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FUNDAMENTAL DOMAINS OF ARITHMETIC QUOTIENTS
OF REDUCTIVE GROUPS OVER NUMBER FIELDS
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APPENDIX BY TAKAO WATANABE

For a connected reductive algebraic group G over a number field k, we
investigate the Ryshkov domain R, associated to a maximal k-parabolic
subgroup Q of G. By considering the arithmetic quotients G (k)\G(A)!/K
and I';\ G (k) / K, with K a maximal compact subgroup of the adele group
G(A) and the I; arithmetic subgroups of G(k), we present a method of
constructing fundamental domains for Q(k)\R, and I;\G (Kso)!. We also
study the particular case when G = GL,,, and subsequently construct funda-
mental domains for P,, the cone of positive definite Humbert forms over kK,
with respect to the subgroups T;.

1. Introduction

Let k be an arbitrary algebraic number field with ring of integers O. This paper
mainly focuses on the determination and construction of fundamental domains
associated to certain arithmetic quotients of reductive algebraic groups over k.

For the first part of the paper we consider a general connected reductive isotropic
algebraic group G over K and investigate fundamental domains associated to the
arithmetic quotients G (K)\G (A)!/K and T\ G (Kso)'/K o, with K a maximal com-
pact subgroup of G (A) and subgroups I'; of G (K) to be described below.

The discussion and results here in the preliminary sections are an extension
of Watanabe’s results [2014]. A maximal K-parabolic subgroup Q of G is taken
and we consider its associated height function Hy and Hermite function mg(g) =
minyegk)\G k) Ho(xg) on G(A)!. Watanabe [2014] introduced the Ryshkov do-
mainof mg, Rgp={g€ G(A)!: mo(g) = Hp(g)}, for the purpose of constructing a
fundamental domain for G (K)\G (A)! well matched with m 0. Watanabe also consid-
ered the case when G is of class number 1, that is, when |G(k)\G(A)]/G}A ol =1
and obtained a fundamental domain for G (Ky,) with respect to Go = G(K) NG A,oo-
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Here however, we consider algebraic groups of any general class number ng.
Particularly for class numbers higher than 1, foreachi =1, ..., ng we are required
to consider different arithmetic subgroups I'; of G(K) in place of just Go.

Let R"é denote the closure in G(A)! of the interior of Ro. It was established in
[Watanabe 2014] that by starting from a fundamental domain €2 of R*Q with respect
to Q(K), a fundamental domain of G(A)! with respect to G (K) can be obtained by
taking the interior of Q in G(A)!. In order to explicitly construct such an Q, we
define groups

Gaoo=GKeo) x Ky and Ty =G o0, ' NG(K),

where the 7y, ..., n,, are representatives of G(k)\G(A)1 / GK, o« Also for each i
take a complete set of representatives {£; j}ifi:l for Q(K)\G(K)/ T}, define sets

Rijoco=1{g € GKao)' : mp(g&iimi) = Ho(g&ijni)}

and let Q; ; = Q(K)N&;T; S_ By considering the action of Q; ; on R; j 0, We
find that starting with arbltrary open fundamental domains €2; ; » for Q; j\R; j
we can construct the required 2. From this we obtain the following results.

Theorem. Q= [} |_|$l’:l i, j,00€ij1i Ky is an open fundamental domain of R7,
with respect to Q(K).

Theorem. For eachi =1,...,ng, the set U, 1 ’;‘l] Q; j.0oéij is an open funda-
mental domain of G (Kso)! wzth respect to T';.

In particular we can take 7, to be the identity element of G, in which case I'y
coincides with the group Gp = G(K)NGa ~ used in [Watanabe 2014] when ng = 1.

The second topic of interest in this paper is the special case when G is the general
linear group GL,, defined over K. This time we consider the maximal K-parabolic
subgroup

0=0Q"" = {[g Z} :a €GL,(K), b€ My n_m(K), de GLn_m(k)}

for a fixed 1 <m < n. The class number of G in this case is equal to A, the class
number of K. Using {ay, ..., a,}, a complete set of representatives for the ideal
class group of Kk, we can produce a corresponding set of matrices {1, ..., n,}
representing GL, (K)\GL, (A)!/G} Ao The I in thls case are the subgroups of
GL, (K) stabilizing the respective O-lattices Zk | Oey + a;e,. The main result
established in this part is:

Theorem. |O(K\GL,(K)/T;|=h foreveryi=1,...,h.

This can be proved by identifying Q (K)\GL, (K) with the set of all m-dimensional
subspaces of k™ and establishing a bijection between this set modulo I'; and the
ideal class group of K. This bijection also allows us to obtain suitable matrix
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representatives {§; j},}zl for Q(K)\GL, (k)/T;. Relations between the field class
number and the number of double cosets in quotients of similar type involving
other algebraic groups, e.g., SL,, Sp,, and Chevalley groups, modulo a minimal
parabolic subgroup instead are noted by Borel [1962, Section 4.7].

In the final sections we consider P,, the space of positive definite Humbert forms
over K, with the usual identification P, =[], P,(Ks), where P,(K,) denotes the set
of n x n positive definite real symmetric/complex Hermitian matrices, depending on
whether o is real or imaginary, and the product is taken over all infinite places o of k.

If k= Q, then P, is just the cone of positive definite real symmetric matrices, and
fundamental domains for P,/GL, (Z) in this case have been historically constructed
by Korkin and Zolotarev [1873], Minkowski [1905] and later on Grenier [1988]. For
P, over a general number field, Humbert [1939] previously provided a fundamental
domain constructed with respect to the particular group GL,(O). As GL,(O)
coincides with one of the I'; we study in this paper, the question can be raised about
fundamental domains for P, with respect to each of the groups I'; when ng > 1.

As such, we proceed in the final sections to provide a general way of constructing

fundamental domains for P,/ I'; given any number field. The method of construc-
tion given here follows and generalizes the example given by Watanabe [2014]
for the specific case K = Q. As already noted in that paper, when k = @Q the
fundamental domain for P,/GL,(Z) resulting from this method coincides with
Grenier’s [1988]. It was observed by Dutour Sikiri¢ and Schiirmann that Grenier’s
fundamental domain is in fact equivalent to the one previously developed by Korkin
and Zolotarev. Regarding P,/GL, (O) for general number fields however, we note
that the fundamental domain produced by the method here differs from Humbert’s
construction, which utilizes the matrix trace, whereas the domain here is defined
using the adele norm of matrix determinants.
?: |» We associate to each pair
(n:, &) amaximal compact subgroup K; ; ~ of GL, (Ks) and a map 7;; inducing an
isomorphism between GL,, (K») /K, j o0 and P,. Then the results of our discussions
on GL, can be transferred to P, via the maps 7;;, which finally lead up to an
iterative method of constructing fundamental domains for P, with respect to the
groups [ for any general dimension n. Watanabe has also graciously provided an
appendix to this paper on Voronoi reduction over general number fields that are not
necessarily totally real, which settles the base case of dimension 1.

Using the matrix representatives {ni}f’: , and {&;;}

We also demonstrate that this fundamental domain construction for P,/ I is
well matched with certain automorphisms of GL(Ky,). Namely we see that the
fundamental domain for P,/ I'; constructed using a set of ideals {a, ..., a,} repre-
senting the ideal class group and the maximal k-parabolic subgroup Q™™ can be
directly mapped by an automorphism to the one constructed with the representative
set {al_], ey a;]} and Q™"
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Notation

In this paper we use Q, R, C for the fields of rational, real, and complex numbers
respectively, and Z for the ring of integers. R. will denote the set of positive reals.

For positive integers r and s, we denote by M, ((S) the set of all » x s matrices
with entries in the set S, and we write M, (S) for M, .(S). The identity matrix of
size r will be denoted by I,. The transpose of a matrix A will be written by ‘A. If
A € M, ;(C), we write A for the matrix whose entries are the complex conjugates
of the original entries of A.

We will fix and consider K, an algebraic number field of finite degree over Q,
and denote its ring of integers by O. We denote by p., and py the sets of infinite
and finite places of K respectively and we let p = po U py. For o € p, we write
k, for the completion of Kk at o, while for any subring B of K, the closure of B in
k, will be denoted by B,. We denote by K, the étale R-algebra k ®g R which we
identify with [ ], . .. Ko The ideal class group of k will be denoted by CI(k).

