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A PALEY–WIENER THEOREM
FOR THE SPECTRAL PROJECTION

OF SYMMETRIC GRAPHS

SHIN KOIZUMI

We prove a Paley–Wiener theorem for the spectral projection of symmetric
graphs and, as a corollary, derive a Paley–Wiener theorem for the Helgason–
Fourier transform. The proof is based on contour integration arguments
similar to those used to prove the Paley–Wiener theorem for Euclidean
spaces and symmetric spaces.

1. Introduction

The theory of representations of free groups has been studied by many authors
in analogy with the semisimple theory. This arises from the realization of a free
group as a homogeneous tree and relies upon the use of the Poisson boundary
and spherical function. Mantero and Zappa [1983] characterized the image of
the Poisson transform of free groups and studied the uniform boundedness of the
spherical representation. In [Cowling et al. 1998], Cowling, Meda and Setti studied
the images of the Abel transform for various function spaces on homogeneous trees.
Cowling and Setti [1999] gave the characterizations of the images of the spaces of
compactly supported functions and rapidly decreasing functions.

The concept of tree has been extended in several aspects. For instance, Iozzi and
Picardello [1983a; 1983b] extended the context of tree to symmetric graphs and
gave an explicit expression of the spherical function. Later, the Plancherel measure
on symmetric graphs was explicitly computed in [Kuhn and Soardi 1983; Faraut and
Picardello 1984]. Recently Eddine [2013; 2015] investigated the characterization of
the Abel transform for symmetric graphs and, as an application, solved the shifted
wave equations on it.

In [Koizumi 2013], we studied the spectral projection on homogeneous trees and
proved the Paley–Wiener theorem of the spectral projection, which is an analogue
of that given by Bray [1996]. In this paper, we shall extend the works in [Koizumi
2013] to the case of symmetric graphs. Unlike the works of Cowling and Setti
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[1999], our proof is based on contour integration arguments, which are usually used
to prove the Paley–Wiener theorem for the cases of the Euclidean spaces and the
symmetric spaces [Johnson 1979; Campoli 1980].

A brief outline of this paper is as follows: Section 2 is devoted to the overview
of the notation of symmetric graphs. In Section 3, we concretely write down
the expressions of the Poisson transform on symmetric graphs. In Section 4, we
construct the intertwining operators between the spherical representations and give
the explicit expressions of the intertwining operators. In Section 5, we study the
properties of the spectral projection for symmetric graphs. Finally in Section 6,
we show the Paley–Wiener theorem of the spectral projection and prove the Paley–
Wiener theorem of the Helgason–Fourier transform.

2. Notation and preliminaries

The standard symbols Z, R and C are used for the integers, the real numbers and
the complex numbers, respectively. Let us set Zk = Z/kZ. Throughout this paper,
the imaginary unit is denoted as i . If x ∈ C, <x and =x denote its real part and its
imaginary part, respectively.

A graph X is symmetric of type k ≥ 2 and order r ≥ 2 if every vertex v belongs
exactly to r polygons with k sides each with no sides and no vertex in common
except v, and if every nontrivial loop in X runs through all edges of at least one
polygon. If k = 2, X reduces to a homogeneous tree of degree r . In what follows,
we write q = (k − 1)(r − 1), τ = 2π/ log q and T = R/τZ. Different notions of
length on a symmetric graph were introduced in [Iozzi and Picardello 1983a]. Here
we use the definition of the length d(x, y) between two vertices x, y ∈ X to denote
the minimal number of polygons crossed by a path connecting x and y. We fix a
reference point o in X and write |x | = d(x, o).

By the same arguments as in [Betori and Pagliacci 1984, Theorem 1], if k > 2, it
is easy to see that every group acting simply transitively on X and isometrically with
respect to the metric induced by this length is isometric to the free group G=⊕r

i=1Zk ,
while, for k = 2, G is isometric to the free product of t copies of Z and s copies
of Z2, where 2t + s = r . Hence every vertex of X is identified with an element of
G and, under this identification, every polygon corresponds to an orbit under right
translations by one of the factors Zk . For x ∈ X and n ≤ |x |, we write x (n) for the
word of length n consisting of the first n blocks of x and simply write x ′ for x (|x |−1).

Let Sn be the set of words of length n in X. We write� for the Poisson boundary
of X. For ω ∈� and n ∈ Z≥0, we denote by ωn the word of length n consisting the
first n blocks. Let E(x) denote the subset of � of words that begin with the reduced
word x ∈ X. We write M and Mn for the σ -algebra generated by {E(x) : x ∈ X}
and σ -subalgebra generated by {E(x) : |x | 5 n} respectively. Then M makes
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� into a compact topological space and there exists a natural G-quasi-invariant
probability measure ν on (�,M). We write F(�) for the space comprised of
the Mn-measurable functions on �. We denote by F(�)c the linear span of the
characteristic functions of E(x) for x ∈ X. The dual space F ′(�) is identified with
the space of the martingales on � with respect to {Mn}.

We write s0 =
( 1

2 − logq(k− 1)
)
i + 1

2τ and set

ϒ =
{
s ∈ C : s = 1

2 i + hτ, s = s0+ hτ (h ∈ Z)
}
.

We define the subsets bx , cx , dx of X by the following: for x ∈ X \ {o}

bx = {y ∈ X : d(y, x)= 1, |y| = |x |},

cx = {y ∈ X : d(y, x)= 2, |y| = |x |},

dx = {y ∈ X : d(y, x)≥ 3, |y| = |x |},

and bo = co = do =∅. The subsets B(x) and C(x) of � are defined by

B(x)=
⋃
y∈bx

E(y), C(x)=
⋃
y∈cx

E(y).

