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FUNDAMENTAL DOMAINS OF ARITHMETIC QUOTIENTS
OF REDUCTIVE GROUPS OVER NUMBER FIELDS

LEE TIM WENG

APPENDIX BY TAKAO WATANABE

For a connected reductive algebraic group G over a number field k, we
investigate the Ryshkov domain RQ associated to a maximal k-parabolic
subgroup Q of G. By considering the arithmetic quotients G(k)\G(A)1/K
and 0i\G(k)/K∞, with K a maximal compact subgroup of the adele group
G(A) and the 0i arithmetic subgroups of G(k), we present a method of
constructing fundamental domains for Q(k)\RQ and 0i\G(k∞)1. We also
study the particular case when G=GLn, and subsequently construct funda-
mental domains for Pn, the cone of positive definite Humbert forms over k,
with respect to the subgroups 0i .

1. Introduction

Let k be an arbitrary algebraic number field with ring of integers O. This paper
mainly focuses on the determination and construction of fundamental domains
associated to certain arithmetic quotients of reductive algebraic groups over k.

For the first part of the paper we consider a general connected reductive isotropic
algebraic group G over k and investigate fundamental domains associated to the
arithmetic quotients G(k)\G(A)1/K and 0i\G(k∞)1/K∞, with K a maximal com-
pact subgroup of G(A) and subgroups 0i of G(k) to be described below.

The discussion and results here in the preliminary sections are an extension
of Watanabe’s results [2014]. A maximal k-parabolic subgroup Q of G is taken
and we consider its associated height function HQ and Hermite function mQ(g)=
minx∈Q(k)\G(k) HQ(xg) on G(A)1. Watanabe [2014] introduced the Ryshkov do-
main of mQ , RQ ={g ∈G(A)1 :mQ(g)= HQ(g)}, for the purpose of constructing a
fundamental domain for G(k)\G(A)1 well matched with mQ . Watanabe also consid-
ered the case when G is of class number 1, that is, when |G(k)\G(A)1/G1

A,∞| = 1,
and obtained a fundamental domain for G(k∞) with respect to GO =G(k)∩GA,∞.

MSC2010: primary 11H55; secondary 11F06.
Keywords: fundamental domain, arithmetic quotient, Ryshkov domain, Humbert form, Voronoi

reduction.
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Here however, we consider algebraic groups of any general class number nG .
Particularly for class numbers higher than 1, for each i = 1, . . . , nG we are required
to consider different arithmetic subgroups 0i of G(k) in place of just GO.

Let R∗Q denote the closure in G(A)1 of the interior of RQ . It was established in
[Watanabe 2014] that by starting from a fundamental domain � of R∗Q with respect
to Q(k), a fundamental domain of G(A)1 with respect to G(k) can be obtained by
taking the interior of � in G(A)1. In order to explicitly construct such an �, we
define groups

GA,∞ = G(k∞)× K f and 0i = ηi G1
A,∞η

−1
i ∩G(k),

where the η1, . . . , ηnG are representatives of G(k)\G(A)1/G1
A,∞. Also for each i

take a complete set of representatives {ξi j }
hi
j=1 for Q(k)\G(k)/0i , define sets

Ri, j,∞ = {g ∈ G(k∞)1 :mQ(gξi jηi )= HQ(gξi jηi )}

and let Qi, j = Q(k)∩ ξi j0iξ
−1
i j . By considering the action of Qi, j on Ri, j,∞, we

find that starting with arbitrary open fundamental domains �i, j,∞ for Qi, j\Ri, j,∞

we can construct the required �. From this we obtain the following results.

Theorem. �=
⊔nG

i=1
⊔hi

j=1�i, j,∞ξi jηi K f is an open fundamental domain of R∗Q
with respect to Q(k).

Theorem. For each i = 1, . . . , nG , the set
⋃hi

j=1 ξ
−1
i j �i, j,∞ξi j is an open funda-

mental domain of G(k∞)1 with respect to 0i .

In particular we can take η1 to be the identity element of G, in which case 01

coincides with the group GO=G(k)∩GA,∞ used in [Watanabe 2014] when nG = 1.
The second topic of interest in this paper is the special case when G is the general

linear group GLn defined over k. This time we consider the maximal k-parabolic
subgroup

Q = Qn,m
=

{[
a b
0 d

]
: a ∈ GLm(k), b ∈ Mm,n−m(k), d ∈ GLn−m(k)

}
for a fixed 1≤ m < n. The class number of G in this case is equal to h, the class
number of k. Using {a1, . . . , ah}, a complete set of representatives for the ideal
class group of k, we can produce a corresponding set of matrices {η1, . . . , ηh}

representing GLn(k)\GLn(A)
1/G1

A,∞. The 0i in this case are the subgroups of
GLn(k) stabilizing the respective O-lattices

∑n−1
k=1 Oek + ai en . The main result

established in this part is:

Theorem. |Q(k)\GLn(k)/0i | = h for every i = 1, . . . , h.

This can be proved by identifying Q(k)\GLn(k)with the set of all m-dimensional
subspaces of kn and establishing a bijection between this set modulo 0i and the
ideal class group of k. This bijection also allows us to obtain suitable matrix
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representatives {ξi j }
h
j=1 for Q(k)\GLn(k)/0i . Relations between the field class

number and the number of double cosets in quotients of similar type involving
other algebraic groups, e.g., SLn,Sp2n and Chevalley groups, modulo a minimal
parabolic subgroup instead are noted by Borel [1962, Section 4.7].

In the final sections we consider Pn , the space of positive definite Humbert forms
over k, with the usual identification Pn =

∏
σ Pn(kσ ), where Pn(kσ ) denotes the set

of n×n positive definite real symmetric/complex Hermitian matrices, depending on
whether σ is real or imaginary, and the product is taken over all infinite places σ of k.

If k=Q, then Pn is just the cone of positive definite real symmetric matrices, and
fundamental domains for Pn/GLn(Z) in this case have been historically constructed
by Korkin and Zolotarev [1873], Minkowski [1905] and later on Grenier [1988]. For
Pn over a general number field, Humbert [1939] previously provided a fundamental
domain constructed with respect to the particular group GLn(O). As GLn(O)
coincides with one of the 0i we study in this paper, the question can be raised about
fundamental domains for Pn with respect to each of the groups 0i when nG > 1.

As such, we proceed in the final sections to provide a general way of constructing
fundamental domains for Pn/0i given any number field. The method of construc-
tion given here follows and generalizes the example given by Watanabe [2014]
for the specific case k = Q. As already noted in that paper, when k = Q the
fundamental domain for Pn/GLn(Z) resulting from this method coincides with
Grenier’s [1988]. It was observed by Dutour Sikirić and Schürmann that Grenier’s
fundamental domain is in fact equivalent to the one previously developed by Korkin
and Zolotarev. Regarding Pn/GLn(O) for general number fields however, we note
that the fundamental domain produced by the method here differs from Humbert’s
construction, which utilizes the matrix trace, whereas the domain here is defined
using the adele norm of matrix determinants.

Using the matrix representatives {ηi }
h
i=1 and {ξi j }

h
j=1, we associate to each pair

(ηi , ξi j ) a maximal compact subgroup Ki, j,∞ of GLn(k∞) and a map πi j inducing an
isomorphism between GLn(k∞)/Ki, j,∞ and Pn . Then the results of our discussions
on GLn can be transferred to Pn via the maps πi j , which finally lead up to an
iterative method of constructing fundamental domains for Pn with respect to the
groups 0i for any general dimension n. Watanabe has also graciously provided an
appendix to this paper on Voronoi reduction over general number fields that are not
necessarily totally real, which settles the base case of dimension 1.

We also demonstrate that this fundamental domain construction for Pn/0i is
well matched with certain automorphisms of GL(k∞). Namely we see that the
fundamental domain for Pn/0i constructed using a set of ideals {a1, . . . , ah} repre-
senting the ideal class group and the maximal k-parabolic subgroup Qn,m can be
directly mapped by an automorphism to the one constructed with the representative
set {a−1

1 , . . . , a−1
h } and Qn,n−m.
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Notation

In this paper we use Q,R,C for the fields of rational, real, and complex numbers
respectively, and Z for the ring of integers. R>0 will denote the set of positive reals.

For positive integers r and s, we denote by Mr,s(S) the set of all r × s matrices
with entries in the set S, and we write Mr (S) for Mr,r (S). The identity matrix of
size r will be denoted by Ir . The transpose of a matrix A will be written by tA. If
A ∈ Mr,s(C), we write A for the matrix whose entries are the complex conjugates
of the original entries of A.

We will fix and consider k, an algebraic number field of finite degree over Q,
and denote its ring of integers by O. We denote by p∞ and pf the sets of infinite
and finite places of k respectively and we let p = p∞ ∪ pf . For σ ∈ p, we write
kσ for the completion of k at σ , while for any subring B of k, the closure of B in
kσ will be denoted by Bσ . We denote by k∞ the étale R-algebra k⊗Q R which we
identify with

∏
σ∈ p∞kσ . The ideal class group of k will be denoted by Cl(k).

The adele ring and idele group of k are denoted by A and A× respectively. For an
adele a ∈ A we write a∞ and a f for its infinite and finite components respectively.
Similarly for any matrix A = [ai j ]i, j with elements in A we write A∞ to denote
the matrix [(ai j )∞]i, j .

For each place σ , we write | |σ for the absolute value on kσ taken as follows: at
each infinite place we use the standard complex absolute value on kσ , while for
σ ∈ pf we use the normalized absolute value satisfying |x |σ = |Oσ/pσ |−1 for any
arbitrary x ∈ pσ\ p2

σ , where pσ is the prime ideal of Oσ . For an a = (aσ ) ∈ A× we
write |a|A to denote the idele norm of a, and |a|∞ for the idele norm of a restricted
to k×
∞

,
∏
σ∈ p∞ |aσ |

[kσ :R]
σ .

Given a finite-dimensional k-vector space V and σ ∈ p, we will write Vσ for
the kσ -vector space V ⊗k kσ . Also we will use the term O-lattice in V to mean
a finitely generated O-submodule of V containing a k-basis of V. If L is such an
O-lattice in V, we write Lσ to denote the Oσ -linear span of L in Vσ when σ ∈ pf .

