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GROWTH AND DISTORTION THEOREMS
FOR SLICE MONOGENIC FUNCTIONS

GUANGBIN REN AND XIEPING WANG

We establish the sharp growth and distortion theorems for slice monogenic
extensions of univalent functions on the unit disc D � C in the setting of Clif-
ford algebras, based on a new convex combination identity. The analogous
results are also valid in the quaternionic setting for slice regular functions
and we can even prove a Koebe type one-quarter theorem in this case. Our
growth and distortion theorems for slice regular (slice monogenic) exten-
sions to higher dimensions of univalent holomorphic functions hold without
extra geometric assumptions, in contrast to the setting of several complex
variables in which the growth and distortion theorems fail in general and
hold only for some subclasses with the starlike or convex assumption.

1. Introduction

In geometric function theory of holomorphic functions of one complex variable,
the following well-known growth and distortion theorems (see, e.g., [Duren 1983;
Graham and Kohr 2003]) mark the beginning of the systematic study of univalent
functions.

Theorem 1.1 (growth and distortion theorems). Let F be a univalent function on
the open unit disc DD fz 2 C W jzj < 1g such that F.0/D 0 and F 0.0/D 1. Then
for each z 2 D, the following inequalities hold:

jzj

.1Cjzj/2
� jF.z/j �

jzj

.1�jzj/2
I(1-1)

1� jzj

.1Cjzj/3
� jF 0.z/j �

1Cjzj

.1�jzj/3
I(1-2)

1� jzj

1Cjzj
�

ˇ̌̌̌
zF 0.z/

F.z/

ˇ̌̌̌
�

1Cjzj

1� jzj
:(1-3)
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Moreover, equality holds for one of these six inequalities at some point z0 2Dn f0g

if and only if F is a rotation of the Koebe function, i.e.,

F.z/D
z

.1� ei�z/2
; 8z 2 D;

for some � 2 R.

The extension of geometric function theory to higher dimensions was suggested
by H. Cartan [1933], but the first meaningful result was only made in 1991 by
Barnard, Fitzgerald and Gong [Barnard et al. 1991]. Since then, the geometric
function theory in several complex variables has been extensively studied, see, for
example, [Gong 1998; Graham and Kohr 2003]. In particular, the growth theorem
holds for starlike mappings on starlike circular domains [Liu and Ren 1998a], and
for convex mappings on convex circular domains [Liu and Ren 1998b].

However, as far as we know, nearly nothing has been done about the correspond-
ing theory for other classes of functions, such as the classical regular (monogenic)
functions in the sense of Fueter and the recently introduced slice regular (slice
monogenic) functions, mainly because both regularity (monogenicity) and slice reg-
ularity (slice monogenicity) of functions are seldom preserved under multiplication
and composition, because of the noncommutativity of the underlying algebras on
which these functions are defined.

In this paper, we shall focus on slice regular and slice monogenic functions and
aim to generalize Theorem 1.1 to the noncommutative setting for slice regular and
slice monogenic extensions of univalent functions on the unit disc D � C. The
theory of slice regular functions of one quaternionic variable was initiated recently
by Gentili and Struppa [2006; 2007], and was also extended by the same authors to
octonions [2010] for octonionic slice regular functions. The related theory of slice
monogenic functions on domains in the paravector space RnC1 with values in the
Clifford algebra Rn was introduced in [Colombo et al. 2009; 2010]. For a more
complete insight and further references, we refer the reader to the monographs
[Gentili et al. 2013; Colombo et al. 2011a]. These function theories were also
unified and generalized in [Ghiloni and Perotti 2011a] using the concept of slice
functions on the so-called quadratic cone of a real alternative *-algebra, based on a
slight modification of a well-known construction due to Fueter. The theory of slice
regular functions on real alternative *-algebras is now well-developed through a
series of papers mainly due to Ghiloni and Perotti after their seminal work [Ghiloni
and Perotti 2011a]. It is also well worth mentioning that this recently introduced
theory of slice regular (slice monogenic) functions is significantly different from the
more classical theory of regular (monogenic) functions in the sense of Fueter (cf.
[Brackx et al. 1982; Colombo et al. 2004; Gürlebeck et al. 2008]), and has elegant
applications to the functional calculus for noncommutative operators [Colombo
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et al. 2011a], to Schur analysis [Alpay et al. 2016], and to the construction and
classification of orthogonal complex structures on dense open subsets of R4 'H

[Gentili et al. 2014].
We are now in a position to state one of our main results in the case of the

Clifford algebra Rn for slice monogenic extensions to the open unit ball

B WD fx 2 RnC1
W jxj< 1g

of univalent functions on the unit disc D� C.

Theorem 1.2. Let F W D ! C be a univalent function such that F.0/ D 0 and
F 0.0/ D 1, and let f W B! Rn be the slice monogenic extension of F. Then for
each x 2 B, the following inequalities hold:

jxj

.1Cjxj/2
� jf .x/j �

jxj

.1� jxj/2
I(1-4)

1� jxj

.1Cjxj/3
� jf 0.x/j �

1Cjxj

.1� jxj/3
I(1-5)

1� jxj

1Cjxj
�
ˇ̌
xf 0.x/�f ��.x/

ˇ̌
�

1Cjxj

1� jxj
:(1-6)

Moreover, equality holds for one of these six inequalities at some point x0 2 Bn f0g

if and only if
f .x/D x.1�xei� /��2; 8x 2 B;

for some � 2 R.

Although Theorem 1.2 coincides in form with Theorem 1.1, the classical approach
to Theorem 1.1 cannot be directly applied in this new case of the Clifford algebra Rn,
since there lacks a fruitful theory of compositions for slice monogenic functions.
We shall reduce Theorem 1.2 to Theorem 1.1 via a new convex combination
identity; see (3-11). We remark that in contrast to the setting of several complex
variables in which the growth and distortion theorems fail to hold in general [Cartan
1933] and can only be restricted to the starlike or convex subclasses, our result for
slice monogenic extensions of univalent functions holds without extra geometric
assumptions. This new phenomenon is in a certain sense related to the rigidity
of the functions under consideration. There is a significant difference between
slice monogenic functions and holomorphic functions of several complex variables,
although they are both the generalizations in higher dimensions of holomorphic
functions of one complex variable. The former are closer to holomorphic functions
of one complex variable, and each of them can be completely determined by its
values on a set that lies in a complex slice and has an accumulation point in its
domain of definition. However, this is not the case for the latter, each of which is not
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always determined by its values on a complex submanifold of positive codimensions
in its domain of definition. From this perspective, we realize that holomorphic
functions of several complex variables are less rigid than slice monogenic functions
so that certain extra geometric assumptions such as starlikeness and convexity are
naturally present in the geometric function theory in several complex variables.

A result analogous to Theorem 1.2 also holds in the setting of quaternions (see
Theorem 4.7). As an application, we can prove a covering theorem, i.e., the so-called
Koebe type one-quarter theorem (see Theorem 4.10, a generalization of [Gal et al.
2015, Theorem 3.11 (1)]), with the help of the open mapping theorem, which is now
known to hold only for slice regular functions defined on symmetric slice domains
in H with values in H rather than slice monogenic functions defined on symmetric
slice domains in paravector space RnC1 with values in the Clifford algebra Rn.