The adele ring and idele group of k are denoted by A and A* respectively. For an
adele a € A we write as, and a for its infinite and finite components respectively.
Similarly for any matrix A = [a;;]; ; with elements in A we write A to denote
the matrix [(a;;)oo]i, -

For each place o, we write | |, for the absolute value on Kk, taken as follows: at
each infinite place we use the standard complex absolute value on K, while for
o € py we use the normalized absolute value satisfying |x|, =[O, /p,|~" for any
arbitrary x € py\ pg, where p, is the prime ideal of O,. For an a = (a,) € A* we
write |a|a to denote the idele norm of a, and |a|, for the idele norm of a restricted
0 k%, lyep. ol ™.

Given a finite-dimensional K-vector space V and o € p, we will write V,, for
the k,-vector space V ®k K,. Also we will use the term O-lattice in V to mean
a finitely generated O-submodule of V' containing a kK-basis of V. If L is such an
O-lattice in V, we write L, to denote the O,-linear span of L in V,, when o € py.

For an affine algebraic group G defined over k and any k-algebra B, we write
G (B) for the set of all B-rational points of G. Also, the set of all k-rational characters
of G will be written as X*(G)x. We define G(A)! to be the set {g € G(A) :
Ix(g)|la=1forall x € X*(G)k}-

Lastly given a topological space X and a subset ¥ C X, we denote by Yy and
Yy (orjust Y° and Y if the underlying space X is clear) the interior and closure
of Y in X respectively.

2. The Ryshkov domain of G associated to O

Let G denote a connected reductive isotropic affine algebraic group over k, S a
fixed maximal K-split torus of G, and Py a minimal K-parabolic subgroup of G
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containing S. Let My be the centralizer of S in G and U the unipotent radical of
Py so that Py has the Levi decomposition Py = MoUy. We consider a relative root
system of G with respect to S and denote the set of simple roots with respect to Py
in this system by Ay.

A k-parabolic subgroup of G containing Py is called a standard k-parabolic
subgroup. A standard K-parabolic subgroup R has a unique Levi subgroup Mg
containing My, which gives the Levi decomposition R = Mg Upg, where Ug denotes
the unipotent radical of R. We write Zy for the largest central K-split torus of M.

We fix a maximal compact subgroup K =[], » Ko of G(A), where each K,
is a maximal compact subgroup of G (K, ), satisfying the property that for every
standard K-parabolic subgroup R of G,

e KN Mg(A) is a maximal compact subgroup in Mz (A),

e Mr(A) = (Mgr(A) N Up(A)) Mo(A) (K N Mr(A)) (Iwasawa decomposition)
holds.

Consider a standard proper maximal K-parabolic subgroup Q of G, which we
now fix. There exists a unique simple root in Ak that restricts nontrivially on Zg,
which we denote by xo. Let mg be the positive integer such that mél Xolz, is a
Z-basis of the X*(Zo/Zs)k. We write xo for the character

[X*(Zg/Zo): X*(Mg/Ze)dmg' (xolz,),

which is a Z-basis for X*(Mo/Z¢)«.
Next we define the map

20 : G(A) 3 umh — Zg(A)Mo(A)'m € Zg(A)Mo(A)' \Mo(A),

where u € Ug(A), m € Mp(A), h € K. This is a well-defined left Q(A)!-invariant
map, which gives rise to the following map, which we also denote by z¢:

0(M"N\GA) 3 0(A) g z0(g) € Mo(A)'\ (Mo (A) NG(AY).

Here we have used Zg(A)! = Zg(A) N GA)! € My(A)L.
We can now define the height function Hgp : G(A) — R.o by

Ho(®) = lxoGo@)ly'. geG®A),
as well as the Hermite function mg : GA)! - R by

= i H , eGA).
mo(g) erI(%{lG(k) o(xg), g (A)

Definition [Watanabe 2014, §4]. The set Ry defined by

{geGA) :mg(g) = Ho(g)}

is called the Ryshkov domain of mg.
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3. Fundamental domains of G(K)\G(A)! and T;\ G (Kxo)!

Definition. Let 7 be a locally compact Hausdorff space and I' a discrete group
with a properly discontinuous action on 7. An open subset €2 of T satisfying

1) T=IQ,
(i) QNyQ- =g forall y eI'\ {e}

is called an open fundamental domain of T with respect to I'. (Here we have
assumed that I' acts on T from the left. In the case of a right action the same
definition holds with the group action written on the right instead.)

We call a subset F of T a fundamental domain of T with respect to I, or simply
a fundamental domain of I'\T (T /T in the case of a right action) if there exists an
open fundamental domain €2 of 7" with respect to I such that Q C F C Q™.

Further Notation. Hereafter we will use the following notation:

* Koo = Haepoo Ky, Ky= naepf Ko,

* Gaoo=GKeo) x Ky, Gj o =GacNGA),

e G(Koo)' = G(kso) N G(A)!, where we identify G(Ko) with the subgroup
{g€eGA): gy =e}of G(A).

We will denote the class number of G, i.e., the finite number |G (K)\G (A)/Ga, ool
by ng. We note here that |G(k)\G(A)1/G}A | 18 also equal to ng.

The case when G is of class number 1 is discussed in [Watanabe 2014], where
a fundamental domain for G(K)! with respect to the group G(K) N Ga, o is
determined. In the following we discuss and obtain a similar fundamental domain
in the general case.

We take a complete set of representatives {1, ..., 1} for G(k)\G(A)1 /G IA’ o~
Then, fori =1, ..., ng, define the groups

Gi=nGhon; ' and T;=GiNGK).
We note that since (m)ooG(koo)l(m)go1 = G(Ks)', we can also write G; as

G (Koo)' x () K ()7 " or G(Koo)'mi Ky,
From G(A)' = ['%, GG} o = 1'% G(K)Gin; we have

nG nG
GUINGA)' = |T\Gini =|_|Ti\(G (ko) 'niK ),
i=1 i=1
which gives us the isomorphism

ng

GINGA)'/K ~|_|T\G(Ku)'/Kox.
i=1
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Also foreachi =1, ..., ng we take a complete set of representatives {§;; } e
for Q(KI\G(k)/ T} (where the number of double cosets 4; is finite; see [Borel 1963,
§7]) and define groups

Qij=0QNgNE! = 0K NE;GE
and the sets
Rijoo={8 € G(Kao)' i mp(g&ijmi) = Ho(g&ni)}
for j=1,...,h;. Alsosince G; = G(koo)lnil(frfl as previously noted,

EjGiE; =&;G(Koo) miKyn; & = G(keo) EjmiKyn; '€

ng hi

Lemma 1. W' =] || ] oG k) &imiKy.

i=1j=1
Proof. We first show that for a fixed i the union U’;’:l Q(K)&;;G;n; is disjoint.
Suppose for some 1 < j, j' <h; that Q(K)&;; G;n;NQ(K)&;j»G;n; is nonempty. Then
there exist ¢, ¢’ € Q(k) and g, g’ € G, such that g&;; ¢ = ¢'&;7g’. Rearranging gives
us gg'~! :glglq q'&i € GiNG(K) =T;. This shows that Q(K)&;;T; = Q(K)&; T,
implying j = j’. The result then follows from

G = |_| GKNiGh o |_| G(K)Gin;

_|_|<|_|Q(k)$,j ) ,U,‘Cl_”_lQ(k)sijGini
iJ

and &;Gni = G(Koo)'&mi K. O
The lemma also gives us the disjointedness of the union in the following result.
nG hi
Proposition 2. Ro = |_| |_| QKR j ckijniKy.

i=1j=1
Proof. From the previous lemma, we see that any g € G(A)! can be written as
qg&'&;jnih for some i, j and g € Q(K), g’ € G(Ks)l, h e K. Since both Hp and
my are left Q(K)-invariant and right K -invariant, we see that
Ho(g) = Ho(g'&imi),  mo(g) =mo(g'&jm).
Hence g € Ry if and only if g’ € R; j oo. O
The following two lemmas hold for any fixed 1 <i <ng and 1 < j <h;.