For a function η on � and n ∈Z≥0, we define the averages Enη and Bnη as follows:

Enη(ω)=
1

ν(E(ωn))

∫
E(ωn)

η(ω′) dν(ω′), Bnη(ω)=
1

ν(B(ωn))

∫
B(ωn)

η(ω′) dν(ω′).

Then, as shown in [Mantero and Zappa 1983, p. 375], the set {Enη} is a martingale
associated to η ∈ L1(�) and the n-th martingale difference of η is given by Dnη =

Enη− En−1η. Here we set E−1 = 0. For x ∈ X and ω ∈ �, the Poisson kernel
p(x, ω) is defined to be the Radon–Nikodym derivative dν(x−1ω)/dν(ω) and is
computed as

p(x, ω)= qζ(x,ω),

where ζ(x, ω)= limm→∞(m− d(x, ωm)) is the Busemann function. As shown in
[Iozzi and Picardello 1983b, Proposition 2], for x ∈Sn , we have

(2-1) p(x, ω)= qnχE(x)(ω)+

n∑
j=1

q2 j−n−1χB(x ( j))(ω)+

n∑
j=1

q2 j−n−2χC(x ( j))(ω).

For η ∈ L1(�) and s ∈ T, we define the Poisson transform Psη by

(2-2) Psη(x)=
∫
�

p(x, ω)1/2+isη(ω) dν(ω).

By duality, the Poisson transform is naturally extended to F ′(�) and is denoted by
the same symbol Ps.
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Following [Mantero and Zappa 1983], we define the operators ε and 1 on X,
which are essentially the analogue of En and Dn . We set for n ∈ Z≥0

S(n, x)=
{
{x}, |x | ≤ n,
{y ∈ X : |y| = |x |, y(n) = x (n)}, |x |> n.

For a function φ on X and n ∈ Z≥0, we define its average εnφ by

(2-3) εnφ(x)=
1

Card S(n, x)

∑
y∈S(n,x)

φ(y).

We also define 1nφ by

1nφ(x)= εnφ(x)− εn−1φ(x).

Here we set ε−1φ = 0. We write µ1 for the probability measure equidistributed on
words of length 1. We also use the notation κ1 to denote the following:

(φ ∗ κ1)(x)=
1

k−2

∑
y∈bx

φ(y).

We write Cc(X) for the set of all compactly supported functions on X. For
N ∈ Z≥0, we denote by CN (X) the subset of Cc(X) consisting of all f ∈ Cc(X)

such that supp f ⊆ BN . A function φ on X is said to be radial if ε0φ = φ and
cylindrical if εNφ(x) = φ(x) for some N ∈ Z≥0. For any function space E(X),
we denote by E(X)# and E(X)c the subspaces of E(X) consisting of all radial
functions and cylindrical functions, respectively. A function f on T is said to be
Weyl-invariant if f (s+ τ)= f (s) and f (−s)= f (s).

Finally we pointed out that it is meaningful to study harmonic analysis for
symmetric graphs using methods similar to that in symmetric spaces. For example,
the explicit expressions of the intertwining operators obtained in Section 4 can
be used to construct the composition series of the spherical representations and
determine which parts of the subquotients are unitarizable. In Section 6, using this
information, we can concretely characterize the image of the compactly supported
functions under the Helgason–Fourier transform.

3. The Poisson transform on symmetric graphs

Iozzi and Picardello [1983b] studied the Poisson transform for symmetric graphs.
They showed in their paper that the Poisson transform Ps is injective on F(�)c
if and only if s 6∈ ϒ . In this section, by carrying out similar arguments to that in
[Mantero and Zappa 1983], we show that Ps is also surjective on F ′(�) when s 6∈ϒ .

As shown in [Iozzi and Picardello 1983b, Theorem 1], we have

(Psη ∗µ1)(x)= γ (s)Psη(x),
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where
γ (s)= 1

r(k−1)
(q1/2+is

+ q1/2−is
+ k− 2).

By using the equation

χE(x ( j))(ω)−χE(x ( j+1))(ω)= χC(x ( j+1))(ω)+χB(x ( j+1))(ω),

(2-1) is expressed as

(3-1) p(x, ω)= q−|x |χE(x (0))(ω)+ (1− q−2)

|x |∑
j=1

q2 j−|x |χE(x ( j))(ω)

+ (1− q−1)

|x |∑
j=1

q2 j−|x |−1χB(x ( j))(ω).

Therefore for ω ∈�, substituting (3-1) into (2-2), we have

Psη(ωn)=

n∑
j=0

bj,n(s)E jη(ω)+
k− 2

q1/2+is + 1

n∑
j=1

bj,n(s)Bjη(ω),

where b0,n(s)= q−n(1/2+is) and

bj,n(s)=
q

r(k− 1)
(1− q−1−i2s)q−n(1/2+is)+i2 js .

By the definitions of Bn and En , it is easy to verify that

Em Bn =

{
Bn, m ≥ n,
Em, m < n,

Bm En =

{
En, m > n,
Bm, m ≤ n.

And hence we obtain that

Bm Dnη =


Dnη, m > n,
Bnη− En−1η, m = n,
0, m < n.

Hereafter we suppose that DMη = η for some M ≥ 0. We first consider the case
when M > 0. Since E jη = 0 and Bjη = 0 for j < M, we have

Psη(ωn)= 0 for n < M,

and

(3-2) Psη(ωM+`)=

M+∑̀
j=M

bj,M+`(s)η(ω)+
k− 2

q1/2+is + 1

M+∑̀
j=M+1

bj,M+`(s)η(ω)

+
k− 2

q1/2+is + 1
bM,M+`(s)BMη(ω).
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We define the function Q0
M(s) on T by Q0

0(s)= 1 and

Q0
M(s)=

√
q

r(k− 1)
q−M/2q i(M−1)s(q1/2+is

− q−1/2−is)

for M > 0. By using this, (3-2) can be written

Psη(ωM+`)

= q−`(1/2+is)Q0
M(s)

{
M+∑̀
j=M

q i2s( j−M)η(ω)+
k− 2

q1/2+is + 1

M+∑̀
j=M+1

q i2s( j−M)η(ω)

+
k− 2

q1/2+is + 1
BMη(ω)

}
.