We now describe in more detail the structure of the paper. In Section 2, we set
up basic notation and give some preliminary results. In Section 3, we first prove in
Proposition 3.1 a general formula to express the squared norm of a slice monogenic
function defined on a symmetric slice domain in the paravector space RnC1, in
terms of the values of the function at two conjugate points on some fixed slice of
the domain. For slice monogenic functions that preserve one slice, we provide
in Lemma 3.2 the aforementioned convex combination identity, which is the key
ingredient in proving Theorem 1.2. Section 4 is devoted to the detailed proofs of the
analogous results and the Koebe type one-quarter theorem (Theorem 4.10) for slice
regular functions in the quaternionic setting. Thanks to the specialty of quaternions,
we can also provide in Corollary 4.4 a sufficient and necessary condition under
which the aforementioned convex combination identity holds identically. Finally,
Section 5 provides a concluding remark and an open question.

2. Preliminaries

We recall in this section some necessary definitions and preliminary results on real
Clifford algebras and slice monogenic functions. For a more complete insight, we
refer the reader to the monograph [Colombo et al. 2011a].

The real Clifford algebra Rn D Cl0;n is an associative algebra over R generated
by n basis elements e1; e2; : : : ; en, subject to the relation

eiej C ej ei D�2ıij ; i; j D 1; 2; : : : ; n:

As a real vector space, Rn has dimension 2n. Each element b in Rn can be repre-
sented uniquely as

b D
X
A

bAeA;

where bA 2 R, e0 D 1, eA WD eh1
eh2
� � � ehr

, and A D h1 � � � hr is a multi-index
such that 1 � h1 < � � � < hr � n. The real number b0 is called the scalar part of
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b and is denoted by Sc.b/ as usual. The Clifford conjugate of each generator ei ,
i D 1; 2; : : : ; n, is defined to be Nei D�ei , and thus extends to each eA by setting

NeA WD Nehr
Nehr �1

� � � Neh1
D .�1/r ehr

ehr �1
� � � eh1

D .�1/r.rC1/=2eA;

and further extends by linearity to each element b D
P

A bAeA 2 Rn so that

b D
X
A

bA NeA:

Therefore, the Clifford conjugate is an antiautomorphism of Rn, i.e., ab D b Na for
any a; b 2 Rn. Moreover, the Euclidean inner product on Rn ' R2n

is given by

(2-1) ha; bi WD Sc.ab/D
X
A

aAbA

for any aD
P

A aAeA, b D
P

A bAeA 2 Rn, so it follows from the simple identity

ha; bi D 1
2

�
jaC bj2� jaj2� jbj2

�
that

(2-2) ha; bi D hb; ai D hNa; bi D hb; Nai:

It is worth remarking here that for Rn.n � 3/ the multiplicative property of the
Euclidean norm fails in general, and holds only for some special cases; see [Colombo
et al. 2011a, Proposition 2.1.17] or [Gürlebeck et al. 2008, Theorem 3.14 (ii)]. In
particular, it holds that

(2-3) jabj D jbaj D jajjbj

whenever one of a and b is a paravector (see below for this definition). This simple
fact will be useful for our argument in Section 3.

For convenience, some specific elements in Rn can be identified with vectors
in the Euclidean space RnC1: an element .x1;x2; : : : ;xn/ 2 Rn will be identified
with a so-called 1-vector in the Clifford algebra Rn through the map

.x1;x2; : : : ;xn/ 7! x D x1e1C e2x2C � � �CxnenI

and an element .x0;x1; : : : ;xn/ 2 RnC1 will be identified with

x D x0Cx D x0Cx1e1C � � �Cxnen;

which is called a paravector. Now for any two 1-vectors x;y 2 Rn, the Euclidean
inner product becomes

hx;yi D Sc.xy/D�1
2
.xyCyx/;

and consequently,
xy D�hx;yiCx ^y;
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where
x ^y WD 1

2
.xy �yx/

is called the outer product (see [Brackx et al. 1982, p.4; Gürlebeck et al. 2008, p.58])
or wedge product (see [Colombo et al. 2004, p.218, Definition 4.1.9; Colombo et al.
2011a, p.21]) of x and y. It is noteworthy here that in general the operator ^ is
a mapping from Rn �Rn to Rn, not to Rn. Furthermore, under the identifications
above, a vector x in RnC1 can be taken as a Clifford number

x D x0C

nX
iD1

xiei

so that it has inverse
x�1
D
Nx

jxj2
;

where Nx is the conjugate of x given by Nx D x0 �
Pn

iD1 xiei , and the norm of x

is induced by the inner product given above, that is, jxj D hx;xi
1
2 . Every x D

x0Cx1e1C� � �Cxnen 2RnC1 is composed by the scalar part Sc.x/D x0 2R and
the vector part x D x1e1C � � �Cxnen 2 Rn, and it can be expressed alternatively
as x D uC Iv, where u; v 2 R and

I D
x

jxj

if x ¤ 0, otherwise we take I arbitrarily in Rn such that I2 D �1. Then I is an
element of the unit .n� 1/-sphere of 1-vectors in Rn,

SD
˚
x D x1e1C � � �Cxnen 2 Rn

W x2
1 C � � �Cx2

n D 1
	
:

For every I 2 S we will denote by CI the plane R˚ IR, isomorphic to C, and, if
U � RnC1, by UI the intersection U \CI . Also, for R > 0, we will denote the
open ball of RnC1 centered at the origin with radius R by

B.0;R/D fx 2 RnC1
W jxj<Rg:

We can now recall the definition of slice monogenicity.

Definition 2.1. Let U be a domain in RnC1. A function f W U ! Rn is called
slice monogenic if, for all I 2 S, its restriction fI to UI is holomorphic, i.e., it has
continuous partial derivatives and satisfies

N@If .uC vI/ WD 1
2

�
@

@u
C I

@

@v

�
fI .uC vI/D 0;

for all uC vI 2 UI .

For slice monogenic functions, the natural domains of definition are symmetric
slice domains.
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Definition 2.2. Let U be a domain in RnC1.

(i) U is called a slice domain if it intersects the real axis and if for each I 2 S,
UI is a domain in CI .

(ii) U is called an axially symmetric domain if for every point uC vI 2 U, with
u; v 2 R and I 2 S, the entire sphere uC vS is contained in U.

A domain in RnC1 is called a symmetric slice domain if it is not only a slice
domain, but also an axially symmetric domain. By the very definition, an open ball
B.0;R/ is a typical symmetric slice domain. From now on, we will focus mainly
on slice monogenic functions on B.0;R/. In most cases, the following results hold,
with appropriate changes, for symmetric slice domains more general than open
balls of the type B.0;R/. For slice monogenic functions a natural definition of
derivative is given by the following.

Definition 2.3. Let f W B.0;R/! Rn be a slice monogenic function. The slice
derivative of f is defined to be

@If .uC vI/ WD 1
2

�
@

@u
� I

@

@v

�
fI .uC vI/:

Notice that the operators @I and N@I commute, and

@If .uC vI/D
@

@u
f .uC vI/

holds for slice monogenic functions. Therefore, the slice derivative of a slice
monogenic function is still slice monogenic so we can iterate the differentiation to
obtain the k-th slice derivative,

@k
I f .uC vI/D

�
@

@u

�k
f .uC vI/; 8k 2 N:

In what follows, for the sake of simplicity, we will directly denote the k-th slice
derivative @k

I
f by f .k/ for every k 2 N.

As shown in [Colombo et al. 2009], a paravector power series
P1

kD0 xkak with
fakgk2N � Rn defines a slice monogenic function in its domain of convergence,
which proves to be an open ball B.0;R/ with R equal to the radius of convergence
of the power series. The converse result is also true.

