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A DIRECT METHOD OF MOVING PLANES FOR THE SYSTEM
OF THE FRACTIONAL LAPLACIAN

CHUNXIA CHENG, ZHONGXUE LÜ AND YINGSHU LÜ

We establish a direct method of moving planes for systems of fractional
Laplacian equations. By using this direct method of moving planes, we
obtain symmetry and nonexistence of positive solutions for the following
system of fractional Laplacian equations:{

(−1)α/2u(x)= vq(x), x ∈ Rn,

(−1)α/2v(x)= u p(x), x ∈ Rn.

1. Introduction

In this paper, we consider the following system of fractional Laplacian equations:

(1-1)
{
(−1)α/2u(x)= vq(x), x ∈ Rn,

(−1)α/2v(x)= u p(x), x ∈ Rn.

When α = 2, system (1-1) is an important model, the Lane–Emden system. It is
conjectured that if 1/(p+ 1)+ 1/(q + 1) > (n− 2)/n, then there are no nontrivial
classical solutions of (1-1) in RN with N ≥ 3. The conjecture has been proved
to be true for radial solutions in all dimensions in [Mitidieri 1996]. The cases of
N = 3, 4 for the conjecture in general have also been solved recently in [Poláčik
et al. 2007] and [Souplet 2009], respectively. The interested reader can refer to the
above papers for detailed descriptions (see also the works [Busca and Manásevich
2002; Serrin and Zou 1998], etc.).

More generally, Troy [1981] used the maximum principle and the method of
moving parallel planes to investigate symmetry properties of solutions of systems of
semilinear elliptic equations 1ui + fi (u1, . . . , un)= 0, i = 1, . . . , n, in a domain
of Rn.
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MSC2010: 35B09, 35B50, 35B53, 35J61.
Keywords: the fractional Laplacian, maximum principles for antisymmetric functions, narrow region

principle, decay at infinity, method of moving planes, radial symmetry, nonexistence of positive
solutions.

301

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2017.290-2
http://dx.doi.org/10.2140/pjm.2017.290.301


302 CHUNXIA CHENG, ZHONGXUE LÜ AND YINGSHU LÜ

In the special case p = q , u = v, (1-1) changes to

(1-2) (−1)α/2u(x)= u p(x), x ∈ Rn.

Here the fractional Laplacian in Rn is a nonlocal pseudodifferential operator assum-
ing the form

(1-3) (−1)α/2u(x)= Cn,α lim
ε→0

∫
Rn\Bε(x)

u(x)− u(z)
|x − z|n+α

dz,

where α is any real number between 0 and 2. This operator is well defined in S,
the Schwartz space of rapidly decreasing C∞ functions in Rn. In this space, it can
also be equivalently defined in terms of the Fourier transform

̂(−1)α/2u(ξ)= |ξ |αû(ξ),

where û is the Fourier transform of u. One can extend this operator to a wider space
of functions.

Let

Lα =
{

u : Rn
→ R |

∫
Rn

|u(x)|
1+ |x |n+α

dx <∞
}
.

Then it is easy to verify that for u ∈ Lα∩C1,1
loc , the integral on the right-hand side of

(1-3) is well defined. Throughout this paper, we consider the fractional Laplacian
in this setting.

The nonlocality of the fractional Laplacian makes it difficult to study. To circum-
vent this difficulty, Caffarelli and Silvestre [2007] introduced the extension method,
which reduced this nonlocal problem into a local one in higher dimensions. For a
function u : Rn

→ R, consider the extension U : Rn
×[0,∞)→ R that satisfies{

div(y1−α
∇U )= 0, (x, y) ∈ Rn

×[0,∞),
U (x, 0)= u(x).

Then
(−1)α/2u =−Cn,α lim

y→0+
y1−α ∂U

∂y
.

This extension method has been applied successfully to study equations involving
the fractional Laplacian, and a series of fruitful results have been obtained (see the
references in that work).

In [Busca and Manásevich 2002], among many interesting results, when the
authors considered the properties of the positive solutions for (1-2), they first used
the above extension method to reduce the nonlocal problem into a local one for
U (x, y) in one higher dimensional half space Rn

×[0,∞), then applied the method
of moving planes to show the symmetry of U (x, y) in x , and hence derived the
nonexistence in the subcritical case.
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Proposition 1.1. Let 1≤ α < 2. Then the problem{
div(y1−α

∇U )= 0, (x, y) ∈ Rn
×[0,∞),

− lim
y→0+

y1−α ∂U
∂y =U p(x, 0), x ∈ Rn,

has no positive bounded solution provided p < (n+α)/(n−α).

