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OF IMMERSED CLOSED CURVES

AND THE ISOPERIMETRIC INEQUALITY

XIAO-LIU WANG, HUI-LING LI AND XIAO-LI CHAO

It is shown that all immersed closed, locally convex curves with total curva-
ture of 2mπ and n-fold rotational symmetry (m/n ≤ 1) finally evolve into
m-fold circles under the length-preserving curvature flow. Sufficient condi-
tions for the occurrence of the finite-time singularities in the flow are also
established. As a byproduct, an isoperimetric inequality for rotationally
symmetric, locally convex curves is proved via the flow method.

1. Introduction

In this paper we investigate the evolution of immersed closed curves X (p, t)
parametrized by p and driven by the inner normal speed

(1-1) V (p, t)=
(
−

∫
X ( · ,t)

k2 ds
/∫

X ( · ,t)
k ds+ k(p, t)

)
n(p, t),

where k(p, t) denotes the curvature of X (p, t) with respect to inner normal n(p, t).
Denote by X0 the given smooth closed initial curve. When X0 is a simple convex
closed curve (m = 1), this flow has been studied by Ma and Zhu [2012]. It is shown
that the flow preserves convexity and length while it increases the enclosed area,
finally converging to a round circle in the C∞ metric.

When X0 is an immersed, locally convex closed curve, it is not difficult to show
that the convexity and length of evolving curves are still preserved under the flow,
and the enclosed algebraic area is increasing. Moreover, in [Wang and Wo 2014],
two special classes of rotationally symmetric, locally convex closed initial curves,
which both enclose a positive algebraic area, are found to guarantee the convergence
of the flow (1-1) to m-fold circles. One class consists of highly symmetric convex
curves. Specifically, they are locally convex closed curves with total curvature
2mπ and n-fold rotational symmetry where n > 2m. The other is Abresch–Langer
type convex curves, which still have total curvature of 2mπ and n-fold rotational
symmetry but with n < 2m and some additional conditions on the curvature (see
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its definition in [Wang and Wo 2014]). Note that Abresch–Langer curves [1986]
belong to the later class.

One may naturally ask about the behavior for a general rotationally symmetric
curve under the flow (1-1). Furthermore, is there any possibility of the occurrence
of singularity in the flow (1-1)? We devote this short paper to answering these
questions. For the convenience of the reader, we use the following notation:

ds the differential element of arclength,

θ the normal angle of X ( · , t),

L(t) the length of X ( · , t),

A(t) the algebraic area of X ( · , t) defined by− 1
2

∫
X
〈X, n〉 ds,

k( · , t) the curvature of X ( · , t) with respect to n.

Here, we always take the orientation of X ( · , t) to be counterclockwise.
Define

k =

∫
X k2 ds∫
X k ds

=

∫
X k2 ds
2mπ

.

We write down the evolution of various geometric quantities along the flow (1-1).
They can be deduced from the general formulas in [Chou and Zhu 2001].

∂k
∂t
= kss + k2(k− k), dL

dt
=−

∫
X

k(k− k) ds = 0, dA
dt
=−

∫
X
(k− k) ds ≥ 0.

Here, it can be seen that the length of the evolving curves is preserved while the
enclosed algebraic area is increasing.

Each point on the locally convex solution X ( · , t) has a unique tangent and one
can use the tangent angle θ ∈ S1

m :=R/2mπZ to parametrize it. Generally speaking,
θ is a function depending on t . One can make θ independent of time t by adding
a tangential component to the velocity vector ∂X/∂t , which does not affect the
geometric shape of the evolving curve (see, for instance, [Gage 1986]). Then the
evolution equations can be expressed in the coordinates of θ and t . If we denote
by k(θ, t) the curvature function of X (θ, t), the evolution problem of (1-1) can be
reformulated equivalently into equations of the curvature k:

(1-2)
{

kt = k2(kθθ + k− k), (θ, t) ∈ I × (0, T ),
k(θ, 0)= k0(θ), θ ∈ I,

where k0 is the curvature of X0 and T is the maximal existence time of the flow. Here
and after, I always denotes the circle S1

m . In terms of the new coordinates, we have

k =

∫
I k(θ, t) dθ

2mπ
.
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The first main theorem is:

Theorem 1. If the initial curve is locally convex, closed and its curvature k0(θ)

satisfies

(1-3)
∫

I
(k0− k0)

2 dθ ≥
∫

I
(k0θ )

2 dθ,

and k0(θ) is nonconstant in I, then the solution k(θ, t) to problem (1-2) blows up in
some finite time and a singularity appears during the evolution of the flow (1-1).

