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NONCONTRACTIBLE HAMILTONIAN LOOPS IN
THE KERNEL OF SEIDEL’S REPRESENTATION

SILVIA ANJOS AND REMI LECLERCQ

The main purpose of this note is to exhibit a Hamiltonian diffeomorphism
loop undetected by the Seidel morphism of a 1-parameter family of 2-point
blow-ups of S2 x S2, exactly one of which is monotone. As side remarks,
we show that Seidel’s morphism is injective on all Hirzebruch surfaces, and
discuss how to adapt the monotone example to the Lagrangian setting.

1. Introduction

The motivation for this work is the search for homotopy classes of loops of Hamil-
tonian diffeomorphisms which are not detected by Seidel’s morphism. Given a sym-
plectic manifold (M, w) and its Hamiltonian diffeomorphism group Ham(M, w),
recall that Seidel’s morphism

S :m(Ham(M, )) — QH, (M, w)™

was defined on a covering of 71 (Ham(M, w)) by Seidel [1997] for strongly semi-
positive symplectic manifolds and then on the fundamental group itself and for any
closed symplectic manifold by Lalonde, McDuff and Polterovich [1999].

The target space, QH, (M, w)*, is the group of invertible elements of the quantum
homology of (M, w). More precisely, the small quantum homology of (M, ®) is
QH, (M, w)= H«(M;Z)®TI, where I1 is equal to IT"""[ g, g 1], with ¢ a variable
of degree 2 and the ring TT""" consisting of generalized Laurent series in a variable
t of degree 0:

(1) .= {Z ret* | re € @ and #{k > ¢ | r¢ # 0} < 0o, forall ¢ € [R}.
kER

Since its construction, Seidel’s morphism has been successfully used to detect
many Hamiltonian loops (see, e.g., [McDuff 2010]), and was extended or generalized
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to various situations (see, e.g., [Hutchings 2008; Savelyev 2008; Hu and Lalonde
2010; Hu et al. 2011; Fukaya et al. 2017]). One particular extension consists of
secondary-type invariants, whose construction is based on Seidel’s construction after
enriching Floer homology by considering Leray—Serre spectral sequences introduced
by Barraud and Cornea [2007], and which should detect loops undetected by Seidel’s
morphism [Barraud and Cornea > 2017]. However, there were no Hamiltonian
loops with nontrivial homotopy class known to be undetected by Seidel’s morphism
(as far as we know). This short note intends to provide the first example of such
a loop on a family of symplectic manifolds. Moreover, the example is explicit and
thus can easily be used to test other constructions. Notice finally that this example
can also be used to construct other examples (e.g., by products, see [Leclercq 2009]).

First try: symplectically aspherical manifolds. Looking for elements in the kernel
of the Seidel morphism, one might first consider symplectically aspherical manifolds,
by which we mean that both the symplectic form and the first Chern class vanish
on the second homotopy group of the manifold. Indeed, such manifolds have trivial
Seidel morphism.

The geometric reason for this is that, by construction, the Seidel morphism of
(M, w) counts pseudo-holomorphic section classes of a fibration over S? with
fiber (M, ®). The difference between two such classes is thus given by elements
of m (M) admitting a pseudo-holomorphic representative, whose existence is
prevented by symplectic asphericity.

Alternatively, this can be proved via purely algebraic methods, using the equiva-
lent description of Seidel’s morphism, as a representation of 71 (Ham(M, »)) into
the Floer homology of (M, w). Given a loop of Hamiltonian diffeomorphisms, one
gets an automorphism of HF. (M, w) which can be shown to act trivially by using
the following facts:

(i) Morse homology (the quantum homology of symplectically aspherical mani-
folds) is a ring over which Floer homology is a module.

(i) All involved morphisms (PSS, Seidel, continuation) are module morphisms.

(iii)) Any automorphism of Morse homology preserves the fundamental class, since
it generates the top degree homology group.

(iv) The fundamental class is the unit of the Morse homology ring.

This line of ideas, which goes back to Seidel, has been used by McDuff and Salamon
[2004] to simplify Schwarz’s original proof of invariance of spectral invariants. It
has been adapted by Leclercq [2008] to Lagrangian spectral invariants and used
to prove the triviality of the relative (i.e., Lagrangian) Seidel morphism by Hu,
Lalonde and Leclercq [2011] (see Lemma 5.5).
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Now, even though aspherical manifolds seem to be ideal candidates, there are
no homotopically nontrivial loops of Hamiltonian diffeomorphisms known to the
authors in such manifolds.

Second try: symplectic toric manifolds. Symplectic toric geometry provides a large
class of natural examples of symplectic manifolds which are complicated enough
to be interesting while simple enough that many rather involved constructions
can be explicitly performed. In [Anjos and Leclercq 2015], we computed the
Seidel morphism on NEF toric 4-manifolds following work of McDuff and Tolman
[2006]. Recall that by definition (M, J) is an NEF pair if there are no J-pseudo-
holomorphic spheres in M with negative first Chern number. This gave, in the
particular case of 4-dimensional toric manifolds, an elementary and somehow purely
symplectic way to perform these computations previously obtained by Chan, Lau,
Leung, and Tseng [2017] (and using works by Fukaya, Oh, Ohta, and Ono [2016],
and Gonzadlez and Iritani [2012]). We also showed that one could then deduce the
Seidel morphism of some non-NEF symplectic manifolds and, as an example, we
made explicit computations for some Hirzebruch surface.

The easiest symplectic toric 4-manifolds for which we can exhibit a nontrivial
element in the kernel of the Seidel morphism are 2-point blow-ups of $2 x S2. More
precisely, start with the monotone product (S2 x S2, w;)! on which we perform
two blow-ups. Notice that the resulting symplectic manifold is monotone only when
the respective sizes of the blow-ups coincide and are equal to %

In Section 4, we exhibit a specific loop of Hamiltonian diffeomorphisms whose
homotopy class is in the kernel of Seidel’s morphism if and only if the size of
the two blow-ups coincide. Since this loop, obtained from two circle actions, can
easily be seen to be nontrivial (Anjos and Pinsonnault [2013] computed the rational
homotopy of symplectomorphism groups of these manifolds), this obviously yields
a family of symplectic manifolds, only one of which is monotone, with noninjective
Seidel morphism.

Theorem 1.1. The Seidel morphism of the 2-point blow-ups of (S x S?, w1) with
blow-ups of equal (arbitrary) sizes is not injective.

In our search for undetected Hamiltonian loops, we realized the following:
Theorem 1.2. Seidel’s morphism is injective on all Hirzebruch surfaces.
While this is not hard to prove and might be well known to experts, we did not

find it in the literature and therefore include a proof in Section 3.

ITraditionally, wy, denotes the product symplectic form with total area ; > 1 on the first factor
and area 1 on the second one.
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Discussion on the adaptation to the Lagrangian setting. As mentioned above,
there is a relative (i.e., Lagrangian) version of the Seidel morphism defined by Hu
and Lalonde [2010] and further studied by Hu, Lalonde and Leclercq [2011]. There
are two ways to adapt the example of Theorem 1.1 to the Lagrangian setting which
we discuss here. (However, in order to keep this note short, and to avoid too many
technical details on the standard tools involved, we will not investigate these ideas
further here.)

First, let us remark that to get the Lagrangian version of the Seidel morphism, we
need to consider a monotone Lagrangian of minimal Maslov at least 2. So, in what
follows, we have in mind the only monotone symplectic manifold of the family
mentioned above, i.e., the monotone product S 2 % §2 with the area of each factor
equal to 1 on which we perform two blow-ups of size %

The first way to relate absolute and relative settings is to consider the diagonal
of the symplectic product. More precisely, let (M, w) be a monotone symplec-
tic manifold. The diagonal A >~ M is a monotone Lagrangian of the product
(M x M, & (—w)), which we denote (1\2 , @) for short, with minimal Maslov
number equal to twice the minimal first Chern number of (M, w) and thus greater
than or equal to 2. This allows us to consider the Lagrangian Seidel morphism:

Sa : w1 (Ham(M , &), Hama (M, ®)) — QH, (A)*,

where Hama denotes the subgroup of Ham formed by Hamiltonian diffeomorphisms
which preserve A, and QH,.(A) denotes the Lagrangian quantum homology of A.

An element ¢ € 71 (Ham(M, w)) generated by the Hamiltonian H : M x[0, 1] - R,
induces ¢ € 71 (Ham(M , @), Hama (M , @), generated by F=F®0: Mx [0,1]>R.
To get an element in the kernel of the Lagrangian Seidel morphism, it only remains
to prove that

(i) S(¢) = Sa(¢) in QH.(M, ) ~ QH,(A), and
(ii) $ is nonzero.

Note that in (i), not only are the quantum homologies canonically identified but the
chain complexes themselves coincide and this identification agrees with the PSS
morphisms in the following sense:

QH, (M, w) == QH,(4)
PSSl lPSS
HF.(H,J) =——=HF.(H,J : A)

as proved in the monotone setting by Leclercq and Zapolsky [2017] (J denotes
an almost complex structure on M, compatible with and tamed by w, while J
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denotes an almost complex structure on M adapted to J). This suggests that it is
straightforward to show that (i) holds.

On the other hand, proving (ii) will require a different technique.

The second way to the Lagrangian setting is to use Albers’s comparison map
[2008] between Hamiltonian and Lagrangian Floer homologies, denoted below
by A, which relates the absolute and relative Seidel morphisms via the following
commutative diagram (see [Hu and Lalonde 2010]):

m1(Ham(M, w)) — 7y (Ham(M, w), Hamy (M, w)) — mo(Hamyz (M, w))

s| |

HF.(M, ©) ———— HF5(M, ; L)

where L is a closed monotone Lagrangian of (M, w) with minimal Maslov number
at least 2.

To get an interesting example via this method, one must choose L such that
HF« (M, w; L) # 0 and prove (again) that the image of ¢ € 7;(Ham(M, w)) in
w1 (Ham(M, w), Hamy (M, w)) is nontrivial.

2. Background and user manual for Sections 3 and 4

In order to prove Theorems 1.1 and 1.2 in the following sections, we need to
describe the setting and give some information whose nature we now explain. We
also give some details about previous works on which it relies.

Step A: Geometric setting. We will first introduce the symplectic toric 4-manifold
(M, w) in which we are interested and describe the associated circle actions, moment
map, and polytope. Then we will give topological information which will be useful:

e the fundamental group of Ham(M, w), on which the Seidel morphism is
defined, and

e the second homology group of M, which consists of generators of the quantum
homology of (M, ) (as a module over the Novikov ring).