They then took trace to obtain:

Corollary 1.2. Assume that 1≤ α < 2 and 1< p< (n−α)/(n−α). Then equation
(1-2) possesses no bounded positive solution.

A similar extension method was adapted in [Chen and Zhu 2016] to obtain the
nonexistence of positive solutions for an indefinite fractional problem.

Proposition 1.3. Let 1≤ α < 2 and 1< p <∞. Then the equation

(−1)α/2 = x1u p, x ∈ Rn,

possesses no positive bounded solutions.

The common restriction α ≥ 1 is due to the approach that they need to carry out
the method of moving planes on the solutions U of the extended problem

(1-4) div(y1−α
∇U )= 0, (x, y) ∈ Rn

×[0,∞).

Because of the monotonicity requirement, they have to assume that α ≥ 1.
Jarohs and Weth [2016] without going through the extended equation (1-4),

introduced antisymmetric maximum principles and applied them to carry on the
method of moving planes directly on nonlocal problems to show the symmetry of
solutions. The operators they considered are quite general; however, their maximum
principles only apply to bounded regions.

Chen, Li and Li [Chen et al. 2017] developed a systematic approach to carry
out the method of moving planes for nonlocal problems, either on bounded or
unbounded domains, corresponding to approaches for local elliptic operators that
were introduced more than twenty years ago in the paper [Chen and Li 1991] and
then summarized in the book [Chen and Li 2010].

In this paper, we will establish the direct method of moving planes for the system
of the fractional Laplacian equations. This will be accomplished in Section 2, in
which the main results are the following:

Theorem 2.1 (maximum principle for antisymmetric functions). Let T be a hyper-
plane in Rn. Without loss of generality, we may assume that

T = {x ∈ Rn
| x1 = λ, for some λ ∈ R}.

Let
x̃ = (2λ− x1, x2, . . . , xn)
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be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ} and H̃ = {x | x̃ ∈ H}.

Let � be a bounded domain in H. Assume that u ∈ Lα ∩ C1,1
loc (�) and is lower

semicontinuous on �. If

(−1)α/2u(x)≥ 0 in �,
(−1)α/2v(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

then
u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded region � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

If u = 0 and v = 0 at some point in �, then

u(x)= 0 and v(x)= 0 almost everywhere in Rn.

Theorem 2.2 (narrow region principle). Let T be a hyperplane in Rn. Without loss
of generality,we may assume that

T = {x = (x1, x ′) ∈ Rn
| x1 = λ for some λ ∈ R}.

Let
x̃ = (2λ− x1, x2, . . . , xn),

be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ}, H̃ = {x | x̃ ∈ H}.

Let� be a bounded narrow region in H such that it is contained in {x |λ−l< x1<λ}

with small l. Suppose that u, v ∈ Lα ∩C1,1
loc (�) and both are lower semicontinuous

on�. If c1(x) and c2(x) are both bounded from below in�, c1(x)≤ 0 and c2(x)≤ 0
and 

(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
u(x̃)=−u(x) in H,
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then for sufficiently small l, we have

u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded regions � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

Theorem 2.3 (decay at infinity). Let H = {x ∈ Rn
| x1 < λ for some λ ∈ R} and

let � be an unbounded region in H. Assume

(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

with

lim
|x |→∞

|x |αc1(x)= 0, c1(x)≤ 0,

and

lim
|x |→∞

|x |αc2(x)= 0, c2(x)≤ 0,

then there exists a constant R0 such that if

u(x0)=min
�

u(x) < 0 or v(x0)=min
�
v(x) < 0,

then

|x0
| ≤ R0.

As a simple application, we consider system (1-1).

Theorem 3.1. Assume that 0<α< 2 and u, v ∈ Lα∪C1,1
loc is a nonnegative solution

of equation (1-1). Then

(i) in the subcritical case 1< p, q < (n+α)/(n−α), (u, v)≡ (0, 0);

(ii) in the critical case p= q = (n+α)/(n−α), (u, v) is radially symmetric about
some point.