We note that the condition (1-3) is not void since by the Poincaré inequality,∫
I
(k0− k0)

2 dθ ≤ m2
∫

I
(k0θ )

2 dθ.

If the curvature of initial curve does not satisfy (1-3), how about the behavior of
the flow? In fact, we find a large class of initial curves which do not satisfy the
condition (1-3) and can evolve into m-fold circles under the flow. This is our second
main theorem.

Theorem 2. If the initial curve is locally convex, closed and has total curvature
of 2mπ and n-fold rotational symmetry with m/n ≤ 1, then the flow (1-1) exists
globally and converges to an m-fold circle in the C∞-metric as time goes to infinity.

When the initial curve is simple closed and convex, it can be regarded as the case
of m = n = 1 in Theorem 2. In addition, its curvature cannot satisfy the condition
(1-3) except by being a constant, in view of the Poincaré inequality.

The third theorem gives an isoperimetric condition such that the singularity
appears.

Theorem 3. Assume the initial curve X0 is locally convex, closed and has total
curvature of 2mπ . If X0 satisfies

(1-4) L2
0 < 4mπ A0,

where L0 and A0 denote its length and enclosed algebraic area respectively, then
the solution k(θ, t) to problem (1-2) blows up in some finite time and a singularity
appears during the evolution of the flow (1-1)

As a result, we can present a new proof of the following isoperimetric inequality
for the rotationally symmetric and locally convex curves, which was proven in
[Chou 2003] and [Süssmann 2011]:

Proposition 4. For the rotationally symmetric and locally convex curves, with total
curvature of 2mπ and n-fold symmetry (m/n < 1), the length L and the enclosed
algebraic area A satisfy

(1-5) L2
≥ 4mπ A.
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We give some remarks on the above theorems and the nonlocal flow. As an
interesting variant of the popular curve shortening flow [Gage and Hamilton 1986;
Angenent 1991; Andrews 1998; Chou and Zhu 2001], the nonlocal curvature flow,
arising in many application fields [Sapiro and Tannenbaum 1995; Capuzzo Dolcetta
et al. 2002; Xu and Yang 2014], such as phase transitions, image processing, etc.,
has received much attention in recent years. Before the work of Ma and Zhu [2012],
there was an original study by Gage [1986], where an area-preserving flow was
investigated with its inner normal velocity given by

(1-6) V =
(
−

∫
X ( · ,t)

k ds
/∫

X ( · ,t)
ds+ k

)
n.

After that, there are a lot of papers on the nonlocal flow for simple convex curves,
including [Jiang and Pan 2008; Lin and Tsai 2012]. In the higher dimensional case,
people also consider nonlocal flows. For example, there are volume-preserving mean
curvature flows; see [Huisken 1987; McCoy 2005; Cabezas-Rivas and Sinestrari
2010]. And also there are surface area-preserving mean curvature flows, see [McCoy
2003]. Recently, the study of nonlocal flow extends to the case of Riemannian
manifolds; see [Xu et al. 2014].

In all of the papers mentioned above, the main concern is the global existence
and convergence of the flow. For a study of the singularity, one can refer to [Escher
and Ito 2005], or to [Wang and Kong 2014], where the area-preserving flow of
immersed curves is studied and some geometric initial conditions are given to
guarantee the occurrence of singularity. This urges us to carry the present work on
the length-preserving flow of immersed curves.