Theorem 2.4. A function f is slice monogenic on B D B.0;R/ if and only if f
has a power series expansion

f .x/D

1X
kD0

xkak with ak D
f .k/.0/

k!
:

A fundamental result in the theory of slice monogenic functions is described by
the splitting lemma, which relates the notion of slice monogenicity to the classical
notion of holomorphicity; see [Colombo et al. 2009].
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Lemma 2.5. Let f be a slice monogenic function on B D B.0;R/. For each
I1 D I 2 S, let I2; : : : ; In be a completion to a basis of Rn satisfying the defin-
ing relations IiIj C Ij Ii D �2ıij . Then there exist 2n�1 holomorphic functions
FA W BI ! CI such that for every z D uC vI 2 BI ,

fI .z/D

n�1X
jAjD0

FA.z/IA;

where I0 D 1 when r D 0, or IA D Ii1
Ii2
� � � Iir

, with AD i1i2 � � � ir a multi-index
such that 2� i1 < � � �< ir � n when r > 0.

The following version of the identity principle is one of the direct consequences
of the preceding lemma; see [Colombo et al. 2009].

Theorem 2.6. Let f be a slice monogenic function on B D B.0;R/. Denote by
Zf the zero set of f ,

Zf D fx 2 B W f .x/D 0g:

If there exists an I 2 S such that BI \Zf has an accumulation point in BI , then f
vanishes identically on B.

Another useful result is Theorem 2.7; see [Colombo and Sabadini 2009].

Theorem 2.7. Let f be a slice monogenic function on a symmetric slice domain
U � RnC1 and let I 2 S. Then for all uC vJ 2 U with J 2 S,

f .uC vJ /D 1
2

�
f .uC vI/Cf .u� vI/

�
C

1
2
JI
�
f .u� vI/�f .uC vI/

�
:

In particular, for each sphere of the form uCvS contained in U, there exist b; c 2Rn

such that f .uC vI/D bC Ic for all I 2 S.

Thanks to this result, it is possible to recover the values of a slice monogenic
function on symmetric slice domains, which are more general than open balls
centered at the origin, from its values on a single slice. This yields an extension
theorem that, in the special case of functions that are slice monogenic on B.0;R/,
can be obtained by means of their power series expansions.

Remark 2.8. Fix an element I 2S and denote by BI the intersection B.0;R/\CI

of the open ball B.0;R/ with the complex plane CI . Given a holomorphic function
fI W BI ! CI with the power series expansion taking the form

fI .z/D

1X
kD0

zkak ;

where fakgk2N �CI , the unique slice monogenic extension of fI to the whole ball
B.0;R/ is the function given by
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f .x/ WD ext.fI /.x/D

1X
kD0

xkak ;

which takes values in Rn. The uniqueness is guaranteed by the identity principle;
that is, Theorem 2.6. In Section 3, we will establish the growth and distortion
theorems for such a class of slice monogenic functions that are injective on BI .

Since slice monogenicity is not preserved under the usual pointwise product
of two slice monogenic functions, a new multiplication operation, called the slice
monogenic product (or �-product), appears via a suitable modification of the usual
operation, subject to the noncommutative setting, and plays a key role in the theory
of slice monogenic functions. On open balls centered at the origin, the slice
monogenic product of two slice monogenic functions is defined by means of their
power series expansions; see [Colombo et al. 2010; 2011a].

Definition 2.9. Let f;g W B D B.0;R/! Rn be two slice monogenic functions
and let

f .x/D

1X
kD0

xkak ; g.x/D

1X
kD0

xkbk

be their power series expansions. The slice monogenic product (�-product) of f
and g is the function defined by

f �g.x/D

1X
kD0

xk

� kX
jD0

aj bk�j

�
;

which is slice monogenic on B.

We now recall more definitions (see, e.g., [Colombo et al. 2010; 2011a; Ghiloni
and Perotti 2011a; 2011b]).

Definition 2.10. Letting f .x/ D
P1

kD0 xkak be a slice monogenic function on
B D B.0;R/, we define the slice monogenic conjugate of f as

f c.x/D

1X
kD0

xk
Nak ;

and the symmetrization of f as

(2-4) f s.x/ WD

1X
kD0

xkSc
� kX

jD0

aj Nak�j

�
:

Moreover, we define the normal function of f as

(2-5) N.f /.x/ WD f �f c.x/D

1X
kD0

xk

� kX
jD0

aj Nak�j

�
:



178 GUANGBIN REN AND XIEPING WANG

These three functions are slice monogenic on B.

Remark 2.11. Here are several useful remarks concerning Definitions 2.9 and 2.10:

(i) The slice monogenic product (�-product), the slice monogenic conjugate,
and symmetrization can also be defined for slice monogenic functions f
on symmetric slice domains U in RnC1 (we refer the interested reader to
[Colombo et al. 2010] or [Colombo et al. 2011a, Section 2.6] for details).
Moreover, for any two slice monogenic functions f;g W U ! Rn and each
point x0 2 R, we can define two slice monogenic functions fx0

and gx0
on

the symmetric slice domain Ux0
WD U �x0 by setting

fx0
.x/D f .xCx0/; gx0

.x/D g.xCx0/

for each x 2 Ux0
. Then we have the following identity

.f �g/x0
D fx0

�gx0
:

This follows from the identity principle together with the fact that when
restricted to the real axis, the slice monogenic product is just the usual point-
wise one.

(ii) For slice monogenic functions on open balls of type B WDB.0;R/, the notion
of slice monogenic conjugate coincides with the one introduced in Definition
5.4 of [Colombo et al. 2010] (see also Proposition 5.5 therein). Further, the
notion of symmetrization given here is equivalent to the one introduced in
Definition 5.6. of that paper. To see this, we proceed as follows: For a slice
monogenic function f W B! Rn, we denote by f s the symmetrization of f
according to [Colombo et al. 2010, Definition 5.6]. By considering the power
series expansion of f s, we may assume that

(2-6) f s.x/D

1X
kD0

xk˛k :

We also fix an element I 2 S. Then according to [Colombo et al. 2010, p.386]
or [Colombo et al. 2011a, p.50], for each x 2 BI , we have

f s.x/D Sc
�
f �f c.x/

�
C
˝
f �f c.x/; I

˛
I:

Now substituting (2-5) and (2-6) into the preceding equality, we see that for
each x 2 B \R,

1X
kD0

xk˛k D

1X
kD0

xkSc
� kX

jD0

aj Nak�j

�
C

1X
kD0

xk

� kX
jD0

aj Nak�j ; I

�
I:
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For each k 2 N, since
Pk

jD0 aj Nak�j is invariant under the Clifford conjugate
(see (2-9) below), the second summation on the right-hand side of the preceding
equality must vanish identically. Indeed, in view of (2-2),� kX

jD0

aj Nak�j ; I

�
D

� kX
jD0

aj Nak�j ; I

�
D�

� kX
jD0

aj Nak�j ; I

�
;

which must be zero. Consequently, we deduce that the equality

1X
kD0

xk˛k D

1X
kD0

xkSc
� kX

jD0

aj Nak�j

�
holds for all x 2 B \R. By uniqueness,

˛k D Sc
� kX

jD0

aj Nak�j

�
; 8k 2 N:

This shows that f s is the same as f s defined in (2-4).

(iii) In view of (i), the definition N.f / WD f �f c is also valid for slice monogenic
functions f on symmetric slice domains in RnC1.