Here we set Q0(s)= R0(s)= 1 and

QM(s)=
√

q
r(k− 1)

q−M/2q i(M−1)s(q1/2+is
− (k− 1)q−1/2−is

+ k− 2),

RM(s)=
√

q
r(k− 1)

q−M/2q i(M−1)s(1− q−1/2−is)

for M > 0. Then a direct computation yields that

(3-3) Psη(ωM+`)= q−`/2ψ(`+ 1, s)QM(s)η(ω)

+ (k− 2)RM(s)q−`(1/2+is)(BMη(ω)− η(ω)),

where

ψ(n, s)=
sin(ns log q)
sin(s log q)

.

As pointed out in [Cowling and Setti 1999, p. 242], DMη = η if and only if η is
constant on E(x) for every x ∈SM and the average of η with respect to E(y) for
|y| < M is equal to 0. Therefore we can regard η as a function on X by setting
η(x) = E|x |η(ω) for ω ∈ E(x). Under this identification, we have that η(x) = 0
when |x |< M and η(x)= η(x (M)) when |x | ≥ M. Moreover, for x ∈ X such that
|x | > M and y ∈ bx , it holds that η(x) = η(y) because |x ′| = |y′| ≥ M. We also
remark that BMη(ω) corresponds to η ∗ κ1(x (M)). For these reasons, (3-3) can be
rewritten as follows:

(3-4) Psη(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η(x (M))

+(k− 2)RM(s)q−(|x |−M)(1/2+is)(η ∗ κ1(x (M))− η(x (M))).

In the case M = 0, η is a constant function on � and so Psη is expressed in terms
of the spherical function φs given in [Iozzi and Picardello 1983b, Theorem 2] as:

Psη(x)= φs(x)η(o).
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We summarize these results in the following proposition.

Proposition 3.1. Let η ∈ L1(�) be such that DMη= η. Then the Poisson transform
Psη has the following forms:

(1) If M > 0,

Psη(x)= 0, |x |< M,

Psη(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η(x (M))

+ (k− 2)RM(s)q−(|x |−M)(1/2+is)(η ∗ κ1(x (M))− η(x (M))), |x | ≥ M.

(2) If M = 0,
Psη(x)= φs(x)η(o).

Let Lγ (s)(X) denote the space consisting of the functions φ on X satisfying the
condition φ ∗µ1 = γ (s)φ. For M ∈ Z≥0, we denote by L M

γ (s)(X) the subspace of
Lγ (s)(X) consisting of the functions φ which satisfy the following conditions:

(1) 1Mφ = φ,

(2) for x ∈ X such that |x |> M and y ∈ bx , φ(x)= φ(y).

Then L 0
γ (s)(X) is just the space of radial harmonic functions on X. We prove the

following lemma, which is an analogue of [Mantero and Zappa 1983, Lemma 3.2].

Lemma 3.2. Let φ ∈L M
γ (s)(X) and ω ∈�. Then we have the following:

(1) If M > 0,

(3-5)
φ(ωn)= 0 (n < M),

φ(ωM+`)= q−`/2ψ(`+ 1, s)φ(ωM)

+ (k− 2)q−(`+1)/2ψ(`, s)× (φ(ωM)−φ ∗ κ1(ωM)).

(2) If M = 0,
φ(ω`)= φs(ω`)φ(o).

Proof. Since for ω ∈� and n ≥ M ,

φ∗µ1(ωn)=
1

r(k−1)

(
φ(ωn−1)+(k−2)φ∗κ1(ωn)+φ(ωn+1)+

∑
y∈bωn+1

φ(y)+
∑

y∈cωn+1

φ(y)
)
,

and

1n+1φ(ωn+1)= φ(ωn+1)−
1
q

(
φ(ωn+1)+

∑
y∈bωn+1

φ(y)+
∑

y∈cωn+1

φ(y)
)
= 0,

we have

φ ∗µ1(ωn)=
1

r(k−1)
{φ(ωn−1)+ (k− 2)φ ∗ κ1(ωn)+ qφ(ωn+1)}.
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Hence the condition φ ∗µ1 = γ (s)φ implies that

(qβ(s)+ k− 2)φ(ωn)= φ(ωn−1)+ (k− 2)φ ∗ κ1(ωn)+ qφ(ωn+1),

where β(s)= q−1/2+is
+q−1/2−is. When n > M, we have that φ ∗κ1(ωn)= φ(ωn)

and therefore we have the recursion formulae:

φ(ωn)= 0, n < M,(3-6)

φ(ωM+1)= β(s)φ(ωM)+ (k− 2)q−1(φ(ωM)−φ ∗ κ1(ωM)),(3-7)

φ(ωM+`)= β(s)φ(ωM+`−1)− q−1φ(ωM+`−2), `≥ 2.(3-8)

In the case s 6∈ (τ/2)Z, the difference equation (3-8) has the fundamental solu-
tions q−1/2+is and q−1/2−is. So using the initial condition (3-7) to determine the
coefficients of the fundamental solutions, we obtain the following expression:

(3-9) φ(ωM+`)= C1q`(−1/2+is)
+C2q`(−1/2−is),

where

C1 =
q isφ(ωM)+ (k− 2)q−1/2

{φ(ωM)−φ ∗ κ1(ωM)}

q is − q−is ,

C2 =
−q−isφ(ωM)− (k− 2)q−1/2

{φ(ωM)−φ ∗ κ1(ωM)}

q is − q−is .

