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LIOUVILLE THEOREMS FOR f -HARMONIC MAPS
INTO HADAMARD SPACES

BOBO HUA, SHIPING LIU AND CHAO XIA

We study harmonic functions on weighted manifolds and harmonic maps
from weighted manifolds into Hadamard spaces introduced by Korevaar and
Schoen. We prove several Liouville-type theorems for these harmonic maps.

1. Introduction

Weighted Riemannian manifolds, also called manifolds with density or smooth
metric measure spaces in the literature, are Riemannian manifolds equipped with
weighted measures. Appearing naturally in the study of self-shrinkers, Ricci solitons,
harmonic heat flows and many others, weighted manifolds have been proven to
be nontrivial generalizations of Riemannian manifolds. There are many geometric
investigations of weighted manifolds; see Morgan [2005], Wei and Wylie [2009]
and many others. In this paper, we investigate various Liouville-type theorems for
harmonic functions on weighted manifolds as well as harmonic maps from weighted
manifolds into Hadamard spaces, i.e., globally nonpositively curved spaces in the
sense of Alexandrov (also called CAT(0) spaces), see, e.g., [Jost 1997b; Burago
et al. 2001].

A weighted Riemannian manifold is a triple (M, g, e− f dVg), where (M, g) is
an n-dimensional Riemannian manifold, dVg is the Riemannian volume element
induced by the metric g and f is a smooth positive function on M. The f -Laplacian

1 f =1−∇ f · ∇

is a natural generalization of Laplace–Beltrami operator 1 as it is self-adjoint with
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respect to the weighted measure e− f dVg, i.e.,∫
M
1 f uve− f dVg =

∫
M

u1 f ve− f dVg for u, v ∈ C∞0 (M).

A function u ∈W 1,2
loc (M) is called f -harmonic ( f -subharmonic, f -superharmonic

resp.) if it satisfies 1 f u = 0 (≥ 0, ≤ 0 resp.) in the weak sense, i.e.,∫
M
〈∇u,∇ϕ〉e− f dVg = 0 (≤ 0, ≥ 0 resp.) for any 0≤ ϕ ∈ C∞0 (M).

The Dirichlet f -energy of u is defined by

D f(u)=
∫

M
|∇u|2e− f dVg.

On the other hand, f -harmonic maps from weighted manifolds (M, g, e− f dVg)

to (singular) metric spaces (Y, d) have wide geometric applications. Harmonic
maps into metric spaces were initiated by Gromov and Schoen [1992] and then
investigated independently by Korevaar and Schoen [1993] and Jost [1994]. In
particular, when the domain is a Riemannian manifold, Korevaar and Schoen [1993;
1997] gave a complete exposition. In this paper we call a map u :M→Y f -harmonic
if u locally minimizes the f -energy functional E f in the sense of Korevaar and
Schoen. For a detailed definition and its properties, we refer to [Korevaar and
Schoen 1993] or Section 4 below. For the special case, f -harmonic maps from
the Gaussian spaces, (Rn, | · |, e−|x |

2/4 dx), to Riemannian manifolds are called
quasiharmonic spheres, which emerge in the blowup analysis of harmonic heat flow
[Lin and Wang 1999; Li and Tian 2000]. In this paper, we study Liouville theorems
for f -harmonic maps into metric spaces, which generalize the previous results for
harmonic maps in both aspects of domain manifolds and target spaces.

Analysis on weighted manifolds and the corresponding f -Laplacian have been
extensively studied recently. We refer to [Munteanu and Wang 2011, 2012; Brighton
2013; Li 2005, 2016] for the f -harmonic functions on weighted manifolds, to [Li
and Wang 2009; Zhu and Wang 2010; Li and Zhu 2010; Li and Yang 2012] for
f -harmonic functions on the Gaussian spaces, to [Grigor’yan 2006, 2009] for heat
kernel estimates, and to [Lin and Wang 1999; Wang and Xu 2012; Chen et al. 2012;
Rimoldi and Veronelli 2013; Sinaei 2014, 2016] for f -harmonic maps.

In the first part of the paper we are concerned with Liouville-type theorems for
f -harmonic functions on weighted manifolds. Several Liouville-type theorems for
f -harmonic functions on the Gaussian spaces, also called quasiharmonic functions,
have been proved in [Zhu and Wang 2010; Li and Wang 2009], in which the main
techniques adopted are gradient estimates and separation of variables coupled with
ODE results. In this paper, we propose another approach, which seems to be
overlooked in the literature, to reprove many previous results. This method can
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be easily generalized, so that we may obtain Liouville theorems for f -harmonic
functions for a large class of weighted manifolds; see Section 2.

Our observation is that the weighted version of L p-Liouville theorem for weighted
manifolds can be used to derive various Liouville theorems concerning the growth
of f -harmonic functions. Yau [1976] first proved the L p-Liouville theorem (for
1< p <∞) for harmonic functions on any complete Riemannian manifold. Later,
Karp [1982] obtained a quantitative version of this result. Li and Schoen [1984]
proved other L p-Liouville theorems (e.g., 0< p<1) under the curvature assumption
of manifolds. Karp’s version of L p-Liouville theorem has been generalized by
Sturm [1994] to the setting of strongly local regular Dirichlet forms. In particular,
our f -harmonic functions lie in this setting. By applying Sturm’s L p-Liouville
theorem to f -harmonic functions, we immediately obtain several consequences
which generalize previous results of [Zhu and Wang 2010; Li and Wang 2009; Li
and Zhu 2010; Li and Yang 2012]. Although the proof of L p-Liouville theorem is
quite general and only involves integration by parts and the Caccioppoli inequality
(thus it holds for all reasonable spaces), it is surprisingly powerful to obtain various
Liouville theorems for weighted manifolds with slow volume growth, especially
for the Gaussian spaces; see Corollaries 2.5 and 2.6 in Section 2. This does provide
another approach to derive Liouville theorems without using any gradient estimate.