Lemma 3. Let ¢ € Q(K). If the sets q(G(Koo)'&iniKy) and G(Koo)'&ijni Ky
intersect, then g € Q; ;.
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Proof. Suppose that g € q(G(koo)‘gijn,-Kf) N (G(Keo)'&jniKy). By rewriting
G(Kso)! ?;ljn,Kf as &;G;n;, we have q_ g, & €&;;G;n;, from which we get g 'e
&G SU Hencequ(k)ﬂ&,]Gé_ =0, O
Lemma 4. Qi j(Ri jookijniKy) = Ri j.ookijni Ky.

Proof. Consider g € Q; ; and g € Rij . Since q € G(Koo)! EiniKen; él] , We

have g5 € (&;mi) Ky (&jn) " Let g5 = (&;ni)h(&;n:)~", with b € K. Then
Hp((g08)§ijni) = Ho(qoog(&ijni)h) = Ho(qo08qr(&ijni)) = Hp(qg&iini),
which is equal to Hp(g&;;n;). Similarly
Mo ((geo8)ijni) = Mo (qoo8qréijni) = mo(qg&ijni) = mo(g&ijni);
thus goog € R; joo- Finally qr&;jn; Ky C &;jn; Ky. Hence we get q(g&;jniKy) C
R; j.ooijni Ky, as required. O

By taking a complete set of representatives {6;x }x for Q(K)/Q; ; and using both
Proposition 2 and Lemma 4, we obtain

ng h; ng h;

(D RQ = |_| |_| Q(k)Rl j, Oogl]anf = |_| |_|<|_|91ij1 _]) lj,oog:ijnin

i=1 j=1 i=1 j=1
ng  hi

= ||| |6:cRi.j.cokiiniKs.
i=1j=1 k

where the final unions are disjoint as a result of Lemma 3.
Denote (R° ) by R* ~» Where the interior and closure is taken in G (Koo)'l
Similarly wrlte R* for (R ) in G(A)!. From (1) we have

ng hi

) Ry = LIS L oo RE s octism K

i=1j=1 k

Taking open fundamental domains £2; ; » of R .00
i=1,...,ngand j=1,...,h;, we consider the set

ng h,‘
= |_| |_| Qi j,00bijni Ky
i=1j=1

Theorem 5. Q2 is an open fundamental domain of R* with respect to Q(K).

with respect to Q; ; for each

Corollary 6. 2° (= Q° G A)]) is an open fundamental domain of G (A)! with respect
to G(K).
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Proof. From (2) we have

ng h; ng hi
- I_l I_l I_leiij;jj,oosijﬁin = I_l |_| I_leijk(Qi,jQZj,oo)Sijnin
i=1j=1 k i=1j=1 k

ng h;
=| | ] owe;; onik; = 0kQ .
i=1j=1

Now suppose QNgQ~ # & for g € Q(K). So for some i, i’, j, j/ we must have
q(Qi,j.oobijmi Kp) N (S 1 & jmi Ky) # @. Writing g =0;jkq" with ¢" € Q;, j and
some k, we have

ljk(q )oo$2 leOgl]ananl s oogl’j’ni’Kf # I

since (q")r&jni Ky C &jniKy. Then (2) implies i =i, j = j’, and 6;j; = e. Thus
Qi jocN (q/)ooQ:j’C><> =Qj oo ﬂq/Q;j’oo must be nonempty, which means ¢’ = e
and hence g = e. This proves the theorem, and the corollary follows from [Watanabe
2014, Theorem 15]. U

Finally, for any fixed 1 <i < ng, we have the following theorem.

Theorem 7. The set Q; oo= Jh’=1 éi;l Q. j oobij is a fundamental domain of G (Koo)'
with respect to 1.

Proof. The following proof was suggested by Professor Watanabe. To show that
G(Kso)! =T;Q7 _, consider an arbitrary g € G(Ko)'. From Corollary 6,

i,00°
ng h;
GAY' =GKQ =Gk | || |27 &imiKs
i=1j=1
ng h

=G| || |&i&; ' ik € GK) U Q; ik,

i=1 j=1 i=1

SO we may write gn; = g a)n,h with g’ €e G(K), w e Q; andh e Kf Rearranging
we get g’ = (gw™ Ymih! n; ) which belongs to G(koo) niKy 77, = G;. Hence
g €T;. Since g=(g'w)(n;ihn; Y and g € G (Koo)', we know nlhnl must necessarily
be trivial. Thus g € I3}

N OW suppose that Q2 N g, , is nonempty for a g € I';. Then we must have
& Qf joofij N&&E Ql_] ~&ijr # @ for some j, j'. Since gfn; Ky =n;Ky,

£ S j ooy N 86 2 sofiy # 2
= (Qi ook Kp)° NE8EL Qi jockijmiKy)™ # @

= Q°N(E e #£2,
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and thus &;; géi;,l = e by Corollary 6. Hence Q(K)&;;I; = Q(K)&;;»T;, which implies
J = j' whereby g = 51_;151.1., =e. O

4. The case G = GL,

We will now consider the case where G is a general linear group GL,, defined over K.
We use the group of diagonal matrices as the maximal K-split torus S, and the group
of upper triangular matrices in G as the minimal K-parabolic subgroup Py. Also
fixing an integer 1 < m < n, we will consider the maximal standard k-parabolic
subgroup Q defined by

0k = {[g Z} ta € GLy(K), b € My n—m(K), d € GLn—m(k)}

and the Levi subgroup My is given by

Mp(K) = {[g 2} ca €GLy(K). d € GL,,_m(k)}.

For the maximal compact subgroup K of G(A) let K = Ko, x Ky, where

Keo={g €GLy(Kxo): 'gg =1}, Kp= ][] GLu(Os).
oEpr
Here we identify GL,, (Ko ) with Haezroo GL, (Ks), and for g = (g5 ) e p., € GL, (Koo)
we write ‘g for the element (g;)sep., Of GL,(Koo).
The character xo described in the first section is then given by

XQ<[8 2]) = (deta)™™/! (detd)™"/!

and the height function Hy by

Y

where [ is the greatest common divisor of n —m and m.

We shall see that in this case the number of double cosets of Q (K)\GL, (K)/ I'; for
each i is invariant and equal to |GL,, (K)\GL, (A)!/ GA, |+ the class number of GL,,.

Denote the set of all O-lattices in k" (» > 1) by £,, and the standard unit vectors
of k™ by egr), R efr). For this section we simply write £ for £, and e; for e,(cn)
(1<k<n).

For L € £, and g = (g5 )oep € GL, (A) put

3 gL = ((koo)r X 1_[ goL(7> Nnk" e Lr.

oepy
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This defines a transitive left action of GL,(A)! on £,. Note that if g € GL, (k)
then gL as defined above coincides with the usual image of L under the linear
transformation v > gv of K”. The subset of £ consisting of all O-lattices of the
form gL with g € GL, (K) will be referred to as the O-lattice class of L or just the
lattice class of L in £.

There is known to be a one-to-one correspondence between the O-lattice classes
in £ and the double cosets in GL, (K)\GL,(A)!/G IA’ ~» Which we give explicitly
later on in this section. For now we note that this means the number of distinct
lattice classes in £ and the class number |GL,, (k)\GL, (A)! / GA, | are equal.

Lemma 8. Let L be an O-lattice in a K-vector space V of dimension s > 1. Then
there exists a K-basis {xj}j.: , of V and s fractional ideals Ay, ..., Ay such that
L=Ax1+ - -+ Asxy,. Moreover:

(i) If W is a k-subspace of V of dimensionr < s, the x; can be chosen such that
X1y ooy Xy e W.

(i1) The ideal class of Ay --- Ay is uniquely determined by the isomorphism class
of L as an O-module. In particular, L ~ (@j;ll (’)) D (Ay---Ay).

