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REMARKS ON METAPLECTIC TENSOR PRODUCTS
FOR COVERS OF GLr

SHUICHIRO TAKEDA

We had previously constructed a metaplectic tensor product of automorphic
representations of covers of GLr . To be precise, let M=GLr1 ×· · ·×GLrk ⊆

GLr be a Levi subgroup of GLr , where r = r1+· · ·+ rk, and M̃ its metaplec-
tic preimage in the n-fold metaplectic cover G̃Lr of GLr . For automorphic
representations π1, . . . , πk of G̃Lr1(A), . . . , G̃Lrk (A), we had constructed
(under certain technical assumptions, which are always satisfied when n=2)
an automorphic representation π of M̃ that can be considered as the “tensor
product” of the representations π1, . . . , πk.

Here we significantly simplify and generalize our previous construction
without the technical assumptions mentioned above.

1. Introduction

Let F be a number field and A be the ring of adeles. For a partition r = r1+· · ·+rk

of r , one has the Levi subgroup

M(A) := GLr1(A)× · · ·×GLrk (A)⊆ GLr (A)

of the (r1, . . . , rk)-parabolic. Let π1, . . . , πk be automorphic representations of
GLr1(A), . . . ,GLrk (A), respectively. It is a trivial construction to obtain the au-
tomorphic representation π1 ⊗ · · · ⊗ πk of the Levi M(A) simply by taking the
usual tensor product. Though highly trivial, this construction is of great importance
in the theory of automorphic forms, especially when one would like to formulate
Eisenstein series.

Now if one considers the metaplectic n-fold cover G̃Lr (A) constructed by Kazh-
dan and Patterson [1984], the analogous construction turns out to be far from trivial.
Namely for the metaplectic preimage M̃(A) of M(A) in GLr (A) and automorphic
representations π1, . . . , πk of the metaplectic n-fold covers G̃Lr1(A), . . . , G̃Lrk (A),
one cannot construct a representation of M̃(A) simply by taking the tensor product
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π1⊗ · · · ⊗πk , because M̃(A) is not the direct product of G̃Lr1(A), . . . , G̃Lrk (A),
namely

M̃(A)� G̃Lr1(A)× · · ·× G̃Lrk (A),

and even worse there is no natural map between them.
For the local case, P. Mezo [2004], whose work, we believe, is based on the work

by Kable [2001], carried out a construction of an irreducible admissible represen-
tation of the Levi M̃ starting with representations π1, . . . , πk of G̃Lr1, . . . , G̃Lrk ,
which can be called the “metaplectic tensor product” of π1, . . . , πk , and character-
ized it uniquely up to certain character twists.

In [Takeda 2016], we carried out an analogous construction for the global case
and defined the global metaplectic tensor product. Further, we showed that the
global metaplectic tensor product satisfies various expected properties. We, however,
needed to impose certain technical assumptions for the group M̃ , most notably
Hypothesis (∗) in [Takeda 2016, p. 202]. In this paper, we will modify the con-
struction of that work so that the metaplectic tensor product can be defined without
those technical assumptions and show that the new version also satisfies all the
expected properties. Indeed, it seems our previous construction was unnecessarily
complicated, and here we will give a simpler construction. To be more precise:

Main Theorem. Let M = GLr1 × · · · ×GLrk be a Levi subgroup of GLr , and let
π1, . . . , πk be automorphic subrepresentations of G̃Lr1(A), . . . , G̃Lrk (A). Then
there exists an automorphic subrepresentation π of M̃(A) such that

π ∼=
⊗̃
v

′

πv,

where each πv is the local metaplectic tensor product of Mezo. Moreover, if
π1, . . . , πk are cuspidal (alternatively, square-integrable modulo center), then so is
π . Further the metaplectic tensor product satisfies various expected properties.

In the above theorem,
⊗̃′

v indicates the metaplectic restricted tensor product, the
meaning of which will be explained later in the paper. Also we require πi be an
automorphic subrepresentation, so that it is realized in a subspace of automorphic
forms and hence each element in πi is indeed an automorphic form. (Note that in
general an automorphic representation is a subquotient.)

As we will see, strictly speaking the metaplectic tensor product of π1, . . . , πk

might not be unique even up to equivalence but is dependent on a character ω on
the center ZG̃Lr

of G̃Lr . Hence we write

πω := (π1⊗̃ · · · ⊗̃πk)ω

for the metaplectic tensor product to emphasize the dependence on ω.
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Notation. Throughout the paper, F is a number field and A is the ring of adeles of F.
For each place v, Fv is the corresponding local field and OFv is the ring of integers of
Fv . For each algebraic group G over a global F, and g ∈G(A), by gv we mean the v-
th component of g, and so gv ∈G(Fv). For any group G, we denote its center by ZG .

For a positive integer r , we denote by Ir the r × r identity matrix. Throughout
we fix an integer n ≥ 2, and we let µn be the group of n-th roots of unity in the
algebraic closure of the prime field. We always assume that µn ⊆ F.

We fix an ordered partition r1+ · · ·+ rk = r of r , and we let

M = GLr1 × · · ·×GLrk ⊆ GLr

and assume it is embedded diagonally as usual.
If π is a representation of a group G, we denote the space of π by Vπ , though we

often conflate π with Vπ when there is no danger of confusion. We say π is unitary
if Vπ is equipped with a Hermitian structure invariant under the action of G, but
we do not necessarily assume that the space Vπ is complete. Now assume that the
space Vπ is a space of functions or maps on the group G and π is the representation
of G on Vπ defined by right-translation. (This is the case, for example, if π is an
automorphic subrepresentation.) Let H ⊆ G be a subgroup. We define π‖H to be
the representation of H realized in the space

Vπ‖H := { f |H : f ∈ Vπ }

of restrictions of f ∈ Vπ to H, on which H acts by right translation. Namely π‖H

is the representation obtained by restricting the functions in Vπ . Occasionally, we
confuse π‖H with its space when there is no danger of confusion. Note that there
is an H -intertwining surjection π |H → π‖H , where π |H is the (usual) restriction
of π to H. Also for any subset X ⊆ G and any f ∈ Vπ , we denote by π(X) f the
vector space generated by π(x) f for all x ∈ X. If X is a subgroup, this gives rise
to a representation of X, which is a subrepresentation of π |X .

2. The metaplectic cover G̃Lr of GLr

The groups. In this subsection, we set up our notations for the metaplectic n-fold
cover G̃Lr of GLr for both local and global cases. Most of the time, we work both
locally and globally at the same time. Hence we let

R =
{

Fv in the local case,
A in the global case.

By the metaplectic n-fold cover G̃Lr (R) of GLr (R) with a fixed parameter
c ∈ {0, . . . , n− 1}, we mean the central extension of GLr (R) by µn as constructed
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by Kazhdan and Patterson in [1984]. More concretely, as a set,

G̃Lr (R)= GLr (R)×µn = {(g, ξ) : g ∈ GLr (R), ξ ∈ µn},

whereas the multiplication is defined by

(g, ξ) · (g′, ξ ′)= (gg′, τr (g, g′)ξξ ′),

where τr is a certain 2-cocycle. (See [Takeda 2016, Sections 2 and 3] more about
various issues on cocycles.)

If P is a parabolic subgroup of GLr whose Levi part is M = GLr1 × · · ·×GLrk ,
we often write

M̃(R)= G̃Lr1(R)×̃ · · · ×̃G̃Lrk (R)

for the metaplectic preimage of M(R). Next let

GL(n)r (R)= {g ∈ GLr (R) : det g ∈ R×n
},

and G̃L(n)r (R) be its metaplectic preimage. Also we define

M (n)(R)= {(g1, . . . , gk) ∈ M(R) : det gi ∈ R×n
}

and often denote its preimage by

M̃ (n)(R)= G̃L(n)r1
(R)×̃ · · · ×̃G̃L(n)rk

(R).

The groups M (n)(R) and M̃ (n)(R) are normal subgroups of M(R) and M̃(R),
respectively. Indeed, if we define

(2.1) DetM : M(R)= GLr1(R)× · · ·×GLrk (R)→ R×× · · ·× R×︸ ︷︷ ︸
k times

to be the map given by determinant on each factor GLri , then M (n)(R) is the kernel
of the composition of DetM with projection to R×n

\ R×× · · ·× R×n
\ R×. Hence

for the local case (R = Fv), the groups M (n)(R) and M̃ (n)(R) are of finite index.
An important observation is that the metaplectic preimage of the center ZGLr (R)

of GLr (R) does not in general coincide with the center of G̃Lr (R). (It might not
be even commutative for n > 2.) The center, which we denote by ZG̃Lr (R), is

(2.2) ZG̃Lr (R) = {(aIr , ξ) : ar−1+2rc
∈ R×n, ξ ∈ µn}

= {(aIr , ξ) : a ∈ R×n/d , ξ ∈ µn},

where d = gcd(r −1+2rc, n). The second equality is proven in [Chinta and Offen
2013, Lemma 1].
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Also the center Z M̃(R) of M̃(R) is described as

Z M̃(R) =

{(
a1 Ir1 . . .

ak Irk

)
: ar−1+2cr

i ∈ R×n and a1 ≡ · · · ≡ ar mod R×n

}
.

