BC and C A
similarly. Then σABσBC = σBCσC A.

Theorem 3.6. Let T be an arbitrary tagged triangulation of (X,M). Then there
is an isomorphism from HT to BQT taking the braid σi to the generator si of
BQT . Furthermore, in type An , the subgroup HT coincides with 0(X, V ), while in
type Dn , it is a subgroup of 0(X, V ) of index two.

Proof. The result holds for T = T0 by Proposition 3.4. Note that any triangulation
can be obtained from T0 by applying a finite number of flips of tagged triangulations.
We show that the theorem is true for an arbitrary tagged triangulation T by induction
on the number of flips required to obtain T from T0. To do this, it is enough to
show that if the theorem holds for a tagged triangulation T and αi is a tagged arc
in T then the theorem also holds for the flip of T at αi .

So we assume the result holds for a tagged triangulation T . Thus there is an
isomorphism ψT : HT → BQT sending σi to si . We denote the corresponding
elements of HT ′ by τi and ti . The tagged arcs in T are denoted by αi , for i ∈ I, and
we denote the corresponding tagged arcs in T ′ by βi , for i ∈ I. The edges of GT
are denoted πi , and we denote the edges of GT ′ by ρi .

We define:

τ̃i =

{
σ−1

k σiσk, if i→ k in Q;
σi , otherwise.

Then it is easy to see that HT is generated by the τ̃i for i ∈ I.
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Figure 6. Flip involving an arc (α1) where two puzzle pieces of
type I are glued.

We consider the possible types of flip that can occur, which are determined by
the fact that T can be constructed out of puzzle pieces. Suppose first that T ′ is the
flip of T at an arc α where two puzzle pieces of type I are glued together. We label
the corresponding vertices in I by 1, 2, 3, 4, 5, for simplicity, and suppose we are
flipping at the edge in T dual to α1. The braid graph local to the flip is shown in
the left-hand diagram in Figure 6. Applying Lemma 3.5, we see that the middle
figure shows paths π̃i with the property that τ̃i = σπ̃i for i = 1, 2, 3, 4, 5.

Rotating vertices A and B clockwise, to get the right-hand diagram in Figure 6,
we obtain, via Remark 3.2, an isomorphism from HT to HT ′ taking τ̃i to τi for
all i ∈ I. The inverse is an isomorphism from HT ′ to HT taking τi to σ−1

k σiσk if
there is an arrow i→ k in Q and to σi otherwise. Composing with the isomorphism
ϕk ◦ψT , where ϕk is the isomorphism in Proposition 2.9, we obtain an isomorphism
from HT ′ to BQT ′ taking τi to ti as required. This proves the required result in
type A, so we are left with the type D case, where puzzle pieces of type II may occur.

We next consider a flip inside a puzzle piece of type II. We can apply essentially
the same argument; see Figures 7 and 8. Here we draw the puzzle piece together
with the two adjacent triangles, necessarily of type I (since there is only one cone
point). To go from the middle diagram to the right-hand diagram in Figure 8, the
vertex D should be moved anticlockwise around the cone point. We use the fact
that in the right-hand diagram of Figure 8, the resulting path π̃1 is isotopic to the
path ρ1 in GT ′ , using the fact that the cone point has order two.

Note that the adjoining type I puzzle pieces (in Figures 7 and 8) may not occur,
but the argument is easily modified to cover these cases. We also need to consider
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Figure 7. Flip (at α1) inside a puzzle piece of type II, first case.
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Figure 8. Flip (at α2) inside a puzzle piece of type II, second case.

the flips from the right-hand diagram in each case to the corresponding left-hand
one. We omit the details; a similar argument can be applied in these cases.

Finally, we need to consider a flip involving an arc where a puzzle piece of type
I and a puzzle piece of type II have been glued together. These cases are shown in
Figures 9 and 10: Figure 9 illustrates the case where the puzzle piece of type I is on
the left of the puzzle piece of type II (when it is drawn as shown), while Figure 10
illustrates the case where it is on the right. Again, a similar argument applies in
the case of flips from the right-hand diagram to the left-hand one in these cases. �
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Figure 9. Flip involving an arc (α3) where puzzle pieces of type I
and II are glued, first case.
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Figure 10. Flip involving an arc (α4) where puzzle pieces of type
I and II are glued, second case.

4. Actions on categories

Quivers with potential. Fix an algebraically closed field F. To any quiver Q we
can associate the path algebra FQ, which, as an F-vector space, has basis given
by all paths in Q of length ≥ 0, and the multiplication of two paths p1 and p2 is
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their concatenation p1 p2 if p1 ends and p2 starts at the same vertex, and is zero
otherwise.

Let FQ≥n be the ideal of FQ generated by the paths in Q of length at least n.
We can take the completion F̂Q of FQ with respect to FQ≥1, which is defined as:

F̂Q = lim
←−−

n

FQ
FQ≥n

=
{
(an+FQ≥n)

∞

n=1 |an ∈FQ, ϕn(an+FQ≥n)=an−1+FQ≥n−1
}
,

where the limit is taken along the chain of epimorphisms

FQ
FQ≥1

ϕ2�−
FQ

FQ≥2

ϕ3�−
FQ

FQ≥3
� · · · .

Let F̂Q cyc denote the subspace of (possibly infinite) linear combinations of
cycles in Q. Recall that a potential for a quiver Q is an element W of F̂Q cyc,
regarded up to cyclic equivalence (and for which no two cyclically equivalent
paths in Q occur in the decomposition of W ). The pair (Q,W ) is called a quiver
with potential [Derksen et al. 2008], which we occasionally abbreviate to QP. The
following definition is due to Derksen, Weyman and Zelevinsky:

Definition 4.1 [Derksen et al. 2008, Definition 4.2]. Let Q1 and Q2 be two quivers
with the same vertex set I , and (Q1,W1) and (Q2,W2) be two QPs. A right equiv-
alence between (Q1,W1) and (Q2,W2) is an algebra isomorphism ϕ : F̂Q1→ F̂Q2

such that ϕ(W1) is cyclically equivalent to W2 and ϕ is the identity when restricted
to the semisimple subalgebra FI of F̂Q1.

