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We show that, in the setting of Galois pairs, the spherical characters of uni-
tary supercuspidal representations satisfy an orthogonality relation.

1. Main result

Let F be a finite extension field of Qp for an odd prime p, and E a quadratic field
extension of F. Let G be a connected reductive group over F, and G = RE/F G
the Weil restriction of G with respect to E/F. The nontrivial automorphism in
Gal(E/F) induces an involution θ , defined over F, on G. The pair (G,G) is called
a Galois pair, which is a kind of symmetric pair.

Let π be an irreducible admissible unitary representation of G(E)= G(F). We
say that π is G-distinguished if the space HomG(F)(π,C) is nonzero. We fix a
Haar measure dg on G(E). Given an element ` in HomG(F)(π,C), the spherical
character 8π,` associated to ` is the distribution on G(E) defined by

8π,`( f ) :=
∑

v∈ob(π)

`(π( f )v)`(v), f ∈ C∞c (G(E)),

where ob(π) is an orthonormal basis of the representation space Vπ of π . In this
note, our main goal is to show that spherical characters satisfy an orthogonality
relation when π is unitary supercuspidal.

Before stating our result, we introduce some notation. Recall that an element
g ∈ G(E) is called θ -regular if s(g) := g−1θ(g) is regular semisimple in G(E) in
the usual sense; a θ -regular element g is called θ -elliptic if the identity component
of the centralizer of s(g) in G is an elliptic F-torus. We denote by G(E)reg (resp.
G(E)ell) the subset of θ -regular (resp. θ -elliptic) elements of G(E).

Theorem 1.1 [Hakim 1994, Theorem 1]. The spherical character 8π,` is locally
integrable on G(E) and locally constant on the θ -regular locus G(E)reg.
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We denote by φπ,` the locally integrable function on G(E) representing the
distribution 8π,`, that is,

8π,`( f )=
∫

G(E)
φπ,`(g) f (g) dg, f ∈ C∞c (G(E)).

We will also call φπ,` a spherical character. Note that φπ,` is bi-G(F)-invariant
and independent of the choice of Haar measures dg. Theorem 1.1 is analogous to
the classical result of Harish-Chandra [1999, Theorem 16.3] on admissible invariant
distributions on connected reductive p-adic groups.

When π is unitary supercuspidal, we will show that the spherical characters φπ,`
satisfy an orthogonality relation (see Theorem 1.2). Before stating this relation, we
need to review the Weyl integration formula in the setting of symmetric pairs. We
refer the reader to [Rader and Rallis 1996, §3] or [Hakim 2003, §6] for the notation
below and more details on this integration formula.

Let T be a set of representatives for the equivalence classes of Cartan subsets of
G(E) with respect to the involution θ . For T ∈ T , denote Treg = T ∩G(E)reg. For
T ∈ T , the map

µ : G(F)× Treg×G(F)→ G(E)reg, (h1, t, h2) 7→ h1th2,

is submersive and

G(E)reg =
∐

T∈T

G(F)TregG(F).

Let A be the split component of the center of G. For each θ-regular element
g, we choose a Haar measure on Gγ (F) where γ = s(g) and Gγ is the split
component of the centralizer of γ in G. Fix Haar measures on A(F) and G(F).
For φ ∈ C∞c (G(E)/A(F)) and g ∈ G(E)reg, the orbital integral O(g, φ) of φ at g
is defined to be

O(g, φ)=
∫

A(F)\G(F)

∫
Gγ (F)\G(F)

φ(h1gh2) dh1 dh2,

where γ = s(g) and the measures inside the integral are quotient measures. From the
definition we see that orbital integrals are bi-G(F)-invariant functions on G(E)reg.
For T ∈ T , the group Gs(t) is the same for each t ∈ Treg. Let DG(E) be the usual
Weyl discriminant function on G(E). Then the Weyl integration formula reads as
follows: with suitably normalized measures, for each φ ∈ C∞c (G(E)/A(F)), we
have

(1)
∫

G(E)/A(F)
φ(g) dg =

∑
T∈T

1
wT

∫
T
|DG(E)(s(t))|E · O(t, φ) dt,
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where wT are some positive constants only depending on T (see [Rader and Rallis
1996, Theorem 3.4] and [Hakim 2003, Lemma 5]). Let Tell be the subset of T

consisting of elliptic Cartan subsets, that is, for T ∈ T , T belongs to Tell if and
only if Treg ⊂ G(E)ell.

