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ON RELATIVE RATIONAL CHAIN CONNECTEDNESS
OF THREEFOLDS WITH ANTI-BIG CANONICAL DIVISORS

IN POSITIVE CHARACTERISTICS

YUAN WANG

Let X be a projective klt threefold over an algebraically closed field of positive
characteristic, and f : X → Y a morphism from X to a projective variety Y
of dimension 1 or 2. We study how bigness and relative bigness of −KX influ-
ences the rational chain connectedness of X and fibers of f , respectively. We
construct a canonical bundle formula and use it as well as the minimal model
program to prove two results in this context.

1. Introduction

It is widely recognized that the geometry of a higher-dimensional variety is closely
related to the geometry of rational curves on it. A classical result by Campana
[1992] and Kollár, Miyaoka and Mori [Kollár et al. 1992] says that smooth Fano
varieties are rationally connected in characteristic zero and are rationally chain
connected in positive characteristics. This was generalized in characteristic zero
in [Zhang 2006; Hacon and McKernan 2007]. More recently, using the minimal
model program of [Hacon and Xu 2015; Birkar 2016], Gongyo, Li, Patakfalvi,
Schwede, Tanaka and Zong [Gongyo et al. 2015a] proved that projective globally
F-regular threefolds in characteristic ≥ 11 are rationally chain connected and this
was later generalized to threefolds of log Fano type by Gongyo, Nakamura and
Tanaka [Gongyo et al. 2015b].

The main result of Hacon and McKernan is as follows:

Theorem 1.1 [Hacon and McKernan 2007, Theorem 1.2]. Let (X,1) be a log
pair, and let f : X→ S be a proper morphism such that −K X is relatively big and
−(K X +1) is relatively semiample. Let g : Y → X be any birational morphism.
Then the connected components of every fiber of f ◦g are rationally chain connected
modulo the inverse image of the locus of log canonical singularities of (X,1).
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In this paper we prove a theorem similar to Theorem 1.1 for morphisms from a
klt threefold to a variety of dimension ≥ 1. More precisely, we have

Theorem 3.1. Let X be a normal Q-factorial threefold over an algebraically closed
field k of characteristic ≥ 7 and (X, D) a klt pair. Let f : X → Z be a proper
morphism such that f∗OX = OZ , dim(Z) is 1 or 2, Z is klt, −K X is relatively
big, −(K X + D) is relatively semiample, and (Xz, Dz) is klt for general z ∈ Z. Let
g : Y → X be any birational morphism. Then the connected components of every
fiber of f ◦ g are rationally chain connected.

Motivated by Theorem 3.1, we construct a global version of rational chain
connectedness for threefolds.

Theorem 5.1. Let X be a projective threefold over an algebraically closed field k
of characteristic p > 0, f : X→ Y a projective surjective morphism from X to a
projective variety Y such that f∗OX =OY. Let D be an effective Q-divisor, and Xη
the geometric generic fiber of f . Assume that the following conditions hold:

(1) (X, D) is klt, −K X is big, and f-ample, K X+D ∼Q 0, and the general fibers
of f are smooth.

(2) p > 2/δ, where δ is the minimum nonzero coefficient of D.

(3) D = E + f ∗L where E is an effective Q-Cartier divisor such that p - ind(E),
(Xη, E |Xη) is globally F-split, and L is a big Q-divisor on Y.

(4) dim(Y ) is 1 or 2.

Then X is rationally chain connected.

Here ind(E) means the Cartier index of E .
The main ingredients of the proofs of Theorems 3.1 and 5.1 are the minimal

model program constructed in [Hacon and Xu 2015; Birkar 2016; Gongyo et al.
2015a]; some facts, especially [Gongyo et al. 2015a, Theorem 2.1]; some positivity
results [Patakfalvi 2014; Ejiri 2015]; a canonical bundle formula constructed in
Section 4 in the spirit of [Prokhorov and Shokurov 2009]. Note that condition (3)
in Theorem 5.1 is used in order to apply the result [Ejiri 2015, Theorem 1.1] to
deduce that −KY is big, and to apply Theorem 4.3 when dim Y = 2. This creates
enough rational curves on Y. Note that by [Ejiri 2015, Example 3.4], (Xη, E |Xη)
being globally F-split is equivalent to S0(Xη, E |Xη ,OXη)= H 0(Xη,OXη).