One interesting aspect of this paper is that we have obtained the sufficient
conditions for the flow (1-1) to yield the singularity. Moreover, the geometric
condition (1-4) given in Theorem 3 can be interpreted as

(1-7)
∫

I
(h0− h0)

2 dθ >
∫

I
(h0θ )

2 dθ,

where h0(θ) is the support function of the initial curve X0, defined by h0(θ) =

−〈X0(θ), n0(θ)〉 with n0 being the inner normal of X0, and h0 =
∫

I h0 dθ/(2mπ).
Indeed, we can deduce (1-7) from the following observations:

k0 = (h0+ h0θθ )
−1, L0 =

∫
I

dθ
k0
=

∫
I

h0 dθ,

and

A0 =
1
2

∫
X0

h0 ds = 1
2

∫
I

h0(h0+ h0θθ ) dθ,

where k0 is the curvature function of X0.
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Another interesting aspect is that we have refined the results of [Wang and Wo
2014] in Theorem 2 and showed that the convergence result holds for all rotationally
symmetric, locally convex immersed curves whether the enclosed algebraic area
A0 of the initial curve X0 is negative or not. This differs with the flow (1-6), since
a singularity must happen in the flow (1-6) if A0 < 0, see [Escher and Ito 2005]
for reference. One may also compare it with the different evolution of rotationally
symmetric curves in the curve shortening flow, see [Au 2010].

We organize this paper in the following way. Some basic and useful lemmas are
prepared in Section 2. Then we prove Theorems 1 and 2 in Section 3, and prove
Theorem 3 in Section 4.

2. Lemmas

In this section, we present some lemmas for later use. The first lemma shows the
flow exists as long as its curvature is bounded.

Lemma 2.1. When the initial curve is immersed closed, locally convex and smooth,
problem (1-1) has a unique smooth, locally convex solution in a time interval [0, T )
for some T > 0, which can be continued as long as the curvature of evolving curves
is finite.

Proof. The unique existence of the flow can be proven by applying the classical
Leray–Schauder fixed point theorem to problem (1-2). See details in [Mao et al.
2013], where a general area-preserving flow is studied. One can also find the relative
references in [McCoy 2003; 2005; Cabezas-Rivas and Sinestrari 2010], where the
nonlocal flows in higher dimensions are discussed. The preserved convexity will
be proved in the next lemma. �

By the maximum principle, we can show that the local convexity of the initial
curve is preserved by the flow (1-1).

Lemma 2.2. If the initial curve X0 is locally convex, then X ( · , t) is locally convex
as long as the flow exists.

Proof. By the continuity, minθ∈I k(θ, t) remains positive on a small time interval.
Assume that the time span of the flow is T. Suppose to the contrary that the
conclusion is not true. Then there must be a first time, say t1 < T, such that

(2-1) min
θ∈I

k(θ, t1)= 0.

We will deduce a contradiction. Consider the quantity

8(θ, t)= 1
k(θ, t)

−
L(t)
2mπ

−
1

2mπ

∫ t

0

∫ 2mπ

0
k(θ, τ ) dθ dτ,
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with (θ, t) ∈ I ×[0, t1). By (1-2), we have

8t(θ, t)=−kθθ − k ≤ k2(θ, t)8θθ (θ, t).

Hence by the maximum principle,

1
k(θ, t)

≤max
θ∈I

( 1
k0(θ)

)
+

L(t)−L(0)
2mπ

+
1

2mπ

∫ t

0

∫ 2mπ

0
k(θ, τ ) dθ dτ

for all (θ, t) ∈ I ×[0, t1), where we note that L(t)= L(0) for all time t and

sup
(θ,t)∈I×[0,t1)

k(θ, t)≤ C1(t1) <∞

for some constant C1(t1). Therefore,

inf
θ∈I

k(θ, t)≥ C2(t1) > 0 for all t ∈ [0, t1)

for some constant C2(t1). This is a contraction with (2-1)! The proof is done. �

The following lemma is the gradient estimate.

Lemma 2.3. Along the flow (1-1), we have∫
I
(kθ )2 dθ ≤

∫
I

k2 dθ +C

for some constant C independent of time.