Theorem 1.2. (1) Suppose that π is unitary supercuspidal and G-distinguished.
Let ` be a nonzero element of HomG(F)(π,C). Then∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E · |φπ,`(t)|2 dt

is nonzero.

(2) Suppose that π and π ′ are two unitary supercuspidal representations of G(E)
and π � π ′. Then for any ` ∈ HomG(F)(π,C) and `′ ∈ HomG(F)(π

′,C), we
have ∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E ·φπ,`(t) ·φπ ′,`′(t) dt = 0.

Theorem 1.2 is an analog of the classical orthogonality relation for characters
of discrete series (see [Clozel 1991] or [Kazhdan 1986] for this classical result).
The following corollary, which has potential application in simple relative trace
formula, is a direct consequence of Theorem 1.2.

Corollary 1.3. Suppose that π is unitary supercuspidal and G-distinguished. Let `
be a nonzero element of HomG(F)(π,C). Then the spherical character 8π,` does
not vanish identically on G(E)ell.

2. Proof of Theorem 1.2

Lemma 2.1. Suppose that γ = s(g) with g ∈ G(E) lies in an F-Levi subgroup M
of G. Then there exists m ∈ M(E) such that γ = s(m).

Proof. First we recall some basic facts about symmetric spaces. Denote G=RE/F G
and M = RE/F M. Let X = G/G and XM = M/M be the quotient varieties. As
F-varieties, X and XM are isomorphic to the identity components of the varieties
defined by the equations

X̃ = {x ∈ G : xθ(x)= 1} and X̃M = {x ∈ M : xθ(x)= 1}

respectively [Richardson 1982, 2.1–2.4]. The exact sequences

1→ G→ G→ X→ 1 and 1→ M→ M→ XM → 1

induce the following exact cohomology sequences:

1→ s(G(F))→ X(F)→ H 1(F,G)
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and

1→ s(M(F))→ XM(F)→ H 1(F,M),

where we use the standard notation H 1(F, •) to denote the Galois cohomology of
algebraic groups [Serre 1997, Chapter III. §2]. However, the above exact sequences
have little to do with our assertion. What we need are the following exact sequences
[Carmeli 2015, Lemma 4.1.1]:

1 → s(M(F)) → X̃M(F) → H 1(θ, M(F)) → 1
↓ ↓ ↓

1 → s(G(F)) → X̃(F) → H 1(θ, G(F)) → 1,

where

H 1(θ, M(F)) := H 1(Gal(E/F),M(E))

and

H 1(θ, G(F)) := H 1(Gal(E/F),G(E)).

Note that γ ∈ X̃M(F), and Lemma 2.1 asserts that γ ∈ s(M(F)). Thus it suffices
to show that the image [γ ]M of γ in H 1(θ, M(F)) is trivial. On the other hand,
we know that the image [γ ]G of γ in H 1(θ,G(F)) is trivial, and [γ ]G is also the
image of [γ ]M under the natural map

ι : H 1(θ, M(F))→ H 1(θ,G(F)).

We claim that ι is injective, which implies that [γ ]M is trivial. Consider the exact
sequences [Serre 1997, Chapter I. §5.8(a)]:

1 → H 1(θ, M(F)) → H 1(F,M) → H 1(E,M)Gal(E/F)

↓ ↓ ↓

1 → H 1(θ,G(F)) → H 1(F,G) → H 1(E,G)Gal(E/F).