(iii) In the case V. C K" (s < n), we can find g € GL,,(K) such that
s—1

gL = (Z Oej> +(Ay--- Ayey.
j=1

Proof. See [Shimura 2010, Theorem 10.19]. We prove (iii) here. Consider the case
s =2, where L = Ajx| + Apx,. We can find ki, k; € K* such that A| =k A and
Al =k A; are integral ideals and A + A, = O [Shimura 2010, Lemma 10.15(i)].
Let g’ be the matrix formed by substituting the first two columns of the n x n unit
matrix with kl_]xl and kz_lx2. Then g~ 'L = Ale + Aler. Next let

1 1
g”: —da) ai ,
In—2

where a; € A and a, € A/, are taken such that a; +a, = 1. It is easily verified that
g"(Ale; + Aber) = Oe; + Al Aler. Hence g = diag(1,k; 'k; ', 1,...,1)g"g" ™!
maps L to Oe; + A1 Ajzey. The general case when s > 2 follows inductively from
this result. U

The ideal class associated to the O-lattice L mentioned above in (ii) is known as
the Steinitz class of L, denoted by A(L). We may also speak of the Steinitz class
of an entire lattice class in £ since every O-lattice in a lattice class has the same
Steinitz class.

It follows directly that mapping each lattice class to its Steinitz class gives a
bijection between the set of lattice classes in £ and CI(k). As a result the class
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number of GL,, which we have noted to be equivalent to the number of distinct
lattice classes in £, is equal to the class number of K, which we write as 4.

We now proceed to prove that #; = |Q(K)\GL,(k)/T};| is also equal to & for
everyi=1,...,h. As we did in the previous section, let {1, ..., n,} be a complete
set of representatives for GL,, (K)\GL, (A)!/ G%A’oo. Then foreachi =1, ..., h put
Li=n;(Oe;+---+Oey,) € L.

Next we identify Q (k)\GL, (k) with the set of all m-dimensional linear subspaces
of K" denoted by Gr,, (the Grassmannian) via the bijection

m
@ 0(9\GL,(K) 3 Q(K)g —> g~ (Z kek) € Gry.
k=
From here up to the end of Theorem 11 we fixi € {1, ..., h}. Considering the

left action of T'; C GL, (k) on Gr,,, the map (4) gives rise to the bijection

m

5)  QK\GL,(K)/T; > Q(k)gT; —> n-gl(z kek) € [\Gry,
k=1

which lets us identify Q(k)\GL, (k)/ Iy with T;\Gr,.

Lemma 9. T is the stabilizer of L; in GL, (K), under the action of GL, A)! on £,
ie.,
I ={geGL,(k) : gL; = L;}.

Proof. Since T; = (GLy (Koo) X 1i [T5¢ , GLa(Oo)1;) N GL, (K), this is obvious
from our choice of L;. O

Proposition 10. Let V|, V, € Gr,, and put Li=L;NV,, Ly=L;NV,, which are
O-lattices in V| and V, respectively. Then A(L) = A(L») if and only if there exists
g €I such that Vi = gV».

Proof. Suppose that V| = gV, for some g € I';. From Lemma 8 we can find a
k-basis {y] "_, for K" contained in L; with yi,...,y, € V2. Put x; = gy; for
j=1, m Then {xj}'” , and {y]} 1 Span V1 and V; respectively and since g
stablhzes L;, they are also contained in L, and L, respectively.

For v € V| and w € V>, we write («,); and (B,); for the K-coefficients of x; and
y; in v and w respectively (so v = > (y)jxj and w = Z;":l(,Bw)J-yj). Let J;

be the fractional ideal generated by {det[(ozvj)l _i v, ..., v, € Ly}, We can
show that the ideal class of J; in CI(K) is A(L;) as follows From the lemma above
we have L1 A1x1 +-- 4 Amxm, with fractional ideals A4, ..., A,, and {xj};f‘:i

a basis of Vj. Comparlng /\ 1L1 Al Ay (xi S AX)) w1th

/\j:1L1 =k-span of {vi A---Avp | V1, ..., Up eLiy=0(x1 A Axp),

we see that A; - - - A, is a K*-multiple of J;; hence their ideal classes are equivalent.
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Similarly A(Lz) is the ideal class of the fractional ideal J> generated by the
det[(,Bw )1 =1 for all wy, ..., w, € L2 However, since any arbitrary v € L1 can
be written as gw with some w € L, and

v=gw = Y ()X = g(Z(ﬁw>jyj) = (Buw)igyi =Y _(Bu)jx
j=1 j=1 j=1 j=1

— (O{v)jz(ﬂw)jv j=1"'-vm7

this shows that J; = J, and thus A(L;) = A(L»).

Now suppose conversely that A (L) = A(L,). Using Lemma 8, we obtain k-bases
{xj};le, {yj}7:1 for k" and fractional ideals Aq, ..., A,, B;, ..., B, such that
Li=Axi+ - -+Axp,=Biy1+---+Byy,and xy, ..., xn €V, Y1, ..., Y € V2.
Since il =Aixi+---+Aux, and ig = B1y1 + -+ Buym, the ideal classes of
Ay---A, and By - -- B, are equivalent, and hence so are those of A,,1--- A, and
Byu+1- -+ B,. By substituting the basis vectors and fractional ideals with suitable
k*-multiples, we may assume that A;---A,, = By--- By, and Ap11--- A, =
Bpt1 - By

Finally using Lemma 8(iii) we can find g1, g2 € GL,(K) satisfying

m—1 n—1

gili=Y Oej+ (A1 Apen+ Y Oej+ (Any1-- Aen,
j=1 j=m+1
m—1 n—1

g2Li=) Oej+(Bi-- Bu)ew+ Y Oe;+ (Buyi- - Byen,
j=1 j=m+1

chosen such that
m—1 m—1

gili=) 0Oej+ (A1~ Anen, galy=) Oej+(Bi-- Bu)en.
j=1 j=1

Put g = gl_lgz. Since g1L; = g»L;, the previous lemma gives us g € I3, while
gVo =V, follows from gy; e gLo =L, C Vi (j=1,...,m). O

Finally we consider the map
(6) Ai : T;\Gr,, = Cl(k), Ai(GV)Y=AL;NV) (V eGry),
which is well-defined and injective as a result of the previous proposition.
Theorem 11. h; =h.

Proof. Since h; = |Q(K)\GL,,(k)/ I;| = |I';\Gr,,| we only need to prove that A; is
surjective.

Take any ideal class in CI(k) and let A be a fractional ideal representing this
class. Also let B be a fractional ideal representing A(L;). Lemma 8(iii) allows us
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to find g € GL, (K) such that

gli= Y Oec+Ae, 1+ A ' Be,.

1<k<n-—1

Let V be the subspace of K” spanned bye, ..., e,_1,e,_1 andput V' =g~V €Gr,,.
Then L; NV’ ~ (EB'};] (’)) ®Aso (T V)=A(L;NV’)is the class of A in CI(K),
as required. (]

The one-to-one correspondence between GL,, (K)\GL, (A)!/G A, « and the set
of O-lattices classes in £ mentioned earlier in the section is given by mapping
each n; to the lattice class of L;. That this is a bijection follows from GIA’ ~ being
the stabilizer group of the O-lattice Oe; + - - - + Oe,, under the action of GL,, (A)!
on £. Continuing this map to the Steinitz class of the lattice gives us the bijection

GL, (K)\GL,(A)'/ G} o 3 ni = A(L;) € CI(K).

This gives us an explicit way to find candidates for {5, ..., n,} as follows.
Let {ay, ..., a,} be a complete set of fractional ideals representing the ideal class
of k. Foreach i =1, ..., h, we shall require an element n; € GL, (A)! such that
the Steinitz class of the resulting lattice L; = n; (ZZ:l (’)ek) is the ideal class
represented by a;.

Let D, (x) (x € A) denote the unit matrix of size n with bottom-most diagonal
entry replaced by x. For each 1 <i < h we can choose «; € A* such that ¢;,
generates the principal ideal a; O, for every finite o and |¢; |~ = N (a;), the ideal
norm of a;. Then D, («;) € GL,(A)! since |det D, (e;)|a = |ei|a = 1, and

n
Dn(oc,-)(Z(’)ek) = Z Oek—i—aien.
k=1

1<k<n

Hence putting n; = D, (¢;) (1 <i < h) gives us our required set of representatives.
The corresponding O-lattice L; and its stabilizer group I'; will be denoted by L, (a;)
and ', (a;) respectively whenever we want to call to attention the fractional ideal a;
or the dimension 7.