Proof. From (1-2), we have

1
2

d
dt

∫
I
[(kθ )2− k2

+ 2kk] dθ =−
∫

I
k2(kθθ + k− k)2+ dk

dt

∫
I

k dθ ≤ dk
dt

∫
I

k dθ.

Hence,
d
dt

∫
I
(kθ )2 dθ ≤ d

dt

∫
I
(k2
− 2kk) dθ + 2dk

dt

∫
I

k dθ,

and the integration yields∫
I
(kθ )2 ≤

∫
I
(k2
− 2kk) dθ + 1

2mπ

∫ t

0

d
dτ

(∫
I

k dθ
)2

dτ +C1

=

∫
I
(k2
− 2kk) dθ +

1
2mπ

(∫
I

k dθ
)2

+C2

=

∫
I

k2 dθ − k
∫

I
k dθ +C2

≤

∫
I

k2 dθ +C2,

where C1, C2 only depend on the initial data. The proof is done. �
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By the obtained gradient estimate, if the curvature k blows up, we can show that
the blow-up set for k must contain at least some open interval.

Denote
kmax(t)=max

θ∈I
k(θ, t), t ∈ [0, T ).

Lemma 2.4. Assume that kmax(t)= k(θt , t) for some θt ∈ [0, 2mπ ]. Then for any
small ε > 0, there exists a number δ > 0, depending only on ε, such that

(1− ε)kmax(t)≤ k(θ, t)+
√

2mπ |C |

for all θ ∈ (θt−δ
2, θt+δ

2) and all t ∈ (0, T ), where C is the constant in Lemma 2.3.

Proof. An easy integration combined with the Hölder inequality shows that

kmax(t)= k(θ, t)+
∫ θt

θ

kθ (θ, t) dθ ≤ k(θ, t)+ |θt − θ |
1/2
(∫ θt

θ

k2
θ dθ

)1/2

.

Then from Lemma 2.3 we have

kmax(t)≤ k(θ, t)+ |θt − θ |
1/2
(∫

I
k2 dθ + |C |

)1/2

≤ k(θ, t)+ |θt − θ |
1/2(2mπk2

max(t)+ |C |)
1/2

≤ k(θ, t)+ |θt − θ |
1/2
√

2mπkmax(t)+ |θt − θ |
1/2
|C |1/2

≤ k(θ, t)+ |θt − θ |
1/2
√

2mπkmax(t)+
√

2mπ |C |.

Take δ such that |θt − θ |
1/2
≤ δ := ε/

√
2mπ and the lemma is proved. �

We need the following lemma, proven in [Wang and Wo 2014], to conclude the
convergence of the flow after we obtain the a priori estimate for the curvature.

Lemma 2.5. If there is a constant C independent of time such that

max
θ∈I

k(θ, t)≤ C, t ∈ [0, T ),

with T being the maximal existence time, then the flow (1-1) must exist for all time
and converge smoothly to an m-fold circle as time goes to infinity.

3. Proofs of Theorems 1 and 2

First, we deduce a sufficient condition for the occurrence of the singularity at some
finite time. The following two lemmas are useful in the proof.

Lemma 3.1. If the flow (1-1) exists for all time, then there exists a sequence
{tj }
∞

j=1→∞ such that ∫
I

k(θ, tj ) dθ ≤ C

for some constant C independent of time.
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Proof. We have

dA
dt
=−

∫
I
(k− k) ds = L(t)

2mπ

∫
I

k dθ − 2mπ ≥ 0.

Since an isoperimetric inequality of Rado (see [Osserman 1978]) says that

L(t)2 ≥ 4π A(t)

and L(t)= L0, we know that A(t) is uniformly bounded from above. Notice that
A(t) is increasing in time. We have

∫
∞

0 (dA/dτ) dτ <∞. Thus for any small ε > 0,
there exists a sequence {tj }

∞

j=1→∞, such that

dA
dt
(tj ) < ε,

that is, ∫
I

k(θ, tj ) dθ < 2mπ
L0

(ε+ 2mπ).