We note that although its proof is independent, Theorem 3.1 is implied by
[Gongyo et al. 2015b, Theorem 4.1], which was put on arXiv before this paper. The
proof of that result relies on the minimal model program in dimension 3 in positive
characteristic, which is only established in characteristic ≥ 7 so far. On the other
hand, Theorem 5.1 covers some cases in characteristic < 7. It does not rely on the
minimal model program and is not implied by [Gongyo et al. 2015b].
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2. Preliminaries

We work over an algebraically closed field k of characteristic p > 0.

Preliminaries on rational connected varieties and the minimal model program.

Definition 2.1. For a variety X and a Q-Weil divisor on X such that K X +1 is
Q-Cartier. Let f : Y → X be a log resolution of (X,1) and write

KY = f ∗(K X +1)+
∑

i

ai Ei

where Ei is a prime divisor. We say that (X,1) is

• sub-Kawamata log terminal (sub-klt for short) if ai >−1 for any i ;

• Kawamata log terminal (klt for short) if ai >−1 for any i and 1≥ 0;

• log canonical if ai ≥−1 for any i and 1≥ 0.

Definition 2.2. [Kollár 1996, IV.3.2] Suppose that X is a variety over k.

(1) We say that X is rationally chain connected (RCC) if there is a family of
proper and connected algebraic curves g :U→ Y whose geometric fibers have
only rational components and there is a cycle morphism u :U → X such that
u(2) :U ×Y U → X ×k X is dominant.

(2) We say that X is rationally connected (RC) if (1) holds and moreover the
geometric fibers of g in (1) are irreducible.

Proposition 2.3. Let X be a klt Q-factorial threefold over an algebraically closed
field k and char(k) ≥ 7. Let g : W → X be a log resolution and assume that
KW + E = g∗K X + B, where E and B are exceptional divisors and the coefficients
in E are all 1. Then relative minimal model for (W, E) over X exists. Denote this
process by

W =W0
f0
99KW1

f1
99K · · ·

fN−1
99K WN =W ′.

Then we actually have W ′ = X. Moreover if we have a morphism h : X→ Y such
that every fiber of h is RCC, then every fiber of h ◦ g is RCC.

Proof. The existence of this minimal model program is by [Gongyo et al. 2015a,
Theorem 3.2]. So we have a morphism g′ :W ′→ X and we want to show that g′ is
the identity. Denote the strict transform of E by E ′, then KW ′ + E ′ = g′∗K X + B ′

for some exceptional Q-divisor B ′. By construction of the minimal model program
we know that g′∗K X + B ′ is nef over X which means that B ′ is g′-nef and since
X is klt the support of B ′ is the whole exceptional locus of g′. So we can get that
B ′ = 0 by the negativity lemma, and since X is Q-factorial we will get W ′ = X .

The proof of the last statement follows the proof of Proposition 3.6 in the same
reference. Without loss of generality we can do a base change and assume that the
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base field k is uncountable. Define F in the following way: if fi is a divisorial
contraction, then let E0 = E , Ei+1 = fi,∗Ei , and F be an arbitrary component
of Ei ; if fi is a flip and C is any flipping curve then let F be a component of Ei

that contains C . Let KF +1F :=
(
KWi + Ei −

1
n (Ei − F)

)∣∣
F , where n� 0. By

assumption KWi + Ei −
1
n (Ei − F) is plt, then by adjunction KF +1F is klt, hence

by [Tanaka 2014, Theorem 14.4] F is Q-factorial. We also know that −(KWi + Ei )

is fi -ample by assumption, then −(KF +1F ) is ample. Moreover by [Prokhorov
2001, Corollary 2.2.8] the coefficients of 1F are in the standard set

{
1− 1

n

∣∣ n ∈N
}
.

Let F̃ be the normalization of F . Then by [Hacon and Xu 2015, Theorem 3.1] we
know that (F̃,1F̃ ) is strongly F-regular and by Theorem 4.1 from that reference
F is a normal surface.

Next we consider three cases.

Case 1: If fi is a divisorial contraction and the exceptional divisor is contracted to
a point, then since −(KF +1F ) is ample, by [Kawamata 1994, Lemma 2.2] F is a
rational surface, in particular it is rationally connected.