We can also proceed similarly to find, for a fixed i, a suitable set of representatives
for Q(k)\GL, (k)/ ;. We do this using the bijection

Q(K\GL,(k)/T; 5 Q(K)gT; —> A(Li N g~ 'V,,) € Cl(k)

formed by composing A; with the bijection (5), where V,, = Y/, Kex.

Foreach j e{l, ..., h} theideal g; aj_1 shares the same ideal class as a unique a/
(j'e{l,..., h});thatis [a;][a;/] =[a;]. Putting 7; () := j’ defines a permutation ;
on{l,..., h}.
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Call a set of matrices {&1, ..., &} C GL,(K) an (n, m)-splitting set for L, (q;) if
foreach j=1,...,h

(7 SjLn(ai)=< Z Oek+ajem>+( Z Oek+af,-(j>en)

1<k<m m<k<n
= Lm(aj) @ Ln—m(ari(j))-

Since A(L; N éj_l Vi) = AL NVy) =[a;] (i < j < h), such a set of matrices
completely represents Q (K)\GL,, (K)/ T;.

One such set is given as follows. For each j =1, ..., h, first take «;; € k such
that ajaf{(j) = Kiji. Then choose elements o;; € a;, o]; € az,()), Bij € a;l and
Bi; € a(; satisfying

’ Y

aijBij —o;ifi; =1
(see [Cohen 2000, §1, Proposition 1.3.12 or Algorithm 1.3.16]) and define the
matrix
Im—l
/

aij KijBij

&= € GL, (K).

I n—m+1
aj; KijBij
By direct calculation it is easily verified that {&;; }?:1 is indeed an (n, m)-splitting
set for L, (a;) and thus fully represents Q™" (kK)\GL,,(k)/ T, (a;).

5. Fundamental domains of GL,(k)\GL,, (A)! and P, /T;

We use the results of Section 3 to determine suitable fundamental domains in our
continued discussion of the general linear group.

5.1. Local height functions.
Definition. For each o € p define H, : \"K? — R by

5\ ks RI/2
a , O € )
Ha(zal(eil/\"'/\eim)>: (Z[| [lo) P
1 sup; lasls, o € py,
where the sum and the supremum are taken overall I ={i; <--- <i,} C{l,...,n}.

We call this the local height function at o.
In the following we extend each H, to a function of GL, (K,) by putting
HG(V):HG(Vel/\"'/\yem)» yEGLn(kU)

The following lemma allows us to express the height function Hy (restricted to
G(A)!) in terms of these local heights.
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Lemma 12. For g = (g5)scp € GL,(A)!,

Ho(g) =[] Ho(g; """

oep

Proof. By noting that every local height H, as a function of GL,(K,) is left
K -invariant and writing

g:[O d]h (a eGL,,(A), d e GL,,—,,(A), h € K),

we see that H, (g, ') = |det(a;!)|" atevery o, where r, =2 when o is an imaginary
infinite place and 1 otherwise. Hence the right-hand side of our equation becomes
\detaly"!, while Ho(g) = |detaly" ™" |detd|;’" by definition. Then since g €
GL,(A)!, we have 1 = |det g|a = |deta|a |detd|a, which gives us our equality. [

We proceed to describe the sets R; ; o using the matrices n; and &;; chosen at the
end of the previous section. For the rest of this paper, for a square matrix A with
entries in A or K, we will write |A|a and |A|x to denote |det Al and |det A|so
respectively. When the size of A is at least m, we write A" for the top-left
m X m submatrix of A, and use |A|([>'g] to denote |A"™|

Lemma 13. Let X;; be the n x m matrix formed by the first m columns of & ! Then

" _ _ 21
(8) HoGven) = N@p)" !X, g aZe ™ v Xy

forany1<i,j<h, y eTjand g € GL,(Kx)".
Proof. Let x = n; ' g7y ~1X;; so that Hy ((5;vgni); ") = Hy (xXo€1 A+ AXpep).

For o € po, this computes to
1Ky R

1ky:R]
2 —
( > |det[xc]1|§) =(§ det’[xa]zdet[xgh) —det ("%, x, )2 Ko RI
} I

where for each I = {i; < --- < i,,} that the sums run through [x,]; denotes the
m X n matrix formed by the i{-th, ..., i,,-th rows of x, arranged from top to bottom
in that order. The final equality is due to the Cauchy—Binet formula; see [Bombieri
and Gubler 2006, Proposition 2.8.8].

For o € py, since g, is trivial and y,, € n,-aGLn(Og)m;l, we have (§;;ygni)o =
§ij,Nioho for some h, € GL,(O,). Hence HU((E,-J-ygm);l) simplifies to

Hy (i 511;])— U(ﬂij(el/\"'/\em)‘i‘ai;l’(ijal{j(el/\“'/\em—l/\en))

or

—1 -1 -1
max{|Bijlo, i, ki i1} = |Bijkijctio |, max{|BijBiikijiclo, o Bijlo}-
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By the previous lemma, Hg(§;;ygn;) is obtained by taking the n/[-th power of
the product of all the H, ((§;;y gni)7"). Thus it remains to verify that

o
-1
[18ixij¢i01; " max{|Bi; B kijcticlo lof; Bl 1o} = N (a).
oEpy

First we see that l_[aepf |,Blfj/cijoei(,|gl = N(ﬁ{j/cijai) = N(ﬂi’jaja,[(j)). It is then
sufficient to show that the product of the remaining factors is N (B]; a4 L

Let p, denote the prime ideal associated to a finite place o € py. Write
the prime ideal decompositions of B;;a; and pB; 05,(j) as [1ye b (s N O)% and
[Iye p; (ps N O)% respectively, the exponents d, and e, being nonnegative.

Then ,Bij,Blfjlqjai = (,Bijaj)(ﬂ{ja,i(j)) = ]_[gepf (s N O)%Fe and since each a;,
is generated by «;,, this yields

|Bij Bijkijicle =106 /Pol "%, o € py.

Now ozlfj l./j € ,Bl.’ja,i(j) and hence |ozlfj l./j|g < |0, /ps|"¢. We have two cases.
Case 1: dy =0. Then |}, 8;16 < 1BijB;;kijeicle =106 /Pl ™.
Case 2: dy, > 0. In this case

/ /

aBi; = —1+ajBij € =14 Bija; C =1+ (po NO)®

shows us that alf/.,Bi’j € O and so |c»z;j,8i//.|(7 =1> |ﬂ,~‘,~ﬁi’jic,~jozl-o|a. We also note that
since B;; and ,Blfj were chosen in such a way that ;;a;; +,3i’j a;; = O, the ideal B;;q;
is prime to ,Bi’j az(j)» which means e, = 0.

So in either case,
maX{|/3ij,8i,j’Cijaia|(r’ |al{jﬂi/j|a} = |O¢7/palie‘7
and thus the product over all finite places is N (f] ;97 ( i)Y, as required. O

Now fix 1 <i, j < h and first consider the set SJI R; joo&ij. It is easy to directly
verify that

£ Rijookij =18 € G(Keo)' - Ho(&ijgmi) = mo(gn)}.

Hence for g € Ei;lRi,j,ooéij we have

H ii&ni) = i) = min Ho(x ;)= min H i i),
0&ijgni) =mo(gni) ceodin o o(xgn;) min, o&ikygn:)
yel;

which in this case can be written using (8) as

N (ax)
N(a;)

2
'Xi;'g 7 )8 Xijloo < ( ) I'Xir 7' )2y Xikloo

forallk=1,...,hand y €T1;.
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Now ‘Xt 'y g 1(771) gy X = (& 7 'g7 i 2eyE )™, which by
letting g;j) = él]géu can be rewritten as

(t('fij Vsi; ) tg[;l] ( téif (ﬂi)gozfiyl)gﬁjl] (& ygizl)) [m].

This lets us express the set R; j ~ as follows. For g € GL,,(K) let 7;;(g) denote
té_l(t‘fl;] (Ui)goz";“,-;l)g_l. Then g € R; j « if and only if

N@o Y\ o .
%) "Gy Hmip () Ev e |

forallk=1,...,hand y €T;.