2. Various maximum principles

Maximum principle for antisymmetric functions.
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Theorem 2.1. Let T be a hyperplane in Rn. Without loss of generality, we may
assume that

T = {x ∈ Rn
| x1 = λ for some λ ∈ R}.

Let

x̃ = (2λ− x1, x2, . . . , xn)

be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ} and H̃ = {x | x̃ ∈ H}.

Let � be a bounded domain in H. Assume that u ∈ Lα ∩C1,1
loc (�) is lower semicon-

tinuous on �. If

(2-1)



(−1)α/2u(x)≥ 0 in �,
(−1)α/2v(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

then

(2-2) u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded region � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

If u = 0 and v = 0 at some point in �, then

u(x)= 0 and v(x)= 0 almost everywhere in Rn.

Proof. If (2-2) does not hold, then the lower semicontinuity of u and v on �
indicates that there exists a x0

∈� such that

u(x0)=min
�

u < 0

or

v(x0)=min
�

v < 0,

and one can further deduce from condition (2-1) that x0 is in the interior of �.



A DIRECT METHOD OF MOVING PLANES 307

If u(x0) < 0, it follows that

(−1)α/2u(x0)= Cn,αPV
∫

Rn

u(x0)− u(y)
|x0− y|n+α

dy

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H̃

u(x0)− u(y)
|x0− y|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)− u(ỹ)
|x0− ỹ|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)+ u(y)
|x0− ỹ|n+α

dy
}

≤ Cn,α

∫
H

{
u(x0)− u(y)
|x0− ỹ|n+α

+
u(x0)+ u(y)
|x0− ỹ|n+α

}
dy

= Cn,α

∫
H

2u(x0)

|x0− ỹ|n+α
dy

< 0,

which contradicts inequality (2-1).
Similarly, if v(x0) < 0, we also get a contradiction with (2-1). This verifies (2-2).
Now we show that u ≥ 0 and v ≥ 0 in H. If there is some point x0

∈ �, such
that u(x0)= 0 and v(x0)= 0, then from

0≤ (−1)α/2u(x0)= Cn,αPV
∫

H

−u(y)
|x0− y|n+α

dy,

0≤ (−1)α/2v(x0) = Cn,αPV
∫

H

−v(y)
|x0− y|n+α

dy,

we derive immediately that

u(x)= 0 and v(x)= 0 almost everywhere in Rn.

This completes the proof. �

Narrow region principle.

Theorem 2.2. Let T be a hyperplane in Rn. Without loss of generality, we may
assume that

T = {x = (x1, x ′) ∈ Rn
| x1 = λ for some λ ∈ R}.

Let
x̃ = (2λ− x1, x2, . . . , xn),

be the reflection of x about the plane T. Denote

H = {x ∈ Rn
| x1 < λ}, H̃ = {x | x̃ ∈ H}.
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Let� be a bounded narrow region in H such that it is contained in {x |λ−l< x1<λ}

with small l. Suppose that u, v ∈ Lα ∩C1,1
loc (�) and both are lower semicontinuous

on�. If c1(x) and c2(x) are both bounded from below in�, c1(x)≤ 0 and c2(x)≤ 0
and

(2-3)



(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H,
v(x̃)=−v(x) in H,

then for sufficiently small l, we have

(2-4) u(x)≥ 0 and v(x)≥ 0 in �.

This conclusion holds for unbounded regions � if we further assume that

lim
|x |→∞

u(x)≥ 0 and lim
|x |→∞

v(x)≥ 0.

Proof. If (2-4) does not hold, then the lower semicontinuity of u and v on �
indicates that there exists an x0

∈� such that

u(x0)=min
�

u < 0 or v(x0)=min
�

v < 0,

and one can further deduce from condition (2-3) that x0 is in the interior of �.
Next we discuss the problem in three different cases.