See Proposition 3.10 of [Takeda 2016]. Let us mention that the above descriptions
of ZG̃Lr (R) and Z M̃(R) give

(2.3) ZG̃Lr (R)M̃
(n)(R)= Z M̃(R)M̃

(n)(R).

Let π be a representation of a subgroup H ⊆ G̃Lr (R) containing µn . We say π
is “genuine” if each element (1, ξ) ∈ H acts as multiplication by ξ , where we view
ξ as an element of C in the natural way.

We will revisit the question, considered in [Takeda 2016], of how the metaplectic
tensor product behaves under restriction to a smaller Levi. Some relevant notation: if

I = {i1, . . . , il} ⊆ {1, . . . , k}

is a nonempty subset with i1 < · · ·< il , we set

(2.4) MI (R)= GLri1
(R)× · · ·×GLril

(R)

which is embedded into M(R) in the obvious way and hence viewed as a subgroup
of M(R). Let M̃I (R) be the metaplectic preimage of MI (R), so we have

M̃I (R)⊆ M̃(R).

Also set
M̃ (n)

I (R) := M̃I (R)∩ M̃ (n)(R).

The global metaplectic cover G̃Lr(A). In this subsection we only consider the
global case, i.e., R = A.

First let us mention that both the F-rational points GLr (F) and the unipotent
radical NB(A) of the Borel subgroup B split in G̃Lr (A) via a certain partial map
s : GLr (A)→ G̃Lr (A). Via this splitting we identify GLr (F) with a subgroup of
G̃Lr (A). Let us mention, however, that this partial map is not given by the map
g 7→ (g, 1) for our choice of cocycle τr . But rather the map g 7→ (g, 1) splits some
compact subgroup. For our purpose here, we have only to mention the following.
Let S be a finite set of places containing all Archimedean places and those v with
v | n. Then we have a group homomorphism

(2.5)
∏
v /∈S

GLr (OFv )→ G̃Lr (A)

under the map g 7→ (g, 1).
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We can also describe G̃Lr (A) as a quotient of a restricted direct product of the
groups G̃Lr (Fv) as follows. Consider the restricted direct product

∏
′

v G̃Lr (Fv) with
respect to the groups Kv for all v with v - n and v -∞. If we denote each element
in this restricted direct product by 5′v(gv, ξv) so that gv ∈ Kv and ξv = 1 for almost
all v, we have the surjection

(2.6) ρ :
∏
v

′

G̃Lr (Fv)→ G̃Lr (A), 5′v(gv, ξv) 7→ (5′vgv,5vξv),

where the product 5vξv is literally the product inside µn . This is indeed a group
homomorphism and ∏

v

′

G̃Lr (Fv)/ ker ρ ∼= G̃Lr (A),

where ker ρ consists of the elements of the form (1, ξ)with ξ ∈
∏
′

v µn and5vξv=1.
We set ∏̃

v

′

G̃Lr (Fv) :=
∏
v

′

G̃Lr (Fv)/ ker ρ

and call it the metaplectic restricted direct product. Let us note that each G̃Lr (Fv)
has a natural embedding into

∏
v
′ G̃Lr (Fv). By composing it with ρ, we have the

natural inclusion

(2.7) G̃Lr (Fv) ↪→ G̃Lr (A),

which allows us to view G̃Lr (Fv) as a subgroup of G̃Lr (A).
Let us mention that all the discussions above on G̃Lr (A) can be generalized to

M̃(A), though there is a subtle issue on cocycles for M̃(A), which is discussed in
detail in [Takeda 2016, Sect. 3]. This issue will not play any role in this paper.

We have the notion of automorphic representations as well as automorphic forms
on G̃Lr (A) or M̃(A). In this paper, by an automorphic form, we mean a smooth
automorphic form instead of a K -finite one, namely an automorphic form is K f -
finite, Z-finite and of uniformly moderate growth; see [Cogdell 2004, p. 17]. Hence
if π is an automorphic representation of G̃Lr (A) (or M̃(A)), the full group G̃Lr (A)

(or M̃(A)) acts on π . An automorphic form f on G̃Lr (A) (or M̃(A)) is said to
be genuine if f (g, ξ)= ξ f (g, 1) for all (g, ξ) ∈ G̃Lr (A) (or M̃(A)). In particular
every automorphic form in the space of a genuine automorphic representation is
genuine. We denote the space of genuine automorphic forms on G̃Lr (A) (resp.
M̃(A)) by A(G̃Lr ) (resp. A(M̃)).

Suppose we are given a collection of irreducible admissible representations πv
of G̃Lr (Fv) such that πv is Kv-spherical for almost all v. Then we can form an
irreducible admissible representation of

∏
′

v G̃Lr (Fv) by taking a restricted tensor
product

⊗
′

v πv as usual. Suppose further that ker ρ acts trivially on
⊗
′

v πv , which is
always the case if each πv is genuine. Then it descends to an irreducible admissible
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representation of G̃Lr (A), which we denote by
⊗̃′

vπv , and call it the “metaplectic
restricted tensor product”. Let us emphasize that the space for

⊗̃′
vπv is the same as

that for
⊗
′

v πv . Conversely, if π is an irreducible genuine admissible representation
of G̃Lr (A), it is written as

⊗̃′
vπv where πv is an irreducible genuine admissible

representation of G̃Lr (Fv), and for almost all v, πv is Kv-spherical. (To see this,
view π as a representation of the restricted direct product

∏
′

v G̃Lr (Fv) by pulling
it back by ρ in (2.6) and apply the usual tensor product theorem for the restricted
direct product. This gives the restricted tensor product

⊗
′

v πv, where each πv is
genuine, and hence it descends to

⊗̃′
vπv.)

We now list some important properties of various groups we consider.

Lemma 2.8 [Takeda 2016, Lemma 14]. Let S be a finite set of places containing
all the Archimedean ones, and set

O×S :=
∏
v /∈S

O×Fv .

Then the set F×A×n
\A×/O×S is finite.

Lemma 2.9. The group F×A×n
\A× is compact.

Proof. Let S be any finite set of places containing all the Archimedean ones. By the
above lemma, we know F×A×n

\A× is a finite union of sets of the form F×A×naO×S
for a ∈ A×. But this set, which is the image of the compact set aO×S under the
quotient map A× → F×A×n

\ A×, is compact in the topology of F×A×n
\ A×.

Hence the lemma follows. �

This in turn implies:

Lemma 2.10. The group M(F)M̃ (n)(A) is a closed normal subgroup of M̃ (n)(A)

whose quotient M(F)M̃ (n)(A)\ M̃(A) is a compact abelian group. Indeed, we have
an isomorphism

M(F)M̃ (n)(A) \ M̃(A)∼= F×A×n
\A×× · · ·× F×A×n

\A×︸ ︷︷ ︸
k times

of topological groups.

Proof. That it is closed is [Takeda 2016, Proposition A.4]. To show it is normal,
one can check that the group M(F)M̃ (n)(A) is indeed the kernel of the composite

M̃(A)→ A×× · · ·×A×→ F×A×n
\A×× · · ·× F×A×n

\A×

where the first map is the determinant map DetM as in (2.1). By the previous lemma,
the last group on the right-hand side is compact. �
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Lemma 2.11. Let S be a finite set of places containing all the Archimedean ones
and those v with v | n. Define

(2.12) K S
:=

∏
v /∈S

M(OFv ),

which can be viewed as a subgroup of M̃(A) as in (2.5). Then the set

M(F)M̃ (n)(A) \ M̃(A)/K S

is finite.

Proof. This is immediate from Lemma 2.8, because M(F)M̃ (n)(A) \ M̃(A)/K S is
a product of k copies of F×A×n

\A×/O×S �

We next state a lemma from general topology and an important consequence of it.

Lemma 2.13. Let A be a Hausdorff compact abelian group, and m1, . . . ,mk be
positive integers. Define

H := {(am1, . . . , amk ) : a ∈ A} = Am1 × · · ·× Amk ⊆ A× · · ·× A︸ ︷︷ ︸
k times

.

Then H is a closed subgroup of A× · · ·× A.

Proof. Note that for each i ∈ {1, . . . , k}, the mi -th power map A→ Ami ⊆ A is
continuous, and hence the image Ami of the compact A is compact. Recall that in a
Hausdorff topological group, every compact subgroup is closed by, say, [Deitmar
and Echterhoff 2009, Lemma 1.1.4]. So each Ami is closed. Hence H is closed. �

Proposition 2.14. We have

M(F)Z M̃(A)M̃
(n)(A)= M(F)ZG̃Lr (A)

M̃ (n)(A)

and this group is a closed (hence locally compact) subgroup of M̃(A).

Proof. The equality is immediate from (2.3).
To prove this group is closed, it suffices to show that the image of Z M̃(A) in

the quotient M(F)M̃ (n)(A) \ M̃(A) is closed. But one can see that the image of
ZG̃Lr (A)

under the isomorphism

M(F)M̃ (n)(A) \ M̃(A)= F×A×n
\A×× · · ·× F×A×n

\A×

is the subgroup of the form

{(anr1/d , . . . , anrk/d) : a ∈ F×A×n
\A×},

where d = gcd(r − 1+ 2rc, n). By Lemma 2.9, we know that F×A×n
\ A× is

compact, and hence by the previous lemma, this is closed. �
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3. The metaplectic tensor product

In this section, after reviewing the local metaplectic tensor product of Mezo [2004]
with the modification made by the author in [Takeda 2016], we will construct the
global metaplectic tensor product.