Similarly, when s = 1
2 mτ (m ∈ Z), we also have

(3-10) φ(ωM+`)= (C ′1+C ′2`)(−1)m`q−`/2,

where

C ′1 = φ(ωM), C ′2 = φ(ωM)+ (k− 2)(−1)mq−1/2(φ(ωM)−φ ∗ κ1(ωM)).

Obviously both the expressions (3-9) and (3-10) agree with the equation (3-5). The
case M = 0 is analogous. This concludes the proof. �

Let x ∈SM and s 6∈ ϒ . Then we have from (3-4) that

(3-11) Psη(x)= QM(s)η(x)+ (k− 2)RM(s)(η ∗ κ1(x)− η(x)).

We put φ(x)= Psη(x) and write down η in terms of φ and φ ∗ κ1. Since

(3-12) φ ∗ κ1 ∗ κ1(x)=
1

k−2
φ(x)+ k−3

k−2
φ ∗ κ1(x),

we have from (3-11) that

(3-13) φ ∗ κ1(x)= QM(s)(η ∗ κ1)(x)+ RM(s)(η(x)− η ∗ κ1(x)).
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Thus, solving the simultaneous equations (3-11) and (3-13), we get the expressions

η(x)=
(q1/2+is

+ k− 2)φ(x)− (k− 2)φ ∗ κ1(x)
q1/2+is QM(s)

,

η ∗ κ1(x)=
(q1/2+is

+ 1)φ ∗ κ1(x)−φ(x)
q1/2+is QM(s)

.

The above expressions suggest the following proposition.

Proposition 3.3 (cf., [Mantero and Zappa 1983, Proposition 3.4]). Let s 6∈ϒ . For
φ ∈L M

γ (s)(X), there exists a function η on � such that DMη = η and Psη = φ.

Proof. Suppose that M > 0. Indeed, define η(ω) by

η(ω)=
(q1/2+is

+ k− 2)φ(ωM)− (k− 2)φ ∗ κ1(ωM)

q1/2+is QM(s)
.

Then φ(ωM)= Psη(ωM) is trivial. Applying Lemma 3.2 to our case together with
(3-11) and (3-13), we see that

φ(ωM+`)= q−`/2ψ(`+ 1, s)φ(ωM)+ (k− 2)q−(`+1)/2ψ(`, s)

×(φ(ωM)−φ ∗ κ1(ωM))

= q−`/2ψ(`+1, s){QM(s)η(ωM)+(k−2)RM(s)(η∗κ1(ωM)−η(ωM))}

+ (k− 2)q−(`+1)/2ψ(`, s)q1/2+is RM(s)(η(ωM)− η ∗ κ1(ωM))

= q−`/2ψ(`+ 1, s)QM(s)η(ωM)+ (k− 2)q−`/2 RM(s)

×{ψ(`+ 1, s)− q isψ(`, s)}(η ∗ κ1(ωM)− η(ωM))

= Psη(ωM+`).

The case M = 0 is analogous. This concludes the proof. �

The following proposition is proved in the same way as in [Mantero and Zappa
1983, Corollary 3.5] and hence we omit its proof.

Proposition 3.4. Suppose that s 6∈ϒ . Then the Poisson transform Ps is a bijective
operator from F ′(�) onto Lγ (s)(X).

4. The construction of the intertwining operator

Mantero and Zappa [1983] defined the intertwining operator between the spherical
representations for free groups and gave an explicit expression of the intertwining
operator. In this section, we extend their results to the case of symmetric graphs.

Let s ∈ C and define the action πs of G on L2(�) by

(πs(g)η)(ω)= p(g · o, ω)1/2+isη(g−1ω).
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The representation (πs, L2(�)) is called the spherical representation. We denote
by λ the left regular representation of G on Lγ (s)(X). Then as indicated in [Iozzi
and Picardello 1983b, p. 372], the Poisson transform P−s intertwines πs and λ.
Therefore, in the case ±s 6∈ ϒ , we see from Proposition 3.4 that the operator on
F ′(�) defined by Is = (Ps)−1 P−s is bijective and satisfies the following relation:

(4-1) Isπs(g)= π−s(g)Is .

Let η ∈ L1(�) be such that DMη = η for some M > 0. Under this assumption,
Is(BMη)= BM(Isη) because

Ps(BM Isη)(x)= Ps Isη ∗ κ1(x)= P−sη ∗ κ1(x)= P−s(BMη)(x).

Since

Ps Isη(ωM+`)= P−sη(ωM+`),

we have from (3-3) that

q−`/2ψ(`+ 1, s)QM(s)Isη(ω)+ (k− 2)RM(s)q−`(1/2+is)(Is BMη(ω)− Isη(ω))

= q−`/2ψ(`+ 1, s)QM(−s)η(ω)+ (k− 2)RM(−s)q−`(1/2−is)(BMη(ω)− η(ω)).

Taking `= 0 and `= 1 respectively, we obtain from the above equation that

(4-2) Q0
M(s)Isη(ω)+ (k− 2)RM(s)Is BMη(ω)

= Q0
M(−s)η(ω)+ (k− 2)RM(−s)BMη(ω)

and

(4-3) β(s)QM(s)Isη(ω)+ (k− 2)q−(1/2+is)RM(s)(Is BMη(ω)− Isη(ω))

= β(s)QM(−s)η(ω)+ (k− 2)q−(1/2−is)RM(−s)(BMη(ω)− η(ω)).