(iv) The notation N.f / in the definition of normal functions is chosen in accordance
with [Ghiloni and Perotti 2011a, Definition 11], which treated the case of slice
functions on symmetric open subsets of the so-called quadratic cone of a
finite-dimensional real alternative �-algebra.

(v) For each slice monogenic function f on a symmetric slice domain U � RnC1

and each element I 2 S, the restriction N.f /I of N.f / to UI WD U \ CI

coincides with the function fI �f
c

I
W UI ! Rn considered in [Colombo et al.

2010] or [Colombo et al. 2011a, Section 2.6].

With parts (i) and (iii) of Remark 2.11 in mind, the inverse element of a non-
identically vanishing slice monogenic functions with respect to the �-product can
be defined under a suitable condition.

Definition 2.12. Let f be a slice monogenic function on a symmetric slice domain
U � RnC1 such that

N.f /.UI /� CI

for some I 2 S. If f does not vanish identically, its slice monogenic inverse is the
function defined by

f ��.x/ WD f s.x/�1f c.x/;

which is slice monogenic on U n Zf s . Here Zf s denotes the zero set of the
symmetrization f s of f .
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Remark 2.13. Two useful remarks concerning Definition 2.12 are in order:

(i) For each function f as described in Definition 2.12, the requirement that

N.f /.UI /� CI

for some I 2 S guarantees that f s
I

coincides with N.f /I D fI �f
c

I
, see

[Colombo et al. 2011a, Definition 2.6.10], although this fact is not explicitly
proven in that paper.

(ii) Also we will see, in the proof of Proposition 2.14, that for each function f as
described in Definition 2.12, the coefficients which appeared in (2-5) are real
numbers. This implies that for each such function f , its normal function N.f /

is the same as its symmetrization f s, which is a slice preserving function so
that its slice monogenic inverse

f ��.x/D f s.x/�1f c.x/D
�
N.f /.x/

��1
f c.x/

is indeed slice monogenic on U nZf s. Furthermore, it is well worth noting that
in view of [Colombo et al. 2011a, Remark 2.6.8 and Lemma 2.5.12], the zero
set Zf s of f s is precisely the union of isolated spheres of the form uC vS

with u; v 2 R. This implies that U nZf s is a symmetric slice domain in RnC1.

The function f �� defined in Definition 2.12 deserves the name of slice mono-
genic inverse of f due to the following:

Proposition 2.14. Let f be as described in Definition 2.12. Then we have

(2-7) f jUnZf s �f
��
D f �� �f jUnZf s D 1;

and

(2-8) .f ��/�� D f jUnZf s :

This proposition is quite important in the theory of slice monogenic functions.
The equalities in (2-7) first appeared in [Colombo et al. 2010, Proposition 5.9],
but the proofs given there and in [Colombo et al. 2011a, Proposition 2.6.11] seem
incomplete — the equality fI �f

c
I
Df c

I
�fI (which is equivalent to N.f /DN.f c/,

in view of Remark 2.11 (v) and the identity principle) is used without being proven.
A different approach has been used in [Colombo et al. 2011b, Proposition 3.2]. A
complete treatment has been given in [Ghiloni et al. 2016, Section 2] in the case of
slice functions, which subsumes the case of slice monogenic functions. To keep our
presentation self-contained, we provide here a detailed proof of Proposition 2.14.

Proof. We first prove (2-7). To this end, we need the following well known facts:

Fact 1: For any a; b 2 Rn, ab D 1 if and only if baD 1.

Fact 2: For each a 2 Rn, a NaD 0 if and only if aD 0.
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Indeed, Fact 1 holds for all finite-dimensional associative algebras (see, e.g.,
[Drozd and Kirichenko 1994, Theorem 1.2.1]), and Fact 2, which immediately
follows from (2-1), is called nonsingularity of Rn.

Note that f does not vanish identically on U, and neither does the restriction
f jU\R of f to U \ R, in view of the identity principle. Thus we can find one
point x0 2 U \R and a positive number R> 0 such that the open ball B.x0;R/ is
contained in U and f is nowhere vanishing on B.x0;R/. Thanks to Remark 2.11(i),
we may further assume that x0 D 0 without loss of generality. Now we expand f
on B WD B.0;R/ as

f .x/D

1X
kD0

xkak :

Since there exists an element I 2 S such that N.f /D f � f c maps UI into CI

(and also maps BI into CI ), and

(2-9)
kX

jD0

aj Nak�j D

kX
jD0

ak�j Naj
j!k�j
D

kX
jD0

aj Nak�j ;

we see that
Pk

jD0 aj Nak�j must be a real number for each k 2N. Therefore, f �f c

is slice preserving and maps B \R into R. We next show that

(2-10) f c
�f D f �f c :

We proceed as follows. In view of Definition 2.10,

f �f c
jB\R D .f Nf /jB\R:

Since f �f c.B \R/� R, we deduce that the restriction .f Nf /jB\R takes values
in R as well. This together with Facts 1 and 2 implies that

.f Nf /jB\R D . Nf f /jB\R:

The right-hand side is no other than the restriction f c � f jB\R, according to
Definitions 2.9 and 2.10. Now we obtain that f �f c coincides with f c �f on
B\R�U, and hence on U by the identity principle. Now by using [Colombo et al.
2011a, Proposition 2.6.9], Remark 2.13 (ii) and equality (2-10), we can conclude
the proof of equality (2-7) as follows:

f �� �f D
1

f s
.f c
�f /D

1

f s
.f �f c/D

1

f s
N.f /D 1;

and
f �f �� D f � .

1

f s
f c/D

1

f s
.f �f c/D 1:

Now it remains to prove (2-8). In view of the very definition, we first need to
show that f �� satisfies the condition given in Definition 2.12. To see this, let I
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be an element of S such that f satisfies the assumption therein. From the above
argument, we know that f s DN.f / is slice preserving. This, together with (2-10)
and [Colombo et al. 2011a, Proposition 2.6.9], implies that

f �� � .f ��/c D
1

N.f /

so that f �� satisfies the assumption in Definition 2.12 and hence .f ��/�� is well
defined on U nZf s . Now (2-8) follows from (2-7) and uniqueness of .f ��/��. �

3. Growth and distortion theorems for slice monogenic functions

In this section, in the setting of the Clifford algebra Rn, we establish the growth
and distortion theorems for slice monogenic extensions to the open unit ball B WD

fx 2 RnC1 W jxj< 1g of univalent functions on the unit disc D� C. We begin with
a technical proposition. To present it more generally, we will digress for a moment
to slice monogenic functions on general symmetric slice domains.

Proposition 3.1. Let U � RnC1 be a symmetric slice domain and f W U ! Rn a
slice monogenic function. Then for every x D uC vJ 2 U and every I 2 S, there
holds the identity

(3-1) jf .x/j2 D 1ChI;J i

2
jf .y/j2C

1�hI;J i

2
jf .y/j2�

˝
f .y/f .y/; I ^J

˛
;

where y D uC vI and y D u� vI.