Mezo’s local metaplectic tensor product. In this subsection, all the groups are over
the local field Fv , and accordingly we simply write G̃Lr , M̃ , etc, instead of G̃Lr (Fv),
M̃(Fv), etc.

Let π1,...,πk be irreducible admissible genuine representations of G̃Lr1,...,G̃Lrk ,
respectively. For each i = 1, . . . , k, let

σi := πi |G̃L(n)ri
.

Note that σi , as a representation of G̃L(n)ri , is completely reducible, and the multi-
plicities of all the irreducible constituents are all equal. Namely, we have

(3.1) σi = mi

⊕
j

τi, j ,

where τi, j is an irreducible representation of G̃L(n)ri such that τi, j � τi,k for j 6= k, and
mi is a positive multiplicity which is independent of τi, j . For the non-Archimedean
case, this is precisely [Gelbart and Knapp 1982, Lemma 2.1], and the Archimedean
case can be proven in the same way as the non-Archimedean case because the index
of G̃L(n)ri in G̃Lri is at most 2. Mezo [2004] first picks up an irreducible constituent
τi of σi and considers the (usual) tensor product

Vτ1 ⊗ · · ·⊗ Vτk ,

which, of course, gives a representation of the direct product G̃L(n)r1 × · · ·× G̃L(n)rk .
The genuineness of the representations τ1, . . . , τk implies that this tensor product
representation descends to a representation of the group M̃ (n)

:= G̃L(n)r1 ×̃ · · · ×̃G̃L(n)rk ,
i.e., the representation factors through the natural surjection

G̃L(n)r1
× · · ·× G̃L(n)rk

� G̃L(n)r1
×̃ · · · ×̃G̃L(n)rk

.

We denote this representation of M̃ (n) by

τ := τ1⊗̃ · · · ⊗̃τk .

Let us emphasize that the space Vτ of τ is the usual tensor product Vτ1 ⊗ · · ·⊗ Vτk .
In this paper, however, we will take a different approach. Instead of picking up a

τi , we will consider all of σi at the same time and define the representation

σ := σ1⊗̃ · · · ⊗̃σk
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of M̃ (n) in the same way as τ . Let us again emphasize that the space Vσ of σ is the
usual tensor product Vσ1 ⊗ · · ·⊗ Vσk . Further note that because of (3.1), we have

(3.2) σ = m
⊕
τ

τ,

where m = m1 · · ·mk and the sum is over all possible equivalence classes of
representations of the form τ = τ1⊗̃ · · · ⊗̃τk .

Then we define
5=5(π1, . . . , πk) := IndM̃

M̃ (n) σ.

By (3.2), we have
5= m

⊕
τ

IndM̃
M̃ (n) τ,

where the sum is over all the equivalence classes of irreducible subrepresentations
τ of σ . Note that since σ is completely reducible and the index of M̃ (n) in M̃ is
finite, one can see that the representation 5 is completely reducible. Certainly, it is
highly unlikely that 5 is irreducible. Rather it contains all the metaplectic tensor
products constructed by Mezo. To see it, we need to take the action of the center
ZG̃Lr

into account. For this purpose, let us first define

(3.3) �=�(π1, . . . , πk) := {ω : ω is a character on ZG̃Lr
which appears in σ },

where we say “ω appears in σ” if there is an irreducible constituent τ ⊆ σ that
agrees with ω on the overlap, namely

ω|ZG̃Lr ∩M̃ (n) = τ |ZG̃Lr ∩M̃ (n) .

Now Mezo’s construction can be summarized as follows. Let τ ⊆ σ be an
irreducible representation, so τ = τ1⊗̃ · · · ⊗̃τk for some τi , and let ω ∈� be such
that it agrees with τ on the overlap. Then we can extend τ to the representation

τω := ωτ

of ZG̃Lr
M̃ (n) by letting ZG̃Lr

act by ω. Then if we induce it to the group M̃ , it is
isotypic (though possibly reducible), and we denote this isomorphism class by

(π1⊗̃ · · · ⊗̃πk)ω

and call it the metaplectic tensor product of π1, . . . , πk with respect to ω. With this
notation, we have

IndM̃
ZG̃Lr M̃ (n) τω = m′(π1⊗̃ · · · ⊗̃πk)ω

for some finite multiplicity m′, which will be seen to be independent of τ and ω but
only dependent on the representations π1, . . . , πk .
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Clearly we have the inclusions

(3.4) IndM̃
ZG̃Lr M̃ (n) τω ↪→ IndM̃

M̃ (n) τ ↪→ IndM̃
M̃ (n)σ =5(π1,...,πk)= m

⊕
τ

IndM̃
M̃ (n) τ,

because τ ⊆ σ . Further we have:

Proposition 3.5. For each fixed τ , let

�(τ) := {ω ∈� : ω|ZG̃Lr ∩M̃ (n) = τ |ZG̃Lr ∩M̃ (n)}.

Then
IndM̃

M̃ (n) τ =
⊕
ω∈�(τ)

IndM̃
ZG̃Lr M̃ (n) τω = m′

⊕
ω∈�(τ)

(π1⊗̃ · · · ⊗̃πk)ω,

where m′ is the positive multiplicity of (π1⊗̃ · · · ⊗̃πk)ω in IndM̃
ZG̃Lr M̃ (n) τω, which is

independent of τ and ω but is only dependent on π1, . . . , πk .

Proof. The proof is an elementary exercise in representation theory. But we will
give a brief explanation for each equality. First, by inducing in stages, we have

IndM̃
M̃ (n) τ = IndM̃

ZG̃Lr M̃ (n) Ind
ZG̃Lr M̃ (n)

M̃ (n) τ.

Then similarly to [Mezo 2004, Lemma 4.1], one can see

Ind
ZG̃Lr M̃ (n)

M̃ (n) τ =
⊕
ω∈�(τ)

τω,

because the quotient M̃ (n)
\ ZG̃Lr

M̃ (n)
= ZG̃Lr

∩ M̃ (n)
\ ZG̃Lr

has the same size as
�(τ). To be more precise, for a fixed ω ∈�(τ) we can write

�(τ)=
{
ωχ : χ is in the dual of ZG̃Lr

∩ M̃ (n)
\ ZG̃Lr

}
.

To show the next equality, the only nontrivial part is to show that the multiplicity
m′ is independent of τ and ω. The independence from ω follows from the fact that
the restrictions (IndM̃

ZG̃Lr M̃ (n) τω)|ZG̃Lr M̃ (n) and (IndM̃
ZG̃Lr M̃ (n) τω)|M̃ (n) have the same

number of constituents and the latter is independent of ω, and further the restric-
tions (π1⊗̃ · · · ⊗̃πk)ω|ZG̃Lr M̃ (n) and (π1⊗̃ · · · ⊗̃πk)ω|M̃ (n) have the same number of
constituents and again the latter is independent of ω. To show it is independent of
τ , let us note that m′ is indeed equal to

[
H̃ : ZG̃Lr M̃ (n)

]
, where H̃ is a maximal

subgroup of M̃ such that τω can be extended to H̃ so that Mackey’s irreducible
criterion is satisfied as constructed in [Mezo 2004, pp. 89–90]. This can be proven
in the same way as in [Takeda 2016, Proposition 4.7]. From the construction of H̃ ,
one can see that H̃ is independent of the choice of τ1, . . . , τk but only dependent
on π1, . . . , πk . Also see [Cai 2016, Section 3.4] for this issue. �

The main theorem for local metaplectic tensor product follows easily:
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Theorem 3.6. Keeping the above notation, we have

5=5(π1, . . . , πk)=
⊕
ω∈�

m(ω)(π1⊗̃ · · · ⊗̃πk)ω,

where � is as in (3.3) and m(ω) is the positive multiplicity of (π1⊗̃ · · · ⊗̃πk)ω.

Proof. By the previous proposition, we have

5= mm′
⊕
τ

⊕
ω∈�(τ)

(π1⊗̃ · · · ⊗̃πk)ω,

which implies the theorem. �

Remark 3.7. In the above theorem, one may wonder if m(ω) = mm′. This is
certainly the case if the �(τ) are all distinct for distinct τ . But it may be the case
that �(τ) ∩�(τ ′) 6= ∅ even when τ 6= τ ′. Also it should be mentioned that if
�(τ)∩�(τ ′) 6=∅, then necessarily �(τ)=�(τ ′)

With this theorem, one can tell that the presentation5 contains all the metaplectic
tensor products, and one can call each irreducible constituent of 5 a metaplectic
tensor product.

Next we consider the behavior of metaplectic tensor products upon restriction to
a smaller Levi. Let I, M̃I , etc., be as on page 203.

Proposition 3.8. Let π ⊆ 5(π1, . . . , πk) be a metaplectic tensor product. Then
the restriction π |M̃I

is completely reducible (with most likely infinite multiplic-
ity). Further each constituent of τ |M̃I

is of the form (πi1⊗̃ · · · ⊗̃πil )ω′ for some
ω′ ∈�(πi1, . . . , πil ).

Proof. Note that π ↪→ IndM̃
M̃ (n) τ for some irreducible representation τ of M̃ (n).