In the second part, we study Liouville-type theorems for harmonic maps from
weighted manifolds to Hadamard spaces. For applications of f -harmonic maps with
singular targets we refer to Gromov and Schoen [1992]. Our first result is an ana-
logue to Kendall’s theorem [1990, Theorem 3.2]. The essence of Kendall’s theorem
is that validity of a Liouville theorem for f -harmonic maps into Hadamard spaces, a
priori a nonlinear problem, is reduced to that of a Liouville theorem of f -harmonic
functions, a linear problem. Kendall [1990] proved this theorem for harmonic maps
between Riemannian manifolds, by using probabilistic methods and potential theory.
Kuwae and Sturm [2008] generalized Kendall’s method to a class of harmonic maps
between general metric spaces in the framework of Markov processes. Note that
the harmonic maps they were concerned with are different from those of Korevaar
and Schoen [1993] when targets are singular. In this paper, we consider harmonic
maps into Hadamard spaces in the sense of Korevaar and Schoen. Following the
argument by Li and Wang [1998], we are able to prove the following Kendall-type
theorem by assuming local compactness of the targets. Recall that a geodesic space
(Y, d) is called locally compact if every closed geodesic ball is compact.

Theorem 1.1. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
satisfying that any bounded f -harmonic function is constant. Let (Y, d) be a locally
compact Hadamard space. Then any f -harmonic map from M to Y having bounded
image is a constant map.
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In the same spirit as Kendall’s theorem, Cheng, Tam and Wan [Cheng et al. 1996]
proved a Liouville-type theorem for harmonic maps with finite energy. Our second
result is a generalization of their theorem to f -harmonic maps into Hadamard spaces.

Theorem 1.2. Let (M, g, e− f dVg) be a complete noncompact weighted Riemann-
ian manifold satisfying that any f -harmonic function with finite Dirichlet f -energy
is bounded. Let (Y, d) be an Hadamard space. Then any f -harmonic map from M
to Y with finite f -energy has bounded image.

We will follow the line of Cheng, Tam and Wan’s reasoning, but using the
techniques in potential theory, especially the theory of Royden and Nakai’s decom-
position on Riemannian manifolds [Royden 1952; Nakai 1960; Sario and Nakai
1970]. This possible approach of potential theory was implicitly suggested by Lyons
in [Cheng et al. 1996, pp. 278]. We figure out the detailed arguments of this insight
and apply them to Liouville theorems of f -harmonic maps. The Royden–Nakai
decomposition theorem and Virtanen’s theorem, see, e.g., Section 5 for weighted
versions, play important roles in the classification theory of Riemannian manifolds
developed by Royden, Nakai, Sario et al. many years ago. We shall dwell on these
theories in the framework of weighted manifolds in Section 5 and utilize them to
prove Theorem 1.2.

The following theorem is, more or less, a consequence of the combination of
Theorems 1.1 and 1.2.

Theorem 1.3. Let (M, g, e− f dVg) be a complete noncompact weighted Riemann-
ian manifold satisfying that any bounded f -harmonic functions is constant. Let
(Y, d) be a locally compact Hadamard space. Then any f -harmonic map from M
to Y with finite f -energy is a constant map.

This theorem has an interesting application which motivates our studies in some
sense. Bakry and Émery [1985] introduced weighted Ricci curvature for weighted
manifolds. In particular, the so-called∞-Bakry–Émery Ricci curvature

Ric f := Ric+∇2 f

turns out to be a suitable and important curvature quantity for weighted mani-
folds. The nonnegativity of Ric f corresponds to the curvature-dimension condition
CD(0,∞) on metric measure spaces via optimal transport, in the sense of Lott
and Villani [2009] and Sturm [2006a; 2006b]. By a theorem of Brighton [2013],
see also [Li 2016], the weighted manifold (M, g, e− f dVg) satisfying Ric f ≥ 0
admits no nonconstant bounded f -harmonic functions. Hence by Theorem 1.3 we
immediately have:

Theorem 1.4. Let (M, g, e− f dVg) be a complete noncompact weighted Riemann-
ian manifold satisfying Ric f ≥ 0 and (Y, d) be a locally compact Hadamard space.
Then any f -harmonic map from M to Y with finite f -energy is a constant map.
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The novelty of the result lies in the generality of targets, i.e., including singular
metric spaces. In the smooth setting, Hadamard spaces are in fact Cartan–Hadamard
manifolds, i.e., simply connected Riemannian manifolds with nonpositive sectional
curvature. On Riemannian manifolds, Theorem 1.4 has been proved by Wang and
Xu [2012] and Rimoldi and Veronelli [2013] independently under an additional
assumption of

∫
M e− f dVg =∞ for domain manifolds, while simply-connectedness

of the targets is not needed. Note that the weighted volume assumption here
cannot be derived from the curvature condition Ric f ≥ 0 in general. In addition,
there is a nontrivial f -harmonic map from a domain manifold with Ric f ≥ 0 and∫

M e− f dVg <∞ to a nonpositively curved target manifold, constructed by Rimoldi
and Veronelli [2013, Remark 3.7]. Our contribution is to drop the weighted volume
assumption by assuming simply-connectedness of the targets and to extend the
result to singular spaces.

For harmonic maps into singular Hadamard spaces, the arguments in [Wang and
Xu 2012; Rimoldi and Veronelli 2013], both following Schoen and Yau [1976], do
not work any more since we cannot apply Bochner techniques as in those works
due to the singularity of targets. Although a weak Bochner formula can also be
derived following Korevaar and Schoen [1993], it is insufficient for our purpose.
Fortunately, we can circumvent these technical problems by proving Theorem 1.3,
which follows from Kendall-type theorems. This does provide another approach to
Liouville theorems for f -harmonic maps without using Bochner techniques. This
is one of the main points of the paper.

The rest of the paper is organized as follows. In Section 2, we study L p Liouville
theorem for f -harmonic functions and give some applications. In Section 3, we
consider harmonic maps with smooth targets. In Section 4, we define f -harmonic
maps into Hadamard spaces and prove Theorem 1.1. In Section 5, we dwell on the
Royden-Nakai theory and prove Theorems 1.2 and 1.3.

2. f -harmonic functions

In this section, we study L p-Liouville theorems for f -harmonic functions and
their applications. We will show that L p-Liouville theorems are quite powerful for
weighted manifolds with finite volume.