Proof. Fix an arbitrary point xDuCvJ 2U and an element I 2S. Set y WDuCvI

and y WD u� vI. It follows from Theorem 2.7 that

(3-2) f .x/D 1
2

�
f .y/Cf .y/

�
�

1
2
JI
�
f .y/�f .y/

�
:

Notice that, in vector notation,

(3-3) hI;J i D Sc.IJ /D�1
2
.IJ CJI/;

and

(3-4) I ^J D 1
2
.IJ �JI/:

We shall use the simple identity that

(3-5) jaC bj2 D jaj2Cjbj2C 2ha; bi

for any a; b 2 Rn ' R2n

.
Observe that I and J are 1-vectors and hence are paravectors. In view of (2-3),

it holds that
jJI.f .y/�f .y//j D jf .y/�f .y/j:
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Take the modulus on both sides of (3-2) and apply (3-5) to obtain

jf .x/j2 D 1
4

�
jf .y/Cf .y/j2Cjf .y/�f .y/j2

�
(3-6)

�
1
2

˝
f .y/Cf .y/;JI.f .y/�f .y//

˛
DWA� 1

2
B:

Again applying (3-5), it is evident that

(3-7) AD 1
2
.jf .y/j2Cjf .y/j2/:

To calculate the term B, it first follows from the very definition of inner product
(see (2-1)) that

(3-8) B D
˝�
f .y/Cf .y/

��
f .y/�f .y/

�
;JI

˛
DW B1CB2;

where B1D
˝
f .y/f .y/�f .y/f .y/;JI

˛
, and B2D

˝
f .y/f .y/�f .y/f .y/;JI

˛
.

We next claim that

(3-9) B1 D�hI;J i
�
jf .y/j2� jf .y/j2

�
;

and

(3-10) B2 D 2
˝
f .y/f .y/; I ^J

˛
:

Indeed, applying the fact that ha; bi D hNa; bi from (2-2) to B1 yields that

B1 D
˝
f .y/f .y/�f .y/f .y/; IJ

˛
:

Combining this, (3-3) and the initial notion of B1, we thus obtain

B1 D
1
2

˝
f .y/f .y/�f .y/f .y/; IJ CJI

˛
D�

˝
f .y/f .y/�f .y/f .y/; hI;J i

˛
D�hI;J i

˝
f .y/f .y/�f .y/f .y/; 1

˛
D�hI;J i

�
jf .y/j2� jf .y/j2

�
:

Similarly,

B2 D

D
f .y/f .y/;JI

E
�
˝
f .y/f .y/;JI

˛
D 2

˝
f .y/f .y/; I ^J

˛
as desired. In the second equality we have used (3-4). Now substituting (3-7)–(3-10)
into (3-6) yields that

jf .x/j2 D
1ChI;J i

2
jf .y/j2C

1�hI;J i

2
jf .y/j2�

˝
f .y/f .y/; I ^J

˛
;

which completes the proof. �
Proposition 3.1 shows that when f preserves at least one slice, the squared norm

of f can thus be expressed as a convex combination of those in the preserved slice.
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Lemma 3.2. Letting f be a slice monogenic function on a symmetric slice domain
U � RnC1 such that f .UI /� CI for some I 2 S, the convex combination identity

(3-11) jf .uC vJ /j2 D
1ChI;J i

2
jf .uC vI/j2C

1�hI;J i

2
jf .u� vI/j2

holds for every uC vJ 2 U.

Proof. As mentioned before, this lemma is a direct consequence of the preceding
proposition. But here, we would like to provide an alternative easier approach to it,
making no use of Proposition 3.1.

First, we have the following simple fact, which can be easily verified:

Fact: For any I;J 2 S, the set

f1; I; I ^J; I.I ^J /g

is an orthogonal set of Rn ' R2n

.

As in the preceding proposition, it follows from Theorem 2.7 that

(3-12) f .x/D 1
2

�
f .y/Cf .y/

�
�

1
2
JI
�
f .y/�f .y/

�
for every xD uCvJ 2U with y D uCvI and y D u�vI. We can rewrite (3-12),
in terms of the relation that

JI D�hI;J iCJ ^ I;

as

f .x/D 1
2

�
.1ChI;J i/f .y/C .1� hI;J i/f .y/

�
C

1
2
.J ^ I/.f .y/�f .y//

DW
1
2
AC 1

2
.J ^ I/B:

By assumption f .UI /� CI , we thus have

A 2 CI ; B 2 CI :

From the fact above and equality (2-3), taking the modulus on both sides yields

(3-13) jf .x/j2 D 1
4
jAj2C 1

4
jJ ^ I j2jBj2:

A simple calculation shows that

jAj2 D.1ChI;J i/2jf .y/j2C .1� hI;J i/2jf .y/j2(3-14)

C 2
�
1� hI;J i2

�
hf .y/; f .y/i

and

(3-15) jBj2 D jf .y/j2Cjf .y/j2� 2hf .y/; f .y/i:

Notice that

(3-16) jJ ^ I j2 D 1� hI;J i2:
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Now inserting (3-14), (3-15) and (3-16) into (3-13) yields

jf .x/j2 D
1ChI;J i

2
jf .y/j2C

1�hI;J i

2
jf .y/j2;

which completes the proof. �

Remark 3.3. The counterpart of the convex combination identity (3-11) from
Lemma 3.2 also holds for slice regular functions defined on octonions or more
general real alternative algebras under the extra assumption that f preserves at least
one slice. This can be verified much as in the proof of Proposition 3.1; see [Wang
2015; Ren et al. 2016] for details.

As a direct consequence of Lemma 3.2, we conclude that the maximum and
minimum moduli of f are actually attained on the preserved slice.

Corollary 3.4. Let f be a slice monogenic function on a symmetric slice domain
U �RnC1 such that f .UI /�CI for some I 2S. Then for each sphere uCvS�U,
we have the equalities:

max
J2S
jf .uC vJ /j Dmax

�
jf .uC vI/j; jf .u� vI/j

�
;

min
J2S
jf .uC vJ /j Dmin

�
jf .uC vI/j; jf .u� vI/j

�
:

We can now state the growth and distortion theorems for slice monogenic functions.

Theorem 3.5 (growth and distortion theorems for paravectors). Let f be a slice
monogenic function on B such that its restriction fI to BI is injective and such that
f .BI / � CI for some I 2 S. If f .0/ D 0 and f 0.0/ D 1, then for all x 2 B, the
following inequalities hold:

jxj

.1Cjxj/2
� jf .x/j �

jxj

.1� jxj/2
I(3-17)

1� jxj

.1Cjxj/3
� jf 0.x/j �

1Cjxj

.1� jxj/3
I(3-18)

1� jxj

1Cjxj
�
ˇ̌
xf 0.x/�f ��.x/

ˇ̌
�

1Cjxj

1� jxj
:(3-19)

Moreover, equality holds for one of these six inequalities at some point x0 2 Bn f0g

if and only if f is of the form

f .x/D x
�
1�xeI�

���2
; 8x 2 B;

for some � 2 R.

Proof. Notice that fI W BI ! CI is a univalent function by our assumption.
Theorem 1.1 with F replaced by fI implies that the inequalities
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jzj

.1Cjzj/2
� jf .z/j �

jzj

.1� jzj/2
;(3-20)

1� jzj

.1Cjzj/3
� jf 0.z/j �

1Cjzj

.1� jzj/3
;(3-21)

1� jzj

1Cjzj
�

ˇ̌̌̌
zf 0.z/

f .z/

ˇ̌̌̌
�

1Cjzj

1� jzj
(3-22)

hold for every zD uCvI 2BI . On the other hand, it follows from Lemma 3.2 that

jf .x/j2 D
1ChI;J i

2
jf .z/j2C

1�hI;J i

2
jf .z/j2

holds for every xDuCvJ 2B. Since (3-20) holds for all zDuCvI, zDu�vI 2BI ,
it immediately follows that the inequalities in (3-17) hold for all xD uCvJ 2B, by
virtue of the convex combination identity above. Since the condition f 0.BI /� CI

holds trivially, Lemma 3.2 can also be used so that the inequalities in (3-18) can be
proved in the same manner.