For an affine algebraic group G defined over k and any k-algebra B, we write
G(B) for the set of all B-rational points of G. Also, the set of all k-rational characters
of G will be written as X∗(G)k. We define G(A)1 to be the set {g ∈ G(A) :
|χ(g)|A = 1 for all χ ∈ X∗(G)k}.

Lastly given a topological space X and a subset Y ⊂ X , we denote by Y ◦X and
Y−X (or just Y ◦ and Y− if the underlying space X is clear) the interior and closure
of Y in X respectively.

2. The Ryshkov domain of G associated to Q

Let G denote a connected reductive isotropic affine algebraic group over k, S a
fixed maximal k-split torus of G, and P0 a minimal k-parabolic subgroup of G
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containing S. Let M0 be the centralizer of S in G and U0 the unipotent radical of
P0 so that P0 has the Levi decomposition P0 = M0U0. We consider a relative root
system of G with respect to S and denote the set of simple roots with respect to P0

in this system by 1k.
A k-parabolic subgroup of G containing P0 is called a standard k-parabolic

subgroup. A standard k-parabolic subgroup R has a unique Levi subgroup MR

containing M0, which gives the Levi decomposition R = MRUR , where UR denotes
the unipotent radical of R. We write Z R for the largest central k-split torus of MR .

We fix a maximal compact subgroup K =
∏
σ∈ p Kσ of G(A), where each Kσ

is a maximal compact subgroup of G(kσ ), satisfying the property that for every
standard k-parabolic subgroup R of G,

• K ∩MR(A) is a maximal compact subgroup in MR(A),

• MR(A) = (MR(A) ∩ U0(A))M0(A) (K ∩ MR(A)) (Iwasawa decomposition)
holds.

Consider a standard proper maximal k-parabolic subgroup Q of G, which we
now fix. There exists a unique simple root in 1k that restricts nontrivially on Z Q ,
which we denote by χ0. Let m Q be the positive integer such that m−1

Q χ0|Z Q is a
Z-basis of the X∗(Z Q/ZG)k. We write χQ for the character

[X∗(Z Q/ZG)k : X∗(MQ/ZG)k]m−1
Q (χ0|Z Q ),

which is a Z-basis for X∗(MQ/ZG)k.
Next we define the map

zQ : G(A) 3 umh 7−→ ZG(A)MQ(A)
1m ∈ ZG(A)MQ(A)

1
\MQ(A),

where u ∈UQ(A), m ∈ MQ(A), h ∈ K . This is a well-defined left Q(A)1-invariant
map, which gives rise to the following map, which we also denote by zQ :

Q(A)1\G(A)1 3 Q(A)1g 7−→ zQ(g) ∈ MQ(A)
1
\(MQ(A)∩G(A)1).

Here we have used ZG(A)
1
= ZG(A)∩G(A)1 ⊂ MQ(A)

1.
We can now define the height function HQ : G(A)→ R>0 by

HQ(g)= |χQ(zQ(g))|−1
A , g ∈ G(A),

as well as the Hermite function mQ : G(A)1→ R>0 by

mQ(g)= min
x∈Q(k)\G(k)

HQ(xg), g ∈ G(A)1.

Definition [Watanabe 2014, §4]. The set RQ defined by

{g ∈ G(A)1 :mQ(g)= HQ(g)}

is called the Ryshkov domain of mQ .



144 LEE TIM WENG

3. Fundamental domains of G(k)\G(A)1 and 0i\G(k∞)1

Definition. Let T be a locally compact Hausdorff space and 0 a discrete group
with a properly discontinuous action on T. An open subset � of T satisfying

(i) T = 0�−,

(ii) �∩ γ�− =∅ for all γ ∈ 0 \ {e}

is called an open fundamental domain of T with respect to 0. (Here we have
assumed that 0 acts on T from the left. In the case of a right action the same
definition holds with the group action written on the right instead.)

We call a subset F of T a fundamental domain of T with respect to 0, or simply
a fundamental domain of 0\T (T/0 in the case of a right action) if there exists an
open fundamental domain � of T with respect to 0 such that �⊂ F ⊂�−.

Further Notation. Hereafter we will use the following notation:

• K∞ =
∏
σ∈ p∞ Kσ , K f =

∏
σ∈ pf

Kσ ,

• GA,∞ = G(k∞)× K f , G1
A,∞ = GA,∞ ∩G(A)1,

• G(k∞)1 = G(k∞) ∩ G(A)1, where we identify G(k∞) with the subgroup
{g ∈ G(A) : g f = e} of G(A).

We will denote the class number of G, i.e., the finite number |G(k)\G(A)/GA,∞|,
by nG . We note here that |G(k)\G(A)1/G1

A,∞| is also equal to nG .
The case when G is of class number 1 is discussed in [Watanabe 2014], where

a fundamental domain for G(k∞)1 with respect to the group G(k) ∩ GA,∞ is
determined. In the following we discuss and obtain a similar fundamental domain
in the general case.

We take a complete set of representatives {η1, . . . , ηnG } for G(k)\G(A)1/G1
A,∞.

Then, for i = 1, . . . , nG , define the groups

Gi = ηi G1
A,∞η

−1
i and 0i = Gi ∩G(k).

We note that since (ηi )∞G(k∞)1(ηi )
−1
∞
= G(k∞)1, we can also write Gi as

G(k∞)1× (ηi ) f K f (ηi )
−1
f or G(k∞)1ηi K f η

−1
i .

From G(A)1 =
⊔nG

i=1 G(k)ηi G1
A,∞ =

⊔nG
i=1 G(k)Giηi we have

G(k)\G(A)1 =
nG⊔
i=1

0i\Giηi =

nG⊔
i=1

0i\(G(k∞)1ηi K f ),

which gives us the isomorphism

G(k)\G(A)1/K '
nG⊔
i=1

0i\G(k∞)1/K∞.
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Also for each i = 1, . . . , nG we take a complete set of representatives {ξi j }
hi
j=1

for Q(k)\G(k)/0i (where the number of double cosets hi is finite; see [Borel 1963,
§7]) and define groups

Qi, j = Q ∩ ξi j0iξ
−1
i j = Q(k)∩ ξi j Giξ

−1
i j

and the sets

Ri, j,∞ = {g ∈ G(k∞)1 :mQ(gξi jηi )= HQ(gξi jηi )}

for j = 1, . . . , hi . Also since Gi = G(k∞)1ηi K f η
−1
i as previously noted,

ξi j Giξ
−1
i j = ξi j G(k∞)1ηi K f η

−1
i ξ−1

i j = G(k∞)1ξi jηi K f η
−1
i ξ−1

i j .

Lemma 1. G(A)1 =
nG⊔
i=1

hi⊔
j=1

Q(k)G(k∞)1ξi jηi K f .

Proof. We first show that for a fixed i the union
⋃hi

j=1 Q(k)ξi j Giηi is disjoint.
Suppose for some 1≤ j, j ′≤hi that Q(k)ξi j Giηi∩Q(k)ξi j ′Giηi is nonempty. Then
there exist q, q ′ ∈ Q(k) and g, g′ ∈Gi such that qξi j g= q ′ξi j ′g′. Rearranging gives
us gg′−1

= ξ−1
i j q−1q ′ξi j ′ ∈Gi∩G(k)=0i . This shows that Q(k)ξi j ′0i = Q(k)ξi j0i ,

implying j = j ′. The result then follows from

G(A)1 =
⊔

i

G(k)ηi G1
A,∞ =

⊔
i

G(k)Giηi

=

⊔
i

(⊔
j

Q(k)ξi j0i

)
Giηi ⊂

⊔
i

⊔
j

Q(k)ξi j Giηi

and ξi j Giηi = G(k∞)1ξi jηi K f . �

The lemma also gives us the disjointedness of the union in the following result.

Proposition 2. RQ =

nG⊔
i=1

hi⊔
j=1

Q(k)Ri, j,∞ξi jηi K f .

Proof. From the previous lemma, we see that any g ∈ G(A)1 can be written as
qg′ξi jηi h for some i, j and q ∈ Q(k), g′ ∈ G(k∞)1, h ∈ K f . Since both HQ and
mQ are left Q(k)-invariant and right K -invariant, we see that

HQ(g)= HQ(g′ξi jηi ), mQ(g)=mQ(g′ξi jηi ).

Hence g ∈ RQ if and only if g′ ∈ Ri, j,∞. �

The following two lemmas hold for any fixed 1≤ i ≤ nG and 1≤ j ≤ hi .

Lemma 3. Let q ∈ Q(k). If the sets q(G(k∞)1ξi jηi K f ) and G(k∞)1ξi jηi K f

intersect, then q ∈ Qi, j .
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Proof. Suppose that g ∈ q(G(k∞)1ξi jηi K f ) ∩ (G(k∞)1ξi jηi K f ). By rewriting
G(k∞)1ξi jηi K f as ξi j Giηi , we have q−1g, g ∈ ξi j Giηi , from which we get q−1

∈

ξi j Giξ
−1
i j . Hence q ∈ Q(k)∩ ξi j Giξ

−1
i j = Qi, j . �

Lemma 4. Qi, j (Ri, j,∞ξi jηi K f )= Ri, j,∞ξi jηi K f .