Hence it suffices to show the restriction
(
IndM̃

M̃ (n) τ
)
|M̃I

is completely irreducible.
But since the group M̃ (n)

\ M̃ is finite, one has the following Mackey type theorem:(
IndM̃

M̃ (n) τ
)
|M̃I
=

⊕
g∈M̃ (n)\M̃/M̃I

IndM̃I

M̃I∩gM̃ (n)g−1(τ
g),

where, as usual, τ g is the representation of τ twisted by g viewed as a representation
of M̃I ∩ gM̃ (n)g−1 by restriction. But note that M̃ (n)

\ M̃/M̃I = M (n)
\ M/MI

and each element in this double coset is represented by an element in M which
has the identity on all the components for the GLri factors for i ∈ I. Hence
M̃I ∩ gM̃ (n)g−1

= M̃ (n)
I , and τ g

= τ as a representation of M̃ (n)
I . Hence we have(

IndM̃
M̃ (n) τ

)
|M̃I
=

⊕
g∈M̃ (n)\M̃/M̃I

IndM̃I

M̃ (n)
I

(
τ |M̃ (n)

I

)
.

But note that the space Vτ of τ is of the form Vτ1 ⊗ · · ·⊗ Vτk for some irreducible
representations τ1, . . . , τk of G̃L(n)r1 , . . . , G̃L(n)rk , which are irreducible constituents
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of the restrictions π1|G̃L(n)r1
, . . . , πk |G̃L(n)rk

. Hence when it is restricted to M̃ (n)
I , it is

completely reducible. (Yet note that the multiplicity is infinite unless all the σi

for i /∈ I are one dimensional.) Indeed τ |M̃ (n)
I

is isotypic with all the irreducible
constituents equivalent to τi1⊗̃ · · · ⊗̃τil . Hence first of all, π |M̃I

is completely
reducible. Second of all, each irreducible constituent in π |M̃I

is contained in the
induced representation

IndM̃
M̃ (n)

I
τi1⊗̃ · · · ⊗̃τil .

This, together with Theorem 3.6 applied to the group M̃I , implies that each con-
stituent of π |M̃I

is of the form (πi1⊗̃ · · · ⊗̃πil )ω′ . �

The global metaplectic tensor product. By essentially following the local meta-
plectic tensor product, the global metaplectic tensor product was constructed in
[Takeda 2016] with some technical assumptions, most notably Hypothesis (∗) on
page 202 of that work. Here we will simplify our previous construction and remove
the technical assumptions imposed there. Throughout this subsection, let π1, . . . , πk

be automorphic subrepresentations of the groups G̃Lr1(A), . . . , G̃Lrk (A) realized
in the spaces of automorphic forms. Namely we assume

Vπi ⊆A(G̃Lri ).

Also let
Hi := GLri (F)G̃L(n)ri

(A).

Note that by Lemma 2.10, Hi is a closed normal subgroup of GLri (A) whose
quotient is a compact abelian group.

First let
σi := πi‖Hi ,

where we recall the notation ‖ from the notation section. Each element ϕ in the
space of Vσi is a restriction to Hi of an automorphic form on G̃Lri (A), and hence
we may view it as a function on Hi with the property that ϕ(γ g) = ϕ(g) for all
γ ∈ GLri (F) and g ∈ G̃L(n)ri (A). Namely the representation σi is a representation
of the group Hi realized in a space of “automorphic forms on Hi ”.

We should mention

Proposition 3.9. Let π be an irreducible smooth representation of G̃Lr (A). Then
the restriction π |GLr (F)G̃L(n)r (A) is completely reducible, and hence π‖GLr (F)G̃L(n)r (A)

is a subrepresentation of π |GLr (F)G̃L(n)r (A)
.

Proof. In this proof, let us write H =GLr (F)G̃L(n)r (A). We will prove the proposi-
tion by modifying the proof of [Gelbart and Knapp 1982, Lemma 2.1].

First we will show that the restriction π |H has an irreducible subrepresentation.
For this, consider the contragredient π̂ of π . Since π is irreducible, so is π̂ . Let
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ϕ ∈ π̂ be nonzero. Then π̂ is generated by ϕ as a representation of G̃Lr (A). One of
the key points is that the restriction π̂ |H is also finitely generated as a representation
of H. To see it, let S be a sufficiently large finite set of places such that ϕ is
fixed by K S

:=
∏
v /∈S GLr (OFv ). We know that the set H \ G̃L(A)/K S is finite by

Lemma 2.11. Let {g1, . . . , gl} be a complete set of representatives of this finite
set. Then one can see that the vectors π̂(gi )ϕ generate π̂ |H , i.e., π̂ |H is finitely
generated. Hence π̂ |H has an irreducible quotient. (It is an elementary exercise
of Zorn’s lemma to show that every finitely generated representation of any group
has an irreducible quotient.) Let W be the kernel of the surjection from Vπ̂ to this
irreducible quotient. Let

Ann(W ) := { f ∈ Vπ : 〈 f, ϕ〉 = 0 for all ϕ ∈W }

be the annihilator of W, which gives a representation of H. Then one can see
Ann(W ) is an irreducible subrepresentation of π |H as follows. Let X ⊆ Ann(W )

be any nonzero subrepresentation of Ann(W ). Consider the annihilator Ann(X)
of X, which is a subrepresentation of Vπ̂ . Note that W ⊆ Ann(X) ⊆ Vπ̂ . But
since the pairing Vπ × Vπ̂ → C is nondegenerate, we have Ann(X) 6= Vπ̂ . Hence
W =Ann(X) by the irreducibility of Vπ̂/W. Hence the pairing Vπ ×Vπ̂→C gives
rise to a nondegenerate pairing

X × Vπ̂/W → C,

which is H invariant. This implies that X is canonically isomorphic to the repre-
sentation realized in the space

{〈 f,−〉 : f ∈ X},

where 〈 f,−〉 : Vπ̂/W →C is the functional given by ϕ 7→ 〈 f, ϕ〉. But this space is
independent of X. Hence X = Ann(W ), which shows Ann(W ) is irreducible.

Now let V be an irreducible subrepresentation of π |H and let f ∈ V be a fixed
nonzero vector. As above there exists a sufficiently large S, possibly (most likely)
different from the above one, such that the group K S fixes f . Again let {g1, . . . , gl}

be a complete set of representatives of H \G̃L(A)/K S, which is most likely different
from the one above. Then one can see

Vπ =
l∑

i=1

π(Hgi K S) f =
l∑

i=1

π(Hgi ) f.

Note that each space π(Hgi ) f gives rise to a representation of H, which is equiv-
alent to the gi twist of π(H) f . But π(H) f = V because V is a space of an
irreducible representation of H, and hence each π(Hgi ) f is irreducible.
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Let {gi1, . . . , giN } be the smallest subset of {g1, . . . , gl} such that

Vπ =
N∑

j=1

π(Hgi j ) f.

This is actually a direct sum because for each k ∈ {1, . . . , N }, if the intersection

π(Hgik ) f ∩
∑
j 6=k

π(Hgi j ) f,

which is a representation of H, is nonzero, then it is actually equal to π(Hgik ) f
by irreducibility, which contradicts to the minimality of the set {gi1, . . . , giN }. This
competes the proof. �

Next note that each element in Hi is of the form (hi , ξi ) for hi ∈GLri (F)GLri (A)

and ξi ∈ µn . As in [Takeda 2016, p. 215], we have the natural surjection

(3.10) H1× · · ·× Hk→ M(F)M̃ (n)(A)

given by the map ((h1, ξ1), . . . , (hk, ξk)) 7→ (h1 · · · hk, ξ1 · · · ξk). Then consider
the space

Vσ1 ⊗ · · ·⊗ Vσk

of functions on the direct product H1×· · ·×Hk , which gives rise to a representation
of the direct product H1×· · ·×Hk . But each element in Vσ , which is a function on
this direct product, descends to a function on M(F)M̃ (n)(A), which is “automorphic”
in the sense that it is left-invariant on M(F). (It should be mentioned that this
is not as immediate as it looks, especially due to some issues on cocycles. See
[Takeda 2016, Proposition 5.2] for details.) If ϕi ∈ Vσi for i = 1, . . . , k, we denote
this function by

ϕ1⊗̃ · · · ⊗̃ϕk,

and denote the space generated by those functions by Vσ . We call each function in
Vσ an “automorphic form on M(F)M̃ (n)(A)”. The group M(F)M̃ (n)(A) acts on
Vσ by right-translation, and denote this representation by σ . We define

σ1⊗̃ · · · ⊗̃σk := σ.

Proposition 3.11. With the above notation, σ is completely reducible. Further, if
all of π1, . . . , πk are unitary, so is σ .

Proof. Each σi is completely reducible by Proposition 3.9. Hence one can see σ is
completely reducible. If π1, . . . , πk are unitary and each σi is a subrepresentation
of πi |Hi , the unitary structure on πi descends to σi . Hence one can define a unitary
structure on σ1⊗ · · ·⊗ σk , which descends to σ . �
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Now just as we did for the local case, consider the smooth induced representation

(3.12) 5=5(π1, . . . , πk) := IndM̃(A)
M(F)M̃ (n)(A)

σ.