Now it remains to prove the inequalities in (3-19). To this end, we first need
to show that the slice monogenic function xf 0.x/�f ��.x/ is well-defined on the
whole ball B. We proceed as follows. First of all, since f .0/D 0, by considering
the Taylor expansion of f at the origin 0 (see Theorem 2.4) and using the Cauchy–
Hadamard formula for the radius of convergence of power series (which is valid in
the situation here by following the classical proof and making use of (2-3)), or by
Remark 2.8, we can write

(3-23) f .x/D xg.x/;

where g is a slice monogenic function on B. This together with the injectivity
of fI and f 0.0/ D 1 implies that g has no zeros on BI . Moreover, g maps BI

into CI , since f does by our assumption. Secondly, again from the assumption
that f .BI /� CI , i.e., all the coefficients of the Taylor expansion of f at the origin
belong to the complex plane CI , it follows that

f c
I .z/D fI .z/;

and hence

(3-24) N.f /I .z/D fI .z/fI .z/D z2gI .z/gI .z/D z2N.g/I .z/:

This implies that
N.f /.BI /� CI :

Furthermore, since g maps BI into CI and has no zeros on BI , we obtain that gs
I

is exactly gI gI . N� / and is zero free on BI . Thus it follows from Remark 2.13 (ii)
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and [Colombo et al. 2011a, Remark 2.6.8 and Lemma 2.5.12] that gs is zero free
on B as well. This, together with the fact that

(3-25) f s.x/D x2gs.x/; 8x 2 B;

(as obtained easily from (3-23)), implies that 0 is the only zero of f s. Therefore,
according to Definition 2.12, f �� and g�� can be defined on B n f0g and B,
respectively. Finally, in view of (3-23),

(3-26) f c.x/D xgc.x/; 8x 2 B;

from which and (3-25) it follows that the relation

xf 0.x/�f ��.x/D .f 0 �g��/.x/

holds for all x 2 B n f0g. Since the right-hand side is well-defined on the whole
ball B, the left-hand side can extend regularly to the whole ball B, as desired.

Notice also that xf 0.x/�f ��.x/ is just the slice monogenic extension to B of
the holomorphic function zf 0

I
.z/=fI .z/, which also maps the unit disc BI into CI .

Now inequalities in (3-19) immediately follow from (3-22) andˇ̌
xf 0 �f ��.x/

ˇ̌2
D

1ChI;J i

2

ˇ̌̌
zf 0.z/

f .z/

ˇ̌̌2
C

1�hI;J i

2

ˇ̌̌
zf 0.z/

f .z/

ˇ̌̌2
;

in view of Lemma 3.2.
Furthermore, if equality holds for one of six inequalities in (3-17), (3-18) and

(3-19) at some point x0Du0Cv0J ¤ 0 with J 2S, then the corresponding equality
also holds at z0 D u0C v0I or z0 D u0� v0I. Then from Theorem 1.1, we obtain

fI .z/D
z�

1� eI�z
�2 ; 8z 2 BI ;

for some � 2 R, which implies

f .x/D x
�
1�xeI�

���2
; 8x 2 B:

The converse part is obvious. Now the proof is complete. �

Remark 3.6. The right-hand inequalities in (3-17) and (3-18) can follow alterna-
tively from the well-known but highly nontrivial Bieberbach–de Branges theorem
for univalent functions on the open unit disc D� C.

Let F W D! C be a univalent function on the unit disc D of the complex plane
with Taylor expansion

F.z/D zC

1X
mD2

zmam; am 2 C:
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We consider the canonical imbedding C� RnC1 by expanding the basis f1; ig of
C to the basis f1; e1; : : : ; eng of RnC1 with e1 D i . Therefore we can construct a
natural extension of F to B by setting

f .x/D xC

1X
mD2

xmam; x 2 B:

It is evident that f is a slice monogenic function on the open unit ball BDB.0; 1/

such that its restriction f jD D F is injective and satisfies that F.D/� C. Clearly,
f .0/D 0 and f 0.0/D 1. Thus f satisfies all the assumptions of Theorem 3.5 and
thus Theorem 1.2 immediately follows.

Remark 3.7. The slice monogenic extension of holomorphic functions on the unit
disc D of the complex plane can result in the theory of slice monogenic elementary
functions. We refer to [Colombo et al. 2011a] for the corresponding functional
calculus and applications.

The following proposition is of independent interest.

Proposition 3.8. Let f be a slice monogenic function on a symmetric slice domain
U � RnC1 such that its restriction fI to UI is injective and f .UI /� CI for some
I 2 S. Then the restriction fJ W UJ ! Rn is also injective for every J 2 S.

Proof. Suppose that there are two points x D ˛CˇJ and y D  C ıJ such that
f .x/D f .y/, then it suffices to prove that x D y. If J D˙I, the result follows
from the assumption. Otherwise, from Theorem 2.7 one can deduce that

f .x/D 1
2
.f .z/Cf .z//� 1

2
JI.f .z/�f .z//

and
f .y/D 1

2
.f .w/Cf . Nw//� 1

2
JI.f .w/�f . Nw//:

Here z D ˛CˇI and w D  C ıI for the given I 2 S. Therefore,�
.f .z/Cf .z//� .f .w/Cf . Nw//

�
�JI

�
.f .z/�f .z//� .f .w/�f . Nw//

�
D 0:

Since f .UI /� CI , 1 and J are linearly independent on CI we obtain that

f .z/Cf .z/D f .w/Cf . Nw/

and
f .z/�f .z/D f .w/�f . Nw/;

which imply that f .z/ D f .w/. Thus it follows from the injectivity of fI that
z D w and consequently, x D y. �
Remark 3.9. Let f be as described in Theorem 3.5. Then fJ W BJ ! Rn is
injective for any J 2 S by the preceding proposition. Unfortunately, the authors do
not know whether f W U ! Rn is injective.
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4. Growth, distortion and covering theorems for slice regular functions

Let H denote the noncommutative, associative, real algebra of quaternions with
standard basis f1; i; j ; kg, subject to the multiplication rules

i2
D j 2

D k2
D ij k D�1:

Let h ; i denote the standard inner product on HŠ R4, i.e.,

hp; qi D Re.pq/D

3X
nD0

xnyn

for any

p D x0Cx1i Cx2j Cx3k; q D y0Cy1i Cy2j Cy3k 2 H:

In this section, we shall consider slice regular functions defined on domains
in quaternions H with values also in H. These functions are not slice monogenic
functions obtained by setting n D 2 in the Clifford algebra Rn. Such a class of
functions enjoys many nice properties similar to those of classical holomorphic
functions of one complex variable. For example, the open mapping theorem holds
for slice regular functions on symmetric slice domains in H, but fails for slice
monogenic functions even in the quaternionic setting. A simple counterexample
is the imbedding map { W R3 ,! R2 'H. The open mapping theorem allows us to
prove a Koebe type one-quarter theorem (see Theorem 4.10 below). Furthermore,
in the quaternionic setting only, we have an explicit formula to express the regular
product and regular quotient in terms of the usual pointwise product and quotient.
It is exactly this explicit formula which plays a crucial role in many arguments; see
the monograph [Gentili et al. 2013] and the recent papers [Ren and Wang 2017;
Wang 2015] for more details. In higher dimensions, the formulas to express slice
products and slice quotients in terms of the usual pointwise products hold true only
under some special cases; see [Ghiloni et al. 2016, Corollary 3.5 and Theorem 3.7]
for details. In a certain sense, this phenomenon distinguishes quaternions from
other real alternative algebras.