Case i. (u(x0)=min� u < 0 and v(x0)≥ 0).
It follows that

(−1)α/2u(x0)= Cn,αPV
∫

Rn

u(x0)− u(y)
|x0− y|n+α

dy

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H̃

u(x0)− u(y)
|x0− y|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)− u(ỹ)
|x0− ỹ|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)+ u(y)
|x0− ỹ|n+α

dy
}

(2-5)

≤ Cn,α

∫
H

{
u(x0)− u(y)
|x0− ỹ|n+α

+
u(x0)+ u(y)
|x0− ỹ|n+α

}
dy

= Cn,α

∫
H

2u(x0)

|x0− ỹ|n+α
dy.
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Let D = {y | l < y1− x0
1 < 1, |y′− (x0)′| < 1}, s = y1− x0

1 , τ = y′− (x0)′ and
ωn−2 = |B1(0)| in Rn−2. Now we have∫

H

1
|x0− ỹ|n+α

dy ≥
∫

D

1
|x0− y|n+α

dy

=

∫ 1

l

∫ 1

0

ωn−2τ
n−2

(s2+ τ 2)
n+α

2
dτ ds

=

∫ 1

l

∫ 1
s

0

ωn−2(st)n−2s

sn+α(1+ t2)
n+α

2
dt ds(2-6)

=

∫ 1

l

1
s1+α

∫ 1
s

0

ωn−2tn−2

(1+ t2)
n+α

2
dt ds

≥

∫ 1

l

1
s1+α

∫ 1

0

ωn−2tn−2

(1+ t2)
n+α

2
dt ds

≥ C
∫ 1

l

1
s1+α ds→∞,(2-7)

where (2-6) follows from the substitution τ = st and (2-7) is true when l→ 0.
Hence c1(x)≤ 0 leads to

(−1)α/2u(x0)+ c1(x)v(x0)≤ C
∫ 1

l

1
s1+α ds u(x0)+ c1(x0)v(x0)

= u(x0)

[
C
∫ 1

l

1
s1+α ds+ c1(x0)

v(x0)

u(x0)

]
< 0,

when l sufficiently small. This is a contradiction with condition (2-3).

Case ii (v(x0)=min
�
v < 0 and u(x0)≥ 0). Similarly to Case i, c2(x)≤ 0 leads to

(−1)α/2v(x0)+ c2(x0)u(x0)≤ v(x0)

[
C
∫ 1

l

1
s1+α ds+ c2(x0)

u(x0)

v(x0)

]
< 0,

when l sufficiently small. This is a contradiction with condition (2-3).

Case iii (u(x0)=min
�

u < 0 and v(x0) < 0). Similarly to Case i, by (2-3), we have

(2-8) 0≤ (−1)α/2u(x0)+ c1(x0)v(x0)≤ C
∫ 1

l

1
s1+α ds u(x0)+ c1(x0)v(x0).
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By v(x0) < 0, there exists x1
∈ � such that v(x1) = min� v < 0. Similarly to

Case ii, by (2-3) and c2(x)≤ 0, we have

(2-9) 0≤ (−1)α/2v(x1)+ c2(x1)u(x1)≤ C
∫ 1

l

1
s1+α ds v(x0)+ c2(x1)u(x0).

Adding (2-8) to (2-9), we get

(2-10)
[

C
∫ 1

l

1
s1+α ds+ c2(x1)

]
u(x0)+

[
C
∫ 1

l

1
s1+α ds+ c1(x0)

]
v(x0)≥ 0.

As u(x0) < 0 and v(x0) < 0, if (2-10) holds, then at least one of

C
∫ 1

l

1
s1+α ds+ c2(x1)≤ 0 or C

∫ 1

l

1
s1+α ds+ c1(x0)≤ 0

holds.
Equivalently,

(2-11) C
∫ 1

l

1
s1+α ds+ c2(x1)≤ 0 or C

∫ 1

l

1
s1+α ds+ c1(x0)≤ 0.

However, when l sufficiently small, from the fact that c1(x) and c2(x) are both
bounded from below in �, we have

C
∫ 1

l

1
s1+α ds+ c2(x1) > 0 and C

∫ 1

l

1
s1+α ds+ c1(x0) > 0.

which is a contradiction with (2-11).

Similarly, we can prove the case v(x0)=min� v < 0 and u(x0) < 0.
Therefore, (2-4) must be true. This completes the proof. �

Decay at infinity.

Theorem 2.3. Let H = {x ∈ Rn
| x1 < λ for some λ ∈ R} and let � be an

unbounded region in H. Assume

(2-12)



(−1)α/2u(x)+ c1(x)v(x)≥ 0 in �,
(−1)α/2v(x)+ c2(x)u(x)≥ 0 in �,
u(x)≥ 0 and v(x)≥ 0 in H \�,
u(x̃)=−u(x) in H
v(x̃)=−v(x) in H

with

(2-13) lim
|x |→∞

|x |αc1(x)= 0, c1(x)≤ 0,
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and

(2-14) lim
|x |→∞

|x |αc2(x)= 0, c2(x)≤ 0.