A quiver with potential (Q,W ) with W containing paths of length two or more
is trivial if Q is a disjoint union of 2-cycles and there is an algebra automorphism
of k̂ Q preserving the span of the arrows of Q (a change of arrows) which takes
W to the sum of the 2-cycles in Q. A quiver with potential (Q,W ) is said to be
reduced if W is a linear combination of cycles in Q of length 3 or more.

The splitting theorem [Derksen et al. 2008, Theorem 4.6] states that every quiver
with potential can be written as a direct sum of a reduced quiver with potential and
a trivial quiver with potential which are unique up to right equivalence.

Let (Q,W ) be a quiver with potential, and let k be a vertex of Q not involved
in any 2-cycles. By replacing W with a cyclically equivalent potential on Q if
necessary, we can assume that none of the cycles in the decomposition of W start or
end at k. We denote by µ̃k(Q,W ) the nonreduced mutation of (Q,W ) at k in Q, as
defined in [Derksen et al. 2008, §5]. Then, by Theorem 5.2 of the same paper, the
right equivalence class of µ̃k(Q,W ) is determined by the right equivalence class
of (Q,W ). The mutation µk(Q,W ) of (Q,W ) at k is then defined to be the reduced
component of µ̃k(Q,W ), and is uniquely determined up to right equivalence, given
the right equivalence class of (Q,W ).
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Figure 11. Terms in the potential WT .

As before, we will say a quiver with potential (Q,W ) is Dynkin if the underlying
unoriented graph of Q is an orientation of a Dynkin quiver (and hence W = 0).
We shall say that a quiver with potential (Q′,W ′) is mutation-Dynkin if it can be
obtained by repeatedly mutating a Dynkin quiver with potential in the above sense.
Note: For the rest of this subsection we will restrict to Dynkin types A and D.
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Let (S,M) be the Riemann surface with marked points associated to 1 as in
Section 3. So, if 1= An , we take S to be a disk with n− 3 points on its boundary,
and if 1= Dn , we take S to be a disk with one marked point in its interior and n
marked points on its boundary.

Let Q be a mutation-Dynkin quiver. By [Fomin et al. 2008], Q = QT for some
tagged triangulation T of (S,M). Let W,W ′ be the sum of the terms coming from
local configurations in T as shown in Figure 11 (where in (c) and (d) there are at
least three arcs incident with the interior marked point).

Then WT is the potential given by taking the sum of the induced cycles in QT
(i.e., induced subgraphs of QT which are cycles), and W ′T is the potential associated
to T in [Labardini-Fragoso 2016, §3], taking the parameter associated to the internal
marked point (if there is one) to be equal to −1. Then we have the following:

Lemma 4.2. The potentials WT and W ′T are right equivalent.

Proof. We assume we are in case Dn , since the two potentials coincide in case An .
If the interior marked point is as in case (c) of Figure 11 (with at least 3 arcs incident
with it), then there is a unique triangle in T with sides 1 and 2. We label the arrows
in the corresponding 3-cycle in WT or W ′T by a, x, y, in order around the cycle.
Then the automorphism ϕ of k̂ QT negating a and x and taking each other arrow to
itself gives a right equivalence between WT and W ′T , since a and x are not involved
in any other terms in any of these potentials.

If the interior marked point is as in case (d), then WT and W ′T coincide. �

We recall the following special case of [Labardini-Fragoso 2016, Theorem 8.1].

Theorem 4.3 [Labardini-Fragoso 2016]. Let T , T ′ be triangulations of (S,M). If
T ′ is obtained from T by flipping at an arc αk then µk(QT ,W ′T ) is right equivalent
to (QT ′,W ′T ′).

By [Derksen et al. 2008, Theorem 7.1], it follows from this that the quiver of
µk(QT ,WT ) coincides with the quiver obtained from QT by Fomin–Zelevinsky
quiver mutation at k.

Hence we can effectively ignore potentials:

Proposition 4.4. Any mutation-Dynkin quiver with potential (Q̃, W̃ ) of type A or
D is right equivalent to (Q̃,WQ̃), where WQ̃ is the sum of all chordless cycles in Q̃.

Proof. Note that a Dynkin quiver with zero potential is of the form (QT ,WT ) for
some triangulation T ; see [Fomin et al. 2008]. Suppose that (Q̃, W̃ ) is obtained
from a Dynkin quiver with zero potential by iterated mutation in the sense of
[Derksen et al. 2008]. Then, by Theorem 4.3 and Lemma 4.2, (Q̃, W̃ ) is right
equivalent to (QT ,WT ) for some triangulation T of (S,M). �

Note that an alternative proof of Proposition 4.4 would be to compute the mutation
of a quiver with potential (QT ,W ′T ) directly, and show that it is right equivalent
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to (QT ′,W ′T ′). This is not too difficult to do, but requires consideration of several
cases and still requires arguments dealing with changes of sign as in Lemma 4.2,
so we instead refer to [Labardini-Fragoso 2016] above.

Differential graded algebras and modules. Let F be an algebraically closed field.
We think of F as a graded F-algebra concentrated in degree 0. If V =

⊕
Vi is

a graded F-module then let V [ j] be the graded F-module with (V [ j])i = Vi+ j .
If f : V → W is a map of graded vector spaces with homogeneous components
fi : Vi → Wi then let f [ j] : V [ j] → W [ j] be the map of graded vector spaces

with homogeneous components f [ j]i : V [ j]i → W [ j]i defined by f [ j]i (v) =
(−1) j fi+ j (v) for v ∈ V [ j]i = Vi+ j . Thus [1] is an endofunctor of the category of
graded F-modules, called the shift functor.