To introduce the theory of slice regular functions, we will denote by S the unit
2-sphere of purely imaginary quaternions, i.e.,

SD
˚
q 2 H W q2

D�1
	
:

For every I 2 S we will denote by CI the plane R˚ IR, isomorphic to C, and, if
�� H, by �I the intersection �\CI . Also, we will denote by B the open unit
ball centered at the origin in H, i.e.,

BD
˚
q 2 H W jqj< 1

	
:

We can now recall the definition of slice regularity.
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Definition 4.1. Let � be a domain in H. A function f W �! H is called slice
regular if, for all I 2S, its restriction fI to�I is holomorphic, i.e., it has continuous
partial derivatives and satisfies

N@If .xCyI/ WD 1
2

�
@

@x
C I

@

@y

�
fI .xCyI/D 0;

for all xCyI 2�I .

The notions of slice domain, of symmetric slice domain and of slice derivative
are similar to those already given in Section 2. Moreover, the corresponding results
still hold for the slice regular functions in the setting of quaternions, such as the
splitting lemma, the representation formula, the power series expansion and so on.

Now we can establish the following result by some obvious modifications of the
proof of Proposition 3.1.

Proposition 4.2. Let f be a slice regular function on a symmetric slice domain
�� H. Then for every q D xCyJ 2� and every I 2 S, there holds the identity

(4-1) jf .q/j2D 1ChI;J i

2
jf .z/j2C

1�hI;J i

2
jf .z/j2�

˝
Im
�
f .z/f .z/

�
; I^J

˛
;

where z D xCyI and z D x�yI.

Before presenting the key ingredient in establishing the growth and distortion
theorems, we first make an equivalent characterization of the vanishing of the third
term on the right-hand side of (4-1), thanks to the specialty of quaternions.

Theorem 4.3. Let f be a slice regular function on a symmetric slice domain��H

and let I 2 S. Then, ˝
Im
�
f .z/f .z/

�
; I ^J

˛
D 0;

for all J 2 S and all z 2 �I if and only if there exist u 2 @B and a slice regular
function g on � that preserves the slice �I such that

f .q/D g.q/u

on �.

Proof. We only prove the necessity, since the sufficiency is obvious. Let

fI D F CGK

be the splitting of fI , where K 2 S is perpendicular to I , and F; G W �I ! CI

are holomorphic functions. Take L 2 S such that f1; I;K;Lg is an orthonormal
basis of quaternions H and let V denote the real vector space generated by the set
fI ^J W J 2 Sg. Then it is clear that

V DKR˚LR:(4-2)

Moreover, a simple calculation gives

f .z/f .z/D
�
F.z/F.z/CG.z/G.z/

�
C
�
F.z/G.z/�F.z/G.z/

�
K;
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and from this combined with (4-2) it follows that˝
Im
�
f .z/f .z/

�
; I ^J

˛
D 0; 8J 2 S;

if and only if

F.z/G.z/D F.z/G.z/; 8z 2�I :(4-3)

If G � 0 on �I , there is nothing to prove and the desired result follows. Otherwise,
G 6� 0. Then by the identity principle, its zero set ZG has no accumulation points
in �I , and neither does

ZG WD
˚
z 2�I W z 2 ZG

	
:

Thus, by (4-3),
F.z/

G.z/
D

F.z/

G.z/

is both holomorphic and antiholomorphic on �I n
�
ZG [ ZG

�
, which is still a

domain of CI , therefore there exists a constant � 2 CI such that

F.z/

G.z/
D

F.z/

G.z/
D �;

which implies that F D �G on �I n
�
ZG [ZG

�
and hence on �I by the identity

principle.
Now let

g WD
�
1Cj�j2

� 1
2 ext.G/;

and set
u WD

�
1Cj�j2

�� 1
2 .�CK/ 2 @B:

Then g is a slice regular function on � such that g.�I /� CI and f D gu, which
completes the proof. �

As a direct consequence, we obtain Corollary 4.4.

Corollary 4.4. Let I be an element of S and f a slice regular function on a
symmetric slice domain �� H. Then the convex combination identity

(4-4) jf .xCyJ /j2 D
1ChI;J i

2
jf .xCyI/j2C

1�hI;J i

2
jf .x�yI/j2

holds for every x C yJ 2 � if and only if there exists some u 2 @B such that
f .�I /� CI u.

In particular, each element f from the slice regular automorphism group of the
open unit ball B of H

Aut.B/D
˚
f .q/D .1� q Na/�� � .q� a/u W a 2 B;u 2 @B

	
satisfies the condition that there exists some u 2 @B such that f .�I /�CI u so that
equality (4-4) holds for such an f .



192 GUANGBIN REN AND XIEPING WANG

From Corollary 4.4, we also conclude that the maximum and minimum moduli
of every slice regular function on a symmetric slice domain in H that preserves one
slice are actually attained on its preserved slice.

Corollary 4.5. Let f be a slice regular function on a symmetric slice domain
�� H such that f .�I /� CI for some I 2 S. Then for each sphere xCyS��,
the following equalities hold:

max
J2S
jf .xCyJ /j Dmax

�
jf .xCyI/j; jf .x�yI/j

�
;(4-5)

min
J2S
jf .xCyJ /j Dmin

�
jf .xCyI/j; jf .x�yI/j

�
:(4-6)

Consequently,

(4-7) sup
q2�

jf .q/j D sup
z2�I

jf .z/j

and

(4-8) inf
q2�
jf .q/j D inf

z2�I

jf .z/j:

Remark 4.6. Equalities (4-5) and (4-6) were first proved in [Sarfatti 2013, Proposi-
tion 1.13] and [de Fabritiis et al. 2015, Proposition 2.6]. Together with the classical
growth and distortion theorems, Corollary 4.5 is sufficient to prove Theorem 4.7
even without Corollary 4.4. Despite this trivial fact, Corollary 4.4 is of independent
interest and has its own intrinsic value. It presents, additionally, a new convex
combination identity (4-4) and provides a sufficient and necessary condition under
which (4-4) holds identically. This convex combination identity is also quite useful
for other purposes. For instance, it provides an effective approach to a quaternionic
version of a well-known Forelli–Rudin estimate, which will play a fundamental
role in the theory of various spaces of slice regular functions [Ren and Xu 2016].

Now we state the growth and distortion theorems for slice regular functions.

Theorem 4.7 (growth and distortion theorems for quaternions). Let f be a slice
regular function on B such that its restriction fI to BI is injective and f .BI /� CI

for some I 2 S. If f .0/ D 0 and f 0.0/ D 1, then for all q 2 B, the following
inequalities hold:

jqj

.1Cjqj/2
� jf .q/j �

jqj

.1� jqj/2
I(4-9)

1� jqj

.1Cjqj/3
� jf 0.q/j �

1Cjqj

.1� jqj/3
I(4-10)

1� jqj

1Cjqj
�
ˇ̌
qf 0.q/�f ��.q/

ˇ̌
�

1Cjqj

1� jqj
:(4-11)
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Moreover, equality holds for one of these six inequalities at some point q0 2 Bn f0g

if and only if f is of the form

f .q/D q
�
1� qeI�

���2
; 8q 2 B;

for some � 2 R.