©) |7 ()| < (

5.2. Fundamental domains of P,/ T;. For each infinite place o of k let P, (K,)
denote the subset of GL,(k,) consisting of all positive definite real symmetric
matrices when o is real and positive definite Hermitian matrices when o is imaginary.
We consider the subset of GL,(K) defined by P, =[] P,(K,). This is the
space of positive definite Humbert forms in GL,, (k).

We have the following right action of GL,(Ky,) on Py:

0EPoo

(10) A-g="gAg (g§€GL,(Kx), A€ Py).

To determine fundamental domains in P, with respect to subgroups of GL,(K),
we consider instead the induced action A - gZ ='gAg of GL,(k)/Z on P,, where
= {z € k: zz = 1}, the set of roots of unity in K. Here {z[, : z € Z} is naturally
seen to be the intersection of K, and the center of GL,, (K).
Hence given a discrete subgroup I' of GL, (k) acting on a subset T of P,, a
fundamental domain 2 of a 7/ T" is an open subset of T satisfying

OHT=Q T,
(i) fory eLif Q°N(Q™-y) AT theny € Z.
Now foreach 1 <i, j < h, put
Kijoo = (Eijni)ooKooEijni)ay» Py ={A € Py:]Aloo = N(kijai) "},

and define the map 7;; : G(Koo) 9 g g l(télj (mi) ZS,J )g~! € P,. Note
that K; j ~ is the stabilizer of ’S (77,) 2";'” € P, under the action of GL, (Ky,)
on P, and that 7r;; preserves this actlon Thus the surjective map 7;; gives us the
isomorphisms

GLy(Koo)/Ki joo = Py and  GLy (Koo)' /Koo = 71 (GLy (Kao) ) = P

since '€ (1)o2€;;  loo = N (ijai) ™2
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Lastly let F;';" denote the following closed subset of P:

N 2 i
Niafi) |t(5iiV§i21)A(§ijV§,-;1)L[)O], l<k<h, ye Fi}-

From (9), 77;; maps R; j o onto Fi"}.m N P/ We also note that following statement
holds true, the proof of which will be given later in the section.

{A e P, :|AIM < (

ﬂ ﬂ‘l

Proposition 14. is right Q; j-invariant under the action (10).

Thus the subgroup Q,,j of GL, (Kso) actson R; j « from the left and on FI"J'" from
the right, and m;; preserves this. Hence by constructing a fundamental domain for
Fl "™/ Q; j, we can find one for Q; ; \R, j.0o by taking the inverse image under 7;;.

We start by observing that &;;I’; 5 is the stabilizer in GL,, (K) of the O- lattlce
&;jL; described in (7). This gives us an expression for Q; j = Q(K) N§&;T; 5

b
{|:?) di| ae 1—‘m(aj)v de Fn—m(ar,'(j))’ bLn—m(ar,-(j)) C Lm(aj)}-

Any A € P, can be written uniquely in the form

] 0 rat o HI Ua }
11 A=|,m m A
b |:IMA,m n—m] |: 0 A[n—m] 0 Iim

with A" e Py, Apy_m) € Py and up m € My n—m(Kso). (The symbol A" here
coincides with its prior use to denote the top left m x m submatrix of A). It is easy
to verify that the action of ¢ = [3 %] € Q; ; on A results in

(gAQ"™ ="aA™a,  ('GAQm-m) = "dApn—md,
UtgAg.m = a_] (uA,md +b).

These equations will determine the necessary form of our fundamental domain,
as well as allow us to prove our previous proposition. Given A € F L.”}.m and g as
above, we first see that

'g A = 'aloo| Al a) oo = | ALY,

Next put g = Siquéiyl, vy € I3, to get

"Gy )'aAqEvERD) = "GvavEr DAG VY EL)
for all y € I; and every k. Together, this shows that 'GAq € F}';" as proposed.
Now for each k = 1, ..., h choose sets 0y, O}C and 0;; that are fundamental
domains for K, with respect to addition by ay, ak_1 and ay ar_l_(lk) respectively. We
require each of these sets to be closed under multiplication by Z. Then choose also
a subset ;4 of d;; that is a fundamental domain for 9;; with respect to multiplication
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by Z. Also if necessary (which will be the case when m > 1 and n —m > 1) take a
fundamental domain 9 of K., with respect to addition by O.
Using these, we define for 1 < i, j < h the sets

dip -+ dijg—m 00, r<m,s<n—m,

@n’mz :dmn mED,J,drsE D

ij r<m,s=n-—m,

% (J)’
dml"' dm,n—m D], r=m, s<n—m

and
FN"(S, 8 ={AeF"": AMeS, Ay meS, uamed!")

with arbitrary subsets S C P, and S’ C P,_,.

In particular we will want to consider F}';/" (B;, €y, (;)) when B; and &y, ;) are
fundamental domains for P,/ I, (a;) and P,_,,/ [, (a,(;)) respectively. In this
case, based on our observations on the action of Q; ; on F,"Jm we establish the
following result.

Lemma 15. F\" (B, €y, ()) is a fundamental domain of F]'" | Qi ;.

Proof. We write F = F;';" (%, €,(;)) for short. First cons1der an A € F/'/". We
can find b € B;, c € € ;) and a € Ty (a;), d € [y (az;) such that A[’"] = 'aba
and Ap_p) = dcd Also, by substituting a with a suitable Z-multiple if necessary,
we can find f € (CD ) and a g € My, ,—p (K) mapping L, (a,(jy) to L (a;)
such that auy ,,d =" = f +g. Let

_|a gd A= I, O bO||l, f
10 4|’ N Liw |00 L]

Then g € Q; j and A = '‘gA’q. We have from the Q; j-invariance of F " that
A’ € Fi" and so A" € F~. This shows that F;'/" = F~- Q; ;.

Next suppose F° N (F~ - ¢g) is nonempty for a g = [0 d] € Q;,j, so there exist
A € F° and A’ € F~ such that A = ‘gA’q. We must show that ¢ € Z. From
A[m] = ZL_ZA/[m]a € SB[/' and A[n—m] = dAEn —m]
and d = d;I,,_,, with some a;,d; € Z. Since the entries of u4 ,, and uy4’ , are
respectively in the interior and closure of either 0o, 0, D/Ti (j) Or 0ij, which are all
invariant under Z, we see that b = au 4 ,, — ua’,,»d must necessarily be 0. From
this we get ajua ,» = diuarm, whose (m, n—m)-th entry belongs to 51‘]‘, implying
thataldl_leZ. Hence g € Z. O

d € ¢;j, we must have a = a1,

As a result, the inverse image of Fi'fj’.m(%i IRCHIa P/ under 7, ; is a fundamental
domain of Q; j\R; j -

If we have fundamental domains By, ..., B, for P, with respect to the groups
[(ar), ..., u(ay), as well as fundamental domains ¢4, ..., &, of P,_,, with re-
spect to [, (a1), ..., T (ay), we are able to construct the sets Fl”/m (B;, Cs(j))
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for each i and j. Then by Corollary 6 a fundamental domain for GL,, (K)\GL, (A)!
is given by the set

L w0 (F (B, € N RS miK
1<i,j<h
Also Theorem 7 shows us that U?Zl 55;177,';1 (Fl.'f}.m (B, €, N P,l;j)é}[j is a fun-
damental domain for GL, (Ks,)' with respect to I';. Now let
h
QB By, L, &) = EG (B, C)E
j=1
We have the following result.

Theorem 16. QUM (By, .. By, €L, )N P is a fundamental domain of
P, with respect to Ty. In addition, by viewing R as a subset of Kso via the usual
diagonal embedding, if we assume fork =1, ..., h that

Ro0Br =By, R =&,
then Q" (B, ..., By, €1, ..., &) is a fundamental domain of P,/ T;.