Then we have the obvious map

(3.13) IndM̃(A)
M(F)M̃ (n)(A)

σ →A(M̃), f 7→ f̃

where f̃ is defined by

f̃ (m)= f (m)(1) for m ∈ M̃(A)

and A(M̃) is the space of automorphic forms on M̃(A). Further this map is one-to-
one, and one can identify 5 as a subspace of A(M̃), namely we have

5⊆A(M̃).

Proposition 3.14. If all of π1, . . . , πk are cuspidal, then 5, viewed as a subspace
of A(M̃), is in the space of cusp forms. If all of π1, . . . , πk are realized in the
spaces of square integrable automorphic forms, then 5 is also in the space of
square integrable automorphic forms. Also if all of π1, . . . , πk are unitary, so is 5.

Proof. The proofs for the first two parts (cuspidality and square-integrability) are
simple modifications of the proofs of Theorems 5.12 and 5.13 of [Takeda 2016].
But let us repeat the key points. For this purpose, note that for f ∈5 and m ∈ M̃(A),
we have f (m)∈ Vσ , and hence f (m) is a sum of functions of the form ϕ1⊗̃ · · · ⊗̃ϕk ,
where each ϕi is a restriction of a function in Vπi to Hi .

Assume that π1, . . . , πk are cuspidal, and N := N1 × · · · × Nk is a unipotent
radical of a parabolic of M, where each Ni is a unipotent radical of a parabolic
of GLri . We view N (A) as a subgroup of M̃(A) via the splitting N (A)→ M̃(A).
Noting that N (A)⊆ M(F)M̃ (n)(A), we have∫

N (F)\N (A)
f̃ (nm) dn =

∫
N (F)\N (A)

f (nm)(1) dn

=

∫
N (F)\N (A)

f (m)(n) dn

=

∑∫
N (F)\N (A)

(ϕ1⊗̃ · · · ⊗̃ϕk)(n) dn

=

∑∫
N (F)\N (A)

ϕ1(n) · · ·ϕk(n) dn

=

∑∫
N1(F)\N1(A)

ϕ1(n1) dn1 · · ·

∫
Nk(F)\Nk(A)

ϕk(nk) dnk

= 0,

where the last equality follows from the cuspidality of the ϕi .
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Next let us show the square integrability. By [Takeda 2016, Lemma 5.17], it
suffices to show that ∫

Z (n)M(A)M(F)\M(A)

| f̃ (m)|2 dm <∞

for each f̃ ∈5, where

Z (n)M(A) =

{(
an

1 Ir1 . . .
an

k Irk

)
: ai ∈ A×

}
.

But∫
Z (n)M(A)M(F)\M(A)

| f̃ (m)|2 dm

=

∫
Z (n)M(A)M(F)M

(n)(A)\M(A)

∫
Z (n)M(A)M

(n)(F)\M (n)(A)

| f̃ (m′m)|2 dm′ dm

=

∫
Z (n)M(A)M(F)M

(n)(A)\M(A)

∫
Z (n)M(A)M

(n)(F)\M (n)(A)

| f (m′m)(1)|2 dm′ dm

=

∫
Z (n)M(A)M(F)M

(n)(A)\M(A)

∫
Z (n)M(A)M

(n)(F)\M (n)(A)

| f (m)(m′)|2 dm′ dm,

Note that the outer integral is over a compact set, and hence we only need to show
the convergence of the inner integral. But this follows from the square integrability
of the function f (m) ∈ Vσ as an “automorphic form on M(F)M̃ (n)(A)”.

Finally, assume π1, . . . , πk are unitary. By Proposition 3.11, we know σ is
unitary. But by Lemma 2.11, we know the induction defining 5 is a compact
induction, which makes 5 unitary. �

Remark 3.15. In the above proof for square integrability, we implicitly used the
fact that the group M(F)Z (n)M(A)M

(n)(A) is closed, which can be shown by the same
argument as Proposition 2.14. This justifies the existence of the quotient measure
for Z (n)M(A)M(F)M

(n)(A)\M(A). The author has to admit that this subtle point was
not addressed in the proof of [Takeda 2016, Theorem 5.13]. Also there we, for
some reason, did not realize that the group Z (n)M(A)M(F)M

(n)(A)\M(A) is compact
when writing our previous paper, which made the proof there unnecessarily long.

We would like to have that the representation 5=5(π1, . . . , πk) is completely
reducible, as in the local case. And this is immediate if π1, . . . , πk are cuspidal
because then 5 is in the space of cusp forms. We do not know if this is true in
general, but the following formulation is enough for our purposes:
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Proposition 3.16. Let τ ⊆ σ be an irreducible subspace. Then the space

IndM̃(A)
M(F)M̃ (n)(A)

τ

has an irreducible subrepresentation. Hence 5 has an irreducible subrepresenta-
tion.

Proof. In this proof, let us write H = M(F)M̃ (n)(A). First note that since σ is
completely reducible by Proposition 3.9, an irreducible τ ⊆ σ always exists. Let
ϕ ∈ Vτ be nonzero. Since π1, . . . , πk are smooth, there exists a finite set of places
such that ϕ is fixed by the group H∩K S, where K S

=
∏
v /∈S M(OFv ). Let g1, . . . , gl

be a complete set of representatives of the double cosets H \ M̃(A)/K S, which, we
know, is finite by Lemma 2.11, where we assume g1 = 1. Hence each vector in
IndM̃(A)

H τ fixed by K S is completely determined by its values at g1, . . . , gl . With
this said, let us define an element f : M̃(A)→ Vτ in IndM̃(A)

H τ by setting

f (hgi k)=
{
τ(h)ϕ if i = 1,
0 otherwise,

where h ∈ H and k ∈ K S. This is well defined because ϕ is fixed by H ∩ K S,
and has the property that f (hm) = τ(h) f (m) for all h ∈ H and m ∈ M̃(A). To
show f is indeed in IndM̃(A)

H τ , we need to show that f is smooth. This can be
checked at each v by viewing M̃(Fv) as a subgroup of M̃(A) as in (2.7) (or its
M̃(A) analogue). Namely for each v /∈ S, clearly f is fixed by M(OFv ) and hence
f is smooth at v. If v is Archimedean, then since the Lie algebra of M̃(Fv) is
the same as that of M̃ (n)(Fv), the smoothness follows from that of ϕ. Finally let
v ∈ S be a non-Archimedean place in S. Then by the smoothness of ϕ, there is
an open compact subgroup U of M̃ (n)(Fv). Since M̃ (n)(Fv) is an open subgroup
of M̃(Fv), U is also an open compact subgroup of M̃(Fv). Then one can see that
the intersection of all g−1

i Ugi , which is also an open compact subgroup of M̃(Fv),
fixes f . Hence f is smooth and indeed in IndM̃(A)

H τ .
Now consider the space 5(M̃(A)) f generated by f . Then we can write

5(M̃(A)) f =
l∑

i=1

5(Hgi ) f,

where each space 5(Hgi ) f is H invariant and hence a subrepresentation of
5(M̃(A)) f |H . Now to prove the proposition, it suffices to show that 5(Hgi ) f is
irreducible, because, then, 5(M̃(A)) f |H has only finite length, and hence a fortiori
5(M̃(A)) f is of finite length, which implies that 5(M̃(A)) f has an irreducible
subrepresentation. Moreover, one can see that, as abstract representations, each
5(Hgi ) f is equivalent to the gi twist of 5(H) f . Hence it suffices to show that
5(H) f is irreducible.



REMARKS ON METAPLECTIC TENSOR PRODUCTS FOR COVERS OF GLr 217

To show each 5(H) f is irreducible, consider the evaluation map at 1, namely

5(H) f → τ, f ′ 7→ f ′(1)

for f ′ ∈5(H) f , which is H -intertwining. Since f (1)= ϕ 6= 0, this map is nonzero.
But note that each nonzero f ′ is supported on HK S, which implies f ′(1) 6= 0
for all nonzero f ′ ∈ 5(H) f . Therefore 5(H) f ∼= τ , which shows 5(H) f is
irreducible. �

Now as in the local case, 5(π1, . . . , πk) essentially contains all the possible
metaplectic tensor products. To see it, we need to carry out a construction analogous
to the local metaplectic tensor product of Mezo by taking the central character into
account. Namely, we now need to consider an irreducible subrepresentation of
σ and extend it to a representation of ZG̃Lr (A)

M(F)M̃ (n)(A) by letting the center
ZG̃Lr

(A) act as a character.
First note that since σ is completely reducible by Proposition 3.11, it has an

irreducible subrepresentation
τ ⊆ σ.

Fix such τ from now on. We need

Lemma 3.17. For each irreducible τ ⊆ σ , the abelian group

ZG̃Lr (A)
∩M(F)M̃ (n)(A)

acts as a character, which we denote by ωτ .

Proof. By Proposition 3.16, there exists an irreducible subrepresentation π of
IndM̃(A)

M(F)M̃ (n)(A)
τ . Let ω be the central character of π . Now by Frobenius reciprocity

we have an M(F)M̃ (n)(A)-intertwining map π→ τ , which shows that the group
ZG̃Lr (A)

∩M(F)M̃ (n)(A) acts via the character ω on τ . �

Remark 3.18. Of course, if τ is unitary, which is the case if π1, · · · , πk are, then
τ actually has a central character because M(F)M̃ (n)(A) is locally compact. But
the author does not know if τ admits a central character in general.