Case 2: If fi is a divisorial contraction and the exceptional divisor is contracted
to a curve, then let p : F→ B be the Stein factorization of fi |F . By assumption
−(KF +1F ) is fi -ample, so it is p-ample. Then for a general fiber D of p,

(KF + D) · D = (KF +1F + D−1F ) · D = (KF +1F ) · D−1F · D < 0.

Here D is reduced and irreducible by [Bădescu 2001, Theorem 7.1], hence by
[Tanaka 2014, Theorem 5.3] D ∼= P1. Therefore every component of every fiber of
fi is a rational curve.

Case 3: If fi is a flip, then let C be an arbitrary flipping curve. By assumption we
have (KF +1F ) ·C < 0, C2 < 0, and 0 ≤ coeffC 1F < 1, so (KF +C) ·C < 0.
Again by [op. cit., Theorem 5.3] C ∼= P1.

We denote a fiber of h over y ∈ Y by FX,y . There is a morphism from Wi to Y
for every i , and we denote the fiber of this morphism over y as FWi ,y . Then there is
a rational map FWi ,y 99K FWi+1,y . From the above Cases 1–3 we see that compared
to FWi ,y , there are only rational curves or a rational surface generated in FWi+1,y .
So the RCC-ness of FWi+1,y implies the RCC-ness of FWi ,y . By assumption FX,y is
RCC, so FW,y is RCC. �

Proposition 2.4. Let X be a klt Q-factorial threefold over an algebraically closed
field k and char(k)≥ 7. Let f : X→ Y be a morphism from X to a normal surface Y.
Suppose we run a K X -minimal model program and it terminates at g : X ′→ Y. If
every fiber of g is RCC then every fiber of f is RCC.

Proof. This can be easily deduced from Proposition 2.3 by taking a common
resolution of X and X ′. The proof of [Gongyo et al. 2015a, Proposition 3.6] works
as well. �
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Preliminaries on F-singularities. In this article, for a proper variety X, a Q-
divisor 1, and the line bundle M , we will use the concepts of strongly F-regular,
the non-F-pure ideal σ(X,1) and S0(X, σ (X,1)⊗M). The definitions of these
can be found in many papers related to F-singularities, e.g., [Hacon and Xu 2015].
For a pair (X,1) where 1 is a Q-Cartier divisor we also follow the definition of
globally F-split in [Ejiri 2015].

Lemma 2.5. Let X be a surface, D an effective Q-divisor on X , f : X → C a
morphism from X to a smooth curve C , and (Xc, Dc) is a strongly F-regular pair
for general c ∈ C. Assume that −K X is big, K X + D ∼Q 0, then C ∼= P1.

Proof. By Kodaira’s lemma we can write D ∼Q ε f ∗H + E where H is an ample
Q-divisor on C , 0< ε ∈Q, E is an effective Q-divisor on X and (Xc, Ec) is also
strongly F-regular for general c ∈ C (since Xc is a curve). Suppose that C is not
isomorphic to P1. We know that K X/C + E ∼Q f ∗(−KC − εH) is f -nef and
K Xc + Ec is semiample for general c ∈ C , so by [Patakfalvi 2014, Theorem 3.16],
K X/C + E = K X − f ∗KC + E is nef. Since we have assumed that g(C) > 0 we
have that K X + E is nef. However this is impossible since K X + E ∼Q −ε f ∗H
where H is ample and ε > 0. �

Weak positivity. Let Y be a nonsingular projective variety, F a torsion-free coherent
sheaf on Y. We take i : Ŷ → Y to be the biggest open subvariety such that F |Ŷ is
locally free. Let Ŝk(F) := i∗Sk(i∗F).

Definition 2.6 [Viehweg 1983, Definition 1.2]. We call F weakly positive, if there
is an open subset U ⊆ Y such that for every ample line bundle H on Y and every
positive number α there exists some positive number β such that Ŝα·β(F)⊗Hβ is
generated by global sections over U.

Lemma 2.7. Weakly positive line bundles are nef.