If V and W are graded vector spaces, we will refer to a map f : V →W [ j] of
graded vector spaces as a map from V to W of degree j . We use the Koszul sign
rule for graded F-algebras, so if f : V → V ′ and g :W →W ′ are maps of graded
F-modules of degree m and n then

( f ⊗ g)(v⊗w)= (−1)in f (v)⊗ g(w)

for v ∈ Vi and w ∈W.
A unital differential graded algebra (or dg-algebra, or dga) over F is a graded

F-algebra A =
⊕

i∈Z Ai with multiplication m : A⊗F A→ A of degree 0 together
with a unit ι : F ↪→ A and an F-linear differential d : A→ A of degree +1. These
should satisfy

• the associativity relation m ◦ (1⊗m)= m ◦ (m⊗ 1);

• the boundary relation d2
= 0;

• the Leibniz relation d ◦m = m ◦ (1⊗ d + d ⊗ 1);

• the unital relation m ◦ (idA⊗ ι)= m ◦ (ι⊗ idA), which should agree with the
F-algebra structure of A.

We often denote our dga by (A, d), or simply by A. Each dga (A, d) has an
underlying unital graded algebra, obtained by simply forgetting the differential,
which we denote u(A).

A left module M for A is a graded left F-module M which has a left action
mM : A⊗M→ M of u(A) together with a map dM : M→ M of degree +1, called
a differential, such that

dM ◦mM = mM ◦ (1⊗ dM + d ⊗ 1).

We always have the regular module M = A with dM = d and mM = m. Similarly,
a right module M for A is a graded right F-module M which has a right action
mM : M ⊗ A→ M of u(A) together with a differential dM such that dM ◦mM =

mM ◦ (1⊗ d + dM ⊗ 1). If (M, dM) is an A-module, then (M[1], dM [1]) is also an



100 JOSEPH GRANT AND BETHANY ROSE MARSH

A-module, which we sometimes just write as M[1]. Modules for A are modules
for u(A), simply by forgetting the differential.

A map f : M→ N of left A-modules is a degree 0 map of u(A)-modules such
that f commutes with the differentials: dN ◦ f = f ◦dM . We thus obtain a category
A-Mod of left A-modules, and we write the morphism spaces in this category as
HomA-Mod(M, N ). A-Mod is an F-category: each morphism space is an F-module.

Given two differential algebras (A, dA) and (B, dB), an A-B-bimodule (M, dM)

is a graded F-module which is a left (A, dA)-module with left action m` and a right
(B, dB)-module with right action mr where the two actions commute:

mr
◦ (m`

⊗ idB)= m`
◦ (idA⊗mr ).

We will always assume that F acts centrally. Under this assumption we can, and
will, identify left A-modules with A-k-bimodules and A-B-bimodules with left
A⊗F Bop-modules, where Bop denotes the algebra B with the order of multiplication
reversed. A map of bimodules should commute with the differential on both the
left and the right, and we obtain an F-category A-Mod-B of A-B-bimodules.

Given a map f : M → N of left A-modules, we can construct a new left A-
module called the cone of f , denoted cone( f ). As a left module for u(A), we have
cone( f )= N ⊕M[1]. The differential is given by(

dN 0
f [1] dM[1]

)
.

If L is isomorphic to cone( f ) for some map f : M → N, we say that L is an
extension of M by L[−1].

We will use the following lemma, whose proof follows immediately from the
definitions, repeatedly.

Lemma 4.5. Let f : M→ N be a map in A-Mod.

(i) Let F : A-Mod→ B -Mod be an additive functor which commutes with the shift
functor. Then we have an isomorphism cone(F f )∼= F cone( f ) in B -Mod.

(ii) For any commutative diagram

M
f
//

ϕM∼

��

N

ϕN∼

��

M ′
f ′
// N ′

in A-Mod where both ϕM and ϕN are isomorphisms, we have an isomorphism
ϕN ⊕ϕM [1] : cone( f )→ cone( f ′) of A-modules.

Let (A, dA), (B, dB), and (C, dC) be dgas. If (M, dM) is an A-B-bimodule and
(N , dN ) is an A-C-bimodule then let Homi

A(M, N ) be the space of all graded left
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u(A)-module maps f : M → N of degree i . We do not require that these maps
commute with the differential. We define

HomA(M, N )=
⊕
i∈Z

Homi
A(M, N ),

and this is a graded u(B)-u(C)-bimodule. We also have a version for right modules,
which we write as HomAop(M, N ).

Note the distinction between HomA(M, N ) and the hom spaces in the category
A-Mod. With the differential d( f )= dN ◦ f − (−1)i f ◦dM for f ∈Homi

A(M, N ),
HomA(M, N ) becomes a B-C-bimodule. Similarly, if (M, dM) is a B-A-bimodule
and (N , dN ) is a C-A-bimodule, HomAop(M, N ) is a C-B-bimodule. HomA(−,−)

is the internal hom in the bimodule category, and we can recover the hom spaces in
A-Mod as the 0-cycles of HomA(M, N ).

If (M, dM) is an A-B-bimodule and (N , dN ) is a B-C-bimodule then let M⊗B N
denote the space M ⊗u(B) N. It is a graded u(A)-u(C)-bimodule: if m ∈ Mi and
n ∈ N j then m⊗ n has degree i + j . With the differential dM ⊗ idN + idM ⊗ dN , it
becomes an A-C-bimodule.

For an A-B-bimodule (M, dM), we thus have functors

M ⊗B − : B -Mod→ A-Mod and HomA(M,−) : A-Mod→ B -Mod .

The functor M ⊗B − is left adjoint to HomA(M,−). For (N , dN ) a left A-module,
the counit evN : M⊗B HomA(M, N )→ N of the adjunction is the evaluation map,
which acts as x ⊗ f 7→ (−1)i j f (m) for x ∈ Mi and f ∈ Hom j

A(M, N ).

Derived categories. Our references are [Keller 1994; 2006].
If A is a graded vector space and d is a differential, i.e., a degree +1 endomor-

phism of A which satisfies d2
= 0, then the i-th homology of A, denoted Hi (A), is

the subquotient ker di/ im di−1, where di : Ai → Ai+1 denotes the restriction of d
to Ai . If (A, d) is a dga then the homology H(A)=

⊕
Hi (A) is a graded algebra,

and if M is a left A-module then H(M) =
⊕

Hi (M) is a left H(A)-module. In
fact, taking homology is a functor from the category of A-modules to the category
of graded H(A)-modules. We say that a left A-module M is acyclic if H(M)= 0,
and that a map f : M → N of A-modules is a quasi-isomorphism if H( f ) is an
isomorphism.