Proof. We write Q for Q" (B, ..., By, €, ..., &) and I for I for short. If
we define the map G(Ky) > g — ’g_l(ni)gozg_l € P, we can directly verify that
the image of U?:l Si;lni;l(Ff}m (B;, €;,(j)) N P,))&; under this map is 2, which
gives us the first result. For the second part, note that R Fl"]m = Fif'}.m and

A = x (A" A e = XApem), A = Uam

for any x € R.g and A € P,. Thus the conditions on the B; and €; imply that
R>0E'?}m(%j‘,‘ Cr(jy) = Fi'f}m(%fj, € (j) for each j; hence R.oQ = Q. Since
P, = R-oP,’, we see from P,/ = (QNP;/)" -T that P, = Q- I. Finally
suppose that Q° N ("yQ~y) (y € I') contains an element g = 'yg'y (g’ € Q7).
Put x = (N (kij0;)?|glo0) ~"/"*=®]. Then |xg|oo = |xg'|oc = N (kija;) % and hence
xg="yxg'y e (Q°NP)N'y(Q~ NP, )y, which gives us y = I, as required. [J

Using the theorem, we can construct fundamental domains for P, with respect to

['; foreach i and n > 1. Since I'; = O™ for any i when n =1, we can start by choosing

a fixed fundamental domain, Q', for P; with respect to O*/Z that is closed under

multiplication by R~ . (The existence of such a set can be shown using Voronoi

reduction; see the Appendix.) Then for eachi =1, ..., &, let Qtl = Q! and define
Q=g el e

] 1

inductively for n > 2. By construction, R. 2! = Q7 so for each 1 <i < h and
n>1, QF gives us a fundamental domain for P,/ I7.
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An example implementation of this construction for P, over the imaginary
quadratic field @(v/—5) of class number 2 is given in the following subsection.
Similar work on fundamental domains in spaces over real quadratic fields of class
number 1 can be found in [Cohn 1965].

5.3. An example (k=Q(+/=5)). When k is an imaginary quadratic field, we have
Keo =C. Forn =1 we have P; =R.((C C) and T; = O* = Z acts trivially on Py;
hence P; itself is a fundamental domain for P/ I';(a;).

Consider in particular k = Q(+/=5) of class number 4 = 2. We can choose
representatives aj, a, for CI(k) by putting a; = O and a, = (2, 1 ++/—5). Then
following the procedure at the end of Section 4, we see that

12
af=a;, a3=2q <T1=<1 2>,K11=1,K12=2>,

12
Aoy =dz, =0y =\, , K21 = ko =1},

and (2, 1)-splitting sets for L,(a;) are given by

len=[09 ea=[2 2tV22]) a=n.
{521=[(1, (1)] Ezzz[_ol (1)]} (i=2).

For 1 <i, j, k <2 denote by E; ; « the set of the first columns of the matrices
Sijy&‘i;l as y ranges over I'(q;). Then for A € P,

P | NN o
glelgV(Ewé,-k VAEvED | :xé%‘,.?_‘,,k'tx*‘x'

= emin A[1]|e+MA,1f|2+A[1]|f|2a
[ #]e=isn

and so Ff}.l can be expressed as
b,ceR.g, deC,
p2i = J[LO[6 OL d] . le+drP+1/P =1,
i) [d 1]]0 ¢ 01] r, 1 2
[ ]G—E--1U—E,~-2
17 N@y) ™ 7 Ny T
Now for a, 8 € K let
0(a,ﬁ)={xa—|—yﬁ:—%<x,y§%}.

When o and B generate a fractional ideal a, we have 0(«, ) is a fundamental
domain for C with respect to addition by a. Also if we let 0(c, 8) denote the subset
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of 0(«, B) where the range of y is restricted to 0 <y < %, this gives us a fundamental
domain for ?(«, B) with respect to multiplication by Z = {£1}.

In particular 0(1, V=5), 92, 1 +/-5), 0(1, %(1 — «/—_5)) are fundamental
domains for C with respect to addition by O, a; and a, ! respectively, and we can

put 3y =012 = 0(1, ~/=5), 921 =0(1, 1(1 —v/=5)) and 9, = 3(2, v/=5). Then
b,C€R>o,d€5ij,
2, C 2
p =[5 O O] [1 4] ererr =

01 [¢]e ~Lgyiu-2z
SI7 N@y ™ N@) T

Writing Ff}.l(Pl, Py) as F; j, we obtain the fundamental domains Q% =F U
€12 F) 2&12 for P2/ Ta(ay) and Q3 = Fy 1 U & Fy 262 for Po/ Ta(a).

5.4. Relations between the fundamental domains. So far we have used a represen-
tative set {ay, ..., a,} for ClI(k) and a standard parabolic subgroup Q™™ of GL,, in
constructing our fundamental domains. This construction is of course possible with
m varied and using any other representative set of fractional ideals. We will demon-
strate in this section that the fundamental domain for P,/ I, (a;) constructed using
{aj, ..., an}and Q™™ can be mapped by an automorphism to a fundamental domain
for P,/ "y (ai_l) constructed with the representative set {al_l, ey a;l} and Q™"

For integers n and m where 1 < m < n, define the outer automorphism ¢, ,, of
GL, (k) by

(12) Gum(@) = "Tum('§ DV Ium, & €GL,y(Kso),

0 Iy
=0

Note that 'J,, , = (J,,,m)_l = Jn.n—m so that in particular we have ¢,z,1n = dn.n—m-
Also ¢, gives a one-to-one map between these two standard parabolic subgroups
of GL, since ¢, (Q"" (K)) = Q""" (K).

Let the ideals ay, ..., a;, the corresponding adeles «1, ..., oy, and the matrices
&j (1 <i, j <h) be as they were chosen in the last section. Clearly {al_l, e, a;l}
is also a set of representative ideals for ideal class group. A corresponding set of
matrices representing GL,, (K)\GL,, (A)!/ (GL,,)}&’ ~ 1s given by

where

(D@ D),y Duleg DY = {7y ),
which gives us the subgroups

Dy (e ) (GLy (Koo)' x Kf)Dule; )™ NGL, (K) =T (a; ),
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which are the respective stabilizer subgroups in GL, (k) of the lattices Ln(afl)
i=1,...,h).

Next foreach i, j =1,..., h set
In—m—H
égij = tJn,mté,;il(j) = L, - i/fi(j) K,-}lotiz,.g) ’
Biz(i) —k 'l )

which is easily verified to satisfy

(13) §ijLn(ai1):< Z (’)e(")—i—a e(")>+( Z (’)e,({”)—l—arb)e(”))

1<k<n—m n—m<k<n
~ Lym (0] ) @ L (a, ().

Thus {S[ j} ‘1 is an (n, n—m)-splitting set for L, (a; ) and hence a complete set
of representatives for Q™" (k)\GL, (k)/ T, (a_l)
We can also define

O "= 0" (K NETT, (a*l)@f;"*'")—‘,

nn—m _ [n—m] N(ak [n— m]
Fz,] AeP,: |A|OO < —N(a_l ‘ (SZJV";:,]( )A(Szﬂ/slk )’
1<k<h,yel,(a” )}

dy - dim 00, r<n—m,s<m,
\1,n—m . . . . g
@i’j = : .. : Sdp—mm €0ij, drs €404, ), F<n—m,s=m,¢,
dn—m,l dn—m,m 0;, r=n—m,s<m

where the fundamental domains 0y, D;c, ik, Do are taken as in the previous section,
and

ENS, Sy={Ae T AT €S A €S uan-m € D7)
for arbitrary subsets S C P,_,, S’ C P,. These are precisely the groups QZ’;"

and sets F}’ jm, ’D?’]’." and Fl."}.m(S, S") from the previous section with ai_1 and & in

place of the a; and &;; respectively, when m = n — m. It is easily verified that
Do (01 = O}
Lemma 17. For A € P,,
Gum (A =1ATL  Gum (A) = (AT,
U (A m—m = —UAm-

Proof. Apply the automorphism ¢, ,, to both sides of (11). (]
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Given a set S consisting of invertible matrices, denote the set {’s ™' :s € S} by 'S~.