Proof. Consider q ∈ Qi, j and g ∈ Ri, j,∞. Since q ∈ G(k∞)1ξi jηi K f η
−1
i ξ−1

i j , we
have q f ∈ (ξi jηi )K f (ξi jηi )

−1. Let q f = (ξi jηi )h(ξi jηi )
−1, with h ∈ K f . Then

HQ((q∞g)ξi jηi )= HQ(q∞g(ξi jηi )h)= HQ(q∞gq f (ξi jηi ))= HQ(qgξi jηi ),

which is equal to HQ(gξi jηi ). Similarly

mQ((q∞g)ξi jηi )=mQ(q∞gq f ξi jηi )=mQ(qgξi jηi )=mQ(gξi jηi );

thus q∞g ∈ Ri, j,∞. Finally q f ξi jηi K f ⊂ ξi jηi K f . Hence we get q(gξi jηi K f ) ⊂

Ri, j,∞ξi jηi K f , as required. �

By taking a complete set of representatives {θi jk}k for Q(k)/Qi, j and using both
Proposition 2 and Lemma 4, we obtain

(1) RQ =

nG⊔
i=1

hi⊔
j=1

Q(k)Ri, j,∞ξi jηi K f =

nG⊔
i=1

hi⊔
j=1

(⊔
k

θi jk Qi, j

)
Ri, j,∞ξi jηi K f

=

nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk Ri, j,∞ξi jηi K f ,

where the final unions are disjoint as a result of Lemma 3.
Denote (R◦i, j,∞)

− by R∗i, j,∞, where the interior and closure is taken in G(k∞)1.
Similarly write R∗Q for (R◦Q)

− in G(A)1. From (1) we have

(2) R∗Q =
nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk R∗i, j,∞ξi jηi K f .

Taking open fundamental domains �i, j,∞ of R∗i, j,∞ with respect to Qi, j for each
i = 1, . . . , nG and j = 1, . . . , hi , we consider the set

�=

nG⊔
i=1

hi⊔
j=1

�i, j,∞ξi jηi K f .

Theorem 5. � is an open fundamental domain of R∗Q with respect to Q(k).

Corollary 6. �◦ (=�◦G(A)1) is an open fundamental domain of G(A)1 with respect
to G(k).
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Proof. From (2) we have

R∗Q =
nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk R∗i, j,∞ξi jηi K f =

nG⊔
i=1

hi⊔
j=1

⊔
k

θi jk(Qi, j�
−

i, j,∞)ξi jηi K f

=

nG⊔
i=1

hi⊔
j=1

Q(k)�−i, j,∞ηi K f = Q(k)�−.

Now suppose �∩ q�− 6=∅ for q ∈ Q(k). So for some i , i ′, j , j ′ we must have
q(�i, j,∞ξi jηi K f )∩(�

−

i ′, j ′,∞ξi ′ j ′ηi ′K f ) 6=∅. Writing q = θi jkq ′ with q ′ ∈ Qi, j and
some k, we have

θi jk(q ′)∞�i, j,∞ξi jηi K f ∩�
−

i ′, j ′,∞ξi ′ j ′ηi ′K f 6=∅

since (q ′) f ξi jηi K f ⊂ ξi jηi K f . Then (2) implies i = i ′, j = j ′, and θi jk = e. Thus
�i, j,∞∩ (q ′)∞�−i, j,∞ =�i, j,∞∩q ′�−i, j,∞ must be nonempty, which means q ′ = e
and hence q= e. This proves the theorem, and the corollary follows from [Watanabe
2014, Theorem 15]. �

Finally, for any fixed 1≤ i ≤ nG , we have the following theorem.

Theorem 7. The set �i,∞=
⋃hi

j=1 ξ
−1
i j �i, j,∞ξi j is a fundamental domain of G(k∞)1

with respect to 0i .

Proof. The following proof was suggested by Professor Watanabe. To show that
G(k∞)1 = 0i�

−

i,∞, consider an arbitrary g ∈ G(k∞)1. From Corollary 6,

G(A)1 = G(k)�− = G(k)
nG⊔
i=1

hi⊔
j=1

�−i, j,∞ξi jηi K f

= G(k)
nG⊔
i=1

hi⊔
j=1

ξi j (ξ
−1
i j �

−

i, j,∞ξi j )ηi K f ⊂ G(k)
nG⋃
i=1

�−i,∞ηi K f ,

so we may write gηi = g′ωηi h with g′ ∈G(k), ω ∈�−i,∞ and h ∈ K f . Rearranging
we get g′ = (gω−1)(ηi h−1η−1

i ), which belongs to G(k∞)1ηi K f η
−1
i = Gi . Hence

g′∈0i . Since g=(g′ω)(ηi hη−1
i ) and g∈G(k∞)1, we know ηi hη−1

i must necessarily
be trivial. Thus g ∈ 0i�

−

i,∞.
Now suppose that �◦i,∞ ∩ g�−i,∞ is nonempty for a g ∈ 0i . Then we must have

ξ−1
i j �

◦

i, j,∞ξi j ∩ gξ−1
i j ′ �

−

i,, j ′,∞ξi j ′ 6=∅ for some j , j ′. Since g f ηi K f = ηi K f ,

ξ−1
i j �

◦

i, j,∞ξi j ∩ gξ−1
i j ′ �

−

i,, j ′,∞ξi j ′ 6=∅

⇒ (�i, j,∞ξi jηi K f )
◦
∩ ξi j gξ−1

i j ′ (�i, j ′,∞ξi j ′ηi K f )
−
6=∅

⇒ �◦ ∩ (ξi j gξ−1
i j ′ )�

−
6=∅,
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and thus ξi j gξ−1
i j ′ = e by Corollary 6. Hence Q(k)ξi j0i = Q(k)ξi j ′0i , which implies

j = j ′ whereby g = ξ−1
i j ξi j ′ = e. �

4. The case G =GLn

We will now consider the case where G is a general linear group GLn defined over k.
We use the group of diagonal matrices as the maximal k-split torus S, and the group
of upper triangular matrices in G as the minimal k-parabolic subgroup P0. Also
fixing an integer 1 ≤ m < n, we will consider the maximal standard k-parabolic
subgroup Q defined by

Q(k)=
{[

a b
0 d

]
: a ∈ GLm(k), b ∈ Mm,n−m(k), d ∈ GLn−m(k)

}
and the Levi subgroup MQ is given by

MQ(k)=

{[
a 0
0 d

]
: a ∈ GLm(k), d ∈ GLn−m(k)

}
.

For the maximal compact subgroup K of G(A) let K = K∞× K f , where

K∞ = {g ∈ GLn(k∞) :
tḡg = In}, K f =

∏
σ∈ pf

GLn(Oσ ).

Here we identify GLn(k∞)with
∏
σ∈ p∞ GLn(kσ ), and for g=(gσ )σ∈ p∞ ∈GLn(k∞)

we write tḡ for the element ( tḡσ )σ∈ p∞ of GLn(k∞).
The character χQ described in the first section is then given by

χQ

([
a 0
0 d

])
= (det a)(n−m)/ l(det d)−m/ l

and the height function HQ by

HQ

([
a 0
0 d

])
= |det a|−(n−m)/ l

A |det d|m/ l
A ,

where l is the greatest common divisor of n−m and m.
We shall see that in this case the number of double cosets of Q(k)\GLn(k)/0i for

each i is invariant and equal to |GLn(k)\GLn(A)
1/G1

A,∞|, the class number of GLn .
Denote the set of all O-lattices in kr (r ≥ 1) by Lr , and the standard unit vectors

of kr by e(r)1 , . . . , e(r)r . For this section we simply write L for Ln and ek for e(n)k
(1≤ k ≤ n).

For L ∈ Lr and g = (gσ )σ∈ p ∈ GLr (A) put

(3) gL =
(
(k∞)

r
×

∏
σ∈ pf

gσ Lσ

)
∩ kr
∈ Lr .
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This defines a transitive left action of GLr (A)
1 on Lr . Note that if g ∈ GLr (k)

then gL as defined above coincides with the usual image of L under the linear
transformation v 7→ gv of kr. The subset of L consisting of all O-lattices of the
form gL with g ∈ GLn(k) will be referred to as the O-lattice class of L or just the
lattice class of L in L.

There is known to be a one-to-one correspondence between the O-lattice classes
in L and the double cosets in GLn(k)\GLn(A)

1/G1
A,∞, which we give explicitly

later on in this section. For now we note that this means the number of distinct
lattice classes in L and the class number |GLn(k)\GLn(A)

1/G1
A,∞| are equal.

Lemma 8. Let L be an O-lattice in a k-vector space V of dimension s ≥ 1. Then
there exists a k-basis {x j }

s
j=1 of V and s fractional ideals A1, . . . , As such that

L = A1x1+ · · ·+ As xs . Moreover:

(i) If W is a k-subspace of V of dimension r ≤ s, the x j can be chosen such that
x1, . . . , xr ∈W.

(ii) The ideal class of A1 · · · As is uniquely determined by the isomorphism class
of L as an O-module. In particular, L '

(⊕s−1
j=1 O

)
⊕ (A1 · · · As).

(iii) In the case V ⊆ kn (s ≤ n), we can find g ∈ GLn(k) such that

gL =
( s−1∑

j=1

Oej

)
+ (A1 · · · As)es .

Proof. See [Shimura 2010, Theorem 10.19]. We prove (iii) here. Consider the case
s = 2, where L = A1x1+ A2x2. We can find k1, k2 ∈ k× such that A′1 = k1 A1 and
A′2 = k2 A2 are integral ideals and A′1+ A′2 =O [Shimura 2010, Lemma 10.15(i)].
Let g′ be the matrix formed by substituting the first two columns of the n× n unit
matrix with k−1

1 x1 and k−1
2 x2. Then g′−1L = A′1e1+ A′2e2. Next let

g′′ =

 1 1
−a2 a1

In−2

 ,
where a1 ∈ A′1 and a2 ∈ A′2 are taken such that a1+a2 = 1. It is easily verified that
g′′(A′1e1 + A′2e2) = Oe1 + A′1 A′2e2. Hence g = diag(1, k−1

1 k−1
2 , 1, . . . , 1)g′′g′−1

maps L to Oe1+ A1 A2e2. The general case when s > 2 follows inductively from
this result. �

The ideal class associated to the O-lattice L mentioned above in (ii) is known as
the Steinitz class of L , denoted by λ(L). We may also speak of the Steinitz class
of an entire lattice class in L since every O-lattice in a lattice class has the same
Steinitz class.

It follows directly that mapping each lattice class to its Steinitz class gives a
bijection between the set of lattice classes in L and Cl(k). As a result the class
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number of GLn , which we have noted to be equivalent to the number of distinct
lattice classes in L, is equal to the class number of k, which we write as h.