The category up to homotopy of A-Mod, denoted K(A), is the F-category whose
objects are all left A-modules and whose morphism spaces, for M, N ∈ A-Mod, are
HomK (A)(M, N )= H0 HomA(M, N ). The derived category of A, denoted D(A),
is the F-category obtained by localizing K(A) at the full subcategory of acyclic
A-modules. As a map of modules is a quasi-isomorphism if and only if its cone is
acyclic, this is equivalent to localizing K(A) at the class of all quasi-isomorphisms.
So we have a canonical functor K(A)→D(A), which we call the projection functor.
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The finite-dimensional derived category, denoted Dfd(A), is the full subcategory
of D(A) on objects with finite-dimensional total homology, i.e., on A-modules M
such that H(M) is a finite-dimensional F-vector space.

Let (A, dA) be a dga. We say that

• P ∈ A-Mod is indecomposable projective if it is an indecomposable direct
summand of the regular module,

• P ∈ A-Mod is relatively projective if it is a direct sum of shifts of indecompos-
able projective modules, and

• P ∈ A-Mod is cofibrant if, for each surjective quasi-isomorphism f :M→N, the
map HomA-Mod(P, f ) : HomA-Mod(P,M)→ HomA-Mod(P, N ) is surjective.

The following result characterizes cofibrant modules.

Proposition 4.6 [Keller 1994, Section 3; Keller and Yang 2011, Proposition 2.13].
An A-module P is cofibrant if and only if it is an iterated extension of a rela-
tively projective module by other relatively projective modules, possibly infinitely
many times.

Let A -cofib denote the full subcategory of K(A) on the cofibrant objects. The
projection functor K(A)→ D(A) induces an equivalence A -cofib−→∼ D(A). Each
A-module M has a cofibrant replacement, defined up to quasi-isomorphism and
denoted p M, which can be realized as the image of M under the left adjoint
D(A)→ K(A) to the canonical projection functor [Keller 2006, Proposition 3.1].

Let (B, dB) be another dga and let F : A-Mod→ B -Mod be an additive functor.
Then F preserves chain homotopies, and so induces a functor K(F) :K(A)→K(B).
If K(F) preserves quasi-isomorphisms then, by the universal property of localization,
it induces a functor D(F) : D(A)→ D(B). If P ∈ A-Mod-B is cofibrant as a left
A-module then, by [Keller 1994, Theorem 3.1(a)] and [Keller and Yang 2011,
Proposition 2.13], HomA(P,−) preserves acyclic modules, and so preserves quasi-
isomorphisms. By imitating the proof of [Keller 1994, Theorem 3.1(a)] we see
that if P ∈ A-Mod-B is cofibrant as a right B-module then P ⊗B − also preserves
acyclic modules. We often write P⊗B − and HomA(P,−), instead of D(P⊗B −)

and D(HomA(P,−)), for the induced functors D(B)→ D(A) and D(A)→ D(B).
For an arbitrary M ∈ A-Mod-B, we get a functor M⊗L

B−:D(B)→D(A), known
as the left derived functor of M ⊗B −, by composing the cofibrant replacement
functor D(B)→ K(B), the tensor functor K(M ⊗B −) : K(B)→ K(A), and the
projection functor K(A)→ D(B). By [Keller 1994, Lemma 6.3(a)], we have an
isomorphism M ⊗L

B N ∼= p M ⊗B N for all N ∈ D(B). The following basic, but
useful, lemma says that this isomorphism is natural.

Lemma 4.7. Let M ∈Mod-B.

(i) We have a natural isomorphism of functors p M ⊗B −∼= M ⊗L
B −.
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(ii) If M is cofibrant we have a natural isomorphism of functors M⊗B−∼=M⊗L
B−.

Proof. (i) We need to show that for each N ∈ B -Mod there is a quasi-isomorphism
ϕN : p M ⊗B N → M ⊗B p N such that, for all maps f : N → N ′, the diagram

p M ⊗B N
ϕN
//

p M⊗ f
��

M ⊗B p N

M⊗ p f
��

p M ⊗B N ′
ϕN ′
// M ⊗B p N ′

commutes. Consider the following diagram:

p M ⊗B p N

p M⊗πN

��

πM⊗ p N

��

p M ⊗B p N ′

p M⊗πN ′

��

πM⊗ p N ′

��

p M ⊗B N
ϕN

//

p M⊗ f

++

M ⊗B p N
M⊗ p f

++

p M ⊗B N ′
ϕN ′

// M ⊗B p N ′

As p M and p N are cofibrant and πM and πN are quasi-isomorphisms, both
p M ⊗πN and πM ⊗ p N are quasi-isomorphisms, therefore we can define ϕN =

(πM⊗ p N )◦( p M⊗πN )
−1 and it is a quasi-isomorphism. Then to check naturality

we need to show that

(M⊗ p f )◦(πM⊗ p N )◦( p M⊗πN )
−1
= (πM⊗ p N ′)◦( p M⊗πN ′)

−1
◦( p M⊗ f ).

By the bifunctoriality of the tensor product, the left-hand side is equal to

(πM ⊗ p N ′) ◦ ( p M ⊗ p f ) ◦ ( p M ⊗πN )
−1

so we just need to show that

p f ◦π−1
N = π

−1
N ′ ◦ f

but this follows from the functoriality f ◦πN =πN ′◦ p f of the cofibrant replacement
functor p.

(ii) We just need to show that, for M cofibrant, there is a natural isomorphism
M⊗B−∼= p M⊗B−, and then the result will follow by part (i) of the lemma. This
follows because πM : p M→ M is a quasi-isomorphism and by the bifunctoriality
of the tensor product. �

If the functor M ⊗L
B − is an equivalence D(B) −→∼ D(A), we say that M is a

tilting module.
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We say that a module M is of finite projective dimension if its cofibrant replace-
ment is an iterated extension of finitely many shifted indecomposable projective
modules.

The following basic lemma will also be useful. It can be found as [Keller 1994,
Lemma 6.2(a)]. We include a proof for the convenience of the reader.