Lemma 18. For S C P, and S’ C P,_p,
S (F[["(S. 8)) = F G (SIS,

Proof. We first show that ¢, ,, (F} " ’") = 1"1"( J)m First consider A € Fl"]m Put

Ak, y) ="(&vE, D AG vELD
for 1 <k <h and y €I';. We have

kij Kij V' i)
Ak, V)= — ) 1A= — ) A" Ap—m]-
Kik Kik
Substitute this and |A(k, y)"™| = |A(k, y)||Ak, ¥)n—m|~" into the inequality

N\
[m] [m]
[A" o0 < <N(aj)> Ak, )" oo

Rearranging, we get

L (e e N () Y B
| Af—m| 1s(|_"1|°°—N(a) |AK, V) in-mlo »
00 J

which, using the previous lemma, becomes

(a r_,<k>)

nmA [n—m] <
|Gnm(A)lsg ™ = NG

) |, m (Alk, y)) |27,

. a, (J)
and since

P (A, V) = "Em(j'y 7 ) ) Onm (D) Eina ()Y T EL 1)

this shows that ¢, ,,(A) € F"T"(J)m Thus ¢, m(F” ¥ F”t”(];" and similarly

Gnon—m (FI"I"( J;" ) CF ™ The rest of our result follows from the previous lemma. [
Lemma 19. Let I’ be a subgroup of GL,(Ky) acting on a subset X of P,, the
action being the one defined in (10). If F is a given fundamental domain for X/ T’
and ¢ a group automorphism of GL,(Kx) that is also a topological isomorphism,
then ¢ (F) is a fundamental domain for ¢ (X)/¢(T).

Proof. Since ¢ is both a group homomorphism and a topological isomorphism,
X =F~ -T implies ¢(X) = ¢ (F)~ - ¢(I"). Also, for g € I, if the intersection of
¢(F)° and ¢ (F)™ - ¢(g) is nonempty, then sois F°NF~ - g, implying g € Z. Since
Z consists of all roots of unity in K, we have ¢(g) € Z. O

In particular, if for k =1, ..., h we let B, and ¢; be fundamental domains for
P,/ Ty(ag) and P,_,,/ T (i) respectively as in the end of the previous section,
then t%gl and t(’lk_l are respectively fundamental domains for P,_,,/ Fn_m(agl)
and P,/ T}, (ak_l). Also we have:
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Corollary 20. The set
¢n,m(Fi’T}m(%j’ Cuii))

n,n—m

is a fundamental domain for F] inds Ql )

Corollary 21. The set
I(Q?’m(%l, LB, L, Q:h))il

is a fundamental domain for P,/ Fn(alfl).

Since
Fn S m(z€—1 t%r (j)) ¢n,m(Fir,l;:’zj)(%r,-(j), Q:j))’

the first corollary is consistent with Lemma 15 in the previous section.
Similarly if we put

b
Q?*”_m(Q:],..-Q:h’%l""’ U g o t¢_l thf(J))Sl.]

then Q""" (€1, ... € By, ..., By) = (L"(B1,... By, €1,...,¢)) " and
according to Theorem 16, this set is indeed a fundamental domain for P,/ ', (cti_1 ).

Appendix: Voronoi reduction
by Takao Watanabe

We present here generalizations of results from [Watanabe et al. 2013, §4], without
the assumption that the underlying number field is totally real.

Let k, O and P, be as previously defined in this paper. We consider the space of
self-adjoint matrices in M, (Ky) (With respect to the inner product (, ) as defined
in [Watanabe et al. 2013, §1]), which we denote here by H,. Identifying H, with
[Tye Poo H,(k,), where H,(K,) denotes the set of n x n real symmetric (complex
Hermitian) matrices when o is real (imaginary respectively), we see that P, is the
set of positive definite matrices in H,.

Also as per [Watanabe et al. 2013, §1], we use the inner product (, ) on H,
defined by

(A, B)= ) Try, /r(Tr(A, By))
0€Pso
for A = (AO’)UEPOC’ B = (Ba)aepoo € H,.

Following [Watanabe et al. 2013, §2], we fix a projective O-module A C K" of

rank n and consider the arithmetical minimum function

A)= inf (A
mA(A)=inf (Ax. )
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on P". The set
Ki(mp) ={A e P :mp(A) =1},

known as the Ryshkov polyhedron of m, is a locally finite polyhedron contained in
P, [Watanabe et al. 2013, Lemma 2.1 and Proposition 2.2]. The set of O-dimensional
faces of Ki(my), denoted by 8YK1(my), is characterized in [Watanabe et al. 2013,
Theorem 2.5].

Now for a given A € P, and a positive constant 8, define the sets

Hsp={B € H,: (A, B) <0},
[Alo = 3°K1(ma,) N Hao.
Lemma Al. [A]p is a finite set.

Proof. Since Hy ¢ N P, is compact [Faraut and Kordnyi 1994, Corollary 1.1.6] and
K1(my) is a locally finite polyhedron, it follows that their intersection K{(ma) N
Hy ¢ is a polytope. Hence [A]p must be finite. |

Lemma A2. Foran A € P,, there exists By € 0°K(mp) such that

inf (A, B) = (A, Bo)
BeKi(my)

and hence A is in Dp,, the perfect domain of By [Watanabe et al. 2013, §3]. Here

Dp, = { D xTing 30},

xeSa (Bo)
where
Sa(Bo) = {x € A :mp(Bo) = (Box, x)}.

Proof. Take a sufficiently large & > 0 whereby [A]y is nonempty. Since Kj(mp) is
the convex hull of 9 K;(m,) [Watanabe et al. 2013, Theorem 2.6], we have

inf (A,B)= inf (A,B)= inf (A, B),
BeKi(mp) BedKi(my) Bel[Aly

which together with the previous lemma proves the existence of Bg. The proof that
A € Dgp, is the same as in [Watanabe et al. 2013, Lemma 4.8]. U

Next consider the set
k;“o = {(@)oepy, : @ >0 forall o € poo}.
Lemma A3. The subset {8 : B € K*} of K is dense in KL,
Proof. Define the norm || - || on Ky, by

lleell = gg%x Vools, o= () €Ke.
o0
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Now given a a € kK there is an element /& € k such that (\/&)? = «. Since k
is dense in K, for a sufficiently small € > 0 we can find 8 € K* such that

€
Ve =Bl < 5—=—7 <1
2l el +1

From || B8] < |l«/«|l + 1, we have ||/o + Bl < 2||s/«| + 1, and thus

la — BBl = 1 || (W = BY(Wea + B) + (Vo + B) (W — B)|
<3 (Vo = BllIVe + Bl + IV + Bl INVa = Bll) <e. O

I
Lemma A4. k;ro U {0} = {Z Akﬁktﬁk 1<leZ, s eRsp, Br € kx}
k=1

Proof. See the proof of [Watanabe et al. 2013, Lemma 4.2]. U

As a result of the previous lemma, if we define the subsets

)
Q= {Zakxktik 1 <leZ, ap € k:oU{O}, X; Ek”},
k=1

1
Q) = {Zkak’)?k 1 <leZ, i €Rxo, x; Ekn}
k=1

of P, we have Q1 = Q. Also by Lemma A2, P, C Q2 = Q.
Lemma AS. Q= U Dg.
Bed®K|(my)

Proof. For any A € Q,\{0}, following the same arguments as in the proofs of
[Watanabe et al. 2013, Lemmas 4.7 and 4.8], we can find an element By € 3°K(my)

such that infgc g, (m,)(A, B) = (A, By) and hence A € Dg,. U
Finally take a complete set of representatives By, ..., B; for VK (my) /GL(A),
where the right action is the same one as (10), and for each k =1, ..., ¢ define

the subgroups I'g, = {y € GL(A) : By - 'y = By}. Since for any A € d°K(m) and
y € GL(A) we have SA(A-y) =y~ 'S (A) and hence Dy.ty =(Dy)- vy~ L, we see
that I'p, stabilizes Dp, for each k. Thus we conclude from the previous lemma the
following result.

t
Theorem A6. Q/GL(A) = | ) D5,/ Ts,.
k=1

This is analogous to [Watanabe et al. 2013, Theorem 4.9]. In particular when
n =1, if we take A = O, we have GL(A) = O* and P, = kI, = Q;\{0} = ©2,\{0}.
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Since the action of O on k¥ is simply x - € = €ex (x € kI, € € 0*), we have
I'p, = Z acts trivially on Dp, for each k. Thus we obtain the decomposition

t
P /0% =k, /0% = J(Dp\(OD).
k=1
By definition each Dp, \{0} is invariant under multiplication by R. ¢, so this estab-
lishes the existence of the fundamental domain Q! in the conclusion of Section 5.2.
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