Proof. This easily follows from Definition 2.6. �

3. Relative rational chain connectedness

In this section we prove the following

Theorem 3.1. Let X be a normal Q-factorial threefold over an algebraically closed
field k of characteristic ≥ 7 and (X, D) a klt pair. Let f : X → Z be a proper
morphism such that f∗OX = OZ , dim(Z) is 1 or 2, Z is klt, −K X is relatively
big, −(K X + D) is relatively semiample, and (Xz, Dz) is klt for general z ∈ Z. Let
g : Y → X be any birational morphism. Then the connected components of every
fiber of f ◦ g are rationally chain connected.
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Remark 3.2. In Theorem 3.1, if dim Z = 2, by adjunction and a theorem of Tate
(see [Liedtke 2013, Theorem 5.1]) we have that the generic fiber of f is smooth.
So in this case the condition that (Xz, Dz) is klt for general z ∈ Z is not necessary.

Proof. First we observe that (Xz, Dz) being klt implies that Xz is normal (in
particular reduced) and irreducible.

Next we prove that if every fiber of f is RCC, then every fiber of f ◦ g is RCC.
We take a log resolution of Y and denote it by p : Y ′→ Y and let q = g ◦ p. If
KY ′ = q∗K X + B̃ then KY ′ − B̃ = q∗K X and the coefficients of −B̃ are < 1. Then
we can add another effective divisor to make all the coefficients 1, and we denote
this divisor by Ẽ . Now we run a relative (KY ′ + Ẽ)-minimal model program of Y ′

over X . By Proposition 2.3 we see that if every fiber of f is RCC then every fiber
of f ◦ g ◦ p is RCC, hence every fiber of f ◦ g is RCC.

Therefore it suffices to show that every fiber of f is RCC. We consider the cases
of dim(Z)= 2 and dim(Z)= 1, respectively.

Case 1: dim(Z)= 2. If dim(Z) = 2 then a general fiber of f being normal and
−K X being relatively big implies that a general fiber of f is a smooth rational curve.
Next we run a relative minimal model program over Z and denote this process as

X = X0
f0
99K X1

f1
99K · · ·

fN−1
99K Xn = X ′.

Since−K X is relatively big we end up with a Mori fiber space X ′
h
−→ Z ′

p
−→ Z where

Z ′ is also a surface. Then the general fibers of h are rational curves. Moreover
since p∗OZ ′ =OZ we know that p is birational.

Now we prove that h is equidimensional. Suppose that this is not the case, then
there is a fiber F̃ of h over a point z̃ ∈ Z ′ which contains a 2-dimensional irreducible
component. If F̃ is reducible then let F̃1 be a 2-dimensional component of F̃ and F̃2

another component which intersects F̃1. We can choose a curve C̃2 ⊆ F̃2 such that
F̃1 · C̃2 > 0. On the other hand if we take a general point z′ ∈ Z ′ then h−1(z′) is an
irreducible curve and h−1(z′) · F̃2 = 0. This contradicts the fact that ρ(X ′/Z ′)= 1.
If F̃ is irreducible, by Bertini’s theorem we have a very ample divisor H ⊂ X ′

such that H ∩ F̃ is an irreducible curve which we denote by C̃ . We do the Stein
factorization of h|H and denote the process as

H
h1
−→ Z ′′

h2
−→ Z ′,

then h1 is birational and C̃ is an exceptional curve of h1. After possibly replacing
Z ′′ by its normalization we can assume that Z ′′ is normal. Now F̃ · C̃ is equal
to C̃2, viewed as the self-intersection of C̃ in H, so by the negativity lemma it is
negative. On the other hand we can still take a general point z′ ∈ Z ′ as above such
that h−1(z′) · F̃ = 0. This also contradicts the fact that ρ(X ′/Z ′)= 1.
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Since h is equidimensional, by [Debarre 2001, Lemma 3.7] the components of
every fiber of h are rational curves. Then by Proposition 2.4 every fiber of f is
RCC.

Case 2: dim(Z)= 1. Without loss of generality we can do a base change and
assume that the base field k is uncountable. By passing to the normalization of Z
we can assume that Z is smooth. Then since every closed point of Z is a Cartier
divisor, every fiber of f is also Cartier, hence f is equidimensional.