Background for Step A. (See [Cannas da Silva 2001] for more details.) First, consider
a Hamiltonian circle action on (M, w). It is generated by a function ¢ : M — R,
called the moment map, which is assumed to be normalized, that is, satisfying

Now (M, w) is called foric if it admits an effective action by a Hamiltonian torus
T? C Ham(M, w). We will denote by ® the corresponding moment map and by
P = ®(M) the moment polytope. If 7 is an outward primitive normal to the facet
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Dy, of P, we consider the associated Hamiltonian circle action, I'y, whose moment
map is ¢ := (1, ®(-)).>

Note that ¢! (Dy) is a semifree maximum component for I';, as the action is
semifree (i.e., the stabilizer of every point is trivial or the whole circle) on some
neighborhood of ¢~ 1(Dy).

Step B: The Seidel morphism. In this step, we will give the expression of the
image of the aforementioned circle actions I'y, via the Seidel morphism, S.

Background for Step B. (See [McDuff and Tolman 2006; Anjos and Leclercq 2015].)

We consider a toric 4-manifold (M, w, ®) as above. To compute the image
of a Hamiltonian circle action via the Seidel morphism, we pick a w-compatible,
S l-invariant almost complex structure, J. The main case we are concerned with
here is the Fano case. Recall that (M, J) is said to be Fano if any J-pseudo
holomorphic sphere in M has positive first Chern number.

When this is the case, [McDuff and Tolman 2006, Theorem 1.10] or [Anjos and
Leclercq 2015, Theorem 4.5] tells us that the associated Seidel element consists of
only one term (the one of highest order). More precisely:

Theorem 2.1 [McDuff and Tolman 2006, Theorem 1.10]. Let (M, w, J, ®) be a
compact Fano toric symplectic 4-manifold. Let n be an outward primitive normal to
the facet Dy, of the moment polytope P and let I'y be the associated Hamiltonian
circle action. Then

S(Fn) = [Fmax] ®qt¢max,

where ¢ is the moment map associated to I'y, and Fyax = o1 (Dy) is the maximal
fixed point component of ¢ and Pmax = G (Fiax)-

Step C: The quantum homology of (M, w). The computation of the Seidel el-
ements S(I',) in Step B also gives us explicit relations involving the quantum
product. This allows us to complete the description of the quantum homology as
an algebra. Since the generators of 71 (Ham(M, w)) can be expressed in terms of
the I'y, this also gives us the image of the Seidel morphism so that, by understanding
im(S) C QH, (M, w)*, we can prove Theorems 1.1 and 1.2.

Background for Step C. (See [McDuff and Tolman 2006, Section 5.1] for the general
setting.) Let us recall how to obtain the quantum homology algebra in our specific
setting. Let Dy,..., Dy be the facets of P and n1,...,n, € R? the respective
outward primitive integral normal vectors. Let C be the set of primitive sets, i.e.,
subsets / = {iy,i2} C {1,...,n} such that D;, N D;, = @. Letu; = [D;] ®q.

2To lighten the notation, we will actually denote by D; and I';, respectively, the facet and the
circle action associated to the normal 7; (instead of Dy, and I'y,).
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There are two linear relations,
n n

> {(1,0).n)u; =0 and Y (0. 1), n;)u; =0,

i=1 i=1
which generate the ideal of linear relations Lin(P) in Q[uy, ..., u,]. Moreover,
relations between the normal vectors 7; yield equations satisfied by the corre-
sponding Seidel elements S(I';). Using these, it is then possible to exhibit the
quantum product u;, * u;,, for every primitive set {i1,i2}, as a linear combina-
tion of the classes p (the class of a point), 1 (the fundamental class), and u;:
firi, = (@p ®q* + BL+ > aju;)tY for some a, B,a; € Z and y € R. Then, the
Stanley—Reisner ideal is defined by

SRy (P) = (ui; - ui, — fiir [ {i1,12} € C).
Finally, there is an isomorphism of IT"""-algebras

2) QH. (M, ) >~ Q]uy, ..., us] ® TT"™/(Lin(P) + SRy (P)).

3. Hirzebruch surfaces

We proceed in two steps as the “even” and “odd” Hirzebruch surfaces have to be dealt
with separately. Throughout the section, we follow the notation and conventions
used in [Anjos and Leclercq 2015] (in particular in Section 5.3), most of them
having been recalled in Section 2 above.

3.1. Even Hirzebruch surfaces. Recall that the toric “even” Hirzebruch surfaces
(Fox.wp), 0 <k <{£ withf e Nand £ < u < £+ 1, can be identified with the
symplectic manifolds M,, = (S? x S?, w,,) where w,, is the split symplectic form
with area p > 1 for the first S 2_factor, and with area 1 for the second factor. The
moment polytope of F,j is

Py ={(x1,x2) €R*[0<x1 <1, xp +kx1 >0, xp —kx1 < pu—k}.

Let Ag{‘ and Ag‘ represent the circle actions whose moment maps are, respec-
tively, the first and second components of the moment map associated to the torus
action T, acting on [F,z. We will also denote by Ag{‘ and Ag‘ the corresponding
generators in 71 (75 ).

It is well known (see, e.g., [Abreu and McDuff 2000, Theorem 1.1 or Corol-
lary 2.7]) that for k = 0, my(Ham(Fo,wy)) = Z/2 ® Z/2 and that for k > 1,
mi(Ham(Fpp, wy)) = Z/2® Z/2 & Z. Moreover, the authors explain in [Abreu
and McDuff 2000] (see Section 2.5 and in particular Lemma 2.10) that the Z/2
terms of the fundamental groups are respectively generated by A(e)1 and A22, while
the generator of the additional Z term is Agl .
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Let B=[S?x{p}land F =[{p}xS?] € Hy(S?x5?;Z) and denote u = B®gq
and v = F ® q where ¢ is the degree 2 variable entering into play in the definition
of IT = IT""¥[g,¢~'] and TT""V is the ring of generalized Laurent series defined
by (1).

We now gather from [Anjos and Leclercq 2015] the results we will need for the
proof of Theorem 1.2 in this case. First, in Section 5.3 of that paper, we computed
the image of the generators A e A(e)z, and Agl by the Seidel morphism, S. Namely,
we obtained:

S(N)=B®qi* =ut?, S(AY)=F®qt
3) S(Ael)z(B—i-F)@th € (u+v)t2 -, Wlthe—6

yia yia
2 =pt2, and
1

I
Note that the circle action Agl acts on the second Hirzebruch surface [, and the
almost complex structure in this case is not Fano, because the class B — F is
represented by a pseudo-holomorphic sphere and its first Chern number vanishes.
Nevertheless, by Theorem 4.4 in [Anjos and Leclercq 2015], the Seidel element of
this action still does not contain any lower order terms.

The computation of the Seidel elements associated to each one of the facets of
the polytope yields the quantum product identities

4 FxF=1®q 2", B*B=1®¢ %', and FxB=p,

so S (A )2 S (A )2 = 1. Finally recall that, thanks to [Anjos and Leclercq
2015, Proposmon 5 .1] (see (2) in our setting), we were able to express the (small)
quantum homology algebra as

QH.. (For, @) = T u,v] /u? = 171 0> =17H).
From (3) and (4), it is now easy to check that the inverse of S (Agl) is given by

1 1
t*+€ t§+6

) SN2 = (B=F)@¢r = (=)

1 1—gl-1

Let us now prove the theorem.

Proof of Theorem 1.2 for even Hirzebruch surfaces. Since A0 and AO are of
order 2, any element in 771 (Ham(F,x, w;,)) is of the form elA + ezAO + KA?I,
with 1 and &, in {0, 1} and £ € Z. Moreover, it is in the kernel of Sif and only if
S(Agl)_e = S(Agl)slS(Agz)”, which is equivalent to the fact that S(Agl)_e
either u, v, or uv, up to a power of z.

Let £ € N\ {0}, and expand the ¢'-th power of S (Agl) (whose expression is

recalled in (3) above) using the binomial theorem to get

’ v E/ / 1 /
S =" (k)ukve —kG-at

k=0
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The identities u? = ¢~! and v? =" ensure S(Agl )¢ is of the form Cy -u 4 Cy-v
if £’ is odd, or Cq + C, - uv otherwise, where (in both cases) C; and C, are linear
combinations of powers of ¢ with positive rational coefficients (hence nonzero), so

e1AQ, +e2A), +LA7, ¢ ker(S)

for any ejand &5 in {0, 1} and £ < 0.
We proceed along the same lines for a positive £: S (Ag1 )~¢ is, by the binomial
theorem together with (5), of the form

Cl-u—Cjy-v C{—Cj-uv
1 2 o L2
(1 =111yt (1 =11yt

which shows that 81/\21 + 82/\22 + KA; is not in ker(S) for any £ > 0 either.
This implies that the only elements of 71 (Ham([F,, w,)) which could be in
ker(S) are of the form & Agl + 821\22 so that in the end ker(S) = {0}. d

3.2. Odd Hirzebruch surfaces. Similarly, “odd” Hirzebruch surfaces (Foz_1, a)l/L),
1<k <{withfeNand{ < pu <€+ 1, can be identified with the symplectic
manifolds (CIP? # CP2, “);/L) where the symplectic area of the exceptional divisor is
i > 0 and the area of the projective line is u + 1. Its moment polytope is

0<x1+x2=<1,x2(k—1)+kx; >0,

2
{(XI’XZ)ER kxo+k—-—Dx;1=>k—p—1

Let Agf‘_l and Agf_l represent the circle actions whose moment maps are, re-
spectively, the first and the second component of the moment map associated to the
torus action T,x_1 acting on F,z_1. As before, we will also denote by Aﬁ{‘_l and
Ag‘_l the generators of w1 (Tox—_1).

Similarly to the even case the fundamental group of (F,;_1, w;//,) is computed
in [Abreu and McDuff 2000, Theorem 1.4 or Corollary 2.7]. More precisely,
m(Ham([sz_l,a)L)) = Z(Aél) for all k£ > 1, that is, Aél is the generator of
the fundamental group as explained in [Abreu and McDuff 2000, Section 2.5 (in
particular Lemma 2.11)]. So, in order to prove that the Seidel morphism is injective,
we only need to show that the order of S(A;l) in QHy (Fog 41, a)LL) is infinite.

We now need to expand Remark 5.6 of [Anjos and Leclercq 2015] (which quickly
dealt with the odd case), along the lines of [Anjos and Leclercq 2015, Section 5.3]
(where we focused in more detail on the even case). Let B € H,(CP2 #CP?;Z)
denote the homology class of the exceptional divisor with self intersection —1 and F
the class of the fiber of the fibration CP? # CP?2 — S2 If we setu; = (B + F) ®q,
U =u4 = F ®¢q, and u3 = B ® g, clearly the additive relations are given by

(6) Ur =u4 and u; =uy+us.
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The normal vectors to the moment polytope of [ are given by 1 = (1, 1), 2 =
(0,-1), n3 = (—1,—1), and n4 = (—1,0). We denote by I; the actions associated
to n;.