Solving the simultaneous equations (4-2) and (4-3), we have

Isη(ω)=
q−is QM(−s)η(ω)+ (q is

− q−is)Q0
M(−s)η(ω)

q is QM(s)

+
(k− 2)(q is

− q−is)RM(−s)BMη(ω)

q is QM(s)
,(4-4)

Is BMη(ω)=
(q is
− q−is)RM(−s){η(ω)− BMη(ω)}

q is QM(s)

+
q is QM(−s)BMη(ω)

q is QM(s)
.(4-5)
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For η ∈ L1(�) satisfying DMη = η, we define η+ and η− as

η+(ω)= η(ω)+ (k− 2)BMη(ω),(4-6)

η−(ω)= η(ω)− BMη(ω).(4-7)

Then we have from (4-4) and (4-5) that

Isη
+(ω)=

QM(−s)
QM(s)

η+(ω),(4-8)

Isη
−(ω)=

q−is RM(−s)
q is RM(s)

η−(ω).(4-9)

For n ∈ Z≥0, we denote by Hn the subspace of F(�)c consisting of η such that
Dnη= η. We write H+n and H−n for the subspaces of Hn generated by {η+ : η ∈Hn}

and {η− : η ∈Hn}, respectively. Then it holds that H0=H+0 and Hn =H+n ⊕H−n for
n > 0. The expressions (4-8) and (4-9) give the explicit forms of the intertwining
operator Is when restricted to H+n and H−n , respectively.

Finally in this section, we list some properties of the Poisson transform. Analo-
gously to (4-6) and (4-7), for a function φ on X, we define φ+ and φ− by

φ+(x)= φ(x)+ (k− 2)φ ∗ κ1(x), φ−(x)= φ(x)−φ ∗ κ1(x).

Let η ∈ L1(�) be such that DMη = η. Then taking into account (3-12), we see
from Proposition 3.1 that

(4-10) (Psη)+(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η+(ω)= (Psη+)(x)

and

(4-11) (Psη)−(x)= q−(|x |−M)/2ψ(|x | −M + 1, s)QM(s)η−(ω)

−(k− 1)q−(|x |−M)(1/2+is)RM(s)η−(ω)

= (Psη−)(x).

We here set

ψ−(`+ 1, s)=
∑̀
j=0

q i(`−2 j)s
+ q−1/2(k− 1)

∑̀
j=1

q i(`−2 j+1)s .

Then the expression (4-11) can be written

(4-12) (Psη)−(x)= q−(|x |−M)/2ψ−(|x | −M + 1, s)q1/2+is RM(s)η−(ω).

We summarize these in the following corollary.

Corollary 4.1. Let η ∈ L1(�) be such that DMη = η. Then

(Psη)+(x)= (Psη+)(x), (Psη)−(x)= (Psη−)(x).



128 SHIN KOIZUMI

In addition, for any x ∈ X satisfying |x |> M, we have

(1) QM(s)−1(Psη)+(x) is an even entire holomorphic function on C with respect
to the variable s,

(2) (q1/2+is RM(s))−1(Psη)−(x) is an even entire holomorphic function on C with
respect to the variable s.

5. The spectral projection on symmetric graphs

We first review the Helgason–Fourier transform for symmetric graphs and its
inversion formula, which were introduced by Eddine [2013; 2015].

Let (πs, L2(�)) be a spherical representation and let Is be the intertwining
operator defined in the previous section. The Helgason–Fourier transform f̃ (s, ω)
of f ∈ Cc(X) is defined by

(5-1) f̃ (s, ω)= (πs( f )1)(ω)=
∑
x∈X

f (x)p(x, ω)1/2+is.

Here 1 denotes the function identically one on �. In [Jamal Eddine 2015, Lemma
3.10], Eddine proved the following inversion formula:

f (x)=
(k− r)+

k

∫
�

f̃ (s0, ω)p(x, ω)1/2−is0 dν(ω)

+ cG

∫
�

∫
T

f̃ (s, ω)p(x, ω)1/2−is
|c(s)|−2 ds dν(ω),

where cG = q/{2τr(k− 1)} and

c(s)=
√

q
q + 1

·
q1/2+is

− (k− 1)q−1/2−is
+ k− 2

q is − q−is

is a c-function. Here (k−r)+ stands for k−r when k > r and to 0 when k 5 r . As
described in [Cowling and Setti 1999, p. 240], we see that Is f̃ (s, ω)= f̃ (−s, ω)
for almost all s ∈ T and thus we obtain the following symmetry condition:

(5-2)
∫
�

f̃ (s, ω)p(x, ω)1/2−is dν(ω)=
∫
�

f̃ (−s, ω)p(x, ω)1/2+is dν(ω).

Following Bray [1996], we define the spectral projection Ps f of f ∈ Cc(X) by

(5-3) Ps f (x)= ( f ∗φs)(x)=
∫

G
f (g1)φs(g−1

1 g) dg1,
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where x = g · o. Applying the functional equation of the spherical function [Ja-
mal Eddine 2015, Lemma 3.9] and using Fubini’s theorem, we obtain

Ps f (x)=
∫

G
f (g1 · o)

∫
�

p(g1 · o, ω)1/2+is p(g · o, ω)1/2−is dν(ω) dg1

=

∫
�

f̃ (s, ω)p(x, ω)1/2−is dν(ω).

Thus the spectral projection Ps f (x) is Weyl-invariant with respect to the variable s
and has the following inversion formula:

(5-4) f (x)=
(k− r)+

k
Ps0 f (x)+ cG

∫
T

Ps f (x)|c(s)|−2 ds.

Let a ∈ X and define the function ξa on � by ξo(ω)= 1 and for a 6= o

ξa(ω)= ν(E(a))−1χE(a)(ω)− ν(E(a′))−1χE(a′)(ω).

Then it is easy to see that D|a|ξa = ξa and B|a|ξa = (ξ∗ ∗ κ1)(a). For a ∈ X and
s ∈ C, we define the generalized spherical function 8a,s on X by

8a,s(x)= Psξa(x)=
∫
�

p(x, ω)1/2+isξa(ω) dν(ω).