By the “automorphy” of each element in Vτ , we can see that the character ωτ in
the above lemma is “automorphic” in the sense that

ωτ (γ z)= ωτ (z)

for all z ∈ ZG̃Lr (A)
∩ M(F)M̃ (n)(A) and γ ∈ M(F)∩ (ZG̃Lr (A)

∩ M(F)M̃ (n)(A)).
Then we can find a “Hecke character” ω on ZG̃Lr (A)

by extending ωτ ; namely ω is
a character on ZG̃Lr (A)

such that

ω(z)= ωτ (z) for all z ∈ ZG̃Lr (A)
∩M(F)M̃ (n)(A).
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Such ω always exists because both ZG̃Lr (A)
and ZG̃Lr (A)

∩M(F)M̃ (n)(A) are locally
compact abelian groups. Also note that any such ω is indeed a “Hecke character”
in the sense that

ω(γ z)= ω(z)

for all z ∈ ZG̃Lr (A)
and γ ∈ GLr (F)∩ ZG̃Lr (A)

, simply because

GLr (F)∩ ZG̃Lr (A)
⊆ ZG̃Lr (A)

∩M(F)M̃ (n)(A).

For each f ∈ Vτ , which is a function on M(F)M̃ (n)(A), we can extend it to a
function

fω : ZG̃Lr (A)
M(F)M̃ (n)(A)→ C

by

fω(zm)= ω(z) f (m) for all z ∈ ZG̃Lr
(A) and m ∈ M(F)M̃ (n)(A).

This is well defined because of our choice of ω, and is considered as an “automorphic
form on the group ZG̃Lr (A)

M(F)M̃ (n)(A)”. We define

Vτω := { fω : f ∈ Vτ }.

The group ZG̃Lr (A)
M(F)M̃ (n)(A) irreducibly acts on this space, giving rise to an

“automorphic representation” τω of ZG̃Lr (A)
M(F)M̃ (n)(A). As abstract representa-

tions, we have

(3.19) τω ∼= ωτ

where by ωτ we mean the representation of the group ZG̃Lr (A)
M(F)M̃ (n)(A) ex-

tended from τ by letting ZG̃L(A) act via the character ω.
As we did before, let us consider the smooth induced representation

5(τω) := IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω.

Note that we have the obvious inclusion

IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω ↪→ IndM̃(A)

M(F)M̃ (n)(A)
σ,

which allows us to view 5(τω) as a subrepresentation of 5 realized in the space of
automorphic forms on M̃(A), namely

5(τω)⊆5⊆A(M̃).

Then we have

Proposition 3.20. The representation 5(τω) has an irreducible subrepresentation.

Proof. This can be proven identically to Proposition 3.16. �
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Finally, we can define our metaplectic tensor product as follows.

Definition 3.21. Keeping the above notations, let πω ⊆ 5(τω) be an irreducible
subrepresentation. Then we write

πω = (π1⊗̃ · · · ⊗̃πk)ω

and call it a metaplectic tensor product of π1, . . . , πk with respect to the character ω.

The definition of metaplectic tensor product along with Proposition 3.14 imme-
diately implies the following.

Proposition 3.22. If all of π1, · · · , πk are cuspidal (alternatively, unitary, or
square integrable modulo center), then so is (π1⊗̃ · · · ⊗̃πk)ω.

This πω is precisely the metaplectic tensor product we want:

Theorem 3.23. The representation πω constructed above has the desired local-
global compatibility. Namely if we write πω = ⊗̃

′

vπω,v, then for each v we have

πω,v = (π1,v⊗̃ · · · ⊗̃πk,v)ωv .

Thus πω is unique up to equivalence, and depends only on π1, . . . , πk and ω.

Proof. Note that the uniqueness assertion follows from the corresponding local
statement that the local metaplectic tensor product only depends on π1,v, . . . , πk,v

and ωv. Hence we have only to show the local-global compatibility.
First, note that, since πω⊆ IndM̃(A)

ZG̃Lr (A)M(F)M̃
(n)(A)

τω, we have the natural surjection

πω|ZG̃Lr (A)M(F)M̃
(n)(A)→ τω.

Recall that as abstract representations, we have τω ∼= ωτ , where τ is an irreducible
representation of M(F)M̃ (n)(A). So by restricting further down to ZG̃Lr (A)

M̃ (n)(A),
we have

πω|ZG̃Lr (A) M̃
(n)(A)→ ωτ |ZG̃Lr (A) M̃

(n)(A).

Now by Lemma A.1 in the Appendix, πω|ZG̃Lr (A) M̃
(n)(A) is completely reducible.

Hence ωτ |ZG̃Lr (A) M̃
(n)(A) is completely reducible. Let

ωπ (n) ⊆ τω|ZG̃Lr (A) M̃
(n)(A)

be an irreducible subrepresentation, where π (n) is an irreducible representation of
M̃ (n)(A). By complete reducibility, this is also a quotient, and hence we have a
surjection

πω|ZG̃Lr (A) M̃
(n)(A)→ ωπ (n).
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Recall that τ is realized as a space of “automorphic forms on M(F)M̃ (n)(A)”
and is written as

Vτ = Vτ1⊗̃ · · · ⊗̃Vτk ,

where each Vτi is a space of restrictions of automorphic forms in the space Vπi . By
the automorphy, one can see that

τω|ZG̃Lr (A) M̃
(n)(A) = τω‖ZG̃Lr (A) M̃

(n)(A).

Hence we have
Vπ (n) = V

π
(n)
1
⊗̃ · · · ⊗̃V

π
(n)
k
,

where V
π
(n)
i
⊆ Vτi for each i , and indeed we have

π
(n)
i ⊆ τi |G̃L(n)ri (A)

= τi‖G̃L(n)ri (A)
⊆ πi‖G̃L(n)ri (A)

.

Therefore we can write

ωπ (n) = ⊗̃
′

vωv(π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v ),

where ωv(π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v ) is the irreducible representation of ZG̃Lr (Fv)M̃

(n)(Fv)
constructed from π

(n)
1,v , . . . , π

(n)
k,v as is done for the local metaplectic tensor product.

Then if we write

πω =
⊗̃
v

′

πω,v,

where πω,v is an irreducible representation of M̃(Fv), we have the surjection(⊗̃
v

′

πω,v

)
|ZG̃Lr (A) M̃

(n)(A)→

⊗̃
v

′

ωv
(
π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

)
.

Hence by Lemma 5.5 of [Takeda 2016], we conclude that at each place v, the rep-
resentation ωv

(
π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

)
is a quotient of πω,v|ZG̃Lr (Fv) M̃

(n)(Fv). By Frobenius
reciprocity, we have

πω,v ⊆ IndM̃(Fv)
ZG̃Lr (Fv) M̃

(n)(Fv)
ωv
(
π
(n)
1,v ⊗̃ · · · ⊗̃π

(n)
k,v

)
.

Thus by the definition of local metaplectic tensor product, we have

πω,v = (π1,v⊗̃ · · · ⊗̃πk,v)ωv .

Hence we have the desired local-global compatibility. �

Remark 3.24. With the theorem, we can say that the notation (π1⊗̃ · · · ⊗̃πk)ω is
unambiguous in the sense that it only depends on π1, . . . , πk and ω as long as we
consider the metaplectic tensor product as an equivalence class of representations,
which we usually do.
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This theorem immediately implies the following.

Corollary 3.25. For fixed ω, all the irreducible subrepresentations of

IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω

are equivalent.

Next we will show that 5(π1, . . . , πk) contains all the possible metaplectic
tensor products of π1, . . . , πk . For this purpose, let us define

�=�(π1,...,πk) := {ω :ω is a Hecke character on ZG̃Lr (A)
which appears in σ },

where we say “ω appears in σ” if there exists a nonzero function ϕ ∈ σ such that

(3.26) ϕ(zm)= ω(z)ϕ(m)

for all z ∈ ZG̃Lr (A)
∩M(F)M̃ (n)(A) and m ∈ M(F)M̃ (n)(A).

We need

Proposition 3.27. Let ω ∈� be as above, i.e., ω appears in σ . Then there exists a
metaplectic tensor product πω = (π1⊗̃ · · · ⊗̃πk)ω such that πω ⊆5.

Proof. Since ω appears in σ , there exists ϕ ∈ Vσ with the property (3.26). Con-
sider the space σ(M(F)M̃ (n)(A))ϕ generated by ϕ inside Vσ . Because each
z ∈ ZG̃Lr (A)

∩ M(F)M̃ (n)(A) is in the center of M(F)M̃ (n)(A), one can see that
σ(z)ϕ′=ω(z)ϕ′ for all ϕ′∈σ(M(F)M̃ (n)(A))ϕ. Hence if we pick up an irreducible
τ ⊆σ(M(F)M̃ (n)(A))ϕ, we can extend it to τω, and an irreducible subrepresentation
of IndM̃(A)

ZG̃Lr (A)M(F)M̃
(n)(A)

τω is the desired metaplectic tensor product. �

With this proposition, we can state the global analogue of Proposition 3.5 as
follows:

Proposition 3.28. First we have the decomposition

5(π1, . . . , πk)=
⊕
τ

m(τ ) IndM̃(A)
M(F)M̃ (n)(A)

τ,

where the sum is over all the equivalence classes τ ⊆ σ and m(τ ) is the positive
multiplicity of τ in σ . Further for each fixed τ , let

�(τ) :=
{
ω ∈� : ω|ZG̃Lr (A)∩M(F)M̃ (n)(A) = τ |ZG̃Lr (A)∩M(F)M̃ (n)(A)

}
.