As explained in Section 2, since [; is Fano, it follows from [McDuff and Tolman
2006, Theorem 1.10] that the Seidel elements associated to the I'; are given by

S(T) = (B+ F)®qt'TH728 =y t4722,
S(T2) =8(I'y) = F ® qt* = uat®,
S(T3) = BRqt* H* = uzt® M,

with e = Bu2 + 3+ 1)/(3(1 +2u)).

The relation 17 +13 = 0 yields S(I'1) *S(I'3) = 1, that is, B* (B + F)®q?t =1.
Similarly, since 172 + n4 = 53 it follows that S(I') * S(I'4) = S(I'3), which is
equivalent to F * F = B ® g~ !¢, Therefore the primitive relations are given by

@) uius =11 and  wupug = ust ™

Now, following Step C of Section 2 above, we set ¥ = F ® g and deduce from the
relations (6) and (7) that

®) QH. (Fajer 1. @) = ™l /(e ek — 171,

Note that A ;1 , the generator of 4 (Ham([sz_l,a);’L)), is the action associated
to the vector (1,0). We thus get that S(Aél) =S(Ty)~ L.
Now we can proceed with the proof of the theorem.

Proof of Theorem 1.2 for odd Hirzebruch surfaces. From the discussion above, we
see that S (A1 )~ = S(I'4) = ut®. So, in order to show that Seidel’s morphism is
injective we only need to show that

SUAL ) =uttte#£1
for any £ € N\ {0}.

First, note the polynomial M (1) = u*t?*4+-u3t*—¢=1 € IT""V[u] in (8) above has
invertible main coefficient, so that for any positive integer £, there exist uniquely
determined polynomials Qg and Ry such that u*r%® — 1 = M(u)Qy(u) + Ry(u)
and the degree of Ry is less than the degree of M.

Assume Seidel’s morphism is not injective: then there exists £o € N\ {0} such
that Ry, = 0. To find the polynomial Qy,, we proceed to the long division of
ubortos _q by M which consists of a finite number (at most £o — 3) of steps. This
ensures that the coefficients of Qy, are finite linear combinations of powers of ¢
(with rational coefficients). Therefore Q go induces a polynomial Q! t in Q[u] when
t 1s set to 1, satisfying u%0 — 1 = (u* +u3 — l)Qe (u) in Q[u]. Slnce the roots of
u* 4+ u3 — 1 are not roots of unity, we get a COHtI'adlCthIl So, there is no positive
integer £ such that 1%07%¢ = 1, which concludes the proof. O
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4. 2-point blow-ups of S2 x S 2
We now consider the manifold obtained from
My, wy) = (S2 X Sz,a)u)

(see Section 3.1) by performing two successive symplectic blow-ups of capacities ¢
and co with0 <c¢p <cy <c1+c <1 < pu, which we denote by (M, ¢y, cr» @u,c1,¢2)-
Let B, F € Hy(My,, ¢, c,: Z) be the homology classes defined by B = [SZx{p}] and
F=[{p}xS?]andlet E; € Hy(M,,,c,,¢,; Z) be the exceptional class corresponding
to the blow-up of capacity c;.

Remark 4.1. There is an alternative description of this manifold as the 3-point
blow-up of CP2 Indeed, consider X3 = CP? # 3 CP? equipped with the symplectic
form w,.s,, s,,5, obtained from the symplectic blow-up of (CP?, w,) at three
disjoint balls of capacities &1, 82 and §3, where w, is the standard Fubini-Study
form on CP? rescaled so that @, (CP!) = v. Let {L, V1, Vs, V3} be the standard
basis of H»(X3;Z) consisting of the class L of a line together with the classes V;
of the exceptional divisors. It is well known that X3 is diffeomorphic to My ¢, c,.
The diffeomorphism X3 — M}, ¢, ¢, can be chosen to map the ordered basis
{L,V1,V2,V3}to{B+ F—E{,B—E|,F—E, E>}. When one considers this
birational equivalence in the symplectic category, uniqueness of symplectic blow-ups
implies that (X3, w,. 5, 5,, §,) is symplectomorphic, after rescaling, to M, blown-up
with capacities ¢1 and ¢, where u = (v—252)/(v—381), ¢c1 = (v—=581—382)/(v—161),
and ¢ = 83/(v — §1). In Section 2.1 of [Anjos and Pinsonnault 2013], it is
explained why it is sufficient to consider values of ¢; and c; in the range above:
O<cx=<ci<ci+c=1=u. «

The quantum algebra of (M, ¢, c,, @, c;,c,) Was computed by Entov and
Polterovich [2008] (as (X3, w,. s,.s,,85), see their proof of Proposition 4.3). More
precisely, setting u = (F — E») ® ¢ and v = (B — E») ® ¢, they proved that:

Lemma 4.2. As a I1""V-algebra we have
QH. (M1, c1,c0s @, cy,cr) = " [u, v/ 1per e
where 1}, ¢, c, is the ideal generated by
uv? futvt T2 = vt T2 T gy
w2 +uv?72 = yp 7172 4 permuml=er

We recall here parts of this computation, using the formalism of [Anjos and
Leclercq 2015], as they will be needed below to understand the proof of the
noninjectivity result stated as Theorem 1.1. These parts correspond to Steps B
and C of Section 2.
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Sketch of proof. Consider (M, ¢, c>» Wy, ¢y, c,) endowed with the standard action
of the torus 7 = S! x S for which the moment polytope is given by

9) P={(x1,x2) €R*|0<xa<pu, —1<x1 <0, c; <xo—x1 <p+1-ca}
so the primitive outward normals to P are as follows:

m=0.1, n=(10, n=(1-1),

Na = (07_1)7 ns = (_17 0)7 Ne = (_1, 1)

The Delzant construction gives a method to obtain, from the polytope P, the
symplectic manifold (M, ¢, ¢, @y, c1,¢,) With the toric action T': first consider
the standard action of the torus T® on C® and then perform a symplectic reduction
at a regular level of that action (for more details, see, for example, [Cannas da Silva
2001, Section 29]). Then the normalized moment map ® : M, ¢, ¢, — R? of the
remaining 7" action, obtained through the Delzant construction, is given by

1), 12 1y, 12
®(z1.....26) = (—5lz2]* + €1, —3lz11° + n—€2), zi €C,
where €1 and €5 are given by the symplectic parameters i, ¢1, and c5 as

cf’ +3c§—c§’ —3u
3(6% + c% —2u)

3 —c3+3cipu—3u?

10 €1 =
(19 ! 3(0% + c% —2u)

and €; =

Moreover, the homology classes A; = [®~1(D;)] of the pre-images of the corre-
sponding facets D; are: Ay = F —Ez, A, =B—FEy, Az =FE|, Ay =F —FEq,
A5 =B —E2, and A6 = Ez.

For 1 <i <6, let I'; be the circle action associated to the primitive outward
normal 7;. Since the toric complex structure on M, ¢, ¢, is Fano and T -invariant,
it follows from [McDuff and Tolman 2006, Theorem 1.10] or [Anjos and Leclercq
2015, Theorem 4.5] (recalled as Theorem 2.1 in Section 2) that the Seidel elements
associated to the I'; are given by the expressions

S(I') = (F — E2) ® qt"™, S(I2) =(B—E1)®qt',
(1) S(I3) = E;@qt1Te7e, S(T4) = (F — E1) @ q1,

S(s5) = (B—Ex)@qt!™e1, S(Te) = E, @ gtht1-c2—€1—€2,
There are nine primitive sets: {1, 3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5},
{3, 6}, and {4, 6} which yield nine multiplicative relations (which form the Stanley—
Reisner ideal) that, combined with the two linear relations (45 = A; + A» — A4 and

Ae = A3 + A4 — A1), give the desired result as explained in Step C of Section 2
above. O
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y y
123 ©w
c1+c2
1
-1 €1—C2
I --|C2
X ‘ X ; ‘
-1 —c¢1 —c2 —1 1—Cl+62
—C1 —C2

Figure 1. (M, ¢, ¢, @y, ey, ) With toric actions 77 and T5.

Assume from now on that © = 1. Recall from [Anjos and Pinsonnault 2013,
Theorem 1.1] that if ¢ < ¢; then

i (Ham(M1, ¢, > ©1,¢1,¢5)) = Z (X0, X1, Yo, Y1, 2) = Z°,

where the generators xo, X1, Vo, y1,Z correspond to circle actions contained in
maximal tori of the Hamiltonian group. In particular, the generators in which we
will be most interested are xg = I'> and y9 = I'; where the I'; are the circle actions
associated to the primitive outward normals 7; to the polytope P defined in (9).

Remark 4.3. In order to understand the remaining generators, consider the two
toric manifolds given by the polytopes in Figure 1. We denote by {xo¢,;, yo,i}
the generators in 771(7;), where T;, i = 1,2, represent the two torus actions in
this figure and the generators {x¢,;, yo,;} correspond to the circle actions whose
moment maps are, respectively, the first and second components of the moment map
associated to each one of the toric actions. It was shown in [Anjos and Pinsonnault
2013, Lemma 4.5] that x; = x9,1, Z = Yo,2, and y1 = 0,1 — X1 = Z — X0,2-

Note that the case ¢; = ¢ is an interesting limit case in terms of the topology
of the Hamiltonian group since y; disappears. For more details see [Anjos and
Pinsonnault 2013, Section 5.1]. <

To prove Theorem 1.1, we will prove Proposition 4.4.

Proposition 4.4. The class of 2(xo + yo) belongs to ker(S) if and only if u = 1
and c1 = ¢».