We now proceed to prove that hi = |Q(k)\GLn(k)/0i | is also equal to h for
every i = 1, . . . , h. As we did in the previous section, let {η1, . . . , ηh} be a complete
set of representatives for GLn(k)\GLn(A)

1/G1
A,∞. Then for each i = 1, . . . , h put

L i = ηi (Oe1+ · · ·+Oen) ∈ L.
Next we identify Q(k)\GLn(k)with the set of all m-dimensional linear subspaces

of kn denoted by Grm (the Grassmannian) via the bijection

(4) Q(k)\GLn(k) 3 Q(k)g 7−→ g−1
( m∑

k=1

kek

)
∈ Grm .

From here up to the end of Theorem 11 we fix i ∈ {1, . . . , h}. Considering the
left action of 0i ⊂ GLn(k) on Grm , the map (4) gives rise to the bijection

(5) Q(k)\GLn(k)/0i 3 Q(k)g0i 7−→ 0i g−1
( m∑

k=1

kek

)
∈ 0i\Grm,

which lets us identify Q(k)\GLn(k)/0i with 0i\Grm .

Lemma 9. 0i is the stabilizer of L i in GLn(k), under the action of GLn(A)
1 on L,

i.e.,
0i = {g ∈ GLn(k) : gL i = L i }.

Proof. Since 0i =
(
GLn(k∞)× ηi

∏
σ∈ pf

GLn(Oσ )η−1
i

)
∩GLn(k), this is obvious

from our choice of L i . �

Proposition 10. Let V1, V2 ∈ Grm and put L̃1 = L i ∩ V1, L̃2 = L i ∩ V2, which are
O-lattices in V1 and V2 respectively. Then λ(L̃1)= λ(L̃2) if and only if there exists
g ∈ 0i such that V1 = gV2.

Proof. Suppose that V1 = gV2 for some g ∈ 0i . From Lemma 8 we can find a
k-basis {yj }

n
j=1 for kn contained in L i with y1, . . . , ym ∈ V2. Put x j = gyj for

j = 1, . . . ,m. Then {x j }
m
j=1 and {yj }

m
j=1 span V1 and V2 respectively and since g

stabilizes L i , they are also contained in L̃1 and L̃2 respectively.
For v ∈ V1 and w ∈ V2, we write (αv)j and (βw)j for the k-coefficients of x j and

yj in v and w respectively
(
so v =

∑m
j=1(αv)j x j and w =

∑m
j=1(βw)j yj

)
. Let J1

be the fractional ideal generated by {det[(αvj )l]
m
j,l=1 | v1, . . . , vm ∈ L̃1}. We can

show that the ideal class of J1 in Cl(k) is λ(L̃1) as follows: From the lemma above
we have L̃1 = A1x ′1+ · · ·+ Am x ′m , with fractional ideals A1, . . . , Am and {x ′j }

m
j=i

a basis of V1. Comparing
∧m

j=1 L̃1 = A1 · · · Am(x ′1 ∧ · · · ∧ x ′m) with∧m
j=1 L̃1 = k-span of {v1 ∧ · · · ∧ vm | v1, . . . , vm ∈ L̃1} = J1(x1 ∧ · · · ∧ xm),

we see that A1 · · · Am is a k×-multiple of J1; hence their ideal classes are equivalent.
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Similarly λ(L̃2) is the ideal class of the fractional ideal J2 generated by the
det[(βwj )l]

m
j,l=1 for all w1, . . . , wm ∈ L̃2. However, since any arbitrary v ∈ L̃1 can

be written as gw with some w ∈ L̃2 and

v = gw ⇐⇒
m∑

j=1

(αv)j x j = g
( m∑

j=1

(βw)j yj

)
=

m∑
j=1

(βw)j gyj =

m∑
j=1

(βw)j x j

⇐⇒ (αv)j = (βw)j , j = 1, . . . ,m,

this shows that J1 = J2 and thus λ(L̃1)= λ(L̃2).
Now suppose conversely that λ(L̃1)=λ(L̃2). Using Lemma 8, we obtain k-bases
{x j }

n
j=1, {yj }

n
j=1 for kn and fractional ideals A1, . . . , An, B1, . . . , Bn such that

L i = A1x1+· · ·+ Anxn = B1 y1+· · ·+Bn yn and x1, . . . , xm ∈ V1, y1, . . . , ym ∈ V2.
Since L̃1 = A1x1+ · · ·+ Am xm and L̃2 = B1 y1+ · · ·+ Bm ym , the ideal classes of
A1 · · · Am and B1 · · · Bm are equivalent, and hence so are those of Am+1 · · · An and
Bm+1 · · · Bn . By substituting the basis vectors and fractional ideals with suitable
k×-multiples, we may assume that A1 · · · Am = B1 · · · Bm and Am+1 · · · An =

Bm+1 · · · Bn .
Finally using Lemma 8(iii) we can find g1, g2 ∈ GLn(k) satisfying

g1L i =

m−1∑
j=1

Oej + (A1 · · · Am)em +

n−1∑
j=m+1

Oej + (Am+1 · · · An)en,

g2L i =

m−1∑
j=1

Oej + (B1 · · · Bm)em +

n−1∑
j=m+1

Oej + (Bm+1 · · · Bn)en,

chosen such that

g1 L̃1 =

m−1∑
j=1

Oej + (A1 · · · Am)em, g2 L̃2 =

m−1∑
j=1

Oej + (B1 · · · Bm)em .

Put g = g−1
1 g2. Since g1L i = g2L i , the previous lemma gives us g ∈ 0i , while

gV2 = V1 follows from gyj ∈ gL̃2 = L̃1 ⊂ V1 ( j = 1, . . . ,m). �

Finally we consider the map

(6) λi : 0i\Grm→ Cl(k), λi (0i V )= λ(L i ∩ V ) (V ∈ Grm),

which is well-defined and injective as a result of the previous proposition.

Theorem 11. hi = h.

Proof. Since hi = |Q(k)\GLn(k)/0i | = |0i\Grm | we only need to prove that λi is
surjective.

Take any ideal class in Cl(k) and let A be a fractional ideal representing this
class. Also let B be a fractional ideal representing λ(L i ). Lemma 8(iii) allows us
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to find g ∈ GLn(k) such that

gL i =
∑

1≤k<n−1

Oek + Aen−1+ A−1 Ben.

Let V be the subspace of kn spanned by e, . . . , em−1, en−1 and put V ′=g−1V ∈Grm .
Then L i ∩V ′'

(⊕m−1
j=1 O

)
⊕ A so λi (0i V ′)= λ(L i ∩V ′) is the class of A in Cl(k),

as required. �

The one-to-one correspondence between GLn(k)\GLn(A)
1/G1

A,∞ and the set
of O-lattices classes in L mentioned earlier in the section is given by mapping
each ηi to the lattice class of L i . That this is a bijection follows from G1

A,∞ being
the stabilizer group of the O-lattice Oe1+ · · ·+Oen under the action of GLn(A)

1

on L. Continuing this map to the Steinitz class of the lattice gives us the bijection

GLn(k)\GLn(A)
1/G1

A,∞ 3 ηi 7→ λ(L i ) ∈ Cl(k).

This gives us an explicit way to find candidates for {η1, . . . , ηh} as follows.
Let {a1, . . . , ah} be a complete set of fractional ideals representing the ideal class
of k. For each i = 1, . . . , h, we shall require an element ηi ∈ GLn(A)

1 such that
the Steinitz class of the resulting lattice L i = ηi

(∑n
k=1 Oek

)
is the ideal class

represented by ai .
Let Dn(x) (x ∈ A) denote the unit matrix of size n with bottom-most diagonal

entry replaced by x . For each 1 ≤ i ≤ h we can choose αi ∈ A× such that αiσ
generates the principal ideal aiOσ for every finite σ and |αi |∞ = N (ai ), the ideal
norm of ai . Then Dn(αi ) ∈ GLn(A)

1 since |det Dn(αi )|A = |αi |A = 1, and

Dn(αi )

( n∑
k=1

Oek

)
=

∑
1≤k<n

Oek + ai en.

Hence putting ηi = Dn(αi ) (1≤ i ≤ h) gives us our required set of representatives.
The corresponding O-lattice L i and its stabilizer group 0i will be denoted by Ln(ai )

and 0n(ai ) respectively whenever we want to call to attention the fractional ideal ai

or the dimension n.
We can also proceed similarly to find, for a fixed i , a suitable set of representatives

for Q(k)\GLn(k)/0i . We do this using the bijection

Q(k)\GLn(k)/0i 3 Q(k)g0i 7−→ λ(L i ∩ g−1Vm) ∈ Cl(k)

formed by composing λi with the bijection (5), where Vm =
∑m

k=1 kek .
For each j ∈ {1, . . . , h} the ideal aia

−1
j shares the same ideal class as a unique a j ′

( j ′ ∈ {1, . . . , h}); that is [aj ][a j ′]= [ai ]. Putting τi ( j) := j ′ defines a permutation τi

on {1, . . . , h}.
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Call a set of matrices {ξ1, . . . , ξh} ⊂GLn(k) an (n,m)-splitting set for Ln(ai ) if
for each j = 1, . . . , h

(7) ξj Ln(ai )=

( ∑
1≤k<m

Oek + aj em

)
+

( ∑
m<k<n

Oek + aτi ( j)en

)
' Lm(aj )⊕ Ln−m(aτi ( j)).

Since λ(L i ∩ ξ
−1
j Vm) = λ(ξj L i ∩ Vm) = [aj ] (i ≤ j ≤ h), such a set of matrices

completely represents Q(k)\GLn(k)/0i .
One such set is given as follows. For each j = 1, . . . , h, first take κi j ∈ k such

that ajaτi ( j) = κi jai . Then choose elements αi j ∈ aj , α′i j ∈ aτi ( j), βi j ∈ a
−1
j and

β ′i j ∈ a
−1
τi ( j) satisfying

αi jβi j −α
′

i jβ
′

i j = 1

(see [Cohen 2000, §1, Proposition 1.3.12 or Algorithm 1.3.16]) and define the
matrix

ξi j :=


Im−1

αi j κi jβ
′

i j

In−m+1
α′i j κi jβi j

 ∈ GLn(k).