We first show that the general fibers of f are rationally chain connected. Let F
be a general fiber of f . Since we assume that (F, D|F ) is klt, by adjunction

K X |F ≡num (K X + F)|F = KF +DiffF (0),

where DiffF (0) ≥ 0; see [Kollár 1992, Proposition-Definition 16.5]. Therefore,
−(KF +DiffF (0)) is big, hence −KF as well. As a result, κ(F)=−∞ and F is
birationally ruled by classification of surfaces. To prove that the general fibers of
f are RCC it suffices to prove that F is rational. By assumption −(K F + D|F )=
−(K X + D)|F is semiample, so there exists an effective Q-divisor H such that
H ∼Q −(K F + D|F ) and (F, D|F + H) is klt. We define 1 := D|F + H . Let
π : F ′ → F be a minimal resolution of (F,DiffF (0)), then F ′ maps to a ruled
surface F ′′ over a smooth curve B via a sequence of blowdowns and we denote the
morphism by ψ . The situation is as follows:

F

F ′

F ′′

B

π ψ

q

Since (F,1) is klt, by [Kollár and Mori 1998, Theorem 4.7] π and ψ only contract
copies of P1. So F is RCC if and only if F ′′ is RCC. Define 1′′ on F ′′ via

K F ′′ +1
′′
= ψ∗π

∗(KF +1).

Then (F,1) being klt implies that (F ′′,1′′) is klt.
We denote a general fiber of q by R. By construction R ∼= P1, so we know that

(R,1′′|R) is klt and hence strongly F-regular. Then by applying Lemma 2.5 on F ′′

we know that B = P1. So F is rational. Therefore we have proven that the general
fibers of f are RCC.

Since we have assumed that the base field k is uncountable, by [Kollár 1996,
Chapter IV, Corollary 3.5.2] we know that every fiber of f is RCC. �
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4. A canonical bundle formula for threefolds in positive characteristics

In this section following the idea of the proof of [Prokhorov and Shokurov 2009]
we construct a canonical bundle formula in characteristic p for a morphism from a
threefold to a surface, whose general fibers are P1. There are similar constructions
in [Cascini et al. 2015, 6.7; Das and Hacon 2016, Theorem 4.8].

Let M0,n be the moduli space of n-pointed stable curves of genus 0, let f0,n :

U0,n →M0,n be the universal family, and let P1,P2, . . . ,Pn be the sections of
f0,n which correspond to the marked points. Let dj ( j = 1, 2, . . . , n) be the rational
numbers such that 0< dj ≤ 1 for all j ,

∑
j dj = 2, and D =

∑
j djPj .

Lemma 4.1 [Das and Hacon 2016, Lemma 4.6; Kawamata 1997, Theorem 2].

(1) There exists a smooth projective variety U∗0,n , a P1-bundle g0,n : U∗0,n→M0,n ,
and a sequence of blowups with smooth centers

U0,n = U (1) σ2
−→ U (2) σ3

−→ · · ·
σn−2
−−→ U (n−2)

= U∗0,n

(2) Let σ : U0,n → U∗0,n be the induced morphism, and let D∗ = σ∗D. Then
KU0,n

+D− σ ∗(KU∗0,n +D∗) is effective.

(3) There exists a semiample Q-divisor L on M0,n such that

KU∗0,n +D∗ ∼Q g∗0,n(KM0,n
+L).

Definition 4.2. Let f : X→Y be a surjective proper morphism between two normal
varieties and K X + D ∼Q f ∗L , where D is a boundary divisor on X and L is a
Q-Cartier Q-divisor on Y. Let (X, D) be log canonical near the generic fiber of f ,
i.e., ( f −1U, D| f −1U ) is log canonical for some Zariski dense open subset U ⊆ Y.
We define

Ddiv :=
∑

(1− cQ)Q,

where Q ⊂ Z are prime Weil divisors on Z and

cQ = sup{c ∈ R : (X, D+ c f ∗Q)is log canonical over the generic point ηQ of Q}.

Next we define
Dmod := L − KY − Ddiv,

so K X + D = f ∗(KY + Ddiv+ Dmod).

Theorem 4.3. Let f : X → Y be a proper surjective morphism, where X is a
normal threefold and Y is a normal surface over an algebraically closed field k
of characteristic p > 0. Assume that Q =

∑
i Qi is a divisor on Y such that f is

smooth over (Y − Supp(Q)) with fibers isomorphic to P1. Let D =
∑

i di Di be a
Q-divisor on X where di = 0 is allowed, which satisfies the following conditions:
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(1) (X, D ≥ 0) is klt on a general fiber of f .