Proof. From the computation of the Seidel elements in (11) one gets that in the
general case (by which we mean forall x> 1), S(I'1) = ut*~€2 and S(I's) = vt 1 7€1.
As the Seidel elements are invertible quantum classes, this yields invertibility of u
and v. Note that

S(xo) =8(T) =8Ts) ' =v 1171 and S(yg) = S(I'y) = ur—*2.
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Since u > 1> c%, it is straightforward to deduce from (10) that ¢} = ¢, if and
only if £ = 1: we now restrict our attention to this case and denote by ¢ the common
value of ¢; = &,. By invertibility of u and v, the fact that 2(xo + yo) belongs to

ker(S) is equivalent to u? = v?, since

SQ2(x0 + y0)) = S(x0)? *S(yo)? = v 2 e 17¢ = =22,

On the other hand, note that multiplying the first and second relations in I1,¢,, ¢,
by v=1£¢2 and u™'1¢2, respectively, these become equivalent to

W = T2 202 and v =t w2 — w2

2

so that u? = v? is equivalent to v~ 1172 —y2v1°2 =y~ 116172 —yv21©2,

Multiplying both relations in I1,¢,, ¢, by 22, we see that
—u?vt? = (322 — 122y 271 and

(12)
—MUZZC2 — (MZUZZZCZ _ [cl +Cz—2) _ utcz—l

so we can replace u2v¢¢2 and uv2¢°2 in the previous equation to obtain

(13) u? =v? = v oy =y e,

Finally, (12) also induces, by subtracting one from the other, the equation
wv—uv?)t~ 2 = (v—u)r—17¢2,

which is equivalent to (v™! —u~1)r~! = v —u. Using these together with (13) we
conclude that u? = v? if and only if (u — v)(t¢! —¢°2) = 0 which is equivalent to
¢1 = ¢ since otherwise ¢! — €2 would be invertible. O
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DIFFERENTIAL HARNACK ESTIMATES
FOR FISHER’S EQUATION

XIAODONG CAO, BOWEI L1U, IAN PENDLETON AND ABIGAIL WARD

We derive several differential Harnack estimates (also known as Li—Yau—
Hamilton-type estimates) for positive solutions of Fisher’s equation. We
use the estimates to obtain lower bounds on the speed of traveling wave
solutions and to construct classical Harnack inequalities.

1. Introduction

Fisher’s equation, or the Fisher—KPP partial differential equation, is given by

ey Jr=Af +cf (= f),

where f is a real-valued function on an n-dimensional Riemannian manifold M",
and c is a positive constant. The equation was proposed by R. A. Fisher [1937] to
describe the propagation of an evolutionarily advantageous gene in a population,
and was also independently described in a seminal paper by A. N. Kolmogorov,
I. G. Petrovskii, and N. S. Piskunov [1937] in the same year; for this reason,
it is often referred to in the literature as the Fisher—KPP equation. The density
of the gene evolves according to diffusion (the term Af) and reaction (the term
cf (1 —f)). Since the two papers in 1937, the equation has found many applications
including in the description of the branching Brownian motion process [McKean
1975], in neuropsychology [Tuckwell 1988], and in describing certain chemical
reactions [O Néraigh and Kamhawi 2013]. Because a solution f often describes a
concentration or density, it is natural to study solutions to the equation for which
0 < f < 1; our main theorems will simply assume positive solutions.

It is clear that f =0 and f = 1 are stationary solutions to this equation on any
manifold; it is also known that when M" = R" the equation admits traveling wave
solutions, i.e., solutions f (x, t) that we can express as a function of z = x + nt for
some vector n € R™. Under a broad range of conditions, general solutions to the
equation in R!' approach a traveling wave solution with a unique minimal speed
(see for example, [Kolmogorov et al. 1937, Theorem 17] or [Fisher 1937; Sherratt
1998]).

MSC2010: 58135, 35K59.
Keywords: differential Harnack, classical Harnack, Fisher’s equation, Fisher—KPP, traveling wave.
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A bound on the minimum speed of such a traveling wave solution on R! was
known to Kolmogorov, Petrovskii and Piskunov [1937]; our work results in bounds
for the minimum speed of a solution on R” for n = 1, 2, 3. While our bound in
dimension 1 is weaker than the previously known bounds, the bounds in higher
dimensions are new and suggest that the study of Harnack inequalities may be used
to bound the minimal speed of traveling waves in higher dimensions as well.

Our work introduces and proves three Li—Yau—Hamilton-type Harnack inequali-
ties which constrain positive functions satisfying the Fisher—KPP equation on an
arbitrary Riemannian manifold M". Depending on the setting we obtain different
inequalities. The study of differential Harnack inequalities was first initiated by P. Li
and S.-T. Yau [1986] (also see [Aronson and Bénilan 1979]). Harnack inequalities
have since played an important role in the study of geometric analysis and geometric
flows (for example, see [Hamilton 1993; Perelman 2002]). Applications have also
been found to the study of nonlinear parabolic equations, e.g., in [Hamilton 2011].
One of these is a recent reproof of the classical result of H. Fujita [1966], which
states that any positive solution to the endangered species equation in dimension n,

fi=Af+ 17,

blows up in finite time provided 0 < n(p — 1) < 2; see [Cao et al. 2015].

When the dimension falls into a certain range we can integrate our differential
Harnack inequality along any spacetime curve to obtain a classical Harnack inequal-
ity which allows us to compare the values of positive solutions at any two points in
spacetime when time is large.

The organization for the paper is as follows: In Section 2 we present the precise
formulations and the proofs of our two inequalities governing closed manifolds. In
Section 3 we state and prove a similar Harnack inequality for complete noncompact
manifolds. In Section 4, we end the paper with the aforementioned results on the
minimum speed of traveling wave solutions and classical Harnack inequalities.

2. On closed manifolds

In this section, we will deal with the case when the Riemannian manifold M is
closed, and we also assume that its Ricci curvature is nonnegative.

In what follows, the time derivative will always be taken to mean the derivative
from the left if the two-sided derivative does not exist.

Theorem 1. Let (M", g) be an n-dimensional closed Riemannian manifold with
nonnegative Ricci curvature and let f(x,t): M x [0, co) — R be a positive solution
of the Fisher-KPP equation f; = Af +cf (1 — f), where f is C* inx and C' in t,
and c > 0.
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(A) Let u =log f and define
( ,BCI’l )efct _ /3

9y (1) =~ +8BU=)
Then we have
2) Au+a|Vul*> + Be" +¢5 (1) =0
for all x and t, provided that

i) 0<a<l, (i ﬁ§%<0 and  (iii) MJFKO.
(B) Now set
ﬁ ift <1,
T (1) = — c(t—1)
%o (1) - @ +;—Ctt)Tz) otherwise,
where 4801
2= 2(1—03(—5@( ﬁ(n_a) +e).

If instead of (iii) we have
(v) LU= o>,
in addition to (1) and (ii), then
(3) Au+ a|Vul* + e +¢g (1) = 0.

In summary, our theorem is that Au 4 «|Vu|?> + Be* + ¢o (1) > 0, where

(Ben/(en+8B(L—a))e™ = ¢ v holds,

1—e=¢t

_n

¢o(t) = 2(1—a)t
—Be(ect~1) 1)

C+_8,8(}1—oz_) +cect=T2)

if (iv) holds and ¢t < T,

if (iv) holds and ¢ > T5.
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We briefly describe the main idea of our proof here, which uses the parabolic
maximum principle and an argument by contradiction. We first define a quantity

h(x,t): M x (0, 0) - R,

which will depend on a given solution to Fisher’s equation. We start with 2(x, ) >0
for any sufficiently small ¢ > 0, and our goal is to prove this quantity 4 (x, ¢) remains
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positive for all points in M x R*. As suggested in [Cao 2008; Cao and Hamilton
2009], we then compute what we call the time evolution of /, namely d//d¢, in the
following form:

O (1) = ARCe, 1)+ A1 (6, 1) - VRGE D) + A, D),

for some A; : M x (0, 00) - R” and A, : M x (0, o0) — R. We then assume
for the sake of a contradiction that there exists a first (with respect to ¢) point
(x1, t1) where h(x, t) <0; it follows that (94 /0d1)(xy, t1) < 0. Since A (xy, t;) must
be a local minimum in M of the function A(x, #1) : M — R, it also follows that
Ah(xy, 1) >0, and Vh(xy, t1) = (0, ..., 0). Thus our time evolution simplifies to

oh
a—(xl,tl) > Az(xy, ).
t
By our construction of /(x, t) we will force A(xy, t;) > 0, and so we will have
0> %(Xl, 1) > Az(x1, 1) > 0,

which is a contradiction. Thereby we conclude that i (x, ) > O for all (x,?) €
M x (0, 0c0).

Technical lemmas. In this section we prove the technical lemmas needed in the
case that M is a closed manifold.

Lemma 2 gives us the time evolution of £ in terms of 4 quantities Py, P>, Pz, Py
(which sum to A, above). Lemma 3 gives a lower bound for P, which also applies
in the noncompact case. Lemma 4 introduces quantities Ps, Ps 1, Ps, which depend
only on ¢ and which give a lower bound for P;. Lemma 5 puts a lower bound on
Ps. Lemma 6, used for our second Harnack inequality, bounds P; when Lemma 5
is inapplicable. Finally, P; and Py are bounded in the proof of the main theorem.

Lemma 2. Let (M", g) be a complete Riemannian manifold with Ricci curvature
bounded from below by Ric > —K. Let f(x,t): M" — R be a positive solution to
fi=Af+cf (1 — f) whichis C*inx and C' int. Let u(x,t) =log f(x, 1), and
let a, B, ¢ be any constants. Define h(x, t) as follows:
h(x,1): = Au+a|Vu> + Be* + ¢,
=, )=o)+ ¥ x),

where ¢(t) is any C' function and W (x) is any C?* function. Then the following
inequality holds:

hy — Ah—2Vu -Vh > Pih+ P, + P; + Py,
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where

_ 2(1—0{)h _4a

n

Py =209 2wt 4 26y ~ 2K (1~ IVl + 20D w2

+|Vu|?e" (4(1,8(nj —2B—ac— c),

P

n_a) (a|Vul? + Be' + ¢+ ) — ce”,

2
py= 200 (U0 gy gy 202

n

Lemma 2 will be used in the proofs of both Theorem 1 and Theorem 7, with
different choices of «, B, ¢, ¢ and . The statement of Lemma 2 is independent of
these choices.

Proof. The proof is based on a straightforward but fairly long calculation. Let
f M x [0, 00) — R satisty (1); hence u must satisty

up = Au+ |Vul> +c(1 — €.

We then compute

(8 — A)u = ¢ —ce" + |Vul?
(8 — A)(Au) = A|Vul? — c(Au)e" — c|Vu|?e,
(8, — A)(t|Vul?) = 2aVu -V (Au) + 2aVu - V|Vu|*> = 2ac|Vul>e" — aA|Vul?,
(0 — A)(Be") = Bee" — Bee™,
(0 — D)p(t) = ¢y — AY,
2Vu -Vh = 2Vu -V(Au) 4+ 2aVu -V|Vu> + 28|Vu|*e" +2Vu - V.