Then there exists a constant R0 such that if

(2-15) u(x0)=min
�

u(x) < 0 or v(x0)=min
�
v(x) < 0,

then

(2-16) |x0
| ≤ R0.

Proof. Following from (2-15), there are three different cases for this proof.

Case i (u(x0) < 0 and v(x0)≥ 0). It follows that

(−1)α/2u(x0)= Cn,αPV
∫

Rn

u(x0)− u(y)
|x0− y|n+α

dy

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H̃

u(x0)− u(y)
|x0− y|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)− u(ỹ)
|x0− ỹ|n+α

dy
}

= Cn,αPV
{∫

H

u(x0)− u(y)
|x0− y|n+α

dy+
∫

H

u(x0)+ u(y)
|x0− ỹ|n+α

dy
}

≤ Cn,α

∫
H

{
u(x0)− u(y)
|x0− ỹ|n+α

+
u(x0)+ u(y)
|x0− ỹ|n+α

}
dy

= Cn,α

∫
H

2u(x0)

|x0− ỹn+α|
dy.

For each fixed λ, when |x0
|≥λ, we have B|x0|(x1)⊂ H̃ with x1

= (3|x0
|+x0

1 , (x
0)′),

and it follows that

(2-17)

∫
H

1
|x0− ỹ|n+α

dy =
∫

H̃

1
|x0− y|n+α

dy

≥

∫
B
|x0|(x

1)

1
|x0− y|n+α

dy

≥

∫
B
|x0|(x

1)

1
4n+α|x0|n+α

dy =
ωn

4n+α|x0|n+α
,

where (2-17) follows from |x0
− y| ≤ |x0

− x1| + |x0
| = 4|x0

| for all y ∈ B|x0|(x1).
Then we have

(2-18) 0≤ (−1)α/2u(x0)+ c1(x0)v(x0)≤
2ωnCn,α

4n+α|x0|α
u(x0)+ c1(x0)v(x0).
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Following from (2-13), c1(x0)≤ 0 for all x0
∈ H, we have

2ωnCn,α

4n+α|x0|α
u(x0)+ c1(x0)v(x0) < 0.

This contradicts (2-18).

Case ii (v(x0) < 0 and u(x0)≥ 0). Using the same method as Case i, we have

2ωnCn,α

4n+α|x0|α
v(x0)+ c2(x0)u(x0)≥ 0,

which is a contradiction with

2ωnCn,α

4n+α|x0|α
v(x0)+ c2(x0)u(x0) < 0,

for c2(x0)≤ 0 for all x0
∈ H.

Case iii (u(x0) < 0 and v(x0) < 0). We have

0≤ (−1)α/2u(x0)+ c1(x0)v(x0)≤
2ωnCn,α

4n+α|x0|α
u(x0)+ c1(x0)v(x0),(2-19)

0≤ (−1)α/2v(x0)+ c2(x0)u(x0)≤
2ωnCn,α

4n+α|x0|α
v(x0)+ c2(x0)u(x0).(2-20)

Adding (2-19) to (2-20), we get

(2-21)
[

2ωnCn,α

4n+α|x0|α
+ c2(x0)

]
u(x0)+

[
2ωnCn,α

4n+α|x0|α
+ c1(x0)

]
v(x0)≥ 0.

As u(x0) < 0 and v(x0) < 0, if (2-21) holds, at least one of

2ωnCn,α

4n+α|x0|α
+ c2(x0)≤ 0 or

2ωnCn,α

4n+α|x0|α
+ c1(x0)≤ 0

holds. Equivalently,

(2-22)
2ωnCn,α

4n+α|x0|α
+ c2(x0)≤ 0 or

2ωnCn,α

4n+α|x0|α
+ c1(x0)≤ 0.

However, if |x0
| is sufficiently large, following from (2-13) and (2-14), we have

2ωnCn,α

4n+α|x0|α
+ c2(x0) > 0 and

2ωnCn,α

4n+α|x0|α
+ c1(x0) > 0.

which is a contradiction with (2-22).