Then we can draw the conclusion by fixing an ε > 0. �

Denote

E(t)=
∫

I
(kθ )2 dθ −

∫
I

k2 dθ + 1
2mπ

(∫
I

k dθ
)2

.

That is,

E(t)=
∫

I
(kθ )2 dθ −

∫
I
(k− k)2 dθ.

Lemma 3.2. For the energy E(t) defined as above, we have

dE(t)
dt
≤ 0.

Proof. From the equation (1-2), we have∫
I

(kt)
2

k2 dθ =
∫

I
(kθθ + k− k)kt dθ =−1

2
d
dt

∫
I
[(kθ )2− k2

] dθ − k
∫

I
kt dθ,

where

k
∫

I
kt dθ = d

dt

∫ t

0
k(τ )

∫
I

kτ dθdτ = 1
4mπ

d
dt

∫ t

0

d
dτ

(∫
I

k dθ
)2

dτ.

Thus,

−
1
2

dE(t)
dt
=

∫
I

(kt)
2

k2 dθ ≥ 0,

and the proof is done. �
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Proof of Theorem 1. Using the equation (1-2) and integrating by parts yield

d
dt

∫
I

ln k dθ =
∫

I
k(kθθ + k− k) dθ =−E(t).

From Lemma 3.2, we have

d
dt

∫
I

ln k dθ ≥−E(0)=−
∫

I
(k0θ )

2 dθ +
∫

I
(k0− k0)

2 dθ.

First, we consider the case of E(0) < 0. If we suppose to the contrary the flow
exists for all time, then limt→∞

∫
I ln k dθ =∞. This implies that for any t > 0, we

can find a θt ∈ I, such that limt→∞ k(θt , t) =∞. Then by Lemma 2.4, we have
limt→∞

∫
I k(θ, t) dθ =∞, which is a contradiction to Lemma 3.1. Thus the flow

must exist for some finite time.
If E(0)= 0, we claim that k0θθ + k0− k0 6= 0 must hold at some point of I and

hence in some interval of I by the continuity. Indeed, if k0θθ + k0− k0 = 0 holds
everywhere in I, we set w = k0− k0 and w satisfies

wθθ +w = 0 in I,

which implies that w is a 2π-periodic function and so is k0. Hence, E(0)=0 tells
us that k0 is a constant function in view of the Poincaré inequality, a contradiction
with the assumption! Thus we have shown that k0θθ + k0− k0 6= 0 must hold in
some interval of I. Then by recalling the proof of Lemma 3.2, we have

dE(t)
dt
=−2

∫
I

(kt)
2

k2 dθ < 0,

which implies that E(t) < 0 for t > 0. At last, we can still show the conclusion
holds via a similar method to the one above. The proof is finished. �

One may naturally ask what happens if the condition (1-3) does not hold for the
initial curve. A large class of rotationally symmetric curves belong to this case. In
fact, the Poincaré inequality tells us the following lemma:

Lemma 3.3. If a curve is locally convex, closed and has total curvature of 2mπ
and n-fold rotational symmetry with m/n ≤ 1, then its curvature k(θ) satisfies∫

I
(k− k)2 dθ ≤

(m
n

)2
∫

I
(kθ )2 dθ.

Proof. By the Poincaré inequality, we have∫ 2mπ/n

0
(k− k)2 dθ ≤

(m
n

)2
∫ 2mπ/n

0
(kθ )2 dθ,

and then the conclusion follows. �
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Proof of Theorem 2. By equation (1-2) and integration by parts, we have

d
dt

∫
I

ln k dθ =
∫

I
k(kθθ + k− k) dθ =−

∫
I
(kθ )2 dθ +

∫
I
(k− k)2 dθ.