Here we use the Weitzenbock-Bochner formula,
A|Vul? =2|VVu|? +2Vu -V (Au) + 2 Ric(Vu, Vu),

where VVu is the Hessian of u(x, t).
This leads to the equality

(8, — A)h —2Vu - Vh
=2(1- oz)lVVul2 —cé'(Au) — |Vu|2e”(2ac—|-2,3 +c)
+2(1 — @) Ric(Vu, Vu) + Bee* — Bee™ + ¢y — Ay — 2Vu - V.
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Using Cauchy—Schwarz |VVu|?> > (1/n)(Au)? and Ric > —K yields that
(0 — A)h —2Vu - Vi > 2(1;—0‘)(Au)2 — ce"(Au) — [Vul?e" Qac +28 +¢)
—2(1 — @)K |Vu|* + Bee" — Bee® + ¢, — Ay —2Vu - V.
Finally, we substitute for Au:
Au=h—a|Vul®> = Be" —¢ — 1,
to expand and conclude that
hy — Ah —2Vu -Vh

> h(z(ln_a)h — 4(1’1_a) (@|Vul® + Be" + ¢ + ) — ce”)

+ [ 2D @2 i9uf +269) - 2K (1 — o VuP? + 20 =D g 2
+ |Vu|26”(40l’3(nJ —2B—ac— c)]

2
[ (U= (=D 1 gt ) + 2D 2 4 )]

= Pih+ P+ P3+ Py,

as desired. |
We now show that P, is nonnegative under the assumptions of Theorem 1.

Lemma 3. If K = 0 and assuming that (i) and (ii) hold, then for any x, t where
(@), Y (x) > 0 we have
P, > 0.

Proof. We have assumed that «, 1 — «, ¢, ¥, K > 0. Note that
‘Wﬂ(nﬁ —2B8—ac—c=>0
is equivalent to
4a(l —a) —2n)B —cn(a+1) >0,
or
(—4o(1—a)+2n)B < —cn(1 + ),
which is exactly condition (ii) since 2n > 1 > 4a (1 — o). [l

Next, we find quantities depending only on ¢ which we will eventually use to
guarantee that P; is strictly positive.
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Lemma 4. Assume o < 1. Define

48(1—a)

'—lc n y _C+ n n
=559 20— 1= 28 2(1—a)’

_ [2(d-w)

=/ —%),

Ps(#): = — (i1 +v19)* + (019)* + ¢,
Pa@:= (U 1 o)p g Poa@r=2"0g2 g,

Then for any (x,t), Ps > 0 implies that P3 > 0. Alternatively, if Ps.; > 0 and
Ps> > 0, then P3 > 0.

Proof. Recall that
2
P3(¢)=e2”(w)+e“(‘“3(;_—“)¢+c¢+cﬂ) 2(1— a)¢ t o

If Ps > 0, then by using x> +2xy > —y? where x? = e?*(28%(1 — a)/n), we get

4(1—-a)B 2 2(1—a) »
81— )ﬁZ[ﬁch<c+ n >¢] R
= — (1 +19)* + (W19)* + ¢ = Ps(¢) > 0.

Alternatively, if Ps;; > 0 and Ps; > 0, then since (1 —«) > 0 we can ignore the
first term of P3 and get

Pi(¢) =

Py(¢) > e“(‘*ﬂ(ln—_“)qb +c¢ +cﬂ) + @qﬁ + ¢
=¢e"Ps1+ Psy > 0. O

We now find functions ¢ (¢) such that P3(¢) > 0. In Lemma 5 we construct ¢ (t)
in the case that (iii) is true, and in Lemma 6 we construct ¢ () when (iv) is true.

Lemma 5. Let (1, v, w be any constants such that u # 0, v < w* and w > 0. If
for sufficiently small ¢ > 0 we define

1
_ 2;/,((0—8)1_—)
b (1) = M(v—(a)—s)e v+(w—¢g)
T 1 — e2n(w—e)t

then
— (4 v9)? + (W) + ¢ > 0,

where lir(r)l+ ¢(t) =00 and ¢(t) =0 forallt.
t—



280 XIAODONG CAO, BOWEI LIU, IAN PENDLETON AND ABIGAIL WARD

Proof. Choose ¢ small enough so that V2 < (w — €)% We claim that ¢ (¢) satisfies
the following equation:

—(+ve) + (@ —e)pl* +di(t) =0

for all time. This follows from the direct computation below. On the one hand we
get that

eZ;L(wfe)t 1 >2

20,5 \2 _
plo=e (v—(a)—s) v+ (w—e¢)
(1 _ezu(w—s)t)Z

—(u+v9) + (@ —e)pl* =

MU( eZM(w—s)l B 1 ) )
i v—(w—e) v+(w—eg)
M 1 _eZM(w—e)t

_ P R(0—8)(@—e—V)][2(w—8)(@—e+v)e*H (@)
(=m0 —(w—8)2 (v (0—¢))>

. 4M2(w_8)282p,(a)75)t

T 0t @) (= (@) (e )2’

On the other hand we have

’ 5 (o)t eZ;L(w—s)t 1
b, (t) = 2 (w—e) M@=t N p(w—e)e <V—(a)—8) — V-l—(a)—z-:))
T (1= (= (w—e)) (I—e2n—ir)?

. 4/’L2 (a) _S)ZeZ;L(w—E)t
0+ @—8) (= (@—8) (1 —e2H@—ear)2

Therefore it follows that

—(+ )+ (@ —e)pl* + ¢ =0,
and hence

—(U+ V) + (0)* + ¢ = 2e0p* — 2¢* = p*2ew — £7).

Note that v — (w—¢) and v+ (w — &) must have different signs since their product
is V2 — (w—¢)? < 0; hence ¢ (1) # O for all time. It then follows that for sufficiently
small ¢,

—( +v9)* + (wg)* + ¢y = ¢*2ew — &%) > 0.
To show that lim,_, o+ ¢ (#) = oo, we split ¢ (¢) into two parts. First, note that

. 2u(w—e)t 1 ): 1 _ 1
IEI(I)lJr(U—(O)—S)e v o——2)) " v—(w—2) v+(w—s)
_ 2w—e)
= vz—(w—s)z < 0.
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Further, it is clear that
Y
A e = O

Combining these two calculations lets us conclude that

lim ¢(¢) =00

t—0t
Finally, since ¢ (¢) is continuous and starts out positive and ¢ (t) # O for any ¢ > 0,
it follows that ¢ (¢) > O for all > 0. O

Remark. We can also compute lim ¢(¢).
—>00

If ;& > 0 then e?#(@=#" s o0 as t — o00; hence we find that

_
. _v—(w—e) _ nw
Jm ¢ =— 3 = S Fw—e

If < 0 then e2@~9)" — () as t — oo, which gives us
hm £=—H _
o) = v+(w—e)

Next we deal with the other case.

Lemma 6. Let i1, vi, w; be defined as in Lemma 4, and suppose (iv) is true (i.e.,
(ii1) becomes false). Let

_ n 48(1—a)
=) = - (=80 ( n +C>'
If for some sufficiently small ¢ > 0 we define

n

2(1—a)(1—
¢ (1) = (1= _;)lt(ezmwlfa)(rfrz)H)

(V1 + (w1 —8) + (V1 — () —¢))e2H1 (@1 =) =T2)
then fort < T, we get Ps.1 > 0and Ps» > 0, and for t > T, we get Ps > 0. Therefore
P3(¢) > 0 forall t.

In addition, lim;_, g+ ¢ (t) = oo and ¢ (t) > 0 forall t.

ift <1,

ift > T,

Proof. For ¢ < 1, we have

Jim ¢ = lim 50— S =

To show that ¢ (¢) is continuous at 7>, we check its limits from the left and right.
The limit from the left is

. . n —pBcn
,EI;}QSU)_Z(I—O{)(I—&)TQ 4B(1—a)+en’

And the limit from the right is
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li —ui(d+1) _—2m _ _c. 2pn
) = G @—et—@—5) ~ 2w 2 (entap(—a))
—Bcn
4,3(1 a)+ten’

Therefore ¢ (¢) is continuous.
Next we check that ¢p(¢) > 0 for all + > 0. Note that ¢(¢) is continuous, and
clearly is positive between 0 and 7». For t > T>, since u; # 0, it follows that

— (eZM(wre)(thz) +1)#£0,

and therefore ¢ () # O for any ¢t > 7,. By continuity, it follows that ¢ (¢) > O for
all > 0.
Next we show that for t < T, we have P5; > 0. That is, we need

Ps; = (45(;—_“) +c)¢(t) + Bc > 0.

First we note that condition (iv) states that 48(1 — «)/n + ¢ > 0. Since ¢ () is
decreasing in t < T, it suffices to check that Ps; > 0 holds for t = T5:

(4ﬂ(1 %) )¢(t)+ﬁcz<4”3(2—_a)+6‘>¢(T2)+ﬁc

_ (48— —Bc _
_( p +C>(4,8(1—oz)+c>+ﬁc_0'
n

Therefore P51 > 0 for all t < T5.

Now we show that P5, > 0 for all ¢+ < T,. That is, we need
2(1—
P52 = 22407 + (1) > 0.

We have
_2(1—-w) n 2 —n
Ps2= [2(1—a)(1—8)t] +2(1—a)(1—s)z2
. n _ n _ en -0
T 2(1—a)(1—6)22 2(1—a)(1—8)t2  2(1—a)(1—¢g)2t2

This implies that P;(¢) > O for + < 7. Next we show that Ps > 0 for all t > T5.
That is, we need that

Ps=—(u1+v1$)* + (@19)* + ¢ > 0
for
— i (82M1(w1—8)(t—T2) +1)
1+ (01 —8)) + (V1 — (w1 —¢))e2ri (@1 =T

@) =
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We first show that for t > T,, ¢ (¢) satisfies

— (i1 +119)* + [(w1 — &)¢]* + ¢ = 0.

Plugging in ¢ (¢) for t > T, gives us that

—(u1 +vig)* + [(w) — &)¢]*

Mlvl(62ul(w1—8)(t—T2)+1) 2
B _[m C (it (o —8))+(V1—(wl—8))62’“‘1(”1*8)“42)]
B — (€2 (@1=e)t=T2) 4 1y ]2
+ |:(C()1 8) (V] +(CL)] —8))+(V1 _(a)l —8))62/“(0)] —&)(t=T2)

_ (=P [—(1 =@ T2 (2T 4 )2y
T i@ )+ — (@1 — )P @ T2

_ 4#«%(0)1 _8)262M1(w1—8)(t—T2)

= 0t (@1 =)+ (01— (@1 — )P @2

Similarly, we have

=27 (@1— )@= DDI (1) + () —8)) + (11 — (@1 —¢)) e (1= T)]

)=
) [(V1+(w1—8)) + (V1 — (@1 — &) e @r=a)(=T) ]2
_ = (@1=8) Qi (w1 —e))e 1@ DU [y (2@ =T 4 1)
[(V1+(@1—8))+ (V1 — (w1 —g))e2r1(@1=e)1=T) ]2
4#%(0)1 —g)2e2@—e)(t=T))
T [t @i =)+ — () —g))e @ =T
Therefore

—(1 + 1)’ +[(@1 — )¢ + ¢ =0,
and it follows that
Ps = —(u1 +v19)* + (@19)* + ¢ = 2ew; —£)¢p* > 0
for small enough . Therefore P3(¢p) > O for t > T5. O

Remark. Here we observe that

— 2pi(w1—e)(t—T2)

. T mi(e +1)

AR O= I 6 =) + = (@i —e)et@ 90T
— M1 _ M1

vi—(@1—¢) —vit+(wr—e)’

which is the same limit as ¢ (¢) from Lemma 5 since @; > O.