(2) Suppose D = Dh
+ Dv where Dh is the horizontal part and Dv is the vertical

part of D. Then p= char(k)> 2/δ, where δ is the minimum nonzero coefficient
of Dh .

(3) K X + D ∼Q f ∗(KY +M) for some Q-Cartier divisor M on Y.

Then we have that Dmod is Q-linearly equivalent to an effective Q-divisor. Here
Dmod is defined as in Definition 4.2. Moreover if (X, D) is klt then there exists an
effective Q-divisor Dmod on Y such that Dmod ∼Q Dmod and (Y, Ddiv +Dmod) is
klt.

Proof. First we reduce the problem to the case where all components of Dh are
sections. Let Di0 be a horizontal component of D and Di0→ D[

i0→ Y be the Stein
factorization of f |Di0

. Let Y ′→ D[
i0 be the normalization of D[

i0 , then Y ′→ Y is a
finite surjective morphism of normal surfaces. Let X ′ be the normalization of the
component of X ×Y Y ′ dominating Y.

Y Y ′

X X ′

ν

f ′f

ν′

Let m = deg(µ : Y ′→ Y ) and l be a general fiber of f . Then

m = Di · l ≤
1
di
(D · l)= 1

di
(−K X · l)=

2
di
≤

2
δ
< char(k).(4-1)

Therefore ν is a separable and tamely ramified morphism.
Let D′ be the log pullback of D under ν ′, i.e.,

K X ′ + D′ = ν ′∗(K X + D).

More precisely by [Kollár 1992, 20.2],

D′ =
∑
i, j

d ′i j D′i j , ν ′(D′i j )= Di , d ′i j = 1− (1− di )ei j ,

where ei j is the ramification indices along D′i j .
By construction X dominates Y. Also, since ν is étale over a dense open subset

of Y, say ν−1U →U, and étale morphisms are stable under base change, the map
( f ′ ◦ν)−1U→ f −1U is étale. Thus the ramification locus 3 of ν ′ does not contain
any horizontal divisor f ′, i.e., f ′(3) 6= Y ′. Therefore D′ is a boundary near the
generic fiber of f ′, i.e., D′h is effective. We observe that the coefficients of D′h can
be computed by intersecting with a general fiber of f ′ : X ′→Y ′, hence they are equal
to the coefficient of Dh

⊆ X . Thus the condition p> 2/δ remains true for D′ on X ′.
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After finitely many such base changes we get a family f ′′ : X ′′ → Y ′′, such
that all of the horizontal components of D′′ are rational sections of f ′′. Here
D′′ is the log pullback of D via the induced finite morphism α : X ′′ → X , i.e.,
KX ′′ + D′′ = α∗(KX + D).

By construction of M0,n there is a generically finite rational map Y ′′ 99KM0,n .
Let β0 : Ỹ → Y ′′ be a morphism that resolves the indeterminacies of Y ′′→M0,n

and X̃ the normalization of X ′′ ×Y ′′ Ỹ. We have a morphism Ỹ →M0,n and let
X̂ = Ỹ ×M0,n

U0,n . Let X ] be a common resolution of X̃ and X̂ . We have the
following diagram:

Y Ỹ M0,n

X X̃ X̂ U0,n U∗0,n

X ]

Y ′′

X ′′

φ0

f f̃ f̂ f0,n g0,n

σ

λ µ

βα

β0α0

f ′′

f ]

π

φ̂ψ

ψ0

Let D] and D̂ be Q-divisors on X ] and X̂ respectively, defined by

KX ] + D]
= π∗(KX + D) and KX̂ + D̂ = µ∗(KX ] + D]).

We also define D′′mod and D′′div on Y ′′ for (X ′′, D′′) as in Definition 4.2, such that

KX ′′ + D′′ = f ′′∗(KY ′′ + D′′mod+ D′′div),

and we define D̃mod and D̃div on Ỹ in a similar way. Since KX ]+D] is the pullback
of some Q-divisor from the base Ỹ we get

KX ] + D]
= µ∗(KX̂ + D̂).