Lemma 4.8. Let M be a left A-module of finite projective dimension and let P be
its cofibrant replacement. Then we have a natural isomorphism of functors

HomA(P, A)⊗A−−→
∼ HomA(P,−) : A-Mod→ F-Mod .

Proof. First note that, for any P ∈ A-Mod, we always have a natural transformation

HomA(P, A)⊗A−→ HomA(P,−)

obtained by starting with the map

ev⊗1 : (P ⊗F HomA(P, A))⊗A M→ A⊗A M,

using the associativity isomorphism to obtain a map

P ⊗F (HomA(P, A)⊗A M)→ A⊗A M,

then using the adjunction

HomF(HomA(P, A)⊗A M,HomA(P, A⊗A M))
∼= HomA(P ⊗F (HomA(P, A)⊗A M), A⊗A M),

and finally using the natural isomorphism A⊗A M ∼= M.
To show that our natural transformation is an isomorphism, we use induction

on the number of times we need to extend a summand of the regular module to
obtain P. We handle the base case as follows: the natural transformation is certainly
an isomorphism when P is the regular module and so, as hom functors commute
with finite direct sums, it is an isomorphism for all summands of the regular module.
For our inductive step, suppose the lemma holds for P1 and P2, and let P = cone( f )
for some map f : P1→ P2. Then, for M ∈ A-Mod, one can check that the map
HomA(P, A)⊗A M→ HomA(P,M) comes from the commutative diagram

HomA(P1, A)⊗A M

��

HomA(P2, A)⊗A M
Hom( f,A)⊗M
oo

��

HomA(P1,M) HomA(P2,M)
Hom( f,M)

oo

as in the construction from the second half of Lemma 4.5, where the vertical maps
come from the natural transformation described above. Therefore, as both vertical
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maps are isomorphisms by induction, HomA(P, A)⊗A M→ HomA(P,M) is an
isomorphism. �

Spherical twists. Our references are [Seidel and Thomas 2001; Rouquier and Zim-
mermann 2003; Grant 2013].

Let (A, d) be a dga and M be a left A-module with finite-dimensional total
homology. Let d ∈ Z. Following [Seidel and Thomas 2001], we say that M is
d-spherical if

• M is a d-Calabi–Yau object, i.e., we have an isomorphism

HomDfd(A)(M, N )∼= HomDfd(A)(N ,M[d])∗

which is functorial in N, and

•
⊕

i∈Z HomDfd(A)(M,M[i]) is isomorphic as a graded algebra to F[x]/〈x2
〉,

with x in degree d.

Associated to any spherical object M, we have a spherical twist functor FM :

Dfd(A)→ Dfd(A) which is defined as follows. First, let P = p M be a cofibrant
replacement of M. Then let X M be the cone of the map of A-A-bimodules

P ⊗F HomA(P, A) ev
−→ A,

where the nonzero map is the obvious evaluation map. As both HomA(P, A) and
A are cofibrant, X M is cofibrant as a right A-module. Then we define the spherical
twist at M by

FM = X M ⊗A− : Dfd(A)→ Dfd(A).

The spherical twist is an autoequivalence of Dfd(A) (so X M is a tilting module).
Note that, by Lemmas 4.5 and 4.8, if M has finite projective dimension then

FM(N )∼= P ⊗F HomA(P, N ) ev
−→ N .

We next need the fact that spherical twists are intertwined by derived equivalences.
The following is a generalization of [Seidel and Thomas 2001, Lemma 2.11].

Proposition 4.9. Let A, B be dgas. Let T ∈ B -Mod-A be a tilting module and

8= T ⊗L
A− : Dfd(A)→ Dfd(B)

be the associated derived equivalence. Let M ∈ A-Mod have finite-dimensional
total homology and suppose it is d-spherical, for some d ∈Z. Suppose that8(M)∈
B -Mod has finite-dimensional total homology. Then 8(M) is also d-spherical and
we have an isomorphism of functors

8 ◦ FM ∼= F8(M) ◦8 : Dfd(A)−→∼ Dfd(B).
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In particular, we have an isomorphism

F8(M) ∼=8 ◦ FM ◦8
−1
: Dfd(B)−→∼ Dfd(B)

where 8−1 is the quasi-inverse functor of 8.

Proof. As 8 : Dfd(A) → Dfd(B) is a derived equivalence it has quasi-inverse
8−1
: Dfd(B)→ Dfd(A), and so we have isomorphisms

HomDfd(B)(8(M),8(M)[i])∼= HomDfd(A)(M,M[i])

and

HomDfd(B)(8(M), N )∼= HomDfd(A)(M,8
−1(N ))

∼= HomDfd(A)(8
−1(N ),M[d])∗

∼= HomDfd(B)(N ,8(M)[d])
∗,

the second natural in N ∈ Dfd(B), using the facts that M is a d-Calabi–Yau object
and the shift functor [d] commutes with all triangulated functors. Thus 8(M) is
d-spherical.

By Lemma 4.7 we may assume that T is cofibrant as a right B-module and that
8= T ⊗A−. We want to show that

T ⊗A X M ⊗A−∼= X8(M)⊗B T ⊗A−,

so it is enough to check that we have an isomorphism

T ⊗A X M ∼= X8(M)⊗B T

in Dfd(B⊗F Aop). To construct this isomorphism, we use the following extension of
Lemma 4.5, which follows from the triangulated Five Lemma: for any commutative
diagram

M
f
//

ϕM∼

��

N

ϕN∼

��

M ′
f ′
// N ′

in B -Mod-A where ϕM and ϕN are both quasi-isomorphisms, we have a quasi-
isomorphism ϕN ⊕ϕM[1] : cone( f )→ cone( f ′).

As above, write P = p M. Then, by the first part of Lemma 4.5, we just need
to find two vertical maps which are quasi-isomorphisms and make the following
diagram commute:

T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T
ev⊗1T

//

∼

��

B⊗B T

∼

��

T ⊗A P ⊗F HomA(P, A)
1T⊗ev

// T ⊗A A
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Our plan is to do this in stages: we will show that the vertical maps in the following
diagram exist, and are quasi-isomorphisms, and that the diagram commutes.