Now we are ready to finish the proof of Theorem 1.
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Proof of Theorem 1. Let f : M x [0,00) — R be a positive solution of f; =
Af +cf(1— f) for ¢ > 0, and assume that the following hold:

1) 0<a<l,

.. —cn(14+a)
< ———<0.
W p = A —da+2n

Let u =log f, and define

hix, 1) := Au+a|Vul*> + Be" + ¢,
where

=9k, )=o)+ V1),

and since we are in the closed case we set ¥ (x) = 0.
With w1, vi, wi, and T3 as defined in Lemma 4 and Lemma 6, and ¢ > 0 small
enough to satisfy Lemmas 5 and 6, we let

21 (w1 —e)t _ 1
3 <—e —)
v —(w1—¢) Vi +(w);—¢) o
1| 2 i—oy if (iii),
¢() = m if (iv) and t < 7>,
—/Ll(ez“l(wl_g)([_TZ)—i-l)
i+ (w1—¢e)+ (v —(w; —g))ezﬂl(wl—s)(f—Tz)

if (iv) and ¢t > T>.

We first show that i (x, ) > O for all ¢. Suppose for the sake of a contradiction
that 4 < 0 somewhere; let #; be the first time such that min, i(x, t) = 0. Since M
is closed the minimum is attained, say at the point (x1, f;). By Lemmas 5 and 6,
lim,_, o+ ¢ (t) = oo so it follows that #; exists.

By applying Lemma 2, we get that

@ hy — Ah —2Vu -Vh > Pith+ Py + P3+ Py,

where Py, ..., P4 are defined as in Lemma 2. Note that in the case (iv), the derivative
¢; at t = T, is considered to be the derivative from the left.

We have Pih =0 since h(xy, t;) = 0. Lemma 3 yields that P, > 0 since K =0,
and Py = 0 since ¥ (x) =0.

Since (x1, #1) is the first spacetime where A (x, t) = 0, the maximum principle
yields that i, (xy, #;) < 0 (where this is a derivative as t — "), Ah(xy, ;) > 0 and
Vh(xy, 1) =0.

Hence (4) yields that

®)) 0>h,— Ah—2Vu-Vh > Plh+ P, + P;+ Py > Ps.

Now we split into cases based on whether (iii) or (iv) holds.
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If (iii) is true, since ¢ > 0 we have the following inequalities:

48(1—a) <C+4,3(l—a) - _4B(1—a)
n n n ’

4;3(1—05)’ - ‘4,3(1—05) )
n n

lc—i-

2
c+4p(1—a)/n 2(1—w)\2
( 28 ) <( n > ’

F (c—|—4,3(1—oz)/n)2 n )_2(1-a)

1= 28 <wyp =

2(1—a) n
Therefore by Lemmas 4 and 5 it follows that P; > 0, which contradicts (5).
Otherwise, if (iv) is true, it follows from Lemmas 4 and 6 that P; > 0 again,
which still contradicts (5).
This proves that 4 (x, t) > 0 for all x, ¢. Finally, letting & — 0 with

_ n 48(1—a)
T2|€=0_2(1—a)(—,8c)< n +C>’

we get that ¢ (t) — ¢o(t), where

( Ben )e—ct_lg

Cn+8,3§1_ _e(fgt if (iii) holds,
bo)=1 37—ay fa) - if (iv) holds and £ < 7| _,,
. c(t—"»)
- ﬂcl(e 741 if (iv) holds and 7 > T _,.
c+ ﬂ( —C{) +CeC(I—T2) N
n
Therefore lim, o h(x, ) = Au +|Vul? + Be* + ¢o(6) > 0 as desired. |

3. On complete noncompact manifolds

In this section, we study the case in which the manifold is complete but noncompact.
The idea is similar to the case when the manifold is compact without boundary.
The main technical difficulty here is to ensure that the minimum of the Harnack
quantity is attained in a compact region. We first state our main theorem of this
section.

Theorem 7. Let (M", g) be an n-dimensional complete (noncompact) Riemannian
manifold with nonnegative Ricci curvature. Let f(x,t) : M x [0,00) = R be a
positive solution of the Fisher—-KPP equation f, = Af +cf (1 — f), where f is C?
inx and Clint,and ¢ > 0 is a constant. Let u = log f. Then we have

(©6) Au+a|Vul® + Be + ¢ (1) > 0,
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provided the following constraints are satisfied:

i) O0<a<l,
.. —cn(l1+a)
——— <0
) P < oar—2a+m =%
i —cn(242) —cn(2—+/2)
) — 0w ~P~—30=a) °
where .
2uawat )
e
b1() = Mz(l}z—wz U2+ w2
1 - 1 _ ezuzwzt ’
with

B 2(1—a)
= ‘ﬁc\/c(—cn—sﬂu—a))’

/41 —a) ' 2(0—a) _ 20-a)
”2_< n +C) \/c(—cn—S,B(l—oz))’ =T

Technical lemmas. In this subsection, we state and prove some additional lemmas
which will be needed in the proof of Theorem 7. Lemma 8 allows us to substitute
the sum Pg + P; for P; 4+ P4; then Lemma 9 bounds Pg using a new quantity Ps.
Lemma 10 allows us to apply Lemma 5 to control Ps. Lemma 11 gives sufficient
conditions for bounding P;. After bounding P;, we are in a position to prove our
theorem.

For any given &’ > 0, let

4p(1—a)\?
282°(1—0) e+ 2=
n 8(1—a—¢)

Lemma 8. Let P and Py be as defined in Lemma 2. Define

A=A() =

Pg: :Aezu+eu(4/3(1n—0l)¢ +C’3+C¢> +@¢2+¢“
Pr= 40‘(2—_0‘)¢/|W|2 —2Vu -V + 278/1/[2 — AY.
For any ' > 0 and any (x, t) we have
P3s+ Py > Ps+ Pq.

Proof of Lemma 8. Recall that,

2
Py = 2200 (30 ) 200

A0 g2 299y — Ay -+ (e + LU=, 20=0) 2
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We write the last two terms as

e+ HBU=0) 20200 2y (o 4B 20—t o 26

Using 2xy +x? > —y? in the form

u 4pl-a)\ , 2(0—a—¢") >
e1/1(c—|— p. )—I— . U > — 81— &) et

gives us

/ n\c+-——™
ey (o4 40, 20me) o 2600 (=

Applying this inequality then gives

(C+ 4B(1—a))?

282(1—a) n ) u(4B(1—a)g
P+ Py > ™ ( h i )+e( - +cﬂ+c¢>>

+ 20202 g, 4 20D 902 o9y vy 4+ 2y ay,
=P6—|-P7,

which finishes the proof. (]

Lemma 9. For u; = Bc/2VA), vi = AB(1 — a)/n + ¢)/(2VA), and v, =
V2(1 —a)/n, define

Ps(¢) := = (i1 +v19)> + (@19)* + ¢
If A > 0, then Pg > 0 implies Ps > 0 for any (x, t).
Proof of Lemma 9. Recall that

Since A > 0, we use the fact that x?2 +xy > —%yz in the form

(2522 + )+ pe]
4A ‘

Ae* [(4’3(1 a) c)¢+ﬂc]e”>
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This gives
4B(1-a)
A=) | Npvpe|
[ _Bc 1 /48(1—a) 2(1 o)
at +c>¢] (¢ )y
as desired. |

Lemma 10. If condition (iii) of Theorem 7 holds, then there always exists some

&' > 0 such that A > 0 and v12 < a)%.

Proof of Lemma 10. We first want to show that A(¢") > 0 for some &’ > 0. We will
show that A(0) > 0, and since A is a continuous function of &', this implies that
A(g") > 0 for some &’ > 0.

We have )
4B(1—a)
Aoy = 2821 =) n(e+572)
0)= -
n 8(1—a—0)
1682(1 —a)>— (cn+4B(1—a))?
o 8n(l—a)
_—cn 2_8Bcn(l—a)
a 8n(l—a) '
It follows from (iii) that
—8<—4— 2f<ﬁ(1_)

which rearranges to give c?n? +8Bcn(1 —a) < 0. Thus A(0) > 0, and so there
exists some &’ > 0 such that A(g") > 0.

Next we want to show that V1 < “’1 for some ¢’ > 0, where

Vv = —4'8(1E\O/K)Z/n+c and w] = ‘/ —2(1I’l_a) .

Since v; and w; are continuous functions of ¢’, if we can show that V12 < w% for
¢’ =0, then it must be that v12 < w% for some ¢’ > 0.
When ¢’ =0, v12 < a)% is equivalent to
c2n2+8,3cn(1 o)+16(1—w)*B?

—c2n?2—-8Bcn(1—a) <l

Restriction (iii) implies

—4— 2“/_</3(1_ )<—4+2J§,
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which leads to
2.2
c°n 8cn
8 <0.
B—ay  Bl-a)  °°

This is equivalent to

n? +8Bcn(1 —a) + 16(1 — )’ B% < —(*n® + 8Bcn(1 — a)),

and therefore v12 < w% for ¢’ =0. O

Lemma 11. Suppose R > 1 is a constant and p : M" — R is a function that satisfies

for some constant ¢ > 0. Define

— R+p?
Then for k sufficiently large, ¥ (x) satisfies P7 > 0.