Therefore, (2-16) holds. This completes the proof. �
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3. Method of moving planes and its applications

Theorem 3.1. Assume that u, v ∈ C1,1
loc ∩ Lα and

(3-1)
{
(−1)α/2u(x)= vq(x), x ∈ Rn,

(−1)α/2v(x)= u p(x), x ∈ Rn.

Then

(i) in the subcritical case 1 < p, q < (n + α)/(n − α), (3-1) has no positive
solution;

(ii) in the critical case p = q = (n+ α)/(n− α), the positive solutions must be
radially symmetric about some point in Rn.

Proof. Because no decay condition on u near infinity is assumed, we are not able to
carry out the method of moving planes on u directly. To circumvent this difficulty,
we make a Kelvin transform.

Let x0 be a point in Rn, and let

u(x0)=
1

|x − x0|n−α
u
(

x − x0

|x − x0|2
+x0

)
, v(x0)=

1
|x − x0|n−α

v

(
x − x0

|x − x0|2
+x0

)
be the Kelvin transform of (u, v) centered at x0. Then it follows that

u(x)=
1

|x − x0|n−α
u
(

x − x0

|x − x0|2
+ x0

)
=

1
|x − x0|n−α

∫
Rn

vq(y)

|y− x−x0

|x−x0|2
− x0|n−α

dy

=
1

|x − x0|n−α

∫
Rn

( 1
|y−x0|n−α

)q
vq( y−x0

|y−x0|2
+ x0

)∣∣y− x0− x−x0

|x−x0|2

∣∣n−α dy

=
1

|x − x0|n−α

∫
Rn

|z− x0
|
q(n−α)vq(z)∣∣ z−x0

|z−x0|2
−

x−x0

|x−x0|2

∣∣n−α 1
|z− x0|2n dz(3-2)

=

∫
Rn

vq(z)
|z− x0|τ |x − z|n−α

dz,

where the step (3-2) follows from the substitution z = (y− x0)/|y− x0
|
2
+ x0 and

τ = n+α− q(n−α).
This means

(3-3) (−1)α/2u(x)=
vq(x)
|x − x0|τ

.
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Similarly, we have

(3-4) (−1)α/2v(x)=
u p(x)
|x − x0|γ

,

with γ = n+α− p(n−α). Obviously, τ = γ = 0 in the critical case.
Choose any direction to be the x1 direction. For λ < x0

1 , let

Tλ = {x ∈ Rn
| x1 = λ}, xλ = (2λ− x1, x ′), uλ(x)= u(xλ),

wλ(x)= uλ(x)− u(x), vλ(x)= v(xλ), ϕλ(x)= vλ(x)− v(x),

and
6λ = {x ∈ Rn

| x1 < λ}, 6̃λ = {xλ | x ∈6λ}.

First, notice that, by the definition of wλ and ϕλ, we have

lim
|x |→∞

wλ(x)= 0, lim
|x |→∞

ϕλ(x)= 0.

Hence, if wλ or ϕλ is negative somewhere in 6λ, then the negative minima of wλ
or ϕλ was attained in the interior of 6λ.

From (3-3), at points where ϕλ is negative, we have

(3-5)

(−1)α/2wλ(x)=
v

q
λ(x)

|xλ− x0|τ
−

vq(x)
|x − x0|τ

≥
v

q
λ(x)− v

q(x)
|x − x0|τ

≥
qvq−1(x)ϕλ(x)
|x − x0|τ

,

where (3-5) follows from the mean value theorem, that is,

(−1)α/2wλ(x)+ c1(x)ϕλ(x)≥ 0

with

(3-6) c1(x)=−
qvq−1(x)
|x − x0|τ

.

From (3-4), at points where wλ is negative, we similarly have

(3-7) (−1)α/2ϕλ(x)+ c2(x)wλ(x)≥ 0

with

(3-8) c2(x)=−
pu p−1(x)
|x − x0|γ

.
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The subcritical case. For 1< p, q < (n+α)/(n−α), we show that (3-1) admits
no positive solution.

Step 1. We show that, for λ sufficiently negative,

(3-9) wλ(x)≥ 0 and ϕλ(x)≥ 0 in 6λ.