T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T
ev⊗1T

//

∼

��

B⊗B T

=

��

T ⊗A P ⊗F HomB(T ⊗A P, B⊗B T ) ev
//

∼

��

B⊗B T

∼

��

T ⊗A P ⊗F HomB(T ⊗A P, T ⊗A A) ev
//

∼

��

T ⊗A A

=

��

T ⊗A P ⊗F HomA(P, A)
1T⊗ev

// T ⊗A A

Let us show that the first square commutes. We introduce some temporary
notation for the rest of this proof. Let F and G denote the functors F = T⊗A P⊗F−

and G =HomB(T ⊗A P,−), so F is left adjoint to G, and let H denote the functor
− ⊗B T. Then we have unit and counit natural transformations ε : FG → 1
and η : 1→ G F, and a natural isomorphism ζ : H F −→∼ F H coming from the
associativity isomorphism for tensor products. We first need to define a map

HFGB = T⊗A P⊗F HomB(T⊗A P,B)⊗B T→T⊗A P⊗F HomB(T⊗A P,B⊗B T )

= FGHB.

We define this as the composite

H FG B ζG B
−−→F H G B FηH G B

−−−→FG F H G B FGζ−1G B
−−−−−→FG H FG B FG HεB

−−−−→FG H B.

One checks that this is an isomorphism using the same argument as in Lemma 4.8.
To see that the diagram commutes, we break it up into smaller diagrams as follows:

H FG B

∼ζG B
��

HεB
// H B

F H G B 1
//

FηH G B
��

F H G B
∼

ζ−1G B &&

FG F H G B

∼FGζ−1G B
��

εF H G B

77

H FG B

HεB

AA

FG H FG B
FG HεB

//

εH FG B

33

FG H B

εH B

OO

Now we see that both squares commute by the naturality of ε, the triangle commutes
by the triangle identity εF ◦ Fη = 1F , and the pentagon commutes because the
isomorphisms are defined by ζ and its inverse.
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We use the obvious composite isomorphism B⊗B T −→∼ T −→∼ T ⊗A A to define
the second square. This commutes because the evaluation map is a counit, and
therefore a natural transformation.

To show that the third square commutes, we introduce some more notation.
Let F ′ and G ′ denote the functors F ′ = P ⊗F − and G ′ = HomA(P,−), so F ′

is left adjoint to G ′, and let H ′ and I ′ denote the functors H ′ = T ⊗A − and
I ′ = HomB(T,−), so H ′ is left adjoint (in fact, quasi-inverse) to I ′. We denote the
counit and unit maps of the first adjunction by ε′ : F ′G ′→ 1 and η′ : 1→G ′F ′, and
of the second adjunction by ε′′ : H ′ I ′→ 1 and η′′ : 1→ I ′H ′. Note that, because H ′

induces an equivalence of derived categories, ε′′ and η′′ give quasi-isomorphisms
when applied to any object.

Using the associativity isomorphism for tensor products we have a natural isomor-
phism of functors F ∼= H ′F ′, and by the uniqueness of right adjoints (or by using the
tensor-hom adjunctions directly) this gives another natural isomorphism G ∼= G ′ I ′.

We now redraw our final square, breaking it up into smaller diagrams:

FG H ′A
ε′H ′A

//

∼

��

H ′A

H ′F ′G ′ I ′H ′A
H ′ε′I ′H ′A

// H ′ I ′H ′A

ε′′H ′A
99

H ′F ′G ′A
H ′ε′A

//

H ′F ′G ′η′′A

OO

H ′A
H ′η′′A

ee
1

OO

Here, the top square commutes by definition of the isomorphisms F ∼= H ′F ′ and
G ∼= G ′ I ′, the triangle commutes by the triangle identity ε′′H ′ ◦ H ′η′′ = 1H ′ , and
the bottom square commutes by the naturality of ε′. �

We now describe the braid relations for spherical twists, as in Propositions 2.12
and 2.13 of [Seidel and Thomas 2001]; see also [Rouquier and Zimmermann 2003;
Grant 2015].

Proposition 4.10. Suppose that M and N are spherical objects of Dfd(A) and let

(M, N )= dimF

⊕
n∈Z

HomDfd(A)(M, N [n]).

Let FM , FN : Dfd(A)−→∼ Dfd(A) be the associated spherical twists.

• If (M, N )= 0 then FM ◦ FN ∼= FN ◦ FM .

• If (M, N )= 1 then FM ◦ FN ◦ FM ∼= FN ◦ FM ◦ FN .

Ginzburg dg-algebras. There is a well-known method to associate a differential
graded algebra to a quiver with potential [Ginzburg 2007, Section 5; Keller and
Yang 2011, Section 2.6].
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Let (Q,W ) be a quiver with potential. Construct a new quiver Q by adding
arrows to Q: for each arrow a : i→ j in Q we add a new arrow a∗ : j→ i , and for
each vertex i in Q we add a new arrow ti : i→ i . We view Q as a graded quiver
with the arrows of Q in degree 0, the arrows a∗ in degree −1, and the arrows ti
in degree −2. This induces a grading on the path algebra FQ of Q such that the
degree 0 part (FQ)0 is just the path algebra of FQ of Q. Let J denote the ideal of
FQ generated by the arrows of Q, and let F̂Q denote the completion of the graded
algebra FQ with respect to J , as on page 96.

We define a differential d on F̂Q by requiring that d be zero on each idempotent
ei associated to a vertex i of Q, specifying how d acts on arrows of Q, and then
extending to the rest of F̂Q using the Leibniz rule and continuity. For degree
reasons, we must have d(a) = 0 for each arrow a of Q. For arrows a∗, we
set d(a∗) = ∂aW, where ∂a denotes the cyclic derivative, and for arrows ti we
set d(ti ) = ei

(∑
aa∗ − a∗a

)
ei , where we sum over all arrows a of Q. Then

0Q,W = (F̂Q, d) is called the Ginzburg dga of (Q,W ).
Note that if (Q1,W1) and (Q2,W2) are right equivalent, then we have an isomor-

phism of dgas 0Q1,W1
∼= 0Q2,W2 [Keller and Yang 2011, Lemma 2.9]. Hence, if we

are working with quivers with potential of mutation type A or D, by Proposition 4.4
we only need to consider the Ginzburg dgas 0Q,WQ , and so can denote them 0Q .