Proof of Lemma 11. Let
(RZ_pZ)Z’

so that ¥ = kW. We claim that W satisfies

U(x):=

(8) IVU|> <18¥° and AV <02

where ¢, depends only on c;.
Indeed, we can compute

2 3
VU = Vp<—6pR +2p )

(R2—p?)3
VU< 4/02% <1893
and
v oo+ R (SR
=1 8
< (6c; + 18)W2
Recall that

_ /
Py = 4"‘(;—“)¢|w|2 —OVu -V + 2781% — AV
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Completing the square gives us
2" o
P> =y — - |V

By (8), we know that

g 2 2o e'k 292 > e’k ]<2|V‘~IJ|2

=k“W AV P> — .

nk cznk and k - 18n kv
so if

con 18n2
k > max( , —)
" da(l —a)e’

we immediately obtain P7 > 0. ]

Proof of Theorem 7. Fix a point p € M, letr = r(x) :=d(x, p), where d(-, -)
denotes the geodesic distance in M. We define the Harnack quantity ~ on the
geodesic ball Br(p) :={x € M | d(x, p) < R}. The quantity » depends on the
positive constants ¢, €', k, R and is defined as follows:

h(x,t) = Au~+a|Vul® + B + ¢ t) + ¥ (x),

1 2ua(wr—e)t 1 )
—e —_— —_—
b=dt) = M(Uz—(wz—s) V2 +(wr —¢€)
- T 1 — ezﬂz(wZ*E)f ’
JE
Y =v(x): _k(R2 vl

with py, v2, @y, and A defined as in Lemma 9 and the paragraph following
Theorem 7. Fix R > 1. Let ¢, ¢’ and k be positive constants to be chosen later. Note
that 4 is C! in ¢ and C? in x, except possibly for those x in the cut locus C(p). We
will show that we can choose ¢, ¢/, and k so that i (x, t) > O for all x, . Assume
for the sake of a contradiction that 4 (x, t) < 0 for some x, .

Let #; be the first time 7 such that infye () h(x, 1) =0. Since lim;_, o+ A (1) =00
by Lemma 35, it follows that #; exists. Note also that {(x) — oo as r =d(x, p)
approaches R, so the infimum of 4 is attained inside Bg(p); let (x1, ¢;) be such a
point, so that i(xy, t;) = 0. Now we split into cases based on whether or not x; is
in the cut locus C(p).

Case 1: Suppose that x; ¢ C(p), so that ¥ (x) is twice differentiable at x;. Then
by Lemmas 2 and 3 and 8 we have

0>h; —Ah—2Vh-Vu— Plh> P+ P3+ P, > Ps+ P;.

By Lemma 10, we can choose &’ > 0 small enough such that A > 0 and v? < w?;

then, since ¢ is the same as the one defined as in Lemma 5, it follows by Lemmas
5 and 9 that we can choose ¢ small enough so that Ps > 0.
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Note that y takes the form of (7), with the distance function p(x) =r(x) =d(x, p).
We have r > 0 and |Vr|? = 1; furthermore, by the Laplacian comparison theorem
we have Ar < (n —1)/r. Thus we can apply Lemma 11 and choose & sufficiently
large such that P; > 0 as well, which leads to a contradiction.

Case 2: Suppose that x; € C(p). We apply Calabi’s trick. Let § € (0, d(x1, p)/2)
be a positive constant, and let y (#) be any length-minimizing geodesic from p to x;.
Define ps := y (), so that x; ¢ C(ps), and define

| R4}
rs(x) :=d(x, ps) +3, V) =k G
hs = Au + o|Vu|> + Be* + ¢ + ¥s.

Note that by the triangle inequality, rs (x) =d (x, ps)+d(ps, p) > r(x), with equality
at x = x;. Since ¥ is an increasing function of r, it follows that 15(x) > ¥ (x) with
equality at x = x;. This implies that (x1, t1) is still the first time and place where
hs(x,t) = 0. Furthermore, hs is now C2 at (xj, #1) SO applying Lemmas 2, 3, 8, 5,
and 9 gives that 0 > P;.

Note that clearly rs > 0 and |Vrs| < 1, and at x; we get

n—1 _ n—1 <2(n—1)
d(xi,ps) r(x)—=8" r(x) ’

since we assumed that § < %r(xl). Therefore applying Lemma 11 gets us a
contradiction in this case as well.

This shows that /(x, ¢) > O for all x, ¢. Since h varies continuously as a function
of R, g, €', we can take the limit R — oo to get ¥ — 0. Then by taking ¢, &’ — 0,
we get that ¢ — ¢ and so

Ars = A(d(x1, ps)) <

MZ( 1 eZuzwzt _ 1 )
V) — w2 Ha+wr

1— eZuzwzt

Au+a|Vu|* + Be" + >0,

with

_ 2(1—a)
M—ﬂc\/C(—cn—Sﬁ(l—a))’

_ (48— ' 2(1—a) 200 —a)
”2_( n “) \/c(—cn—S,B(l—a))’ 2=\ T

which finishes the proof. U

4. Applications

In this section, we derive two applications of our differential Harnack estimates.
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Bounds on the wave speed of traveling wave solutions. The first such application
shows that our Harnack inequality can be used to prove an interesting fact about
traveling wave solutions to Fisher’s equation. In particular we look at traveling
plane waves, i.e., solutions to (1) of the form

fx, 1) =v() :=v(x+nta),

for some function v : R" — R and some wave direction a € R", |a| = 1 and wave
speed n > 0. For n = 1, these solutions were first studied by Fisher [1937] (also
see [Kolmogorov et al. 1937; Sherratt 1998]) and were considered by him to be a
natural model for propagation of mutations. He was able to show that if » =1 and
t_l)ir_noo f(x, 1) =0, then it must be that n > 2,/c.

We will show a weaker bound that generalizes to higher dimensions.

Theorem 12. Let f(x,t) = v(x + nta) be a traveling plane wave solution to (1),
with wave speed 1 and wave direction a. Suppose that
9) lim v(x) =0 for some direction be R", |5| #0.

x=kb,
k— 00

Then
V3=V3) ifn=1,
n= V2¢ ifn=2,
V(1 -33)c ifn=3.

When n = 1, n > 2,/c is both a necessary and sufficient condition for the
existence of traveling wave solutions. The same condition is sufficient in any higher
dimension, but it is not known (at least to us) if it is necessary as well. Our bounds
above give a weaker necessary wave speed in dimensions two and three.

Remark. In the proof below we have not used the fact that the traveling wave v
approaches 1 in some direction. Although we were ourselves unsuccessful, the
authors would like to encourage an attempt to use this additional restriction to
obtain a better bound on the wave speed 7.

Lemma 13. For any v(z) and any n that satisfy the conditions of Theorem 12, and
for any «, B that satisfy (1), (ii), and (iii) as in Theorem 7, we have

=M =41 —a)(c— 1) — (B+)v(2)],

forall x, t, where
1 2uwt 1
b(1) = M(v—a)e v+a))
(1 _ezuwz)

(which appears as ¢1(t) in the statement of Theorem 7).
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Proof. Since Fisher’s equation is spherically symmetric, we may assume without
loss of generality that a = x; = (1, 0,0, ..., 0). Therefore

FO, ) =v(x+nt,x2, ..., X5) = 0(215 225 - -+ Zn) = V(2).
It then follows from (1) that (where 9; := d/0z;)
ndiv = Av+cv(l —v).
Combining this with Theorem 7 gives
A(logv) 4+ a|V(logv)|* + Bv+¢ >0,
AoV gutg =0

nalv—cvv(l—v) (1— )IVvl

2
+ (-2 (gt cyut (- 9) <.

+Bv+¢ >0,

(1 —Ol) Zl 2(a U)2

It follows from standard Cauchy—Schwarz that

2

__n  _ _
Ty~ (B+ov+e—9) =<0,
hence n? > 4(1 — a)[(c — ¢) — (B + c)v], as desired. O

Lemma 14. Assume that v(x) — 0 along some path, as in (9). Then for any 3 > 0
there exists (x3, 13), possibly depending on n, o, 8, and c, such that at (x3, t3)

M > M"— je3,

where

M" =41 - ) (e - T’;)

Proof. Fix &3 > 0. Note that

, _ K
Jim 0= 5

Choosing ¢ > t3 large enough gives

_ M €3
o) = ol < ui—ay

so that
&

4(1—a)(c—¢)>4(1—a)(c——“)— 23

+w
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Having fixed t3, we then set x3 := —nt3a + Ab with A sufficiently large. Then by
(9) it follows that

€3

24(1-a) I,B—li-c| and  —4(1 —a)(B+c)v>0— Les.

lv—0] <
Therefore

M =41 —)[(c—¢) — (B+c)pl > M" — Je3. O

Remark. Condition (9) can be weakened; it suffices to have lim v(z) = 0 along
—> 00
some path that goes to infinity. :

Lemma 15. Ifn <3, and B = —cn(1 +a)/(4a® — 4o +2n), and 0 < o < ap(e3)
is sufficiently close to 0, then conditions (i), (ii), and (iii) are satisfied, and
M'>M" — %83, where

M = M///(n) _ 2C(n—4+2«/ 4n—n2)

n—2+~/4n—n?
Proof. Conditions (i) and (ii) are clearly satisfied by construction. And note that
(iii) is equivalent to

242 B(l—a) 2—V2
— < < — .
4 cn 4
But the quantity in the middle varies continuously with « near a = 0, so it suffices

to check it at o« = 0, where we indeed have

2442 1 22

< —— —_

4 wm =T 4

which holds for all n < 3, so there must exist some ¢ sufficiently small such that
(iii) holds for all @ < «y.
Next, we compute M”:

M =401 o) (e - =)

E0)
Bc
R KRR 2)\/Z R(-w
— —
2ﬂ< n +C>+ n
=4(1—a) |c+ Be
(4 0= [8A0—0)
n n
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Here A = A(¢’ =0), so that
_ 201 — )2 _ 2 _
84(1—0) _ 168°( ) _(CJF4,3(11 D) _ (- - 88U

n n cn

This gives

M" =41 —a) |1+ Ble

(L 480-0) [ "8p(—a)
cn cn

Again, this involves only (1 — «) and 8, both of which are continuous at o = 0,
where we have 8§ = —c/2, so

—1/2

=) =22 )
1—24 /_1+‘_¥) n—2++4n—n?
n n

Hence for « sufficiently close to O we can get [M” — M""| < eg3/3, which gives
us the desired conclusion. O

M”=4c(1+ =M".

Proof of Theorem 12. Fix a solution f (x, r) = v(x +nta) of (1) which also satisfies
(9), and fix a g5 > 0.

Leta <apand B =—c/(2(1—a)), so that (i), (ii), (iii) are satisfied (by Lemma 15).
Applying Lemma 13 then gives n> > M for all x, 1.

Applying Lemma 14, we find a pair (x3, #3) such that M’ > M" — &3/3. Then
applying Lemma 15 again, we have M” > M"" — g3/3 so that

nz - M" — &3.