From Lemma 3.3, we have d
(∫

I ln k dθ
)
/dt ≤ 0. Thus there is a constant C1

independent of time, such that
∫

I ln k(θ, t) dθ ≤ C1 for all t ∈ [0, T ). This implies
that there is a constant C2 independent of time, such that

(3-1) max
θ∈I

k(θ, t)≤ C2

for all t ∈ [0, T ). Indeed, for m/n < 1, using Lemma 3.3 and the fact that E(t)≤
E(0), we can deduce an estimate of kθ , which implies (3-1) holds. As a result of
the a priori estimate (3-1), we can show the flow’s global existence and its smooth
convergence to an m-fold circle as time goes to infinity by using Lemma 2.5. �

4. Proof of Theorem 3

To prove Theorem 3, we need to show the following lemma holds, which states a
subconvergence of the global flow without any a priori estimate on the curvature
like that in Lemma 2.5.

Lemma 4.1. If the flow (1-1) starts from a locally convex closed curve and exists
for all time, then it subconverges to an m-fold circle in C2 sense, that is, there exists
a time sequence {tj }

∞

j=1→∞ such that k(θ, tj ) converges to a positive constant
function in the L∞ norm.

Proof. Notice that a careful choice of {tj }
∞

j=1 in Lemma 3.1 can guarantee that
(dA/dt)(tj )→ 0 as j→∞, that is,

(4-1)
L0

2mπ

∫
I

k(θ, tj ) dθ→ 2mπ, j→∞.

We claim that along the sequence {tj }
∞

j=1 we have

(4-2) max
θ∈I

k(θ, tj )≤ C1

for some constant C1 independent of time. Suppose limsup j→∞maxθ∈I k(θ,tj )=∞.
Then we can find a subsequence, still denoted by {tj}

∞

j=1, and a sequence {θj}
∞

j=1⊂ I,
such that t j →∞ and k(θj , t j )→∞. By Lemma 2.4,

∫
I k(θ, t j ) dθ→∞, contra-

dicting Lemma 3.1! Thus we have (4-2). Furthermore, by Lemma 2.3,

(4-3)
∫

I
(kθ )2(θ, tj ) dθ ≤ C2,

for some constant C2 independent of time. Combining (4-2) with (4-3) we obtain

‖k( · , tj )‖W 1,2(I ) ≤ C3
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for some constant C3 independent of time. The compactness yields a subsequence
of {k(θ, tj )}

∞

j=1, still denoted by {k(θ, tj )}
∞

j=1, which converges to a continuous
function k∞(θ) in the L∞ norm as j→∞. Taking the limit in (4-1) along the time
sequence {tj }

∞

j=1, we have

(4-4)
L0

2mπ

∫
I

k∞(θ) dθ = 2mπ.

By Fatou’s lemma,

(4-5)
∫

I

dθ
k∞(θ)

≤

∫
I

dθ
k(θ, tj )

= L0.

Thus, substituting (4-5) into (4-4) yields∫
I

k∞ dθ
∫

I

dθ
k∞(θ)

≤ (2mπ)2.

We notice that

(2mπ)2 =
(∫

I
1 dθ

)2

≤

∫
I

k∞ dθ
∫

I

dθ
k∞
.

Thus k∞ must be a constant function, i.e., the sequence {k(θ, tj )}
∞

j=1 converges to
a constant function in L∞ norm as j→∞. �

Proof of Theorem 3. Assume the initial curve satisfies

L2
0 < 4mπ A0.

Since dL(t)/dt ≡ 0 and dA(t)/dt ≥ 0, we have L0 = L(∞) := limt→∞ L(t) and
A0 ≤ A(∞) := limt→∞ A(t). Thus,

(4-6) L2(∞) < 4mπ A(∞).

Suppose to the contrary that the flow exists for all time. Then by Lemma 4.1 the flow
converges to an m-fold circle along some time sequence {tj }

∞

j=1→∞, implying

L2(∞)= 4mπ A(∞).

This contradicts (4-6)! Thus, the singularity must happen at some finite time during
the evolution of the flow. �

As a result of Theorem 3, we can give a proof for Proposition 4.

Proof of Proposition 4. On one hand, by Theorem 2 the flow (1-1) starting from such
rotationally symmetric curves must converge to m-fold circles at t→∞. However,
on the other hand, if (1-5) does not hold, then by Theorem 3 there is a finite-time
singularity during the evolution. This contradiction shows (1-5) holds. �
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