This is done by using Theorem 2.3 (decay at infinity).
It follows from (3-6) that,

c1(x)=−
q
( 1
|x−x0|n−α

)q−1
vq−1

( x−x0

|x−x0|2
+ x0

)
|x − x0|n+α−q(n−α)

=−

qvq−1
( x−x0

|x−x0|2
+ x0

)
|x − x0|2α

.

It is easy to verify that, for |x | sufficiently large,

(3-10) c1(x)∼
1
|x |2α

.

In the same way,

(3-11) c2(x)∼
1
|x |2α

.

In addition, following from (3-6) and (3-8), we have c1(x)≤ 0 and c2(x)≤ 0. Hence,
c1(x) and c2(x) satisfy conditions (2-13) and (2-14) respectively in Theorem 2.3.
Applying Theorem 2.3 to wλ and ϕλ with � = H = 6λ, we conclude that, there
exists an R0 > 0 (independent of λ), such that if x is a negative minimum of wλ or
ϕλ in 6λ, then

(3-12) |x | ≤ R0.

Now for λ≤−R0, we must have

wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ.

This verifies (3-9).

Step 2. Step 1 provides a starting point, from which we can now move the plane Tλ
to the right as long as (3-9) holds to its limiting position.

Let

λ0 = sup{λ≤ x0
1 | wµ(x)≥ 0 and ϕµ(x)≥ 0, for all x ∈6µ, µ≤ λ}.

In this part, we show that
λ0 = x0

1
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and

(3-13) wλ0(x)≡ 0 and ϕλ0(x)≡ 0, for all x ∈6λ0 .

Suppose that λ0 < x0
1 . We show that the plane Tλ can be moved further right. To be

more rigorous, there exists some ε > 0, such that for any λ ∈ (λ0, λ0+ ε), we have

(3-14) wλ(x)≥ 0 and ϕλ(x)≥ 0, for all x ∈6λ.

This is a contradiction with the definition of λ0. Hence we must have

(3-15) λ0 = x0
1 .

Now we prove (3-14) by combining the use of the narrow region principle and
decay at infinity.

Again by (3-12), the negative minimum of wλ cannot be attained outside of
BR0(0). Next we argue that it can neither be attained inside of BR0(0). Actually, we
will show that for λ sufficiently close to λ0,

(3-16) wλ(x)≥ 0 and ϕλ(x)≥ 0, for all x ∈6λ ∩ BR0(0).

From the narrow region principle, there is a small δ>0, such that for λ∈[λ0, λ0+δ),
if

(3-17) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ0−δ,

then

(3-18) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ \6λ0−δ.

To see this, in Theorem 2.2, we let H =6λ and the narrow region �=6λ \6λ0−δ ,
while the lower bound of c1(x), c2(x) can be seen from (3-10) and (3-11).

Then what is left to show is (3-17), and actually we only need

(3-19) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ0−δ ∩ BR0(0).

In fact, when λ0 < x0
1 , we have

(3-20) wλ0(x) > 0 and ϕλ0(x) > 0 for all x ∈6λ0.

If not, there exists some x̂ such that

wλ0(x̂)=min
6λ0

wλ0(x)= 0 or ϕλ0(x̂)=min
6λ0

ϕλ0(x)= 0.
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Case i (wλ0(x̂)= 0 and ϕλ0(x̂) > 0). It follows that

(3-21)

(−1)α/2wλ0(x̂)= Cn,αPV
∫

Rn

−wλ0(y)
|x̂ − y|n+α

dy

= Cn,αPV
[∫

6λ0

−wλ0(y)
|x̂ − y|n+α

dy+
∫
6̃λ0

−wλ0(y)
|x̂ − y|n+α

dy
]

= Cn,αPV
[∫

6λ0

−wλ0(y)
|x̂ − y|n+α

dy+
∫
6λ0

−wλ0(ỹ)
|x̂ − ỹ|n+α

dy
]

= Cn,αPV
[∫

6λ0

−wλ0(y)
|x̂ − y|n+α

dy+
∫
6λ0

wλ0(y)
|x̂ − ỹ|n+α

dy
]

≤ Cn,α

∫
6λ0

[
−wλ0(y)
|x̂ − y|n+α

+
wλ0(y)
|x̂ − y|n+α

]
dy

= 0.

On the other hand,

(−1)
α
2wλ0(x̂)=

v
q
λ0
(x̂)

|x̂λ0 − x0|τ
−

vq(x̂)
|x̂ − x0|τ

>
v

q
λ0
(x̂)− vq(x̂)

|x̂ − x0|τ

>
qvq−1(x̂)ϕλ0(x̂)
|x̂ − x0|τ

> 0,

which is a contradiction with (3-21).