The L p-Liouville theorem, 1< p <∞, for harmonic functions (or nonnegative
subharmonic functions) was initiated by Yau [1976] on complete Riemannian
manifolds. Karp [1982] obtained a quantitative version of this Liouville theorem.
Later, Sturm [1994] proved an L p-Liouville theorem for strongly local regular
Dirichlet forms. The following theorem is a special case of Sturm’s result for
f -harmonic functions. We denote by Br := Br (x0) the closed geodesic ball of
radius r centered at a fixed point x0 ∈ M.
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Theorem 2.1 [Sturm 1994, Theorem 1]. Let (M, g, e− fdVg) be a complete weighted
Riemannian manifold and u be a nonnegative f -subharmonic function (or an f -
harmonic function). For 1< p <∞, set v(r) :=

∫
Br
|u|pe− f dVg. Then either

inf
a>0

∫
∞

a

r
v(r)

dr <∞,

or u is a constant.

We state several consequences of Theorem 2.1.
A quite useful consequence is about f -parabolicity of M. Recall that a weighted

manifold (M, g, e− f dVg) is called f -parabolic if there are no nonconstant nonneg-
ative f -superharmonic functions on M. For a compact set K ⊂ M, the f -capacity
of K is defined as

cap f(K ) := inf
ϕ∈Lip0(M)
ϕ|K=1

∫
M
|∇ϕ|2e− f dVg,

where Lip0(M) is the space of compactly supported Lipschitz functions on M.

Proposition 2.2 ( f -parabolicity). Let (M, g, e− f dVg) be a complete weighted man-
ifold. Then the following are equivalent:

(i) M is f -parabolic;

(ii) cap f(K )= 0 for some (then any) compact set K ⊂ M ;

(iii) any bounded f -superharmonic function on M is constant.

Proof. (i)⇔ (ii). This follows from [Grigor’yan 1985, Proposition 3]; see also
Proposition 2.1 of [Grigor’yan 1999].
(i)⇔ (iii). This follows from the fact that any nonnegative f -superharmonic

function u can be approximated by bounded f -superharmonic functions un =

min{u, n}, n ∈ N. �

We say a weighted manifold (M, g, e− f dVg) has the moderate volume growth
property if

(1)
∫
∞

1

r
Vf (Br )

dr =∞,

where Vf (Br ) :=
∫

Br
e− f dVg.

Corollary 2.3. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
satisfying the moderate volume growth property. Then M is f -parabolic.

Proof. Let u be a bounded f -superharmonic function on M. Then for any a > 0,∫
∞

a

r
v(r)

dr ≥ C
∫
∞

a

r
Vf (Br )

dr =∞.
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Theorem 2.1 yields that u is a constant. This proves the corollary. �

Remark 2.4. Corollary 2.3 slightly generalizes [Wang and Xu 2012, Theorem 1.4].
In particular, this corollary implies [Zhu and Wang 2010, Theorem 2].

We can also derive several Liouville-type theorems for f -harmonic functions
from Theorem 2.1.

Corollary 2.5. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
and u be a nonnegative f -subharmonic function (or f -harmonic function). Assume
one of the following holds:

(i) u= O(wα) for some nonnegative functionw with
∫

Mwd−2( · ,x0)e− f dVg <∞

and some α ∈ (0, 1);

(ii)
∫

M dk( · , x0)e− f dVg <∞ for some k > −2 and u = O(dβ( · , x0)) for some
β ∈ (0, k+ 2);

(iii)
∫

M e− f dVg <∞ and u = O(dβ( · , x0)) for β ∈ (0, 2);

(iv) f ≥ Cd( · , x0)
β for some C > 0, β > 0 and

∫
M e−δ f dVg < ∞ for some

0< δ < 1 and u has polynomial growth;

(v) f ≥ Cd( · , x0)
β for some C > 0, β > 0 and the Riemannian volume has

polynomial volume growth and u = O(eαCd( · ,x0)
β

), α ∈ (0, 1).

Then u is a constant.

Proof. For (i), we see that there exists p ∈ (1,∞) such that |u|p = O(w). Hence

1
r2 log r

v(r)= 1
r2 log r

∫
Br

|u|pe− f dVg

≤
C

log r

∫
Br

w(x)
d2(x, x0)

e− f (x) dVg(x)= o(1).

It follows from Theorem 2.1 that u is a constant. The case (ii) follows from (i) by
letting w = dk+2( · , x0). The case (iii) follows from (ii) by letting k = 0.

For (iv), let us observe for any 1< p <∞,∫
M
|u|pe− f dVg ≤ C

∫
M

dsp(x, x0)e− f (x) dVg(x)≤ C
∫

M
e−δ f dVg <∞,

where s > 0. Then the statement also follows from Theorem 2.1. The case (v) can
be proved in a similar way. �

The following result is a direct corollary of the above (v).

Corollary 2.6. Let u be an f -harmonic function on the Gaussian space, i.e.,

1u− 1
2〈x,∇u〉 = 0.

If u = O(eα|x |
2/4) as x→∞, for some 0< α < 1, then u is a constant.
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Remark 2.7. Corollary 2.6 implies that there are no nonconstant polynomial growth
f -harmonic functions on the Gaussian space. This improves the result in [Li and

Wang 2009, Theorem 4.2]. By Caccioppoli’s inequality, Corollary 2.6 can be also
derived from Li and Yang [2012, Corollary 1.2] .

In the remaining part of this section, we study the L p-Liouville theorem in-
troduced by Zhu and Wang [2010] using a different measure from ours. We
shall explain why the critical exponent of the L p-Liouville theorem in [Zhu and
Wang 2010, Theorem 3] is p = n/(n − 2) (n ≥ 3) by applying our result. Let
(M, g, e− f dVg) be an n-dimensional (n ≥ 3) complete weighted manifold. In fact,
they consider the L p space with respect to the Riemannian volume in a modified
Riemannian manifold M̃ = (M, g̃, dVg̃), denoted by L p(M̃, dVg̃), where g̃ is a
conformal change of g given by g̃ = e−2 f/(n−2)g. Since this new manifold M̃ may
be incomplete, e.g., Gaussian space, Yau’s L p-Liouville theorem fails in this setting.
In the following, we use the L p-Liouville theorem on weighted manifolds to show
the one on modified Riemannian manifolds.