By Proposition 3 in [Koizumi 2013] combined with Corollary 4.1, we have that

(1n Ps f )±(x)=
∫
�

8±ωn,−s(x) f̃ (s, ω) dν(ω).

The explicit expressions of 8±ωn,−s are given by (4-10) and (4-12). We see from
these that

(1n Ps f )+(x)= 0 when ± s ∈ ϒ,

(1n Ps f )−(x)= 0 when ± s ∈ 1
2 i + τZ.

Furthermore, we have the following proposition.

Proposition 5.1. Let f ∈ CN (X). Then (1n Ps0 f )−(x)= 0 when n > N.

Proof. By the definition of the Poisson transform, we have

(1n Ps0 f )−(x)=
∑
y∈X

f (y)
{∫

�

p(x, ω)1/2−is08−ωn,s0
(y) dν(ω)

}

=

∑
y∈X

f (y)
{∫

�

(1− r)ζ(x,ω)
( 1

1−k

)|y| k(k−1)n−1

r(r−1)n−1 ξ
−

ωn
(ω′) dν(ω)

}
,



130 SHIN KOIZUMI

where we choose ω′ ∈ E(y). Taking into account

ξ−ωn
(ω′)=


r(k− 1)qn−1, ω ∈ E(y(n)),
−r(k− 1)qn−1/(k− 2), ω ∈ B(y(n)),
0, otherwise,

we have

(1n Ps0 f )−(x)= k(k− 1)2n−1
∑
y∈X
|y|≥n

f (y)
( 1

1−k

)|y|∫
E(y(n))

(1− r)ζ(x,ω) dν(ω)

−
k(k−1)2n−1

k−2

∑
y∈X
|y|≥n

f (y)
( 1

1−k

)|y|∫
B(y(n))

(1− r)ζ(x,ω) dν(ω).

Since f (y)= 0 for |y| ≥ n > N, we have (1n Ps0 f )−(x)= 0. �

6. Paley–Wiener theorem for spectral projection

In this section, we shall characterize the image of Cc(X) under the spectral projection
on X. As an application, we shall prove the Paley–Wiener theorem of the Helgason–
Fourier transform for symmetric graphs.

Throughout this section, for a function φ on X, we denote 1nφ(x) by φn(x).
Let N ∈ Z≥0. We denote by TN (T×X) the set comprised of all functions F on
T×X satisfying the following conditions:

(N1) F(s, x) is a Weyl-invariant smooth function on R with respect to the variable s.

(N2) For each n ∈ Z≥0 and s ∈ R, Fn(s, x) ∈L n
γ (s)(X),

(N3) For each x ∈ X, F(s, x) extends to a Weyl-invariant holomorphic function
on C.

(N4) For each n ∈ Z≥0, Qn(−s)−1 F+n (s, x) is holomorphic on C and there exists
a constant CN > 0 which does not depend on the choice of n such that

|Qn(−s)−1 F+n (s, x)| ≤ CN q(|x |−n+N )|=s|.

(N5) For each n ∈Z>0, (q1/2−is Rn(−s))−1 F−n (s, x) is holomorphic on C and there
exists a constant CN > 0 which does not depend on the choice of n such that

|(q1/2−is Rn(−s))−1 F−n (s, x)| ≤ CN q(|x |−n+N )|=s|.

(N6) F−n (s0, x)= 0 when n > N.

We set

T (T×X)=

∞⋃
N=0

TN (T×X).
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The following proposition is obtained by the same arguments as in [Koizumi 2013,
Proposition 4].

Proposition 6.1. Let f ∈ CN (X). Then F(s, x)= Ps f (x) belongs to TN (T×X).

To prove the sufficient condition in the Paley–Wiener theorem, we need the
following lemma.

Lemma 6.2 (cf., [Koizumi 2013, Lemma 1]). Let N ∈ Z>0, F ∈ TN (T×X) and
a ∈Sn . If n > N then F+n (s, a)= 0 and F−n (s, a)= 0 for all s ∈ T.

Proof. We shall first show that F−n (s, a)= 0. Let us set

φ−(s)= (q1/2−is Rn(−s))−1 F−n (s, a).
Then we see

(6-1) φ−(−s)= (q1/2+is Rn(s))−1 F−n (s, a)=
q1/2−is Rn(−s)
q1/2+is Rn(s)

φ−(s).

We put

c−(n, s)=
q1/2−is Rn(−s)
q1/2+is Rn(s)

.

Obviously we have

(6-2) c−(n, s)=−q−1/2−is(2n−1)
+ (1− q−1)

∞∑
`=0

q−`/2−is(2n+`).

The condition (N5) yields that φ−(s) is an entire function of exponential type N.
We use the Paley–Wiener theorem on Z to write

φ−(s)=
∑
m∈Z

φ−(m)q ims,

where φ−(m)= 0 unless −N ≤ m ≤ N. Substituting (6-2) to (6-1), we have∑
m∈Z

φ−(m)q−ims
=

∑
m∈Z

[
−q−

1
2−is(2n−1)

+(1−q−1)

∞∑
`=0

q−
`
2−is(2n+`)

]
×φ−(m)q ims,

and thus we have the following recursion formula:

(6-3) φ−(m)=−q−1/2φ−(2n− 1−m)+ (1− q−1)

∞∑
`=0

q−`/2φ−(2n+ `−m).

From (6-3), when n > N + 1, it is easily verified that φ−(m) = 0 for all m ∈ Z.
When n = N + 1, (6-3) implies

φ−(m)=−q−1/2φ−(2N + 1−m),

and so φ−(N )= 0. We consequently have that φ−(m)= 0 for all m ∈ Z.
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We shall next show that F+n (s, a)= 0. We set φ+(s)= Qn(−s)−1 F+n (s, a). We
use the Paley–Wiener theorem on Z to write

φ+(s)=
∑
m∈Z

φ+(m)q ims,

where φ+(m)= 0 unless −N ≤ m ≤ N. Putting

c+(n, s)=
Qn(−s)
Qn(s)

,

we have
φ+(−s)= c+(n, s)φ+(s).