Case ii (ϕλ0(x̂)= 0 and wλ0(x̂) > 0). As in Case i, there will be a contradiction.

Case iii (wλ0(x̂)= 0 and ϕλ0(x̂)= 0). We have

(−1)
α
2wλ0(x̂)=

v
q
λ0
(x̂)

|x̂λ0 − x0|τ
−

vq(x̂)
|x̂ − x0|τ

=
vq(x̂)
|x̂λ0 − x0|τ

−
vq(x̂)
|x̂ − x0|τ

> 0,

a contradiction with (3-21).

These three cases prove (3-20). It follows from (3-20) that there exists a constant
c0 > 0, such that

wλ0(x)≥ c0 and ϕλ0(x)≥ c0 for all x ∈6λ0−δ ∩ BR0(0).

Since wλ and ϕλ both depend on λ continuously, there exist ε > 0 and ε < δ, such
that for all λ ∈ (λ0, λ0+ ε), we have

(3-22) wλ0(x)≥ 0 and ϕλ0(x)≥ 0 for all x ∈6λ0−δ ∩ BR0(0).
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Combining (3-18), (3-12) and (3-22), we conclude that for all λ ∈ (λ0, λ0+ ε),

(3-23) wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ.

This contradicts the definition of λ0. Therefore, we must have

λ0 = x0
1 and wλ0 ≥ 0, ϕλ0 ≥ 0 for all x ∈6λ0 .

Similarly, one can move the plane Tλ from +∞ to the left and show that

(3-24) wλ0(x)≥ 0 and ϕλ0(x)≥ 0 for all x ∈6λ0 .

Now we have shown that

λ0 = x0
1 and wλ0(x)≡ 0, ϕλ0(x)≡ 0 for all x ∈6λ0 .

This completes Step 2.

So far, we have proved that (u, v) is symmetric about the plane Tx0
1
. Since the

x1 direction can be chosen arbitrarily, we have actually shown that (u, v) is radially
symmetric about x0.

For any two points X i
∈ Rn, i = 1, 2. Choose x0 to be the midpoint, i.e.,

x0
= (X1

+ X2)/2. Since (u, v) is radially symmetric about x0, so is (u, v), hence
(u(X1), v(X1)) = (u(X2), v(X2)). This implies that u is constant. A positive
constant function does not satisfy (3-1). This proves the nonexistence of positive
solutions for (3-1) when 1< p, q < (n+α)/(n−α).

The critical case. Let (u, v) be the Kelvin transform of (u, v) centered at the origin.
Then

(3-25) (−1)α/2u(x)= vq(x), (−1)α/2v(x)= u p(x).

We will show that either (u, v) is symmetric about the origin or (u, v) is symmetric
about some point.

We still use the notation as in the subcritical case. Step 1 is entirely the same as
that in the subcritical case, that is, we can show that for λ sufficiently negative,

wλ(x)≥ 0 and ϕλ(x)≥ 0 for all x ∈6λ.

Let

λ0 = sup{λ≥ 0 | wµ(x)≥ 0 and ϕµ(x)≥ 0 for all x ∈6µ, µ≤ λ}.

Case i. λ0 < 0. Similarly to the subcritical case, one can show that

wλ0(x)≡ 0 and ϕλ0(x)≡ 0 for all x ∈6λ0 .
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It follows that 0 is not a singular point of u or v, and hence following from Kelvin
transform of u centered at the origin

u(x)= 1
|x |n−α

u
( x
|x |2

)
,

we have
lim
|x |→∞

|x |n−αu(x)= lim
|x |→∞

u
( x
|x |2

)
= u(0) > 0,

that is,

u(x)= O
( 1
|x |n−α

)
when |x | →∞.

Similarly for v,

v(x)= O
( 1
|x |n−α

)
when |x | →∞.

This enables us to apply the method of moving planes to (u, v) directly and show
that (u, v) is symmetric about some point in Rn.

Case ii. λ0 = 0. Then by moving planes from near x1 =+∞, we derive that (u, v)
is symmetric about the origin, and so is (u, v).

In any case, (u, v) is symmetric about some point in Rn. �
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