Theorem 2.8. Let (M, g, e− f dVg) be an n-dimensional (n ≥ 3) complete weighted
manifold, M̃ = (M, g̃, dVg̃) be the modified Riemannian manifold and u be a
nonnegative f -subharmonic function (or f -harmonic function) on M. For any p >
n/(n−2), there exists a constant δ = δ(p, n) ∈ (0, 1) such that if

∫
M e−δ f dVg <∞

and u ∈ L p(M̃, dVg̃), then u is a constant.

Proof. For any p> n/(n−2), let q = 2p/(p+n/(n−2))> 1, α= p/q > n/(n−2)
and α∗ = α/(α− 1) ∈ (1, n/2). Set δ = (n− 2α∗)/(n− 2) ∈ (0, 1). By Hölder’s
inequality, we can verify that∫

M
uqe− f dVg =

∫
M

uqe
2 f

n−2 dVg̃ ≤

(∫
M

uqα dVg̃

)1
α
(∫

M
e

2α∗ f
n−2 dVg̃

) 1
α∗

=

(∫
M

u p dVg̃

)1
α
(∫

M
e−δ f dVg

) 1
α∗

<∞.

The statement follows from Theorem 2.1. �

This yields a direct corollary which generalizes [Zhu and Wang 2010, Theorem 3],
which is restricted to the Gaussian spaces, to general weighted manifolds. The
Riemannian manifold (M, g, dVg) is said to be of subexponential volume growth if
Vg(r) := Vg(Br (x0))= eo(r) for some (then all) x0 ∈ M.

Corollary 2.9. Let (M, g, e− f dVg) be an n-dimensional (n≥ 3) complete weighted
manifold satisfying that f ≥ Cdβ( · , x0) for some C > 0, β > 0 and Vg(r)= eo(rβ ).
Let M̃ = (M, g̃, dVg̃) be the modified Riemannian manifold. Then for any p >
n/(n− 2), the f -harmonic function in L p(M̃, dVg̃) is constant. In particular, for
β = 1, it suffices to assume (M, g, dVg) has subexponential volume growth.
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Proof. By virtue of Theorem 2.8, it is sufficient to prove
∫

M e−δ f dVg <∞ where δ
is the constant in Theorem 2.8. We see by the coarea formula that∫

M
e−δ f dVg =

∫ 1

0

∫
Sr (x0)

e−δ f d Ar dr +
∫
∞

1

∫
Sr (x0)

e−δ f d Ar dr

≤ C0+

∫
∞

1

∫
Sr (x0)

e−δCrβ

= C0+

∫
∞

1
e−δCrβ d

dr
Vg(r) dr

= C0+ e−δCrβVg(r)
∣∣∞
1 + δC

∫
∞

1
βrβ−1e−δCrβVg(r) dr.

Since Vg(r)= eo(rβ ), there exists R large such that

Vg(r)≤ e
1
2 δCrβ for r > R.

It follows that limr→∞ e−δCrβVg(r) = 0 and
∫
∞

1 βrβ−1e−δCrβVg(r) dr < ∞. It
follows that

∫
M e−δ f dVg <∞. This completes the proof. �

3. f -harmonic maps into Cartan–Hadamard manifolds

In this section, we prove Theorem 1.4 in the case that the target Y = N is a
Cartan–Hadamard manifold.

Theorem 3.1. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
which is f -parabolic and N be a Cartan–Hadamard manifold. Then any f -
harmonic map with finite f -energy, i.e., E f(u) :=

∫
M |∇u|2e− f dVg < ∞, is a

constant map.

Proof. We use a construction by Rimoldi and Veronelli [2013] which associates an
f -harmonic map with a harmonic map on some higher dimensional warped product
manifold.

Precisely, let M := M ×e− f S1 denote a warped product, where S1
= R/Z with

Vol(S1)= 1, with the metric on M given by g(x, t)= g(x)+e−2 f (x)dt2. Note that
M is complete. It follows from [Rimoldi and Veronelli 2013, Proposition 2.5 and
Lemma 2.6] that M is parabolic and the map u : M→ N, defined by u(x, t)= u(x)
is a harmonic map. Moreover, EM(u)= E f

M(u) <∞.
Now by applying [Cheng et al. 1996, Proposition 2.1 and Theorem 3.1] to u and

M , we know that the image of u, u(M) = u(M), is bounded in N. Since N is a
Cartan–Hadamard manifold, d2(u( · ), Q) is a subharmonic function for any Q ∈ N,
which is also bounded. By the parabolicity of M, we know that d2(u( · ), Q) is
constant for any Q ∈ N. This proves the theorem. �
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Theorem 3.2. Let (M, g, e− f dVg) be a complete weighted Riemannian manifold
satisfying Ric f ≥ 0 and N be a Cartan–Hadamard manifold. Then any f -harmonic
map with finite f -energy E f(u) <∞ is a constant map.

Proof. We divide the theorem into two cases:

(a)
∫

M e− f dVg =∞,

(b)
∫

M e− f dVg <∞.

For case (a), it was already proved in [Wang and Xu 2012, Theorem 1.2] or [Rimoldi
and Veronelli 2013, Theorem 3.3] for general Riemannian target of nonpositive
curvature (without the assumption of simply-connectedness). For case (b), we
observe that M satisfies the moderate volume growth property (1). By Corollary 2.3,
M is f -parabolic. Then the statement follows from Theorem 3.1. �

Remark 3.3. Comparing Theorem 3.2 with [Wang and Xu 2012, Theorem 1.2] or
[Rimoldi and Veronelli 2013, Theorem 3.3], we remove the condition of the infinity
of f -volume for M but add the assumption that N is simply connected.

4. f -harmonic maps into Hadamard spaces

In this section, we define f -harmonic maps from an n-dimensional complete
weighted Riemannian manifold (M, g, e− f dVg) to a general metric space (Y, d).
For that purpose we investigate an f -energy functional E f whose definition given
here follows Korevaar and Schoen [1993], where a Sobolev space theory for maps
from Riemannian domains to metric spaces was developed. Note that the energy
functional has been further extended to maps from complete noncompact Rie-
mannian manifolds, and even more generally the so-called admissible Riemannian
polyhedrons with simplexwise smooth Riemannian metric, in Eells and Fuglede
[2001] (see Chapter 9 therein).