By direct calculation it is easily verified that {ξi j }
h
j=1 is indeed an (n,m)-splitting

set for Ln(ai ) and thus fully represents Qn,m(k)\GLn(k)/0n(ai ).

5. Fundamental domains of GLn(k)\GLn(A)1 and Pn/0i

We use the results of Section 3 to determine suitable fundamental domains in our
continued discussion of the general linear group.

5.1. Local height functions.

Definition. For each σ ∈ p define Hσ :
∧m kn

σ → R>0 by

Hσ

(∑
I

aI (ei1 ∧ · · · ∧ eim )

)
=


(∑

I |aI |
2
σ

)[kσ :R]/2
, σ ∈ p∞,

supI |aI |σ , σ ∈ pf ,

where the sum and the supremum are taken over all I ={i1< · · ·< im}⊂ {1, . . . , n}.
We call this the local height function at σ .

In the following we extend each Hσ to a function of GLn(kσ ) by putting

Hσ (γ )= Hσ (γ e1 ∧ · · · ∧ γ em), γ ∈ GLn(kσ ).

The following lemma allows us to express the height function HQ (restricted to
G(A)1) in terms of these local heights.
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Lemma 12. For g = (gσ )σ∈ p ∈ GLn(A)
1,

HQ(g)=
∏
σ∈ p

Hσ (g−1
σ )n/ l.

Proof. By noting that every local height Hσ as a function of GLn(kσ ) is left
Kσ -invariant and writing

g =
[

a ∗
0 d

]
h (a ∈ GLm(A), d ∈ GLn−m(A), h ∈ K ),

we see that Hσ (g−1
σ )=|det(a−1

σ )|rσσ at every σ , where rσ =2 when σ is an imaginary
infinite place and 1 otherwise. Hence the right-hand side of our equation becomes
|det a|−n/ l

A , while HQ(g)= |det a|−(n−m)/ l
A |det d|m/ l

A by definition. Then since g ∈
GLn(A)

1, we have 1= |det g|A = |det a|A |det d|A, which gives us our equality. �

We proceed to describe the sets Ri, j,∞ using the matrices ηi and ξi j chosen at the
end of the previous section. For the rest of this paper, for a square matrix A with
entries in A or k∞, we will write |A|A and |A|∞ to denote |det A|A and |det A|∞
respectively. When the size of A is at least m, we write A[m] for the top-left
m×m submatrix of A, and use |A|[m]∞ to denote |A[m]|∞.

Lemma 13. Let X i j be the n×m matrix formed by the first m columns of ξ−1
i j . Then

(8) HQ(ξi jγ gηi )= N (aj )
n/ l
∣∣tX i j

tγ̄−1 tḡ−1(ηi )
−2
∞

g−1γ−1 X i j
∣∣n/2l
∞

for any 1≤ i, j ≤ h, γ ∈ 0i and g ∈ GLn(k∞)1.

Proof. Let x = η−1
i g−1γ−1 X i j so that Hσ ((ξi jγ gηi )

−1
σ )= Hσ (xσ e1 ∧ · · · ∧ xσ em).

For σ ∈ p∞, this computes to( ∑
I⊂{1,...,n}
|I |=m

|det[xσ ]I |2σ

)1
2 [kσ :R]

=

(∑
I

det t
[xσ ]I det[xσ ]I

)1
2 [kσ :R]

=det( tx̄σ xσ )
1
2 [kσ :R],

where for each I = {i1 < · · · < im} that the sums run through [xσ ]I denotes the
m×n matrix formed by the i1-th, . . . , im-th rows of xσ arranged from top to bottom
in that order. The final equality is due to the Cauchy–Binet formula; see [Bombieri
and Gubler 2006, Proposition 2.8.8].

For σ ∈ pf , since gσ is trivial and γσ ∈ ηiσGLn(Oσ )ηi
−1
σ , we have (ξi jγ gηi )σ =

ξi j σηiσhσ for some hσ ∈ GLn(Oσ ). Hence Hσ ((ξi jγ gηi )
−1
σ ) simplifies to

Hσ (ηi
−1
σ ξi j

−1
σ
)= Hσ

(
βi j (e1 ∧ · · · ∧ em)+αi

−1
σ κi jα

′

i j (e1 ∧ · · · ∧ em−1 ∧ en)
)

or

max{|βi j |σ , |αi
−1
σ κ
−1
i j α

′

i j |σ } = |β
′

i jκi jαiσ |
−1
σ max{|βi jβ

′

i jκi jαiσ |σ , |α
′

i jβ
′

i j |σ }.
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By the previous lemma, HQ(ξi jγ gηi ) is obtained by taking the n/ l-th power of
the product of all the Hσ ((ξi jγ gηi )

−1
σ ). Thus it remains to verify that∏

σ∈ pf

|β ′i jκi jαiσ |
−1
σ max{|βi jβ

′

i jκi jαiσ |σ , |α
′

i jβ
′

i j |σ } = N (aj ).

First we see that
∏
σ∈ pf
|β ′i jκi jαiσ |

−1
σ = N (β ′i jκi jai ) = N (β ′i jajaτi ( j)). It is then

sufficient to show that the product of the remaining factors is N (β ′i jaτi ( j))
−1.

Let pσ denote the prime ideal associated to a finite place σ ∈ pf . Write
the prime ideal decompositions of βi jaj and β ′i jaτi ( j) as

∏
σ∈ pf

(pσ ∩ O)dσ and∏
σ∈ pf

(pσ ∩O)eσ respectively, the exponents dσ and eσ being nonnegative.
Then βi jβ

′

i jκi jai = (βi jaj )(β
′

i jaτi ( j))=
∏
σ∈ pf

(pσ ∩O)dσ+eσ and since each aiσ
is generated by αiσ , this yields

|βi jβ
′

i jκi jαiσ |σ = |Oσ/pσ |−dσ−eσ, σ ∈ pf .

Now α′i jβ
′

i j ∈ β
′

i jaτi ( j) and hence |α′i jβ
′

i j |σ ≤ |Oσ/pσ |
−eσ. We have two cases.

Case 1: dσ = 0. Then |α′i jβ
′

i j |σ ≤ |βi jβ
′

i jκi jαiσ |σ = |Oσ/pσ |
−eσ.

Case 2: dp > 0. In this case

α′i jβ
′

i j =−1+αi jβi j ∈ −1+βi jaj ⊂−1+ (pσ ∩O)dp

shows us that α′i jβ
′

i j ∈O
×
σ and so |α′i jβ

′

i j |σ = 1≥ |βi jβ
′

i jκi jαiσ |σ . We also note that
since βi j and β ′i j were chosen in such a way that βi jai j+β

′

i jai j =O, the ideal βi jaj

is prime to β ′i jaτi ( j), which means eσ = 0.

So in either case,

max{|βi jβ
′

i jκi jαiσ |σ , |α
′

i jβ
′

i j |σ } = |Oσ/pσ |
−eσ

and thus the product over all finite places is N (β ′i jaτi ( j))
−1, as required. �

Now fix 1≤ i, j ≤ h and first consider the set ξ−1
i j Ri, j,∞ξi j . It is easy to directly

verify that

ξ−1
i j Ri, j,∞ξi j = {g ∈ G(k∞)1 : HQ(ξi j gηi )=mQ(gηi )}.

Hence for g ∈ ξ−1
i j Ri, j,∞ξi j we have

HQ(ξi j gηi )=mQ(gηi )= min
x∈Q(k)\GLn(k)

HQ(xgηi )= min
1≤k≤h
γ∈0i

HQ(ξikγ gηi ),

which in this case can be written using (8) as

|
tX i j

tḡ−1(ηi )
−2
∞

g−1 X i j |∞ ≤

(
N (ak)

N (aj )

)2

|
tX ik

tγ̄ tḡ−1(ηi )
−2
∞

g−1γ X ik |∞

for all k = 1, . . . , h and γ ∈ 0i .
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Now tX ik
tγ̄ tḡ−1(ηi )

−2
∞

g−1γ X ik = (
tξ̄−1

ik
tγ̄ tḡ−1(ηi )

−2
∞

g−1γ ξ−1
ik )
[m], which by

letting g[i j] = ξi j gξ−1
i j can be rewritten as( t(ξi jγ ξ

−1
ik )

tḡ−1
[i j](

tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j )g
−1
[i j](ξi jγ ξ

−1
ik )

)[m]
.

This lets us express the set Ri, j,∞ as follows. For g ∈ GLn(k∞) let πi j (g) denote
tḡ−1( tξ̄−1

i j (ηi )
−2
∞
ξ−1

i j )g
−1. Then g ∈ Ri, j,∞ if and only if

(9) |πi j (g)|[m]∞ ≤
(

N (ak)

N (aj )

)2∣∣t(ξi jγ ξ
−1
ik )πi j (g)(ξi jγ ξ

−1
ik )

∣∣[m]
∞

for all k = 1, . . . , h and γ ∈ 0i .

5.2. Fundamental domains of Pn/0i . For each infinite place σ of k let Pn(kσ )
denote the subset of GLn(kσ ) consisting of all positive definite real symmetric
matrices when σ is real and positive definite Hermitian matrices when σ is imaginary.
We consider the subset of GLn(k∞) defined by Pn =

∏
σ∈ p∞ Pn(kσ ). This is the

space of positive definite Humbert forms in GLn(k).
We have the following right action of GLn(k∞) on Pn:

(10) A · g = tḡ Ag (g ∈ GLn(k∞), A ∈ Pn).

To determine fundamental domains in Pn with respect to subgroups of GLn(k),
we consider instead the induced action A · gZ = tḡ Ag of GLn(k)/Z on Pn , where
Z = {z ∈ k : z̄z = 1}, the set of roots of unity in k. Here {z In : z ∈ Z} is naturally
seen to be the intersection of K∞ and the center of GLn(k).

Hence given a discrete subgroup 0 of GLn(k) acting on a subset T of Pn , a
fundamental domain � of a T/0 is an open subset of T satisfying

(i) T =�− ·0,

(ii) for γ ∈ 0, if �◦ ∩ (�− · γ ) 6=∅ then γ ∈ Z .