Keller and Yang showed that QP-mutation lifts to equivalences of derived cate-
gories of Ginzburg dgas:

Theorem 4.11 [Keller and Yang 2011, Theorem 3.2]. Suppose that (Q,W ) is a
QP and that (Q′,W ′) = µk(Q,W ) for some k ∈ I. There is a tilting complex T
which gives an equivalence of triangulated categories

µk = Hom0Q′,W ′
(T,−) : D(0Q′,W ′)→ D(0Q,W ),

and it restricts to an equivalence of triangulated categories,

µk = Hom0Q′,W ′
(T,−) : Dfd(0Q′,W ′)→ Dfd(0Q,W ).

Recall that, for a dga A, the finite-dimensional derived category Dfd(A) is
d-Calabi–Yau if there exists a bifunctorial isomorphism,

HomDfd(A)(M, N )∼= HomDfd(A)(N ,M[d])∗,

where (−)∗ denotes the k-linear dual. We will need the following important result
of Keller and Van den Bergh:

Theorem 4.12 [Keller 2011, Theorem 6.3 and Theorem A.12]. The category
Dfd(0Q,W ) is 3-Calabi–Yau.

Let (Q,W ) be a QP and 0 = 0Q,W . Associated to each vertex i of Q, we have
the 1-dimensional simple left 0-module, which we denote Si . Keller and Yang
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[2011, Section 2.14] explained how to construct the cofibrant replacement of Si :
as long as we remember the differential, we can proceed as if the Ginzburg dga
were an ordinary hereditary algebra, and the underlying u(0)-module of p Si is the
direct sum of one copy of the projective Pi and one copy of the shifted projective
Pj [1] for each arrow j→ i in Q. Using this, they showed:

Lemma 4.13 [Keller and Yang 2011, Lemma 2.15]. Let i, j ∈ I and n ∈ Z and
0 = 0Q,W . Then HomDfd(0)(Si , S j [n])= 0 if n 6= 0, 1, 2, 3, and

dimF HomDfd(0)

(
Si , S j [n]

)
=


δi j if n = 0,
#{arrows i→ j in Q} if n = 1,
#{arrows j→ i in Q} if n = 2,
δi j if n = 3,

where δi j is the Kronecker delta.

Relations between functors. By Theorem 4.12, every object of Dfd(0Q,W ) is a
3-Calabi–Yau object. By Lemma 4.13,⊕

j∈Z

HomDfd(0Q,W )(Si , Si [ j])∼= F[x]/〈x2
〉

with x in degree 3. Hence Si is 3-spherical, and we have a spherical twist FSi

associated to Si . We will sometimes write Fi instead of FSi .
Let k be a vertex of Q, and write (Q′,W ′)= µk(Q,W ). Then write 0 = 0Q,W

and 0′ = 0Q′,W ′ for the associated Ginzburg dgas. Write Ti for the left 0′-module
associated to the vertex i of Q′ and Gi for the associated autoequivalence FTi of
Dfd(0

′). In this section we will study how the spherical twists Fi :Dfd(0)−→
∼ Dfd(0)

interact with the mutation functors µk : Dfd(0
′) −→∼ Dfd(0). Our key tools will

be Proposition 4.9 and the results on the images of the simple modules under the
mutation functors [Keller and Yang 2011, Lemma 3.12(a)], which we will describe
below.

If A is a dga and M, N ∈ Dfd(A), we have a natural map,

M ⊗F HomDfd(A)(M, N )→ N ,

in Dfd(A) given by evaluation. For any graded vector space V, we have biadjoint
functors −⊗F V and −⊗F V ∗, and these respect the left A-module structure, so
we also obtain a natural map,

M→ N ⊗F HomDfd(A)(M, N )∗,

in Dfd(A). Now let L , N ∈ A-Mod. The universal extension of N by L is the cone
of the natural map

N [−1] → L ⊗F HomDfd(A)(N [−1], L)∗
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and the universal coextension of L by N is the cone of the natural map

N [−1]⊗F HomDfd(A)(N [−1], L)→ L .

The following result is due to Keller and Yang:

Lemma 4.14 [Keller and Yang 2011, Lemma 3.12(a)]. We have µk(Tk) ∼= Sk[1]
and µk(Ti ) is the universal extension of Si by Sk , for i 6= k.

The following result should be compared to Definition 2.8.

Proposition 4.15. If Q has no double arrows then we have a natural isomorphism
of functors

Fµ−1
k (Si )

∼=

{
Gk Gi G−1

k if i→ k in Q,
Gi otherwise.

Proof. We first use Lemma 4.14 to calculate the images of the simple 0′-modules
under the inverse mutation functor µ−1, where µ=µk . We know that µ(Tk)∼= Sk[1],
so µ−1(Sk)∼= Tk[−1]. By assumption, there is at most one arrow between any two
vertices in Q. If i 6= k and there is no arrow i → k in Q then, by Lemma 4.14,
HomDfd(0)(Si [−1], Sk)=0 and soµ(Ti )∼= cone(Si [−1]→0)∼= Si , soµ−1(Si )∼=Ti .

If i 6= k and there is an arrow i → k in Q then HomDfd(0)(Si [−1], Sk) is
1-dimensional and soµ(Ti )∼=cone(Si [−1]→ Sk), with the nonzero map determined
up to a scalar. We can then use Lemma 4.5 to calculate µ(cone(Tk[−1] → Ti ):
this is cone(µ(Tk)[−1] → µ(Ti )) where, as µ is an equivalence, the map must
again be nonzero and determined up to scalar. We know that µ(Tk)[−1] ∼= Sk and
µ(Ti ) is Si ⊕ Sk with appropriate differential. One can check that the injection
Sk ↪→ Si ⊕ Sk respects the differentials, and so this must be our nonzero map. This
is quasi-isomorphic to the map 0→ Si , and so µ(cone(Tk[−1] → Ti )) ∼= Si and
hence µ−1(Si )∼= cone(Tk[−1] → Ti ). Note that this is the universal coextension
of Ti by Tk .