We consider Borel-measurable (equivalently, measurable with respect to e− f dVg)
maps u : M→ Y (u then has separable range since M is a separable metric space;
see [Dudley 2002, Problem 10 in Section 4.2]). The space L2

loc(M f , Y ) is defined
as the set of Borel-measurable maps u for which d(u( · ), Q) ∈ L2

loc(M, e− f dVg)

for some point Q (and hence for any Q by the triangle inequality) in Y. Since this
space is unchanged if we use the unweighted measure dVg instead of e− f dVg in
its definition, we will write L2

loc(M, Y ) for simplicity in the following. When M is
compact, L2

loc(M, Y ) is a complete metric space, with distance function d̂ defined by

d̂2(u, v) :=
∫

M
d2(u(x), v(x))e− f (x) dVg(x),

provided that (Y, d) is complete.
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The approximate energy density for a map u ∈ L2
loc(M, Y ) is defined for ε > 0 as

(2) eε(u) :=
1
ωn

∫
S(x,ε)

d2(u(x), u(y))
ε2

dσx,ε(y)
εn−1 ,

where dσx,ε(y) is the (n− 1)-dimensional surface measure on the sphere S(x, ε)
of radius ε centered at x induced by the Riemannian metric g, and ωn is the
volume of the n-dimensional unit Euclidean ball. One can check that the function
eε(u) ∈ L1

loc(M) (see [Korevaar and Schoen 1993]). Then we can define the f -
energy functional E f by

E f(u) := sup
η∈C0(M)
0≤η≤1

(
lim sup
ε→0

∫
M
ηeε(u)e− f dVg

)
.

We say a map u ∈ L2
loc(M, Y ) is locally of finite energy, denoted by u ∈

W 1,2
loc (M, Y ), if E f(u|�) <∞ for any relatively compact domain �⊂ M.

Theorem 4.1. If u ∈W 1,2
loc (M, Y ), then there exists a function e(u) ∈ L1

loc(M), such
that for any η ∈ C0(M), the following limit exists

(3) lim
ε→0

∫
M
ηeε(u)e− f dVg =:

∫
M
ηe(u)e− f dVg,

which serves as the definition of e(u).

Proof. By definition, u ∈ W 1,2
loc (M, Y ) implies that for any connected, open and

relatively compact subset �⊂ M, u|� ∈ L2(�, Y ) and

sup
ζ∈C0(�)
0≤ζ≤1

(
lim sup
ε→0

∫
�

ζeε(u|�) dVg

)
<∞,

that is, u|� ∈W 1,2(�, Y ) in Korevaar and Schoen’s notation [1993].
Now by their Theorem 1.5.1 and Theorem 1.10, we know that there exists a

function e(u|�) ∈ L1(�) such that

(4) lim
ε→0

∫
�

ζeε(u) dVg =

∫
�

ζe(u|�) dVg for all ζ ∈ C0(�).

In particular, one has

(5) lim
ε→0

∫
�

ηeε(u)e− f dVg =

∫
�

ηe(u|�)e− f dVg for all η ∈ C0(�).

We then define a function e(u) on M by e(u)|� := e(u|�) for any � ⊂ M with
smooth boundary. One can show that e(u) is well defined. For that purpose, one
only needs to check e(u|�)= e(u|�1) on �1 ⊂� where both �1 and � \�1 have
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Lipschitz boundary. This is true since by the trace theory [Korevaar and Schoen
1993, Theorem 1.12.3], one has∫

�

e(u|�) dVg =

∫
�1

e(u|�1) dVg +

∫
�\�1

e(u|�\�1) dVg.

Then (3) follows from (5) which proves this theorem. �

Remark 4.2. By the definition of e(u) and (4), we know

e(u)(x)= |∇u|2(x),

where |∇u|2(x) is the energy density function in [Korevaar and Schoen 1993]. This
function is consistent with the usual way of defining |du|2 for maps between Rie-
mannian manifolds. Therefore we use |∇u|2(x) instead of e(u)(x) in the following.

Remark 4.3. By a polarization argument, we can check that for any two functions
h1, h2 ∈W 1,2

loc (M, e− f dVg),

lim
ε→0

∫
M
η(x)

1
ωn

∫
S(x,ε)

(h1(x)− h1(y))(h2(x)− h2(y))
ε2

dσx,ε(y)
εn−1 e− f (x) dVg(x)

=

∫
M
η(x)〈∇h1(x),∇h2(x)〉e− f (x) dVg(x) for all η ∈ C0(M).

Remark 4.4. With (3) in hand, by the definition of E f , we can derive (see [Eells
and Fuglede 2001, Theorem 9.1]),

E f(u)=
∫

M
|∇u|2e− f dVg for all u ∈W 1,2

loc (M, Y ).

In particular, we define D f(u)= E f(u) when u is a scalar function.

Remark 4.5. As in [Korevaar and Schoen 1993], the definition of E f is unchanged
if we replace eε(x) by νeε(x) :=

∫ 2
0 eλε(x) dν(λ), where ν is any Borel measure on

the interval (0, 2) satisfying ν ≥ 0, ν((0, 2))= 1,
∫ 2

0 λ
−2 dν(λ) <∞. For example,

the approximate energy density function can be chosen as follows.

(1) When n ≥ 3, for the measure dν1(λ)= nλn−1dλ, 0< λ < 1,

ν1eε(x)=
n
ωn

∫
B(x,ε)

d2(u(x), u(y))
d2(x, y)

dVg(y)
εn ;

(2) For the measure dν2(λ)= (n+ 2)λn+1dλ, 0< λ < 1,

ν2eε(x)=
n+ 2
ωn

∫
B(x,ε)

d2(u(x), u(y))
ε2

dVg(y)
εn .