Now for each 1≤ i, j ≤ h, put

Ki, j,∞ = (ξi jηi )∞K∞(ξi jηi )
−1
∞
, P i j

n = {A ∈ Pn : |A|∞ = N (κi jai )
−2
},

and define the map πi j : G(k∞) 3 g 7→ tḡ−1( tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j )g
−1
∈ Pn . Note

that Ki, j,∞ is the stabilizer of tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j ∈ Pn under the action of GLn(k∞)
on Pn and that πi j preserves this action. Thus the surjective map πi j gives us the
isomorphisms

GLn(k∞)/Ki, j,∞ ' Pn and GLn(k∞)
1/Ki,∞ ' πi j (GLn(k∞)

1)= P i j
n

since |tξ̄−1
i j (ηi )

−2
∞
ξ−1

i j |∞ = N (κi jai )
−2.
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Lastly let Fn,m
i, j denote the following closed subset of Pn:{

A ∈ Pn : |A|[m]∞ ≤
(

N (ak)

N (aj )

)2∣∣t(ξi jγ ξ
−1
ik )A(ξi jγ ξ

−1
ik )

∣∣[m]
∞
, 1≤ k ≤ h, γ ∈ 0i

}
.

From (9), πi j maps Ri, j,∞ onto Fn,m
i, j ∩ P i j

n . We also note that following statement
holds true, the proof of which will be given later in the section.

Proposition 14. Fn,m
i, j is right Qi, j -invariant under the action (10).

Thus the subgroup Qi, j of GLn(k∞) acts on Ri, j,∞ from the left and on Fn,m
i, j from

the right, and πi j preserves this. Hence by constructing a fundamental domain for
Fn,m

i, j /Qi, j , we can find one for Qi, j\Ri, j,∞ by taking the inverse image under πi j .
We start by observing that ξi j0iξ

−1
i j is the stabilizer in GLn(k) of the O-lattice

ξi j L i described in (7). This gives us an expression for Qi, j = Q(k)∩ ξi j0iξ
−1
i j :{[

a b
0 d

]
: a ∈ 0m(aj ), d ∈ 0n−m(aτi ( j)), bLn−m(aτi ( j))⊂ Lm(aj )

}
.

Any A ∈ Pn can be written uniquely in the form

(11) A =
[

Im 0
tu A,m In−m

] [
A[m] 0

0 A[n−m]

] [
Im u A,m

0 In−m

]
with A[m] ∈ Pm , A[n−m] ∈ Pn−m and u A.m ∈ Mm,n−m(k∞). (The symbol A[m] here
coincides with its prior use to denote the top left m×m submatrix of A). It is easy
to verify that the action of q =

[a
0

b
d

]
∈ Qi, j on A results in

( tq̄ Aq)[m] = tā A[m]a, ( tq̄ Aq)[n−m] =
td̄ A[n−m]d,

u tq̄ Aq,m = a−1(u A,md + b).

These equations will determine the necessary form of our fundamental domain,
as well as allow us to prove our previous proposition. Given A ∈ Fn,m

i, j and q as
above, we first see that

|
tq̄ Aq|[m]

∞
= |

tā|∞|A|[m]∞ |a|∞ = |A|
[m]
∞
.

Next put q = ξi jγqξ
−1
i j , γq ∈ 0i , to get

t(ξi jγ ξ
−1
ik )

tq̄ Aq(ξi jγ ξ
−1
ik )=

t(ξi jγqγ ξ
−1
ik )A(ξi jγqγ ξ

−1
ik )

for all γ ∈ 0i and every k. Together, this shows that tq̄ Aq ∈ Fn,m
i, j as proposed.

Now for each k = 1, . . . , h choose sets dk , d′k and dik that are fundamental
domains for k∞ with respect to addition by ak , a−1

k and aka
−1
τi (k) respectively. We

require each of these sets to be closed under multiplication by Z . Then choose also
a subset d̃ik of dik that is a fundamental domain for dik with respect to multiplication
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by Z . Also if necessary (which will be the case when m > 1 and n−m > 1) take a
fundamental domain dO of k∞ with respect to addition by O.

Using these, we define for 1< i, j < h the sets

Dn,m
i, j =


d11 · · · d1,n−m
...
. . .

...
dm1 · · · dm,n−m

 : dm,n−m ∈ d̃i j , drs ∈


dO, r < m, s < n−m,
d′τi ( j), r < m, s = n−m,
dj , r = m, s < n−m


and

Fn,m
i, j (S, S′)= {A ∈ Fn,m

i, j : A[m] ∈ S, A[n−m] ∈ S′, u A,m ∈D
n,m
i, j }

with arbitrary subsets S ⊂ Pm and S′ ⊂ Pn−m .
In particular we will want to consider Fn,m

i, j (Bj ,Cσi ( j)) when Bj and Cτi ( j) are
fundamental domains for Pm/0m(aj ) and Pn−m/0n−m(aτi ( j)) respectively. In this
case, based on our observations on the action of Qi, j on Fn,m

i, j , we establish the
following result.

Lemma 15. Fn,m
i, j (Bj ,Cτi ( j)) is a fundamental domain of Fn,m

i, j /Qi, j .

Proof. We write F = Fn,m
i, j (Bj ,Cτi ( j)) for short. First consider an A ∈ Fn,m

i, j . We
can find b ∈B−j , c ∈ C−τi ( j) and a ∈ 0m(aj ), d ∈ 0n−m(aτi(j)) such that A[m] = tāba
and A[n−m] =

td̄cd . Also, by substituting a with a suitable Z -multiple if necessary,
we can find f ∈ (Dn,m

i, j )
− and a g ∈ Mm,n−m(k) mapping Ln−m(aτi ( j)) to Lm(aj )

such that au A,md−1
= f + g. Let

q =
[

a gd
0 d

]
, A′ =

[
Im 0
t f̄ In−m

] [
b 0
0 c

] [
Im f
0 In−m

]
.

Then q ∈ Qi, j and A = tq̄ A′q. We have from the Qi, j -invariance of Fn,m
i, j that

A′ ∈ Fn,m
i, j and so A′ ∈ F−. This shows that Fn,m

i, j = F− · Qi, j .
Next suppose F◦ ∩ (F− · q) is nonempty for a q =

[a
0

b
d

]
∈ Qi, j , so there exist

A ∈ F◦ and A′ ∈ F− such that A = tq̄ A′q. We must show that q ∈ Z . From
A[m] = tā A′[m]a ∈ Bi j and A[n−m] =

td̄ A′
[n−m]d ∈ Ci j , we must have a = a1 Im

and d = d1 In−m with some a1, d1 ∈ Z . Since the entries of u A,m and u A′,m are
respectively in the interior and closure of either dO, dj , d′τi ( j) or di j , which are all
invariant under Z , we see that b = au A,m − u A′,md must necessarily be 0. From
this we get a1u A,m = d1u A′,m , whose (m, n−m)-th entry belongs to d̃i j , implying
that a1d−1

1 ∈ Z . Hence q ∈ Z . �

As a result, the inverse image of Fn,m
i, j (Bi j ,Ci j )∩ P i j

n under πi j is a fundamental
domain of Qi, j\Ri, j,∞.

If we have fundamental domains B1, . . . ,Bh for Pm with respect to the groups
0m(a1), . . . , 0m(ah), as well as fundamental domains C1, . . . ,Ch of Pn−m with re-
spect to 0n−m(a1), . . . , 0n−m(ah), we are able to construct the sets Fn,m

i, j (Bj ,Cσi ( j))
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for each i and j . Then by Corollary 6 a fundamental domain for GLn(k)\GLn(A)
1

is given by the set ⊔
1≤i, j≤h

π−1
i j (F

n,m
i, j (Bj ,Cτi ( j))∩ P i j

n )ξi jηi K f .

Also Theorem 7 shows us that
⋃h

j=1 ξ
−1
i j π

−1
i j (F

n,m
i, j (Bj ,Cτi ( j))∩ P i j

n )ξi j is a fun-
damental domain for GLn(k∞)1 with respect to 0i . Now let

�
n,m
i (B1, . . . ,Bh,C1, . . . ,Ch)=

h⋃
j=1

tξ̄i j Fn,m
i, j (Bj ,Cτi ( j))ξi j .

We have the following result.

Theorem 16. �n,m
i (B1, . . . ,Bh,C1, . . . ,Ch) ∩ P i j

n is a fundamental domain of
P i j

n with respect to 0i . In addition, by viewing R>0 as a subset of k∞ via the usual
diagonal embedding, if we assume for k = 1, . . . , h that

R>0Bk =Bk, R>0Ck = Ck,

then �n,m
i (B1, . . . ,Bh,C1, . . . ,Ch) is a fundamental domain of Pn/0i .

Proof. We write � for �n,m
i (B1, . . . ,Bh,C1, . . . ,Ch) and 0 for 0i for short. If

we define the map G(k∞) 3 g 7→ tḡ−1(ηi )
−2
∞

g−1
∈ Pn we can directly verify that

the image of
⋃h

j=1 ξ
−1
i j π

−1
i j (F

n,m
i, j (Bj ,Cτi ( j))∩ P i j

n )ξi j under this map is �, which
gives us the first result. For the second part, note that R>0 Fn,m

i, j = Fn,m
i, j and

(x A)[m] = x(A[m]), (x A)[n−m] = x(A[n−m]), ux A,m = u A,m

for any x ∈ R>0 and A ∈ Pn . Thus the conditions on the Bk and Ck imply that
R>0 Fn,m

i, j (Bj ,Cτi ( j)) = Fn,m
i, j (Bj ,Cτi ( j)) for each j ; hence R>0� = �. Since

Pn = R>0 P i j
n , we see from P i j

n = (� ∩ P i j
n )
−
· 0 that Pn = �− · 0. Finally

suppose that �◦ ∩ ( tγ̄ �−γ ) (γ ∈ 0) contains an element g = tγ̄ g′γ (g′ ∈ �−).
Put x = (N (κi jai )

2
|g|∞)−1/n[k∞:R]. Then |xg|∞= |xg′|∞= N (κi jai )

−2 and hence
xg= tγ̄ xg′γ ∈ (�◦∩ P i j

n )∩
tγ̄ (�−∩ P i j

n )γ , which gives us γ = In , as required. �

Using the theorem, we can construct fundamental domains for Pn with respect to
0i for each i and n≥1. Since 0i =O× for any i when n=1, we can start by choosing
a fixed fundamental domain, �1, for P1 with respect to O×/Z that is closed under
multiplication by R>0. (The existence of such a set can be shown using Voronoi
reduction; see the Appendix.) Then for each i = 1, . . . , h, let �1

i =�
1 and define

�n
i =�

n,n−1
i (�n−1

1 . . . , �n−1
h , �1, · · · , �1)

inductively for n ≥ 2. By construction, R>0�
n
i = �

n
i so for each 1 ≤ i ≤ h and

n ≥ 1, �n
i gives us a fundamental domain for Pn/0i .
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An example implementation of this construction for P2 over the imaginary
quadratic field Q(

√
−5) of class number 2 is given in the following subsection.