Now we check that the formula holds. If i = k then Fµ−1(Si ) = FTi [1], and as
the shift functor on Dfd(0

′) is naturally isomorphic to 0′[1]⊗0′ − we see that, by
Proposition 4.9, FTi [1]

∼= [1] ◦Gi ◦ [−1] ∼= Gi . If i 6= k and there is no arrow i→ k
in Q then µ−1(Si )∼= Ti so Fµ−1(Ti ) = Gi .

Finally, suppose i 6= k and there is an arrow i → k in Q. As mutation at k
reverses all arrows incident with k, and can never change the number of arrows
incident with k, there must be exactly one arrow k→ i in Q′. We first calculate
Gk(Ti ): this is

cone( p Tk ⊗F Hom0′( p Tk, Ti )→ Ti ).

As Hom0′( p Tk, Ti ) is a differential graded F-module, it is quasi-isomorphic to its
homology, which is the direct sum

⊕
HomK (0′)(Tk, Ti [n]) with

HomK (0′)(Tk, Ti [n])∼= HomDfd(0′)(Tk, Ti [n])
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in degree n. So by Lemma 4.14 the homology is only nonzero in degree 1, where it
is 1-dimensional, and thus

Gk(Ti )∼= cone(Tk ⊗F F[−1] → Ti ).

So we see that µ−1(Si ) ∼= Gk(Ti ) and therefore, using Proposition 4.9 again,
Fµ−1(Si )

∼= Gk Gi G−1
k . �

We are now able to show that our braid groups BQ act via spherical twists on
the category Dfd(0).

Theorem 4.16. Let (Q,W ) be a mutation-Dynkin quiver with potential of type ADE.
Then we have a group homomorphism

BQ→ Aut Dfd(0Q,W ), si 7→ Fi

sending the group generator associated to the vertex i ∈ I to the spherical twist at
the simple 0Q,W -module Si .

Proof. As (Q,W ) is mutation-Dynkin, it is obtained by mutating a quiver with
potential (Q′′, 0) finitely many times, where Q′′ is a Dynkin quiver. Then we have
a group homomorphism BQ′′→ Aut Dfd(0Q′′,0) by Remark 2.3, Proposition 4.10,
and Lemma 4.13. This gives the base case of an inductive argument, so we need
to show that if the spherical twists Fi on 0 = 0Q,W satisfy the relations of BQ for
a mutation-Dynkin quiver with potential (Q,W ) then the spherical twists Gi on
0′ = 0Q′,W ′ satisfy the relations of BQ′ .

Assume the functors Fi : Dfd(0)→ Dfd(0) satisfy the relations of BQ and let
µ = µk : Dfd(0

′)→ Dfd(0) be the Keller–Yang derived equivalence. Then the
functors µ−1

◦ Fi ◦ µ : Dfd(0
′)→ Dfd(0

′) also satisfy the relations of BQ . By
Proposition 4.9 we have

µ−1
◦ Fi ◦µ∼= Fµ−1(Si ),

i.e., the following diagram commutes:

Dfd(0
′)

µ
//

F
µ−1(Si )
��

Dfd(0)

FSi
��

Dfd(0
′)

µ
// Dfd(0)

So we have a group homomorphism ρ : BQ
ρ
−→Aut Dfd(0

′) sending si to Fµ−1(Si ).
By Proposition 2.1, Q has no double arrows, so we can use Proposition 4.15 to
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write ρ as

BQ
ρ
−→Aut Dfd(0

′),

si 7→

{
Gk Gi G−1

k if i→ k in Q;
Gi otherwise.

Precomposing this with the group isomorphism ϕ−1
k : B

′

Q −→
∼ BQ of Remark 2.11,

we obtain the group homomorphism

BQ′
ϕ−1

k
// BQ

ρ
// Aut Dfd(0

′)

ti
� //

{
s−1

k si sk if i→ k in Q,
si otherwise

}
� //
{

G−1
k Gk Gi G−1

k Gk if i→ k in Q,
Gi otherwise

}
∼= Gi

as required. �

Remark 4.17. Known results on the faithfulness of braid group actions can be
transferred to our setting. Suppose Q′′ is an orientation of an ADE graph and the
usual action BQ′′ → Aut Dfd(0Q′′,0) is faithful. From the proof of Theorem 4.16
we see that our actions of BQ where Q is of mutation type ADE are just built by
precomposing group isomorphisms with the action of BQ′′ , and so these are also
faithful under this assumption.

It was shown by Seidel and Thomas [2001, Theorem 2.18], building on work
of Khovanov and Seidel [2002], that given a collection of d-spherical objects,
with d ≥ 2, in a type An-configuration the action of the braid group by spherical
twists is faithful. Thus the actions of Theorem 4.16 are faithful in mutation type A.
The faithfulness result of Seidel and Thomas was extended to all collections of
2-spherical objects in type ADE configurations by Brav and Thomas [2011], using
the Garside structure of the braid monoid, but it is not immediately clear how to
generalize their argument to the 3-Calabi–Yau situation.

Remark 4.18. Although we have shown that our braid groups of mutation-Dynkin
quivers can be realized categorically, this is not a categorification of our earlier
results because we cannot decategorify (see, for example, [Baez and Dolan 1998]):
we cannot recover Theorem 2.10 from Theorem 4.16 because we use Theorem 2.10
to prove Theorem 4.16. The problem is that, for an arbitrary mutation-Dynkin
quiver with potential (Q,W ), we do not in advance know the relations satisfied by
the spherical twist functors Fi . This question will be addressed in a forthcoming
paper.

Remark 4.19. The arguments of [Grant 2015] generalize to show that, if vertices
i and j of Q are joined by an arrow, then Fi F j Fi ∼= F j Fi F j can be realized as a
single periodic twist. Similarly, one can show that if i→ j→ k→ i is a 3-cycle in
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Q then
F1 F2 F3 F1 ∼= F2 F3 F1 F2 ∼= F3 F1 F2 F3

can be realized as a single periodic twist. This exhausts the possibilities in type A;
we will study type D further in the future.
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