Since Ddiv does not depend on the birational modification of the family [Prokhorov
and Shokurov 2009, Remark 7.3], we will define it with respect to f̂ : X̂→ Ỹ.

Since φ̂ is generically finite and D∗ is horizontal it follows that φ̂∗D∗ is horizontal
too. Since D̂h is also horizontal,

D̂h
= φ̂∗D∗.(4-2)

From the construction of the map σ : U0,n → U∗0,n we see that (F,D∗|F ) is log
canonical for any fiber F of g0,n : U∗0,n→M0,n . Since the fibers of f̂ : X̂→ Ỹ are
isomorphic to the fiber of g0,n , we see that (F̂, D̂h

|F̂ ) is also log canonical, where
F̂ is any fiber of f̂ . Let D̂v

i be a component of D̂v and η the generic point of f̂ (D̂v
i ).
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Then by inversion of adjunction we know that (X̂η, (D̂v
i + D̂h)|η) is log canonical.

Since the fibers of f̂ are reduced, the log canonical threshold of (X̂ , D̂; D̂v
i ) over

the generic point of D̂v
i is (1− coeffD̂v

i
D̂). Hence we get D̂v

= f̂ ∗ D̃div. Note that
the coefficients of D̂v can be > 1. By definition of D̃mod we have

KX̂ + D̂h
∼Q f̂ ∗(KỸ + D̃mod).(4-3)

Then

(4-4) KX̂ + D̂h
− f ∗(KỸ +φ

∗

0L)= K X̂/Ỹ + D̂h
− φ̂∗KU∗0,n/M0,n

− φ̂∗D∗ ∼Q 0,

where the first equality follows from (4-3) and Lemma 4.1(3), and the second
relation from (4-2) and [Liu 2002, Chapter 6, Theorem 4.9(b) and Example 3.18].

Since f̂ has connected fibers, by (4-3) and (4-4) and projection formula we get

D̃mod ∼Q φ∗0L,(4-5)

i.e., D̃mod is semiample.
Now since α0 : Y ′′→ Y is a composition of finite morphisms of degree strictly

less than char(k) and β0 is a birational morphism, by [Ambro 1999, Theorem 3.2
and Example 3.1],

KY ′′ + D′′div ∼Q α∗0(KY + Ddiv)

and

KỸ + D̃div ∼Q β∗0 (KY ′′ + D′′div).

So α∗0 Dmod ∼Q D′′mod, and β∗0 D′′mod ∼Q D̃mod. By the projection formula we have

D′′mod ∼Q β0,∗ D̃mod.

Then since α0 is finite,

ψ0,∗ D̃mod ∼Q α0,∗β0,∗ D̃mod ∼Q α0,∗D′′mod ∼Q α0,∗α
∗

0 Dmod ∼Q Dmod.

Here we view the pushforward through α0 as pushforward of cycles. Therefore
Dmod is Q-linearly equivalent to an effective divisor.

Next we prove the second statement. Since α is finite, by [Kollár 2013, Corol-
lary 2.42] we know that (X ′′, D′′) is klt, and as β, λ, and µ are birational we know
that (X̂ , D̂) is sub-klt, in particular D̂v has coefficients<1. Since f̂ is a P1 fibration
and (Ỹ, D̃div) is log smooth we have that (Ỹ, D̃div) is sub-klt. By construction D̃mod

is semiample, so by [Tanaka 2015, Theorem 1] we know that (Ỹ, D̃div+ D̃mod) is sub-
klt up to Q-linear equivalence. Then KY ′′+D′′mod+D′′div ∼Q β0,∗(KỸ+ D̃div+ D̃mod)

is also sub-klt. Finally using [Kollár 2013, Corollary 2.42] again and the fact that
Dmod+ Ddiv ≥ 0 we get that (Y, Dmod+ Ddiv) is klt. �
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5. Global rational chain connectedness

In this section we prove the following theorem.

Theorem 5.1. Let X be a projective threefold over an algebraically closed field k
of characteristic p > 0, and f : X→ Y a projective surjective morphism from X to
a projective variety Y such that f∗OX =OY. Let D be an effective Q-divisor, and
Xη the geometric generic fiber of f . Assume that the following conditions hold:

(1) (X, D) is klt, −K X is big and f-ample, K X + D ∼Q 0 and the general fibers
of f are smooth.