Let P an F-parabolic subgroup of G such that P =MnU where U is the unipotent
radical of P. We have natural isomorphisms (see [Gille 2007, Lemma 16.2])

H 1(F, P)−→' H 1(F,M), and H 1(E, P)−→' H 1(E,M),

and natural injections [Serre 1997, Chapter III. §2.1]

H 1(F, P) ↪→ H 1(F,G) and H 1(E, P) ↪→ H 1(E,G).
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In summary we have the following commutative diagram of exact sequences:

1 → H 1(θ, G(F)) → H 1(F,G) → H 1(E,G)
↑ ↑ ↑

1 → H 1(θ, P(F)) → H 1(F, P) → H 1(E, P)
↓ ↓ ↓

1 → H 1(θ, M(F)) → H 1(F,M) → H 1(E,M),

which implies that ι is injective. �

Lemma 2.2. Suppose that φ is a matrix coefficient of a unitary supercuspidal
G-distinguished representation. Then, for any g ∈ G(E)reg, the orbital integral
O(g, φ) vanishes unless g is θ -elliptic.

Proof. Since φ is a matrix coefficient of a unitary supercuspidal G-distinguished
representation, it belongs to C∞c (G(E)/A(F)) and is a supercusp form [Harish-
Chandra 1970, Part I. §3]. In particular, for any unipotent radical N of a proper
parabolic subgroup P of G, we have∫

N (E)
φ(gn) dn = 0

for any g ∈ G(E). Write γ = s(g). Suppose that g is not θ-elliptic, which means
that γ is not elliptic by definition. Therefore there exists a Levi subgroup M of a
proper parabolic subgroup P of G such that Gγ ⊂ M. According to Lemma 2.1
there exists m ∈ M(E) such that γ = s(m). Since

O(g, φ)= O(m, φ),

we assume that g is in M(E) from now on. Let N be the unipotent radical of P, and
K a maximal open compact subgroup of G(F) such that G(F)=M(F)N (F)K. Fix
Haar measures dm, dn and dk on M(F)/A(F), N (F) and K/K∩A(F) respectively
so that dh= dk dn dm on G(F)/A(F). Denote K = K/K ∩ A(F). Then the orbital
integral O(g, φ) can be written as follows:

O(g, φ)=
∫

A(F)\G(F)

∫
Gγ (F)\G(F)

φ(h−1
1 gh2) dh2 dh1

=

∫
(A(F)\M(F))×N (F)×K

∫
(Gγ (F)\M(F))×N (F)×K

φ(k−1
1 n−1

1 m−1
1 gm2n2k2)

· dk1 dk2 dn1 dn2 dm1 dm2

=

∫
(A(F)\M(F))×N (F)

∫
(Gγ (F)\M(F))×N (F)

φ′(n−1
1 m−1

1 gm2n2)

· dn1 dn2 dm1 dm2,
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where

φ′(x) :=
∫

K×K
φ(k1xk2) dk1 dk2, x ∈ G(E)/A(F).

Note that φ′ is still a supercusp form on G(E). From now on, for convenience, we
write φ instead of φ′ and g instead of m−1

1 gm2. Let γ = s(g) for this “new” g. We
claim that:

(2)
∫

N (F)×N (F)
φ(n−1

1 gn2) dn1 dn2 = 0.

It is clear that this claim implies the lemma directly.
Now we begin to prove claim (2). Note that∫

N (F)×N (F)
φ(n−1

1 gn2) dn1 dn2 =

∫
N (F)×N (F)

φ(g · g−1n1gn2) dn1 dn2.

Denote N = RE/F N. Consider the morphism of the algebraic varieties:

ηg : N × N → N, (n1, n2) 7→ g−1n1gn2.

We will show that ηg is an isomorphism. If g−1n1gn2 = g−1n′1gn′2, we have the
relation

(3) n−1
2 γ n2 = s(n1gn2)= s(n′1gn′2)= n′−1

2 γ n′2.

Since γ is regular, according to [Harish-Chandra 1970, Lemma 22], the equality (3)
implies n2 = n′2, and thus n1 = n′1. Hence ηg is injective. To show ηg is surjective,
consider the Lie algebras n′ = Lie(N ′), n′′ = Lie(N ) and n= Lie(N), where N ′ is
the unipotent subgroup g−1 Ng. Since

2 dimF n′ = 2 dimF n′′ = dimF n

and n′ ∩ n′′ = {0} by the injectivity of ηg, we have n = n′ ⊕ n′′. Therefore ηg is
submersive and thus N ′ · N is open in N . On the other hand, since N ′ and N are
unipotent groups, the orbit N ′ · N of 1 under the left and right translations of N ′

and N is closed in N . Hence N = N ′ · N, that is, ηg is surjective. It turns out that∫
N (E)