Remark 4.6. For n ≥ 3, by introducing a conformal change of the metric M̃ =
(M, g̃, dVg̃) where g̃ = e−2 f/(n−2)g and employing the energy density ν1eε, many
problems for weighted manifolds can be reduced to those on (possibly incomplete)
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unweighted manifolds. However, we prefer to write the proofs in a unified way
which includes the case n = 2.

We call a map u ∈ W 1,2
loc (M, Y ) f -harmonic if it is a local minimizer of the

energy functional E f , i.e., for any connected, open and relatively compact domain
�⊂ M, E f (u)≤ E f (v) for every map v ∈W 1,2

loc (M, Y ) such that u = v in M \�.
We now investigate the properties of the function d(u( · ), Q) on M, where

u : M→ Y is an f -harmonic map and Q ∈ Y. The first observation is that

(6) E f(d(u, Q))≤ E f(u).

This can be derived from the triangle inequality

(d(u(x), Q)− d(u(y), Q))2 ≤ d2(u(x), u(y)).

Recall that an Hadamard space (also called global NPC space) is a complete
geodesic space which is globally nonpositively curved in the sense of Alexandrov,
i.e., Toponogov’s triangle comparison for nonpositive curvature holds for any
geodesic triangle. The class of Hadamard spaces, natural generalizations of Cartan–
Hadamard manifolds, includes all simply connected local NPC spaces (see, e.g.,
[Burago et al. 2001]). When the target space (Y, d) is an Hadamard space, we have
the following theorem.

Theorem 4.7. If u ∈W 1,2
loc (M, Y ) is an f -harmonic map into an Hadamard space Y,

then for any Q ∈ Y,

(7) −

∫
M
〈∇η(x),∇d(u(x), Q)〉e− f dVg ≥ 0 for all 0≤ η ∈ Lip0(M),

i.e., d(u(x), Q) ∈W 1,2
loc (M) is an f -subharmonic function.

This theorem is a consequence of Jost [1997a, Lemma 5]. The subharmonicity
of d(u( · ), Q) for harmonic maps from an admissible Riemannian polyhedron with
simplexwise smooth Riemannian metric to an Hadamard space was obtained by Eells
and Fuglede [2001, Lemma 10.2]. Their argument essentially also works in our set-
ting. Using Remark 4.3, Jost’s lemma can be reformulated in our setting as follows.

Lemma 4.8 [Jost 1997a, Lemma 5]. If u ∈W 1,2
loc (M, Y ) is an f -harmonic map into

an Hadamard space Y, then for any Q ∈ Y and η ∈ Lip0(M), 0≤ η ≤ 1,

(8) −
∫

M
〈∇η(x),∇d2(u(x), Q)〉e− f (x) dVg(x)≥ 2

∫
M
η(x)|∇u|2(x)e− f (x) dVg(x).

In fact, (8) still holds for nonnegative functions η ∈ W 1,2(M) with compact
support. (When E f(u) is finite, (8) even holds for 0≤ η ∈W 1,2

0 (M).) Now we can
prove Theorem 4.7 concerning the f -subharmonicity of d(u( · ), Q).
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Proof of Theorem 4.7. Denote ϕ(x) :=
√

x2+ ε for ε > 0. For any 0≤ η ∈Lip0(M),
we choose a compactly supported function

η1(x) :=
η(x)

2ϕ(d(u(x), Q))
∈W 1,2(M).

Then we calculate (we suppress the measure e− f dVg in the notation)

−

∫
M

〈
∇η(x),∇

√
d2(u(x),Q)+ ε

〉
=−

∫
M

〈
∇η(x),

∇d2(u(x),Q)
2ϕ(d(u(x),Q))

〉
=−

∫
M
〈∇η1(x),∇d2(u(x),Q)〉

−

∫
M

2η1
d(u(x),Q)ϕ′(d(u(x),Q))

ϕ(d(u(x),Q))
|∇d(u(x),Q)|2.

Note that
d(u(x), Q)ϕ′(d(u(x), Q))

ϕ(d(u(x), Q))
=

d2(u(x), Q)
d2(u(x), Q)+ ε

≤ 1,

and by (6), |∇d(u(x), Q)|2 ≤ |∇u(x)|2, we obtain

(9) −
∫

M

〈
∇η(x),∇

√
d2(u(x),Q)+ε

〉
≥−

∫
M
〈∇η1(x),∇d2(u(x),Q)〉−2

∫
M
η1|∇u(x)|2.

Applying Lemma 4.8, and letting ε→ 0, we complete the proof. �

Now we adopt the method of Li and Wang [1998], a geometric analysis method,
to prove Kendall’s theorem when the target is a locally compact Hadamard space.

Proof of Theorem 1.1. By assumption, the space of bounded f -harmonic functions
is of dimension one. Then by the arguments of Grigor’yan [1990], every two
f -massive subsets of M have a nonempty intersection. Here by a f -massive subset,

we mean an open proper subset of�⊂M on which there is a bounded, nonnegative,
nontrivial, f -subharmonic function h such that h|∂� = 0. Such function h is called
an f -potential of the set �.

Let M̂ be the Stone–Čech compactification of M. Then every bounded continuous
function on M can be continuously extended to M̂ . Let � be an f -massive subset
of M, we then define the set

S :=
⋂

h: f -potential
functions of �

{x̂ ∈ M̂ | h(x̂)= sup h}.

By the maximum principle for f -subharmonic functions, we know S ⊂ M̂ \M.
Then, by the same arguments as in [Li and Wang 1998, Theorem 2.1], we can

prove S 6=∅. Furthermore, for any bounded f -subharmonic function v, we have
S ⊂ {x̂ ∈ M̂ | v(x̂)= sup v}.
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Let us take a point Q0 ∈ u(M). If u(M) = {Q0}, then we complete the
proof. Otherwise, we have u(M) \ {Q0} 6= ∅. Since u is an f -harmonic map,
by Theorem 4.7, the function h1(x) := d(u(x), Q0) is an f -subharmonic function,
which is bounded and nonconstant. Hence h1 attains its maximum at every point
of S. For a point x̂ ∈ S, there is a sequence {xn} in M converging to x̂ in M̂ . Note
that u has bounded image. Thus by local compactness of the target Y, there exists
a subsequence of {u(xn)} converging to Q1 ∈ Y. Now again, if u(M)= {Q1}, the
proof is complete. Therefore, we can assume u(M) \ {Q1} 6=∅. By Theorem 4.7,
the function h2(x) := d(u(x), Q1) is a bounded f -subharmonic function. Thus h2

achieves its maximum on S, in particular at x̂ . That is,

sup h2(x)= h2(x̂)= d(Q1, Q1)= 0.