Then we have

IndM̃(A)
M(F)M̃ (n)(A)

τ ⊇
⊕
ω∈�(τ)

IndM̃(A)
ZG̃Lr (A)M(F)M̃

(n)(A)
τω ⊇

⊕
ω∈�(τ)

m(τ,ω)(π1⊗̃···⊗̃πk)ω,

where m(τ, ω) is the positive multiplicity.
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Proof. The proposition can be proven in the same way as the local case. Yet, we
should mention that unlike the local case, we do not seem to know the precise
information on the multiplicities. �

From the proposition, the following is immediate.

Theorem 3.29. We have

5(π1, . . . , πk)⊇
⊕
ω∈�

m(ω)(π1⊗̃ · · · ⊗̃πk)ω,

where m(ω) is the multiplicity of (π1⊗̃ · · · ⊗̃πk)ω. Also if all of π1, . . . , πk are
cuspidal, then the inclusion is actually an equality.

Proof. The first part is obvious from the above proposition. The second part follows
from Proposition 3.14 because if 5 is in the cuspidal spectrum, it is completely
reducible. �

Let us note that if we know the multiplicity-one property for the group M̃(A), we
could set m(ω)= 1. Yet, the author does not know if the multiplicity-one property
holds even for the cuspidal spectrum.

Restriction to a smaller Levi. As we did for the local case, we will discuss the
restriction of our metaplectic tensor products to a smaller Levi M̃I , where MI is as
in (2.4). Recall

σ = σ1⊗̃ · · · ⊗̃σk,

whose space Vσ is essentially identified with Vσ1 ⊗ · · ·⊗ Vσk , which is a space of
functions on the direct product H1× · · ·× Hk . Hence if we let

σI := σi1⊗̃ · · · ⊗̃σil ,

one can see that if ϕ ∈ Vσ , we have ϕ|MI (F)M̃
(n)
I (A)

∈ VσI . Indeed, we have an

MI (F)M̃
(n)
I (A)-intertwining surjection

σ → σI , ϕ 7→ ϕ|MI (F)M̃
(n)
I (A)

.

In other words, we have σI = σ‖MI (F)M̃
(n)
I (A)

.
Now we can prove

Theorem 3.30. For each πω = (π1⊗̃ · · · ⊗̃πk)ω ⊆5(π, . . . , πk), we have

πω‖M̃I (A)
⊆

⊕
ω′∈�I

m(ω′)(πi1⊗̃ · · · ⊗̃πil )ω′,

where �I =�(πi1, · · · , πik ) is defined analogously to �.
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Proof. Let us view πω as a subspace of the induced space of (3.12). Then we have
the commutative diagram

πω

��

⊆ IndM̃(A)
M(F)M̃ (n)(A)

σ

��

� � // A(M̃)

��

πω‖M̃I (A)
⊆ IndM̃I (A)

MI (F)M̃
(n)
I (A)

σI
� � // A(M̃I )

where all the vertical arrows are restriction of functions and the hooked arrow
on the top is the “automorphic realization map” as in (3.13), and the one on the
bottom is its analogue for M̃I . By Lemma A.1, we know that πω|M̃I (A)

is completely
irreducible, and hence so is πω‖M̃I (A)

. Note that every irreducible subrepresentation
of IndM̃I (A)

MI (F)M̃
(n)
I (A)

σI is a metaplectic tensor product of πi1, . . . , πil with respect

to some ω′. Hence the theorem follows by identifying IndM̃I (A)

MI (F)M̃
(n)
I (A)

σI with a

subspace of A(M̃I ). �

Other properties. In [Takeda 2016], a couple of other properties of metaplectic
tensor product are discussed. To be precise, they have the expected behavior under
the Weyl group action and the compatibility with parabolic induction, which are,
respectively, Theorems 5.19 and 5.22 in that work. But both of them follow from the
corresponding local statements, and hence they also hold in our new construction.

It should also be mentioned that recently it has been shown by W. T. Gan [2016]
that the metaplectic tensor product can be interpreted as an instance of Langlands
functoriality by using the L-group formalism of covering groups developed by
Weissman. (See [Weissman 2016; Gan and Gao 2014] for this formalism.) This
shows that the construction of the metaplectic tensor product is indeed a natural one.

Some remarks on past literature. The notion of metaplectic tensor product has
been implicitly used in many of the past works on automorphic forms on G̃Lr (A),
especially when one would like to construct Eisenstein series on G̃Lr (A). But there
are various discrepancies in the past literature in this subject, which, we believe,
was due to the lack of a foundation on the metaplectic tensor product. In this final
subsection, let us briefly discuss some of the previous works and how they can be
reconciled with the theory developed in this paper.

The first work that considered Eisenstein series on G̃Lr (A) is, of course, the
important work of Kazhdan and Patterson [1984]. There they only considered
those Eisenstein series which are induced from the Borel subgroup B. Namely
they only considered the case M = GL1× · · · ×GL1. In this case, one can show
that the group ZG̃Lr (A)

M(F)M̃ (n)(A) is a maximal abelian subgroup of M̃ , and
accordingly, from the outset they considered a character on ZG̃Lr (A)

M(F)M̃ (n)(A)
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instead of starting with characters on G̃L1(A) (see their Section II.1). Yet, one can
see that this is the same as constructing some τω in our notation. Then Kazhdan
and Patterson considered the induced representation IndG̃Lr (A)

ZG̃Lr (A)M(F)M̃
(n)(A)NB

τω, to
construct Eisenstein series. By inducing in stages,

IndG̃Lr (A)

ZG̃Lr (A)M(F)M̃
(n)(A)NB

τω = IndG̃Lr (A)

B̃(A)
IndM̃(A)NB

ZG̃Lr (A)M(F)M̃
(n)(A)NB

τω,

and hence the metaplectic tensor product that is implicitly used in [Kazhdan and
Patterson 1984] is our 5(τω) = IndM̃(A)

ZG̃Lr (A)M(F)M̃
(n)(A) τω. Further the fact that

ZG̃Lr (A)
M(F)M̃ (n)(A) is maximal abelian implies that 5(τω) is irreducible (see

Section 0.3 in the same reference).
The next important set of works on this subject is probably the one by Bump and

Ginzburg [1992] on the symmetric square L-function, and the work by Banks
[1997] on the twisted case for GL3, both of which dealt with only the case
n = 2. There are two main parabolic subgroups considered there: the Borel
and the (r − 1, 1)-parabolic. For the Borel, they use the same formulation as
[Kazhdan and Patterson 1984]. For the (r − 1, 1)-parabolic, they first start with a
representation of G̃Lr−1(A) viewed as a subgroup of G̃Lr (A) and they extend it to a
representation of ZG̃Lr (A)

G̃Lr−1(A) by letting ZG̃Lr (A)
act by an appropriate charac-

ter. Now if r is odd (and n = 2), this gives a representation of G̃Lr−1(A)×̃G̃L1(A)

because ZG̃Lr (A)
G̃Lr−1(A)= G̃Lr−1(A)×̃G̃L1(A). But if r is even, we only have

ZG̃Lr (A)
G̃Lr−1(A)= G̃Lr−1(A)×̃G̃L(2)1 (A). Then, in [Bump and Ginzburg 1992],

they induced the representation of G̃Lr−1(A)×̃G̃L(2)1 (A) to G̃Lr−1(A)×̃G̃L1(A)

(see the middle of page 159 in the same reference.) However, it seems to the author
that one cannot show the automorphy of this induced representation if it is simply
induced from G̃Lr−1(A)×̃G̃L(2)1 (A), and probably this is another technical issue
to be addressed in that work. At any rate, one can see that at least if r is odd
this construction is also obtained as our metaplectic tensor product, say, by first
restricting to ZG̃Lr (A)

M(F)M̃ (n)(A) and then inducing one of the constituents to
M̃(A). It should be also mentioned that in [Bump and Ginzburg 1992; Banks 1997]
various properties of metaplectic tensor product, such as the behavior of metaplectic
tensor product upon restriction to a smaller Levi, are implicitly used.

From those two works, the author generalized in [Takeda 2014], in which the
parabolic subgroups considered are mainly (2, . . . , 2) and (r − 1, 1) parabolic.
For the (2, . . . , 2)-parabolic, the inducing representation for each G̃L2 factor is
only the Weil representation, and hence by using the Schrödinger model for G̃L(2)2 ,
we explicitly constructed what we called the “Weil representation of M̃P”. One
can see that this is also an instance of our metaplectic tensor product, because
for the case at hand we have ZG̃Lr (A)

⊆ M̃ (n)(A), which means that the central
character does not play any role in the formation of metaplectic tensor product
and hence the metaplectic tensor product only depends locally on restrictions to



REMARKS ON METAPLECTIC TENSOR PRODUCTS FOR COVERS OF GLr 225

M̃ (n)(Fv). For the (r−1, 1)-parabolic case in [Takeda 2014], however, depending on
the parity of r , we took a different approach. For r odd, we did just as in [Bump and
Ginzburg 1992; Banks 1997]. For r even, we directly constructed a representation
of the Levi G̃Lr−1×̃G̃L1 as residues of Eisenstein series induced from the Borel,
instead of starting with representations of G̃Lr−1 and G̃L1 separately. One can
show that this construction is the same as our metaplectic tensor product by using
the compatibility of our metaplectic tensor product with parabolic induction as
discussed in the previous subsection.