(2) p > 2/δ, where δ is the minimum nonzero coefficient of D.

(3) D = E + f ∗L where E is an effective Q-Cartier divisor such that p - ind(E),
(Xη, E |Xη) is globally F-split, and L is a big Q-divisor on Y.

(4) dim(Y ) is 1 or 2.

Then X is rationally chain connected.

Remark 5.2. Under the assumptions of Theorem 5.1, the smoothness of the general
fibers of f holds in characteristic p ≥ 11 when dim Y = 1 by [Hirokado 2004,
Theorem 5.1(2)], and in characteristic p ≥ 5 when dim Y = 2, as is explained in
Remark 3.2.

Proposition 5.3. Let f : X → Y be a projective surjective morphism between
normal varieties with f∗OX =OY. Assume that the following conditions hold:

(1) The general fibers of f are isomorphic to P1.

(2) Y is rationally chain connected.

Then X is rationally chain connected.

Proof. The proof is essentially the same as [Gongyo et al. 2015a, Lemma 3.12
and Proposition 3.13]. We take two general points x1, x2 ∈ X and let y1 = f (x1),
y2 = f (x2), so by construction f −1(y1)∼= f −1(y2)∼=P1. By assumption y1 and y2

can be connected by a chain of rational curves, say C1,C2, . . . ,Cn . Let Ci → Ci

be the normalization for each Ci , Si := f −1(Ci ), Si := Si ×Ci
Ci , and gi : Si→ Si

the induced morphisms. Now the morphism Si → Ci is a flat projective morphism
whose general fibers are P1, by [de Jong and Starr 2003, Theorem] it has a section
which we denote by C̃i . Then x1 and x2 is connected by f −1(y1), f −1(y2), gi (C̃i )

and the fibers of f over the intersection points of {Ci }, which is a union of rational
curves by [Debarre 2001, Lemma 3.7]. �

Proof of Theorem 5.1. We first prove the following lemma.

Lemma 5.4. Under the condition of Theorem 5.1, −KY is big.
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Proof. By assumption m(KXη + E |Xη) ∼Q 0 for sufficiently large and divisible m;
in particular, the k(η)-algebra⊕

m≥0

H 0(m(KXη + E |Xη)
)

is finitely generated. On the other hand since (Xη, E |Xη) is globally F-split we
have that

S0(Xη, σ (Xη, E |Xη)⊗OXη(m(KXη + E |Xη))
)
= H 0(Xη,OXη(m(KXη + E |Xη))

)
.

Here we would like to mention that for a line bundle M and a Q-Cartier divisor 1,
the notation S0(X,1,M) is the same as the standard notation S0(X, σ (X,1)⊗M);
see [Hacon and Xu 2015, between Lemma 2.2 and Proposition 2.3]. Therefore by
[Ejiri 2015, Theorem 1.1],

f∗OX (m(KX/Y + E))∼= f∗OX ( f ∗(−m(KY + L)))=OY (−m(KY − L))

is weakly positive for m sufficiently large and divisible. By Lemma 2.7, −KY − L
is nef, so −KY is big. �

Next we consider the following two cases.

Case 1: Y is 1-dimensional. After possibly taking the normalization of Y we can
assume that Y is smooth. Then Lemma 5.4 implies that g(Y )= 0, i.e., Y ∼= P1. Let
F be a general fiber of f . By assumption F is smooth and KF is anti-ample, hence
F is separably rationally connected. By [de Jong and Starr 2003, Theorem] we
know that f has a section which we denote by s. Then s(Y ) is a rational curve in
X which dominates Y. Therefore we get that X is rationally chain connected.

Case 2: Y is 2-dimensional. By assumption, a general fiber of f is isomorphic to P1.
Now by Lemma 5.4 we know that −KY is big. On the other hand since (X, D) is
klt, by Theorem 4.3 there is a nonzero effective Q-Cartier divisor M on Y such that
KY +M ∼Q 0 and (Y,M) is klt. Then by the proof of Case 2 of Theorem 3.1 we
know that Y is rational. Finally by Proposition 5.3 we get that X is rationally chain
connected. �
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