Let F W D! C be a univalent function on the unit disc D of the complex plane
with Taylor expansion

F.z/D zC

1X
nD2

znan; an 2 C:

As in Section 3, with a canonical imbedding C � H, we can construct a natural
slice regular extension of F to B via

f .q/D qC

1X
nD2

qnan; q 2 B:

It is evident that f is a slice regular function on the open unit ball BDB.0; 1/ such
that its restriction f jD D F is injective and satisfies F.D/� C. Clearly, f .0/D 0

and f 0.0/D 1. Thus f satisfies all the assumptions of Theorem 4.7 and this results
in Theorem 4.8.

Theorem 4.8. Let F WD! C be a univalent function on D such that F.0/D 0 and
F 0.0/D 1, and let f WB!H be the slice regular extension of F. Then for all q 2B,
the following inequalities hold:

jqj

.1Cjqj/2
� jf .q/j �

jqj

.1� jqj/2
I(4-12)

1� jqj

.1Cjqj/3
� jf 0.q/j �

1Cjqj

.1� jqj/3
I(4-13)

1� jqj

1Cjqj
�
ˇ̌
qf 0.q/�f ��.q/

ˇ̌
�

1Cjqj

1� jqj
:(4-14)

Moreover, equality holds for one of these six inequalities at some point q0 2 Bn f0g

if and only if
f .q/D q

�
1� qei�

���2
; 8q 2 B:

Next we digress to the Koebe one-quarter theorem for slice regular functions
on the open unit ball B�H. We recall the following definition (see [Gentili et al.
2013, Definition 7.5]):

Definition 4.9. Let f be a slice regular function on a symmetric slice domain
��H. The degenerate set of f is defined to be the union Df of the 2-dimensional
spheres S D xCyS (with y ¤ 0) such that f jS is constant.
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Now as a direct consequence of the open mapping theorem and the first inequality
in (4-9), we have the following result, which is a generalization of [Gal et al. 2015,
Theorem 3.11 (1)].

Theorem 4.10 (Koebe one-quarter theorem). Let f be a slice regular function on
B such that its restriction fI to BI is injective and f .BI /� CI for some I 2 S. If
f .0/D 0 and f 0.0/D 1, then B

�
0; 1

4

�
� f .B/:

Proof. By assumption, the degenerate set Df of f is empty. Then f is open by
the open mapping theorem (see [Gentili et al. 2013, Theorem 7.7]). This together
with the first inequality in (4-9) shows that the image set f .B/, containing the
origin 0, is an open subset of H, whose boundary @f .B/ lies outside of the ball
B.0; 1=4/. Indeed, for each point w 2 @f .B/, there exists a sequence fqng

1
nD1

in B

such that limn!1 f .qn/D w. By passing to a subsequence, we may assume that
the sequence fqng

1
nD1

itself converges to one point, say q1 2 B. By the openness
of f , q1 must lie on the boundary @B. Thus in view of the first inequality in (4-9),

jwj D lim
n!1
jf .qn/j � lim

n!1

jqnj

.1Cjqnj/2
D

1

4
:

Consequently, f .B/ must contain the ball B.0; 1=4/. This completes the proof. �
Let SR.B/ denote the set of slice regular functions on the open unit ball B� H.

We define

S WD
˚
f 2 SR.B/ W 9 I 2 S such that fI is injective and fI .BI /� CI

	
and

S0 WD
˚
f 2 S W f .0/D 0; f 0.0/D 1

	
:

For each f 2 S0, we use r0.f / to denote the radius of the smallest ball B.0; r/

contained in f .B/. Also for every � 2 R and every I 2 S, denote by kI;� the slice
regular function given by

(4-15) kI;� .q/D q
�
1� qeI�

���2
; 8q 2 B;

which obviously belongs to the class S0. The image set of the unit disc BI under
kI;� is exactly the complex plane except for a radial slit from1 to �eI�=4. This
fact together with Theorem 4.10 gives the following result:

Theorem 4.11. Let the notation be as above.

(i) For each f 2 S0,
r0.f /�

1
4
;

with equality if and only if f D kI;� for some I 2 S and some � 2 R.

(ii)
\
f 2S0

f .B/D B
�
0; 1

4

�
:
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Proof. We only prove (i). It suffices to consider the extremal case, since the remain-
der is clear. If r0.f /D 1=4, from the proof of Theorem 4.10 and inequality (4-8),
we conclude that there exists some I0 2 S such that 1=4 is exactly the radius of
the smallest disc BI0

.0; r/ contained in the image set fI0
.BI0

/ of the unit disc BI0

under the classical univalent function fI0
W BI0

! CI0
. This is possible only if

f D kI0;� for some � 2 R (see the proof of [Graham and Kohr 2003, Theorem
1.1.5] or [Duren 1983, Theorem 2.3]). Now the proof is complete. �
Remark 4.12. Two remarks are in order:

(i) It is noteworthy here that Gal et al. [2015] dealt with the growth, distortion and
covering theorems for slice preserving and injective slice regular functions on
the open unit ball B� H with certain normalized conditions. More precisely,
they focused on injective slice functions f on B of the form

f .q/D qC

1X
nD2

qnan;

with fangn�2 being a sequence of real numbers; see [Gal et al. 2015, Theorem
3.11] for details, while, in the present paper we consider slice regular functions
f .q/ D qC

P1
nD2 qnan on B for which there exists some I 2 S such that

the restriction fI is injective and fangn�2 is a sequence of numbers in the
complex plane CI determined by I. Thus our result properly includes the
former case. Moreover, our approach to the Koebe type one-quarter theorem
(Theorem 4.10), which can be specialized to the complex case, depends only
on the open mapping theorem and the first inequality in (4-9), and does
not involve compositions of functions. We refer the interested reader to
[Graham and Kohr 2003, p.14; Duren 1983, p.31] for a standard proof of the
classical Koebe one-quarter theorem for univalent functions.

(ii) Functions kI;� of the form in (4-15) are specific examples in S0. In view of
Theorem 4.10, the image of B under the function kI; �=2 contains the open
ball B.0; 1=4/. However, it does not seem so easy to directly deduce this fact
from the classical complex result, without using the open mapping theorem
and the first inequality in (4-9).

The following proposition is the quaternionic version of Proposition 3.8 for slice
regular functions.

Proposition 4.13. Let f be a slice regular function on a symmetric slice domain
��H such that its restriction fI to�I is injective and f .�I /�CI for some I 2S.
Then its restriction fJ W�J ! H is also injective for every J 2 S.

Remark 4.14. Let f be as described in Theorem 4.7. Then according to the
preceding proposition, fJ W BJ ! H is injective for every J 2 S. It is well worth
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knowing whether f W B! H is injective. If it is indeed the case, together with
the first inequality in (4-9) and invariance of domain theorem, it would provide an
alternative approach to Theorem 4.10.

5. Concluding remarks

As pointed out in Remark 3.3, the counterpart of the convex combination identity
(3-11) in Lemma 3.2 also holds for slice regular functions defined on octonions or
more general real alternative algebras under the extra assumption that f preserves
at least one slice. Therefore some of the results given in the preceding sections
can be easily generalized by slight modification to these new settings. Finally, we
conclude with an open question connected with the subject of this paper.

Recall that SR.B/ is the set of slice regular functions on the open unit ball B�H.
We denote

SR0.B/ WD
˚
f 2 SR.B/ W f .0/D 0; f 0.0/D 1

	
and

S0 WD
˚
f 2 SR0.B/ W 9I 2 S such that fI is injective and fI .BI /� CI

	
:

Open question:1 Is the class S0 the largest subclass of SR0.B/ in which the
corresponding growth, distortion and covering theorems hold?
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