Because

c+(n, s)=
1+ (k− 1)q−1/2+is

1+ (k− 1)q−1/2−is c−(n, s),

we have

(6-4) φ+(m)

=− (k− 1)q−1φ+(2n− 2−m)

+ (k− 1)(1− q−1)

∞∑
`=0

q−(`+1)/2φ+(2n+`−m− 1)

− (1− (1− k)2q−1)

∞∑
`=0

(1− k)`q−(`+1)/2φ+(2n+`− 1−m)

+
(1− q−1)(1− (1− k)2q−1)

k

∞∑
`=0

(1− (1− k)`+1)q−`/2φ+(2n+`−m).

From (6-4), when n > N + 1, it is easily verified that φ+(m)= 0 for all m ∈ Z. In
the case n = N + 1, (6-4) implies

φ+(m)=−(k− 1)q−1φ+(2N −m),

and so φ+(N )= 0. Therefore, in this case, φ+(m)= 0 for all m ∈ Z. �

The proof of the sufficient condition in the Paley–Wiener theorem is like the
proof for the case of semisimple Lie groups given by Campoli [1980] and Johnson
[1979]. We remark that =s0 ≥ 0 when k ≤ r and =s0 < 0 when k > r . We also
remark that the residue of 1/c(s) at s = s0 is equal to r(k − r)/{ik(r − 1) log q}
and 1/c(−s0)= 1. We first show the following proposition.

Proposition 6.3. Let N ∈ Z>0, F ∈ TN (T×X) and set

f0(x)= cG

∫
T

F0(s, x)|c(s)|−2 ds.
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Then there exists a function J0 ∈ CN (X)
# such that

f0(x)− J0(x)=
(k− r)+

k
F0(s0, x).

Proof. We put F(s)= F0(s, o). Then it follows from Lemma 3.2 and the condition
(N4) that F(s) is an even entire function of exponential order N and

F0(s, x)= φs(x)F(s).

We thus have

(6-5)

f (x)= cG

∫
T

φs(x)F(s)|c(s)|−2 ds

= cG

∫
T

F(s) 1
c(−s)

q(is−1/2)|x | ds+ cG

∫
T

F(s) 1
c(s)

q(−is−1/2)|x | ds.

We write f1(x) and f2(x) for the first term and the second term of the last expression
of (6-5), respectively. For a sufficiently large η > 0, let f1,η denote the formula
shifting the path of integral of f1 from T to T+ iη and let f2,−η denote the formula
shifting the path of integral of f2 from T to T− iη.

Suppose that k ≤ r . Because f1 is analytic inside the rectangle with corners
±τ/2 and ±τ/2+ iη, we have by Cauchy’s theorem that f1 = f1,η. Similarly we
can also obtain that f2 = f2,−η. In case k > r , we have

f1(x)− f1,η(x)= 2π icG Ress=−s0

{
F(s) 1

c(−s)
q(is−1/2)|x |

}
=

k−r
2k

F(−s0)
( 1

1−k

)|x |
,

f2(x)− f2,−η(x)= 2π icG Ress=s0

{
F(s) 1

c(s)
q(−is−1/2)|x |

}
=

k−r
2k

F(s0)
( 1

1−k

)|x |
.

Then the assertion follows immediately. �

In the nonradial case, we need slightly complicated calculations.

Proposition 6.4. Let N ∈ Z>0, F ∈ TN (T×X) and set

fn(x)= cG

∫
T

Fn(s, x)|c(s)|−2 ds

for n > 0. Then there exists a function Jn ∈ CN (X) such that

fn(x)− Jn(x)=
(k− r)+

k
Fn(s0, x).
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Proof. We put a = x (n) and choose ω ∈ E(x). Because F±n satisfies the condition
(N2), we have from (4-10) and (4-12) that

F+n (s, x)= q−(|x |−|a|)/2ψ(|x | − |a| + 1, s)Qn(s)F+n (s, a),(6-6)

F−n (s, x)= q−(|x |−|a|)/2ψ−(|x | − |a| + 1, s)q1/2+is Rn(s)F−n (s, a).(6-7)

In the case when n > N, Lemma 6.2 yields that F+n (s, a) = 0 and F−n (s, a) = 0.
On the other hand, since F−n (s0, x)= 0, it suffices to set Jn(x)= 0.

In the following, we suppose that n ≤ N. Substituting (6-6) and (6-7), we obtain

f ±n (x)= ξ
±

a (ω)
−1cG

∫
T

h±a (s)8
±

a,s(x)|c(s)|
−2 ds,

where h+a (s)=Q|a|(s)−1F+n (s,a), h−a (s)= (q
1/2+isR|a|(s))−1F−n (s,a) andω∈ E(x).

We know that 8+a,s(x) has the following expansion:

(6-8) 8+a,s(x)= {c(s)q
(is−1/2)|x |

− q i2(|a|−1)sc(s)q(−is−1/2)|x |
}ξ+a (ω).

Hence we can show f +n ∈CN (X) for all k, r by the same arguments as in the proof
of Proposition 6.3.

Hereafter we shall compute f −n (x). It follows from (6-8) that

8−a,s(x)= {c(s)q
(is−1/2)|x |

− q i2(|a|−1)sc(s)q(−is−1/2)|x |

− (k− 1)R|a|(s)q−(|x |−|a|)(1/2+is)
}ξ−a (ω).