Similar work on fundamental domains in spaces over real quadratic fields of class
number 1 can be found in [Cohn 1965].

5.3. An example (k=Q(
√
−5)). When k is an imaginary quadratic field, we have

k∞ = C. For n = 1 we have P1 = R>0(⊂ C) and 0i =O× = Z acts trivially on P1;
hence P1 itself is a fundamental domain for P1/01(ai ).

Consider in particular k = Q(
√
−5) of class number h = 2. We can choose

representatives a1, a2 for Cl(k) by putting a1 = O and a2 =
〈
2, 1+

√
−5
〉
. Then

following the procedure at the end of Section 4, we see that

a2
1 = a1, a2

2 = 2a1

(
τ1 =

(
1 2
1 2

)
, κ11 = 1, κ12 = 2

)
,

a1a2 = a2, a2a1 = a2

(
τ2 =

(
1 2
2 1

)
, κ21 = κ22 = 1

)
,

and (2, 1)-splitting sets for L2(ai ) are given by{
ξ11 =

[
1 0
0 1

]
, ξ12 =

[
2 2+

√
−5

2 3+
√
−5

]}
(i = 1),{

ξ21 =

[
1 0
0 1

]
, ξ22 =

[
0 1
−1 0

]}
(i = 2).

For 1≤ i, j, k ≤ 2 denote by 4i, j,k the set of the first columns of the matrices
ξi jγ ξ

−1
ik as γ ranges over 0(ai ). Then for A ∈ P2

min
γ∈0i

∣∣t(ξi jγ ξ
−1
ik )A(ξi jγ ξ

−1
ik )

∣∣[1]
∞
= min

x∈4i, j,k
|
txAx|

= min[ e
f
]
∈4i, j,k

A[1]|e+ u A,1 f |2+ A[1]| f |2,

and so F2,1
i, j can be expressed as

F2,1
i, j =


[

1 0
d̄ 1

] [
b 0
0 c

] [
1 d
0 1

]
:

b, c ∈ R>0, d ∈ C,

|e+ d f |2+ c
b
| f |2 ≥ 1,[e

f

]
∈

1
N (aj )

4i, j,1 ∪
2

N (aj )
4i, j,2

 .
Now for α, β ∈ k let

d(α, β)=
{

xα+ yβ : − 1
2 < x, y ≤ 1

2

}
.

When α and β generate a fractional ideal a, we have d(α, β) is a fundamental
domain for C with respect to addition by a. Also if we let d̃(α, β) denote the subset
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of d(α, β) where the range of y is restricted to 0≤ y≤ 1
2 , this gives us a fundamental

domain for d(α, β) with respect to multiplication by Z = {±1}.
In particular d(1,

√
−5), d(2, 1+

√
−5), d

(
1, 1

2(1−
√
−5)

)
are fundamental

domains for C with respect to addition by O, a2 and a−1
2 respectively, and we can

put d̃11 = d̃12 = d̃(1,
√
−5), d̃21 = d̃

(
1, 1

2(1−
√
−5)

)
and d̃22 = d̃(2,

√
−5). Then

F2,1
i, j (P1, P1)=


[

1 0
d̄ 1

] [
b 0
0 c

] [
1 d
0 1

]
:

b, c ∈ R>0, d ∈ d̃i j ,

|e+ d f |2+ c
b
| f |2 ≥ 1,[e

f

]
∈

1
N (aj )

4i, j,1 ∪
2

N (aj )
4i, j,2

 .
Writing F2,1

i, j (P1, P1) as Fi, j , we obtain the fundamental domains �2
1 = F1,1 ∪

tξ̄12 F1,2ξ12 for P2/02(a1) and �2
2 = F1,1 ∪

tξ̄22 F2,2ξ22 for P2/02(a2).

5.4. Relations between the fundamental domains. So far we have used a represen-
tative set {a1, . . . , ah} for Cl(k) and a standard parabolic subgroup Qn,m of GLn in
constructing our fundamental domains. This construction is of course possible with
m varied and using any other representative set of fractional ideals. We will demon-
strate in this section that the fundamental domain for Pn/0n(ai ) constructed using
{a1, . . . , ah} and Qn,m can be mapped by an automorphism to a fundamental domain
for Pn/0n(a

−1
i ) constructed with the representative set {a−1

1 , . . . , a−1
h } and Qn,n−m.

For integers n and m where 1≤ m < n, define the outer automorphism φn,m of
GLn(k∞) by

(12) φn,m(g) := tJn,m(
tg−1)Jn,m, g ∈ GLn(k∞),

where

Jn,m =

[
0 Im

In−m 0

]
.

Note that tJn,m = (Jn,m)
−1
= Jn,n−m so that in particular we have φ−1

n,m = φn,n−m .
Also φn,m gives a one-to-one map between these two standard parabolic subgroups
of GLn since φn,m(Qn,m(k))= Qn,n−m(k).

Let the ideals a1, . . . , ah , the corresponding adeles α1, . . . , αh , and the matrices
ξi j (1≤ i, j ≤ h) be as they were chosen in the last section. Clearly {a−1

1 , . . . , a−1
h }

is also a set of representative ideals for ideal class group. A corresponding set of
matrices representing GLn(k)\GLn(A)

1/(GLn)
1
A,∞ is given by

{Dn(α
−1
1 ), . . . , Dn(α

−1
h )} = {η−1

i , . . . , η−1
h },

which gives us the subgroups

Dn(α
−1
i )(GLn(k∞)

1
× K f )Dn(α

−1
i )−1

∩GLn(k)= 0n(a
−1
i ),
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which are the respective stabilizer subgroups in GLn(k) of the lattices Ln(a
−1
i )

(i = 1, . . . , h).
Next for each i, j = 1, . . . , h set

ξ̃i j :=
tJn,m

tξ−1
iτi ( j) =


In−m+1

−β ′iτi ( j) κ−1
i j αiτi ( j)

Im−1
βiτi ( j) −κ−1

i j α
′

iτi ( j)

 ,
which is easily verified to satisfy

(13) ξ̃i j Ln(a
−1
i )=

( ∑
1≤k<n−m

Oe(n)k + a−1
j e(n)m

)
+

( ∑
n−m<k<n

Oe(n)k + a−1
τi ( j)e

(n)
n

)
' Ln−m(a

−1
j )⊕ Lm(a

−1
τi ( j)).

Thus {ξ̃i j }
h
j=1 is an (n, n−m)-splitting set for Ln(a

−1
i ), and hence a complete set

of representatives for Qn,n−m(k)\GLn(k)/0n(a
−1
i ).

We can also define

Q̃n,n−m
i. j := Qn,n−m(k)∩ ξ̃ n,n−m

i j 0n(a
−1
i )(ξ̃

n,n−m
i j )−1,

F̃n,n−m
i, j =

{
A∈ Pn : |A|[n−m]

∞
≤

(
N (a−1

k )

N (a−1
j )

)2∣∣t(ξ̃i jγ ξ̃
−1
ik )A(ξ̃i jγ ξ̃

−1
ik )

∣∣[n−m]
∞

,

1≤ k ≤ h, γ ∈0n(a
−1)

}
,

D̃n,n−m
i, j =


 d11 · · · d1,m

...
. . .

...
dn−m,1 · · · dn−m,m

: dn−m,m ∈ d̃i j , drs∈


dO, r < n−m, s<m,
dτi ( j), r < n−m, s=m,
d′j , r = n−m, s<m

,
where the fundamental domains dk , d′k , d̃ik , dO are taken as in the previous section,
and

F̃n,n−m
i, j (S, S′)=

{
A ∈ F̃n,n−m

i, j : A[n−m]
∈ S, A[m] ∈ S′, u A,n−m ∈ D̃

n,n−m
i, j

}
for arbitrary subsets S ⊂ Pn−m , S′ ⊂ Pm . These are precisely the groups Qn,m

i, j
and sets Fn,m

i, j , Dn,m
i, j and Fn,m

i, j (S, S′) from the previous section with a−1
i and ξ̃ik in

place of the ai and ξik respectively, when m = n − m. It is easily verified that
φn,m(Q

n,m
i, j )= Q̃n,n−m

i,τi ( j) .

Lemma 17. For A ∈ Pn ,

φn,m(A)[n−m]
=

tA−1
[n−m], φn,m(A)[m] = t(A[m])−1,

uφn,m(A),n−m =−
tu A,m .

Proof. Apply the automorphism φn,m to both sides of (11). �
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Given a set S consisting of invertible matrices, denote the set {ts−1
: s ∈ S} by tS−1.

Lemma 18. For S ⊂ Pm and S′ ⊂ Pn−m ,

φn,m(F
n,m
i, j (S, S′))= F̃n,n−m

i,τi ( j) (
tS′−1, tS−1).

Proof. We first show that φn,m(F
n,m
i, j )= F̃n,n−m

i,τi ( j) . First consider A ∈ Fn,m
i, j . Put

A(k, γ )= t(ξi jγ ξ
−1
ik )A(ξi jγ ξ

−1
ik )

for 1≤ k ≤ h and γ ∈ 0i . We have

|A(k, γ )| =
(
κi j

κik

)2
|A| =

(
κi j

κik

)2
|A[m]||A[n−m]|.