This contradicts our assumption. Therefore u(M)= {Q1} is a constant map. �

Remark 4.9. As pointed out to us by K. Kuwae, one can prove Kendall’s theorem
by combining the methods of Li and Wang [1998] and Kuwae and Sturm [2008] for
harmonic maps into Hadamard spaces if the weak topology on the target (see [Jost
1994, Definition 2.7]) coincides with the strong one, or equivalently any distance
function d(x, · ) on the target is weakly continuous for any x ∈ Y.

5. Liouville-type theorems

In this section, we shall prove our main theorem. First, we review the classical clas-
sification theory of Riemannian manifolds in the framework of weighted manifolds.
For more details we refer to [Glasner and Nakai 1972] and [Sario and Nakai 1970].

We recall some function spaces of (M, g, e− f dVg). Let D f(M) be the set
of Tonelli functions1 on M with finite Dirichlet f -energy. The Royden algebra
BD f(M) is the set of bounded functions in D f(M). Under the norm ‖u‖ =
supM |u| +

√
D f(u), BD f(M) becomes a Banach algebra. For a sequence {un} in

D f(M), we say u = C − lim un if un converges to u uniformly on compact subsets
and u= B−lim un if in addition {un} is uniformly bounded. We say u=D f

−lim un

if lim D f(un − u) = 0. We also write u = CD f
− lim un or u = BD f

− lim un to
indicate two types of convergence.

Let C∞0 (M) be the set of smooth functions with compact support and D f
0 (M) be

its closure under the CD f -topology. We also denote by HD f(M) and HBD f(M)
the sets of f -harmonic functions in D f(M) and BD f(M) respectively.

Proposition 5.1. Let (M, g, e− f dVg) be an f -parabolic weighted Riemannian
manifold. Then any f -subharmonic function with finite Dirichlet f -energy is
constant. In particular, any function in HD f(M) is constant.

1A Tonelli function is a continuous function with locally L2-integrable weak derivatives.
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Proof. Let u ∈ D f(M) be f -subharmonic. we may assume u ≥ 0 since max{u, 0}
is also f -subharmonic. Let {Mn} be an exhaustion of M and take wk ∈ BD f(M)
with wk |M0 = 1, wk |M\Mk = 0 and f -harmonic in Mk \ M0. It follows from the
f -parabolicity of M that BD f

− limwk = 1. On the other hand, set vk ∈ BD f(M)
with vk |M0 = u, vk |M\Mk = 0 and f -harmonic in Mk \ M0, one can verify that
v = BD f

− lim vk exists. Set now ũ = u − v, and ũm = min{ũ,m}. Then ũ =
D f
− lim ũm . Since ũ is nonnegative and f -subharmonic, we can compute

(10) 0≥−
∫

Mk\M0

ũmwk1 f ũe− f dVg =

∫
M
〈∇(ũmwk),∇ũ〉e− f dVg.

As wk→ 1 in D f -topology, we deduce from (10) by letting k→∞ that∫
M
〈∇ũm,∇ũ〉e− f dVg = 0,

which yields D f(ũ)= 0 by letting m→∞. Since ũ|M0 = 0, we see u = v. Finally,

D f(u)=
∫

M
〈∇u,∇v〉e− f dVg = lim

k→∞

∫
M
〈∇u,∇vk〉e− f dVg ≤ 0,

and hence u is a constant. �

The following are the weighted version of the Royden–Nakai decomposition
theorem and the Virtanen theorem. The proofs are almost the same as the unweighted
case. For the convenience of the reader, we shall give proofs here.

Theorem 5.2 (Royden–Nakai decomposition theorem). Let (M, g, e− f dVg) be a
non- f -parabolic weighted Riemannian manifold. Then any function u ∈ D f(M) has
a unique decomposition u = h+g, where h ∈ HD f(M) and g ∈ D f

0 (M). Moreover,
if u is f -subharmonic, then u ≤ h.

Proof. Let u ∈ D f(M). Assume first u ≥ 0. Let {Mk} be an exhaustion of M.
Take hk ∈ D f(M) such that hk is f -harmonic in Mk and hk |M\Mk = u. Denote
gk = u− hk . It follows from the maximum principle that hk ≥ 0. One can check

D f(u)=
∫

M
(|∇hk |

2
+ |∇gk |

2
+ 2〈∇hk,∇gk〉)e− f dVg = D f(hk)+ D f(gk),

where in the second equality we used integration by parts and the facts gk |M\Mk = 0
and hk is f -harmonic in Mk . Similarly we have for m ≤ k

D f(hk − hm)= D f(hk)− D f(hm).

Thus {hk} is a D f -Cauchy sequence, i.e., D f(hk − hm) is small enough when m
and k are large enough.
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Let wk ∈ BD f(M) with wk |M0 = 1, wk |M\Mk = 0 and harmonic in Mk \ M0.
It follows from the non- f -parabolicity of M that w = BD f

− limwk satisfies
D f(w) > 0.

We can compute∫
M
〈∇gk,∇wk〉e− f dVg =

∫
Mk\M0

〈∇gk,∇wk〉e− f dVg =

∫
∂M0

gk
∂wk

∂ν
e− f d Ag,

where ν is the unit inward normal of ∂M0. Since wk is f -harmonic in Mk \M0, it
follows from the Hopf lemma that ∂wk/∂ν > 0 along M0. It follows that

( inf
∂M0

hk − sup
∂M0

u)
∫
∂M0

∂wk

∂ν
e− f d Ag ≤

∫
∂M0

−gk
∂wk

∂ν
e− f d Ag

=−

∫
M
〈∇gk,∇wk〉e− f dVg

≤
[
D f(gk)D f(wk)

]1/2
≤
[
D f(u)D f(wk)

]1/2
.