Let us set

f −n,1(x)= cG

∫
T

h−a (s)
1

c(−s)
q(is−1/2)|x | ds,

f −n,2(x)= cG

∫
T

h−a (s)
1

c(−s)
q i2(|a|−1)sq(−is−1/2)|x | ds,

f −n,3(x)= cG

∫
T

h−a (s)R|a|(s)q
−(|x |−|a|)(1/2+is)|x |

|c(s)|−2 ds.

Suppose first that k≤ r . Then as shown in Proposition 6.3, we see that f −n,1 ∈CN (X).
Keeping the notation in the proof of Proposition 6.3, we have

f −n,2(x)− f −n,2,−η(x)= 2π icG Ress=−s0

{
h−a (s)

1
c(−s)

q i2(|a|−1)sq(−is−1/2)|x |
}

=
r(k−r)

2k
h−a (−s0)(1− k)−|a|+1(1− r)−|x |+|a|−1,

f −n,3(x)− f −n,3,−η(x)= 2π icG Ress=−s0{h
−

a (s)R|a|(s)q
−(is+1/2)(|x |−|a|)

|c(s)|−2
}

=
r(k−r)

2k
h−a (−s0)(1− k)−|a|(1− r)−|x |+|a|−1.
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Setting
f −n,η(x)= f −n,1(x)− f −n,2,−η(x)− (k− 1) f −n,3,−η(x),

we obtain that
f −n (x)− f −n,η(x)= 0.

Thus we have by contour integration arguments that f −n ∈ CN (X).
Suppose next that k > r . In this case, by the same discussion as in the proof of

Proposition 6.3, we see that f −n,2 ∈ CN (X). Moreover we have

f −n,1(x)− f −n,1,η(x)= 2π icG Ress=−s0

{
h−a (s)

1
c(−s)

q(is−1/2)|x |
}

=
k−r
2k

( 1
1−k

)|x |
h−a (−s0),

f −n,3(x)− f −n,3,−η(x)= 2π icG Ress=s0{h
−

a (s)R|a|(s)q
−(|x |−|a|)(1/2+is)

|c(s)|−2
}

=
k−r
2r

h−a (s0)(1− k)−|x |+|a|−2(1− r)−|a|+1.

Let us set
f −n,η(x)= f −n,1,η(x)− f −n,2(x)− (k− 1) f −n,3,−η(x).

Then we have

f −n (x)− f −n,η(x)=
( 1

1−k

)|x |{k−r
2k

ha(−s0)+
k−r
2r

h−a (s0)(1−k)|a|−1(1−r)−|a|+1
}
.

We see from the definition of h−a (s) that

h−a (−s0)= (1− k)|a|F−n (s0, a), h−a (s0)=
r(1−k)(1−r)|a|−1

k
F−n (s0, a).

We therefore obtain

f −n (x)− f −n,η(x)=
( 1

1−k

)|x | k−r
k
(1− k)|a|F−n (s0, a)= k−r

k
F−n (s0, x).

By contour integration arguments, we see that there exists J−n ∈ CN (X) such that

f −n (x)− J−n (x)=
(k− r)+

k
F−n (s0, x),

concluding the proof. �

Summarizing the arguments in this section, we arrive at the following theorem.

Theorem 6.5. Let N ∈ Z>0 and F ∈ TN (T×X). We set

f (x)= cG

∫
T

F(s, x)|c(s)|−2 ds.

Then there exists a function J ∈ CN (X) such that

f (x)− J (x)=
(k− r)+

k
F(s0, x).
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Proof. Let x ∈ X be such that |x | > N. We choose a positive integer M so that
|x | ≤ M. Then f (x) can be written as the following finite sum:

f (x)= εM f (x)= f0(x)+ f1(x)+ · · ·+ fM(x).

Applying Propositions 6.3 and 6.4 to each Fn , we have

M∑
n=0

fn(x)−
min(M,N )∑

n=0

Jn(x)=
(k− r)+

k

min(M,N )∑
n=0

Fn(s0, x).

We thus have the required result. �

In the remainder of this section, as a corollary of Theorem 6.5, we shall prove
the Paley–Wiener theorem of the Helgason–Fourier transform.

Let N ∈Z≥0. Denote by ZN (T×�) the set of all functions F on T×� satisfying
the following conditions:

(H1) F(s, ω) is a smooth function on T with respect to the variable s,

(H2) F(s+ τ, ω)= F(s, ω),

(H3) F(s, ω) extends to a τ -periodic entire function of exponential type N,

(H4) F satisfies the symmetry condition (5-2),

(H5) (Dn F)−(s0, ω)= 0 when n > N.

With the notation above, we show the following theorem.

Theorem 6.6. Let N ∈ Z≥0, F ∈ZN (T×�) and set

f (x)= cG

∫
T

∫
�

F(s, ω)p(x, ω)1/2−is ds dν(ω).

Then there exists a function J ∈ CN (X) such that

f (x)− J (x)=
(k− r)+

k

∫
�

F(s0, ω)p(x, ω)1/2−is0 dν(ω).

Proof. Let F ∈ZN (T×�). It suffices to show P−s F ∈TN (T×X). The conditions
(H1), (H2) and (H6) are immediate from the conditions (H1), (H2) and (H5). Noting

|q−n/2ψ(n+ 1, s)| ≤
q + 1
q − 1

qn|=s|, |q−n/2ψ−(n+ 1, s)| ≤
q + 1
q − 1

qn|=s|,

we have from (4-10) that

|Qn(−s)−1(P−s F)+n (s, x)| = |q−(|x |−n)/2ψ(|x | − n+ 1, s)(Dn F)+(s, ω)|

≤ C ′N q(|x |−n+N )|=s|

for some constant C ′N which does not depend on the choice of n. The condition
(N5) is obtained in the same fashion as above. This concludes the proof. �
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