φ(gn) dn =
∫

N (F)×N (F)
jg(n1, n2) ·φ(g · g−1n1gn2) dn1 dn2,

where jg(n1, n2) is the Jacobian of ηg at (n1, n2). Note that

jg(n1, n2)= |ad(g)|n(F)|E ,

which is independent of (n1, n2). At last, the claim (2) follows from the condition
that φ is a supercusp form. �
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Proof of Theorem 1.2. Let π be a unitary supercuspidal representation of G(E) and
` ∈ HomG(F)(π,C). By [Zhang 2016, Theorem 1.5], there exists a vector u0 in the
space Vπ such that `=Lu0 , where the G(F)-invariant linear form Lu0 is defined by

Lu0(v) :=

∫
G(F)/A(F)

〈π(h)v, u0〉 dh, v ∈ Vπ .

Set

φ(g)= 〈π(g)u0, u0〉,

which is a matrix coefficient of π . Then, according to [Zhang 2016, Corollary 1.11],
the spherical character 8π,` has the following expression:

(4) 8π,`( f )=
∫

G(F)/A(F)

∫
G(F)/A(F)

∫
G(E)

φ(h1gh2) f (g) dg dh1 dh2.

Note that Gs(g) = A for g ∈ G(E)ell. Therefore, when f ∈ C∞c (G(E)ell), we get

8π,`( f )=
∫

G(E)
O(g, φ) f (g) dg.

On the other hand, by Theorem 1.1, we have

8π,`( f )=
∫

G(E)
φπ,`(g) f (g) dg.

Therefore, for g ∈ G(E)ell, we obtain

(5) φπ,`(g)= O(g, φ).

Now let π ′ be another unitary supercuspidal representation of G(E) and `′ ∈
HomG(F)(π

′,C). Let φ′ be a matrix coefficient of π ′ such that the distribution
8π ′,`′ can be expressed as

8π ′,`′( f )=
∫

G(F)/A(F)

∫
G(F)/A(F)

∫
G(E)

φ′(h1gh2) f (g) dg dh1 dh2

for any f ∈ C∞c (G(E)). Thus

(6) φπ ′,`′(g)= O(g, φ′)

for any g ∈ G(E)ell. We choose f1 ∈ C∞c (G(E)) so that φ f1 = φ
′, where

φ f1(g) :=
∫

A(F)
f1(ag) da.

Then, by the Weyl integration formula (1), we have
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8π,`( f1)=

∫
G(E)/A(F)

φπ,`(g) ·φ f1(g) dg

=

∑
T∈T

1
wT

∫
T
|DG(E)(s(t))|E ·φπ,`(t) · O(t, φ′) dt.

Combining Lemma 2.2 and (6), we get

(7) 8π,`( f1)=
∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E ·φπ,`(t) ·φπ ′,`′(t) dt.

For the first assertion, we take π ′ = π , `′ = ` and φ′ = φ. Then (7) implies

8π,`( f1)=
∑

T∈Tell

1
wT

∫
T
|DG(E)(s(t))|E · |φπ,`(t)|2 dt.

On the other hand, we set
v0 =

1
√
〈u0, u0〉

u0

and choose {vi }i∈N such that {vi }i≥0 is an orthonormal basis of Vπ . Then

π(φ)v0 = λv0 for some nonzero λ, and π(φ)vi = 0 for i ≥ 1.

Therefore
8π,`( f1)= λ|`(v0)|

2.

From the proof of [Zhang 2016, Theorem 1.4] (page 1542), we see that

`(u0)= c
∫

A(E)G(F)\G(E)
|`(π(g)u0)|

2 dg = c′〈u0, u0〉,

where c and c′ are some nonzero numbers. Hence 8π,`( f1) is nonzero. This
completes the proof of the first assertion.

As for the second assertion, note that

8π,`( f1)=

∫
G(F)/A(F)

∫
G(F)/A(F)

∫
G(E)/A(F)

φ(h1gh2)φ′(g) dg dh1 dh2 = 0,

since the inner integral over G(E)/A(F) vanishes by the Schur orthogonality
relation. Hence the assertion is deduced from (7) directly. �
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