Combining this with the fact that
∫
∂M0

(∂wk/∂ν)e− f dVg = D f(wk), we find

inf
M0

hk ≤ inf
∂M0

hk ≤ sup
M0

u+
[ D f(u)

D f(wk)

]1/2
.

Since w = BD f
− limwk satisfies D f(w) > 0, we see infM0 hk is bounded. Conse-

quently, by the Harnack inequality for f -harmonic functions, supM0
hk is bounded.

Hence there exists a subsequence of hk , still denoted by hk , such that {hk} is a
C f -Cauchy sequence.

Together with the fact {hk} is a D f -Cauchy sequence, we conclude that hk

converges to some h in the CD f -topology and h ∈ HD f(M). One may directly
check that gk converges to g = u− h in the CD f-topology and thus g ∈ D f

0 (M).
Furthermore, if u is f -subharmonic, from the construction of hk we see u− hk

is f -subharmonic and vanishes on ∂Mk and in turn by the maximum principle that
h ≥ u.

If u is not nonnegative, we can run the same process for u+ = max{u, 0} and
u− =−min{u, 0} as before and get the same result.

The uniqueness follows from the fact that any h ∈ HD f(M) and g ∈ D f
0 (M)

satisfy
∫

M〈∇h,∇g〉e− f dVg = 0. �

Theorem 5.3 (Virtanen’s theorem). For every u ∈ HD f(M) there exists a sequence
hk ∈ HBD f(M) such that u = CD f

− lim hk . In particular, M admits no noncon-
stant f -harmonic function on M with finite Dirichlet f -energy if and only if M
admits no nonconstant bounded f -harmonic function on M with finite Dirichlet
f -energy.



398 BOBO HUA, SHIPING LIU AND CHAO XIA

Proof. We may assume M is non- f -parabolic, since otherwise, any u ∈ HD f(M)
is constant, due to Proposition 5.1, whence the statement is trivial. We may also
assume u ≥ 0, since otherwise we do the same analysis on u+ and u−. Set for any
k ∈ N, uk = min{u, k}. Then uk is f -superharmonic and u = D f

− lim uk . By
Royden–Nakai decomposition, uk = hk+gk , where hk ∈ HD f(M) and gk ∈ D f

0 (M).
Moreover, gk ≥ 0. One can verify

D f(u− uk)= D f(u− hk)+ D f(gk).

Hence D f(u − hk)→ 0 and D f(gk)→ 0. Since 0 ≤ gk ≤ uk ≤ u is bounded in
any compact set of M, we conclude that gk converges to some constant function
c in the CD f -topology. It follows from the non- f -parabolicity of M that c = 0.
Therefore hk converges to u in the CD f -topology.

The second assertion follows easily from this approximation. �

The following lemma was first proved by Cheng, Tam and Wan [Cheng et al.
1996, Theorem 1.2].

Lemma 5.4. Let (M, g, e− f dVg) be a weighted Riemannian manifold. Then the
following two statements are equivalent:

(i) any u ∈ HD f(M) is bounded;

(ii) any nonnegative f -subharmonic function on M with finite Dirichlet f -energy
is bounded.

Proof. (ii)⇒(i). This is quite simple by observing the fact that if u ∈ HD f(M),
then
√

u2+ 1 is a nonnegative f -subharmonic function on M with finite Dirichlet
f -energy.

(i)⇒(ii). Assume u is a nonnegative f -subharmonic function on M with finite
Dirichlet f -energy. If M is f -parabolic, then the two statements are both true by
virtue of Proposition 5.1 and hence equivalent. If M is non- f -parabolic, then by
Theorem 5.2, u = h+ g for h ∈ HD f(M) and g ∈ D f

0 (M). Moreover, since u is
f -subharmonic, we know u ≤ h. By the assumption (i), h is bounded. Thus u is
also bounded. This proves the lemma. �

Using Lemma 5.4, we can prove the main Theorem 1.2.

Proof of Theorem 1.2. Let u be an f -harmonic map from M to Y with finite f -energy.
It follows from Theorem 4.7 that the function v :M→R, v(x)=

√
d2(u(x), Q)+ 1

is subharmonic, where Q ∈ Y. Also, the finiteness of the f -energy of u implies the
finiteness of the Dirichlet f -energy of v (recall (6)). Using the assumption and the
equivalence in Lemma 5.4, we know that any nonnegative f -subharmonic function
on M with finite Dirichlet f -energy is bounded. Hence v is bounded, and in turn,
u has bounded image. This proves the theorem. �
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For harmonic maps from f -parabolic weighted manifolds, we don’t need the
local compactness assumption of the targets to obtain the Liouville theorem.

Corollary 5.5. Let (M,g,e− fdVg) be a complete noncompact f -parabolic weighted
Riemannian manifold and (Y, d) be an Hadamard space. Then any f -harmonic
map from M to Y with finite f -energy is a constant map.

Proof. Let u be an f -harmonic map from M to Y with finite f -energy. By
Proposition 5.1 and Theorem 1.2, the image of u is bounded. Hence for any Q ∈ Y,
the f -subharmonic function d(u(x), Q) is bounded. By the f -parabolicity of M
and Proposition 2.2, the function d(u(x), Q) is constant for any Q ∈ Y. This yields
that u is a constant map. The corollary follows. �

Combining Theorems 1.1 and 1.2, we obtain Theorem 1.3 by the potential theory.

Proof of Theorem 1.3.. By assumption, any bounded f -harmonic function on M is
constant. By Theorem 5.3, we know that any f -harmonic function on M with finite
Dirichlet f -energy is constant. Using Theorem 1.2, we see that any f -harmonic
map from M to Y with finite f -energy must have bounded image.

On the other hand, by Theorem 1.1, we know that any f -harmonic map from M
to Y having bounded image is constant. Hence any f -harmonic map from M to Y
with finite f -energy is a constant map. This proves the theorem. �

Proof of Theorem 1.4.. By a theorem of Brighton [2013], the weighted manifold
(M, g, e− f dVg) satisfying Ric f ≥ 0 admits no nonconstant bounded f -harmonic
functions. The assertion follows from Theorem 1.3 immediately. �
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