Substitute this and |A(k, γ )[m]| = |A(k, γ )||A(k, γ )[n−m]|
−1 into the inequality

|A[m]|∞ ≤
(

N (ak)

N (aj )

)2

|A(k, γ )[m]|∞.

Rearranging, we get

|A[n−m]|
−1
∞
≤

(
|κ−1

ik |∞N (ak)

|κ−1
i j |∞N (aj )

)2

|A(k, γ )[n−m]|
−1
∞
,

which, using the previous lemma, becomes

|φn,m(A)|[n−m]
∞

≤

(N (a−1
τi (k))

N (a−1
τi ( j))

)2

|φn,m(A(k, γ ))|[n−m]
∞

,

and since

φn,m(A(k, γ ))= t(ξ̃iτi ( j)
tγ−1 ξ̃−1

iτi (k))φn,m(A)(ξ̃iτi ( j)
tγ−1 ξ̃−1

iτi (k)),

this shows that φn,m(A) ∈ F̃n,n−m
i,τi ( j) . Thus φn,m(F

n,m
i, j ) ⊂ F̃n,n−m

i,τi ( j) and similarly
φn,n−m(F̃

n,n−m
i,τi ( j) )⊂ Fn,m

i, j . The rest of our result follows from the previous lemma. �

Lemma 19. Let 0 be a subgroup of GLn(k∞) acting on a subset X of Pn , the
action being the one defined in (10). If F is a given fundamental domain for X/0
and φ a group automorphism of GLn(k∞) that is also a topological isomorphism,
then φ(F) is a fundamental domain for φ(X)/φ(0).

Proof. Since φ is both a group homomorphism and a topological isomorphism,
X = F− ·0 implies φ(X)= φ(F)− ·φ(0). Also, for g ∈ 0, if the intersection of
φ(F)◦ and φ(F)− ·φ(g) is nonempty, then so is F◦∩F− ·g, implying g ∈ Z . Since
Z consists of all roots of unity in k, we have φ(g) ∈ Z . �

In particular, if for k = 1, . . . , h we let Bk and Ck be fundamental domains for
Pm/0m(ak) and Pn−m/0n−m(ak) respectively as in the end of the previous section,
then tB−1

k and tC−1
k are respectively fundamental domains for Pn−m/0n−m(a

−1
k )

and Pm/0m(a
−1
k ). Also we have:
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Corollary 20. The set
φn,m(F

n,m
i, j (Bj ,Cτi ( j)))

is a fundamental domain for F̃n,n−m
i,τi ( j) /Q̃

n,n−m
i,τi ( j) .

Corollary 21. The set

t(�n,m
i (B1, . . .Bh,C1, . . . ,Ch)

)−1

is a fundamental domain for Pn/0n(a
−1
i ).

Since
F̃n,n−m

i. j ( tC−1
j , tB−1

τi ( j))= φn,m(F
n,m
i,τi ( j)(Bτi ( j),Cj )),

the first corollary is consistent with Lemma 15 in the previous section.
Similarly if we put

�̃
n,n−m
i (C1, . . .Ch,B1, . . . ,Bh)=

h⋃
j=1

t ¯̃ξi j F̃n,m
i, j (

tC−1
j , tB−1

τi ( j))ξ̃i j

then �̃n,n−m
i (C1, . . .Ch,B1, . . . ,Bh) =

t
(
�

n,m
i (B1, . . .Bh,C1, . . . ,Ch)

)−1 and
according to Theorem 16, this set is indeed a fundamental domain for Pn/0n(a

−1
i ).

Appendix: Voronoi reduction
by Takao Watanabe

We present here generalizations of results from [Watanabe et al. 2013, §4], without
the assumption that the underlying number field is totally real.

Let k, O and Pn be as previously defined in this paper. We consider the space of
self-adjoint matrices in Mn(k∞) (with respect to the inner product 〈 , 〉 as defined
in [Watanabe et al. 2013, §1]), which we denote here by Hn . Identifying Hn with∏
σ∈ p∞ Hn(kσ ), where Hn(kσ ) denotes the set of n× n real symmetric (complex

Hermitian) matrices when σ is real (imaginary respectively), we see that Pn is the
set of positive definite matrices in Hn .

Also as per [Watanabe et al. 2013, §1], we use the inner product ( , ) on Hn

defined by
(A, B)=

∑
σ∈ p∞

Trkσ /R(Tr(Aσ Bσ ))

for A = (Aσ )σ∈ p∞ , B = (Bσ )σ∈ p∞ ∈ Hn .
Following [Watanabe et al. 2013, §2], we fix a projective O-module 3⊂ kn of

rank n and consider the arithmetical minimum function

m3(A)= inf
x∈3\{0}

〈Ax, x〉
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on P−n . The set
K1(m3)= {A ∈ P−n :m3(A)≥ 1},

known as the Ryshkov polyhedron of m3, is a locally finite polyhedron contained in
Pn [Watanabe et al. 2013, Lemma 2.1 and Proposition 2.2]. The set of 0-dimensional
faces of K1(m3), denoted by ∂0K1(m3), is characterized in [Watanabe et al. 2013,
Theorem 2.5].

Now for a given A ∈ Pn and a positive constant θ , define the sets

HA,θ = {B ∈ Hn : (A, B)≤ θ},

[A]θ = ∂0K1(m30)∩ HA,θ .

Lemma A1. [A]θ is a finite set.

Proof. Since HA,θ ∩ P−n is compact [Faraut and Korányi 1994, Corollary I.1.6] and
K1(m3) is a locally finite polyhedron, it follows that their intersection K1(m3)∩

HA,θ is a polytope. Hence [A]θ must be finite. �

Lemma A2. For an A ∈ Pn , there exists B0 ∈ ∂
0K1(m3) such that

inf
B∈K1(m3)

(A, B)= (A, B0)

and hence A is in DB0 , the perfect domain of B0 [Watanabe et al. 2013, §3]. Here

DB0 =

{ ∑
x∈S3(B0)

λx x tx̄ : λx ≥ 0
}
,

where
S3(B0)= {x ∈3 :m3(B0)= 〈B0x, x〉}.

Proof. Take a sufficiently large θ > 0 whereby [A]θ is nonempty. Since K1(m3) is
the convex hull of ∂K1(m3) [Watanabe et al. 2013, Theorem 2.6], we have

inf
B∈K1(m3)

(A, B) = inf
B∈∂K1(m3)

(A, B) = inf
B∈[A]θ

(A, B),

which together with the previous lemma proves the existence of B0. The proof that
A ∈ DB0 is the same as in [Watanabe et al. 2013, Lemma 4.8]. �

Next consider the set

k+
∞
= {(ασ )σ∈ p∞ : ασ > 0 for all σ ∈ p∞}.

Lemma A3. The subset {ββ̄ : β ∈ k×} of k∞ is dense in k+
∞

.

Proof. Define the norm ‖ · ‖ on k∞ by

‖α‖ = max
σ∈ p∞

√
ασασ , α = (ασ ) ∈ k∞.
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Now given a α ∈ k+
∞

there is an element
√
α ∈ k+

∞
such that (

√
α)2 = α. Since k

is dense in k∞, for a sufficiently small ε > 0 we can find β ∈ k× such that

‖
√
α−β‖<

ε

2‖
√
α‖+ 1

< 1.

From ‖β‖< ‖
√
α‖+ 1, we have ‖

√
α+β‖< 2‖

√
α‖+ 1, and thus

‖α−ββ̄‖ = 1
2

∥∥(√α−β)(√α+ β̄)+ (√α+β)(√α− β̄)∥∥
≤

1
2

(
‖
√
α−β‖‖

√
α+β‖+‖

√
α+β‖‖

√
α−β‖

)
< ε. �

Lemma A4. k+
∞
∪ {0} =

{ l∑
k=1

λkβk
tβ̄k : 1≤ l ∈ Z, λk ∈ R≥0, βk ∈ k×

}
.

Proof. See the proof of [Watanabe et al. 2013, Lemma 4.2]. �

As a result of the previous lemma, if we define the subsets

�1 =

{ l∑
k=1

αk xk
tx̄k : 1≤ l ∈ Z, αk ∈ k+

∞
∪ {0}, xi ∈ kn

}
,

�2 =

{ l∑
k=1

λk xk
tx̄k : 1≤ l ∈ Z, λk ∈ R≥0, xi ∈ kn

}
of P−n , we have �1 =�2. Also by Lemma A2, Pn ⊂�2 =�1.

Lemma A5. �2 =
⋃

B∈∂0 K1(m3)

DB .

Proof. For any A ∈ �2\{0}, following the same arguments as in the proofs of
[Watanabe et al. 2013, Lemmas 4.7 and 4.8], we can find an element B0∈ ∂

0K1(m3)

such that infB∈K1(m3)(A, B)= (A, B0) and hence A ∈ DB0 . �

Finally take a complete set of representatives B1, . . . , Bt for ∂0K1(m3)/GL(3),
where the right action is the same one as (10), and for each k = 1, . . . , t define
the subgroups 0Bk = {γ ∈ GL(3) : Bk ·

tγ̄ = Bk}. Since for any A ∈ ∂0K1(m) and
γ ∈GL(3) we have S3(A ·γ )= γ−1S3(A) and hence DA· tγ̄ = (DA) ·γ

−1, we see
that 0Bk stabilizes DBk for each k. Thus we conclude from the previous lemma the
following result.

Theorem A6. �2/GL(3)=
t⋃

k=1

DBk/0Bk .

This is analogous to [Watanabe et al. 2013, Theorem 4.9]. In particular when
n = 1, if we take 3= O , we have GL(3)= O× and P1 = k+

∞
=�1\{0} =�2\{0}.
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Since the action of O× on k+
∞

is simply x · ε = ε̄εx (x ∈ k+
∞

, ε ∈ O×), we have
0Bk = Z acts trivially on DBk for each k. Thus we obtain the decomposition

P1/O× = k+
∞
/O× =

t⋃
k=1

(DBk\{0}).

By definition each DBk\{0} is invariant under multiplication by R>0, so this estab-
lishes the existence of the fundamental domain �1 in the conclusion of Section 5.2.
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