Besides those applications to symmetric square L-functions, the works of Suzuki
[1997; 1998] should be mentioned. In the first of these works, he considered the
(r1, r2)-parabolic for r1+r2= r . To construct an automorphic form on the Levi part,
he uses what he calls “partial Eisenstein series” (see his Sec. 5.4). This construction
is essentially the same as the r = even case of [Takeda 2014] mentioned above,
and again our metaplectic tensor product encompasses this construction of Suzuki.
Also in [Suzuki 1998], Eisenstein series induced from the (`, . . . , `)-parabolic are
considered. There it seems that what he considers is our 5, namely the whole
induced representation IndM̃(A)

M(F)M̃ (n)(A)
σ . Yet, it should be mentioned that first of

all he assumes that each automorphic representation of G̃L`(A) is already induced
from GL`(F)G̃L(n)` (A) (page 750 of that work), and second of all it is claimed,
without proof, that the representation on the Levi thus constructed is irreducible
with local-global compatibility. (See the beginning of [Suzuki 1998, p. 752].) At
any rate, since no proofs or no detailed explanations are given for his assertions, it
is not completely clear to the author that what kind of construction is carried out
there and even that his construction is legitimate.

Finally, more recently Brubaker and Friedberg [2015] considered metaplectic
Eisenstein series not just on the group G̃Lr but on other covering groups in general.
Although they use the language of “S-integers”, what they use to construct repre-
sentations of the Levi amounts to our5, the whole induced representation. Also the
same convention is used in the even more recent [Friedberg and Ginzburg 2016].

Probably which convention to use might be a matter of taste or the nature of the
problem one works on. But it seems to the author that for the purpose of constructing
Eisenstein series, using the whole induced space 5, which contains all the meta-
plectic tensor products, is an easy choice, especially because then, the inducing data
is essentially the same as the usual tensor product. One should, however, be careful
that usually the representation 5=5(π1, . . . , πk) is reducible. Hence for example
we do not know if we can express it as a restricted tensor product as 5=

⊗̃′
v5v,

which is often crucial when one would like to find out analytic properties of
intertwining operators. Therefore, it might be more convenient to pick an irreducible
subrepresentation πω⊆5, although this requires one to take care of the dependence
of πω on ω. Nonetheless, probably many of the important properties (especially
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analytic ones) of Eisenstein series constructed from different πω might usually
be independent of ω, because, after all, the characters ω differ by characters on
ZG̃L(A)∩M(F)M̃ (n)(A)\ZG̃Lr (A)

, which is compact, and hence it seems unlikely that
a difference in a character on a compact group affects analytic properties of Eisen-
stein series. Indeed, for example, in [Takeda 2015] the author studied some analytic
properties of some Eisenstein series using the formalism of metaplectic tensor prod-
uct of [Takeda 2016], and all the results there hold independently of the choice of ω.

Appendix: A lemma on complete reducibility

We prove the result used on pages 219 and 223.

Lemma A.1. Let π̃ =
⊗̃′

vπv be an irreducible admissible representation of M̃(A).
Let H̃ be a group of the form H̃ =

∏̃′
vHv, where Hv ⊆ M̃(Fv) and the re-

stricted direct product is with respect to the group Hv ∩ M(OFv ). (The groups
M̃ (n)(A), ZG̃Lr (A)

M̃ (n)(A) and M̃I (A) are such examples of H̃ .) Further assume
that for each v, the restriction πv|Hv is completely reducible. Then the restriction
π̃ |H̃ is completely reducible.

Proof. We argue “semilocally” using the definition of the restricted metaplectic
tensor product π̃ =

⊗̃′
vπv. First note that the space of

⊗̃′
vπv is actually

⊗
′

v Vπv
(usual restricted tensor product) on which not only the group

∏̃′
v M̃(Fv), but also∏

′

v M̃(Fv) acts. Accordingly we set

π :=
⊗
v

′

πv (usual restricted tensor product),

H :=
∏
v

′

Hv (usual restricted direct product),

and it suffices to show that the restriction π |H is completely reducible.
Now let us recall the definition of

⊗
′

v πv . For almost all v, we choose a spherical
vector ξ ◦v ∈ πv. Let S be a sufficiently large finite set of places so that each πv is
spherical for v /∈ S. Let

πS =
⊗
v∈S

πv,

which gives a representation of
∏
v∈S M̃(Fv). For each S′⊇ S we have the inclusion

πS → πS′ by tensoring the chosen spherical vectors ξ ◦v for v ∈ S′ \ S. Then the
system {πS}S is a directed system and by definition

⊗
′

v πv = lim
−→

S

πS . For each S,
let us define HS :=

∏
v∈S Hv. Then one can see that

π |H = lim
−→

S

πS|HS
.

For each v, the restriction πv|Hv is completely reducible by our assumption.
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Hence let us fix the decomposition

πv|Hv =
⊕
iv∈Iv

πiv

for some finite indexing set Iv, where each πiv is irreducible. (We do not assume
that the restriction πv|Hv is multiplicity free, and hence this decomposition might
not be unique even up to ordering. So we “fix” the decomposition for each πv|Hv
once and for all.) We let

priv : πv→ πiv

be the projection map. Further we let

I ◦v := {iv ∈ Iv : priv (ξ
◦

v ) 6= 0}.

Note that if iv ∈ I ◦v then πiv is spherical in the sense that it contains a vector fixed by
Hv ∩M(OFv ). (The author does not know if I ◦v has only one element, and probably
it does have more than one in general. This makes the following argument a bit
delicate.) Let us define

IS =
∏
v∈S

Iv and I =
∏′

v
Iv =

{
i ∈

∏
v

Iv : iv ∈ I ◦v for almost all v
}
,

where for each i ∈ I, we denote its v-th component by iv . Namely I is the restricted
direct product of Iv with respect to I ◦v. For each i ∈ I, we write

iS := (iv)v∈S ∈ IS.

With this notation, we can write

πS|HS
=

⊕
i∈IS

πiS ,

where πiS =⊗v∈Sπiv .
Now for each i ∈ I, let us define

πi := lim
−→

S

πiS

by using priv (ξ
◦
v ) for our spherical vector for iv ∈ I ◦v. Note that each πi is an

irreducible representation of H. To prove the lemma, it suffices to show we have
an isomorphism

(A.2) lim
−→

S

πS|HS
∼=

⊕
i∈I

lim
−→

S

πiS ,

namely π |H ∼=
⊕

i∈I πi , which will show that π |H is completely reducible. To
show there is such an isomorphism, first note that for each S ⊆ S′, the following
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diagram commutes:

(A.3) πS|HS
//

��

πS′ |HS′

��⊕
iS∈IS

πiS
//
⊕

iS′∈IS′

πiS′

where the vertical arrows are actually an equality and the top horizontal arrow is
given by tensoring with ⊗v∈S′\Sξ

◦
v and the bottom horizontal arrow is given as

follows: for each iS ∈ IS , define a map

πiS → πiS ⊗

⊕
iS′\S∈IS′\S

πiS′\S
= πiS ⊗

⊗
v∈S′\S

⊕
iv∈Iv

πiv

by
viS 7→ viS ⊗

⊗
v∈S′\S

⊕
iv∈Iv

priv (ξ
◦

v ),

where recall that priv is the projection from πv to πiv . Then the bottom horizontal
arrow is given by combining all those maps for all the iS .

Next, one can see that for each S there is an obvious injection

(A.4)
⊕
i∈IS

πiS ↪→
⊕
i∈I

lim
−→

S

πiS ,

which makes the diagram⊕
iS∈IS

πiS

&&

//
⊕

iS′∈IS′

πiS′

xx⊕
i∈I

lim
−→

S

πiS

commute. This diagram and the diagram (A.3) together with the universal property
of lim
−→

S

πS|HS give a unique map

T : π |H = lim
−→

S

πS|HS
−→

⊕
i∈I

lim
−→

S

πiS =

⊕
i∈I

πi ,

which “commutes with the directed system”. This map is injective because each
ϕ ∈ π is in ϕ ∈ πS for some S, which maps to

⊕
i∈I πi via the map in (A.4), and

hence there is no kernel for T. Also one can see that T is surjective because if
ϕi ∈ πi , one can find S such that ϕi ∈ πiS , which comes from some vector πS under
the vertical map in (A.3). This completes the proof. �
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Remark A.5. As our last remark, let us mention that in [Takeda 2016, Lemma 5.1],
it is erroneously claimed that the complete reducibility of a unitary automorphic
representation of G̃Lr (A) to G̃L(n)r (A) follows from the admissibility and unitarity,
but actually the restriction to G̃L(n)r (A) is most likely not admissible, and hence the
argument in the proof there does not work. But the proof of the above lemma, we
hope, fixes the mistake.
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