However, note that M"” depends only on n. Hence we send &3 — 0, to get that

c(3— «/§), n=1,
n?>M"(n) = {2, n=2,
c(1-33), n=3,
as desired. O

Classical Harnack inequality. In this subsection, we integrate our differential
Harnack estimates along a spacetime curve to derive classical Harnack inequalities.
We further assume that M is closed, and that f(x,t) < 1 for all x, t.

Theorem 16. Let M be a closed Riemannian manifold with nonnegative Ricci
curvature, and 0 < f < 1 be a bounded positive solution to Fisher’s equation. Let
o and B satisfy the conditions of Theorem 1. Furthermore, if o < n/4, then there
will always exist B such that B + c > 0 in addition to the constraints of Theorem 1.
For such an a and B,
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(1) if88(1 —a) 4+ cn < 0, then we have

[l n) (1_6_6[2>mexp<— d(x1, x2)* >
flxp, ) — \l—emh 4(1—a)(n—n)/’
(1) if88(1 —a)+cn >0, t > t; > Ty, then we have
11 8BU=0) ety | A e
f@an) (1+252)e * e d(x1, %) )

SO, (1 + 813(1_a_))€—c(11—T2) +1 4(1 —a)(r —11)
cn

(i) if 88(1 — ) +cn =0, t, > t| > Ty, then we have

2
T z el —en ) e (- T )

Proof of Theorem 16. Let f(x,t) solve f; = Af +cf(1— f), and u =log f. Fix
points (xy, t1), (x2, #2) and let y : [t;, ] — M" be an arbitrary spacetime path
connecting them, i.e., y(¢]) = x1, Y (©2) = x».

Let v(¢) :=u(y(¢), t) be the value of u along y. We compute

dy
(1) = Vu- —.
U() ur+ Vu a1

Using the time evolution for u, = (log f); = f;/f, this is equal to

d
V() = Au+ [Vul* + c(1—e") + Vu - %'

Applying the Harnack inequality gives

/ 2 u d)/
V()= —a)|Vul"+(c—¢)—(B+c)e —l—Vu-Z.
By assumption, f < 1 and 8 + ¢ > 0. This implies —(8 + ¢)e" > — (B +¢), so

defining qZ(t) = —pB — ¢(t), we then get

/ 2 dy
v(t) > (1 —a)|Vul +(c—¢)—(ﬁ+c)+w'5
= —p—p+ -Vl +Vu-
- 2 dy
=¢@)+ (1 —a)|Vu| —f—Vu-E,

1 |dy2
4(1—a)l dt |-

V(1) > $(1) —
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Integrating in time, we get

dy) dt.

e, )t =0 v = [ v = [Goar gt [

n

Since y was chosen to be an arbitrary path, we can choose it to be the path
minimizing [ |y’ |2 which is the minimizing geodesic between the two endpoints.
The integral thus becomes

f| P = d(XI,XZ).

h—n

Thus the spacetime Harnack is given by

Og(f(m, 1) d(xy, x2)?
[, ) 4(1—a)(ta—1)

We compute the definite integral, dividing into three cases. First we deal with
the case 88(1 — ) + cn < 0. In this case we have

(crrapiiza)e P

l—e—t ’

tzN
) =u(xy, ) —u(xy, 1) Z[ o(t)dt —
1

@) =

and

(75(1‘):(,36_”— Bene™c! )1_13_“:,8- 88(1—a) . et

cn+8B8(1—a) cn+88(1—a) 1—e—ct’
Then we can explicitly integrate
8B(1—a) [l—e_c’z]
/W)dt cn+8B(1— a))log T—e—cin |’

Therefore we get that

b e 8BU—0)
exp ( / ¢ (1) dt) = (—i = )l
f

and the claim follows.
Second, we deal with the case 8 (1 —a)+cn > 0. Then for ¢ > T, (recall that T,
is a constant) we have

—Bene"=1) —Ben

o) = cn+8B(1—a)+cnect—12)°

and so
—8B% (1 —a)e <~

¢(t) = _,8 _¢(Z) = (813(1_a)+cn)e—c(t—T2)+Cn'
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If we let B=—8B2(1 —a) and D = cn + 8B(1 — «), then we get that

- Be—ct-T)
o) = Do Ten’
e Y +cn

We can integrate

L _ 852(1—(1) (85(1_a)_‘_cn)e—c(zz—rz)_i_cn
-/t: pindr= <02n+8,36(1—oz)) lo <(8,3(1—Ol)-i—cn)e*c(tl*Tz)_i_cn)'

Therefore
882(1—)

n_ <1 +88(1 — a)/(cn))e—c(tz—Tz) +1 In+8Bc(1—a)
eXP(/ d>(t)dt) =
z (148801 —c)/(em))e=cti=T) 41

as claimed in the statement of Theorem 16.
In the last case that 88(1 — «) + cn = 0, we have

o= P
and so
b0 =—p-00) =L
Therefore
n
exp(/t1 o) dt) = exp[—g(e c=T2) _ p=cln TZ))]
as desired.

To finish the proof of our theorem we need to show that we can choose 8 +c¢ > 0,
i.e., B > —c. We have the constraint (ii):

—cn(14+a)
< 77
b= da?—4a+2n’
so we need to have
—cn(14+a)

—c<pB< - TR
csh= da? —4a+2n

Note that since 0 < & < 1, we have 402 — 4o +2n > —1 + 2n > 1; thus it remains
to choose o so that
—(4a® —da+2n) < —n(1+a),

which simplifies to

o < in.

Bl—

This is automatically true if n > 4, which means we can choose any o we wish,
and there will be at least one f§ satisfying all the constraints including 8 +¢ > 0. [
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Note that lim,_, » ¢ (¢) = —f, and lim,_, $(t) = 0. Thus, as t1, 1 = o0, the
estimate approaches the classical Li—Yau—Harnack [Li and Yau 1986].

Remark. In the compact case we obtain a good bound as ¢ and #, get large. In the
complete noncompact case, one can still integrate along spacetime curves to obtain
an inequality, but the estimate degenerates when time becomes large.
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A DIRECT METHOD OF MOVING PLANES FOR THE SYSTEM
OF THE FRACTIONAL LAPLACIAN

CHUNXIA CHENG, ZHONGXUE LU AND YINGSHU LU

We establish a direct method of moving planes for systems of fractional
Laplacian equations. By using this direct method of moving planes, we
obtain symmetry and nonexistence of positive solutions for the following
system of fractional Laplacian equations:

{(—A)"‘/Zu(x) =v/(x), xeR",
(=A)*2p(x) =uP(x), xeR".

1. Introduction

In this paper, we consider the following system of fractional Laplacian equations:

(1-1) {(—A)a/2u(x) =vi(x), xeR",

(=AY ?v(x) =uP(x), xeR".

When o = 2, system (1-1) is an important model, the Lane-Emden system. It is
conjectured thatif 1/(p+1)+1/(g + 1) > (n — 2)/n, then there are no nontrivial
classical solutions of (1-1) in RN with N > 3. The conjecture has been proved
to be true for radial solutions in all dimensions in [Mitidieri 1996]. The cases of
N =3, 4 for the conjecture in general have also been solved recently in [Polacik
et al. 2007] and [Souplet 2009], respectively. The interested reader can refer to the
above papers for detailed descriptions (see also the works [Busca and Mandsevich
2002; Serrin and Zou 1998], etc.).

More generally, Troy [1981] used the maximum principle and the method of
moving parallel planes to investigate symmetry properties of solutions of systems of
semilinear elliptic equations Au; + f;(uy,...,u,) =0, i =1,...,n, in a domain
of R”".

The work was partially supported by NSFC(No.11271166), sponsored by Qing Lan Project.

MSC2010: 35B09, 35B50, 35B53, 35J61.

Keywords: the fractional Laplacian, maximum principles for antisymmetric functions, narrow region
principle, decay at infinity, method of moving planes, radial symmetry, nonexistence of positive
solutions.
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In the special case p = ¢q, u = v, (1-1) changes to
(1-2) (=N ?u(x) =uP(x), xeR".

Here the fractional Laplacian in R” is a nonlocal pseudodifferential operator assum-
ing the form

u(x) — u(z)

(1-3) (=A)*?u(x) = Cy 4 lim
|x_Z|n+a

e—0 R\ B (x)

9’

where « is any real number between O and 2. This operator is well defined in ¥,
the Schwartz space of rapidly decreasing C* functions in R". In this space, it can
also be equivalently defined in terms of the Fourier transform

(CA)2u(E) = [E"A(E),

where # is the Fourier transform of u. One can extend this operator to a wider space

of functions.
u(x)]
a—{u [Ri"—)[R{‘/n1+|x|n+a X <00yg.

Let
Then it is easy to verify that for u € Ly N CloC , the integral on the right-hand side of
(1-3) is well defined. Throughout this paper, we consider the fractional Laplacian
in this setting.

The nonlocality of the fractional Laplacian makes it difficult to study. To circum-
vent this difficulty, Caffarelli and Silvestre [2007] introduced the extension method,
which reduced this nonlocal problem into a local one in higher dimensions. For a
function u : R" — R, consider the extension U : R"” x [0, c0) — R that satisfies

{div(yl"‘VU) =0, (x,y)eR" x[0,00),
Ux,0) =u(x).

Then
(A =—Cpy lim y'~ 20U
y—>07 dy
This extension method has been applied successfully to study equations involving
the fractional Laplacian, and a series of fruitful results have been obtained (see the
references in that work).

In [Busca and Mandsevich 2002], among many interesting results, when the
authors considered the properties of the positive solutions for (1-2), they first used
the above extension method to reduce the nonlocal problem into a local one for
U (x, y) in one higher dimensional half space R" x [0, 00), then applied the method
of moving planes to show the symmetry of U(x, y) in x, and hence derived the
nonexistence in the subcritical case.
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Proposition 1.1. Let 1 < a < 2. Then the problem

div(y'=*vU) =0, (x, y) € R" x [0, 00),
. 1= dU _ r7p n
yli>n(}+y 3y =U?(x,0), xeR",

has no positive bounded solution provided p < (n+a)/(n — «).
They then took trace to obtain:

Corollary 1.2. Assume that 1 <o <2and 1 < p < (n—a)/(n—a). Then equation
(1-2) possesses no bounded positive solution.

A similar extension method was adapted in [Chen and Zhu 2016] to obtain the
nonexistence of positive solutions for an indefinite fractional problem.

Proposition 1.3. Let 1 <a <2and 1 < p < oo. Then the equation
(—A)*? = xuP, xeR"
possesses no positive bounded solutions.

The common restriction & > 1 is due to the approach that they need to carry out
the method of moving planes on the solutions U of the extended problem

(1-4) div(y!™*VU) =0, (x,y)eR" x [0, c0).

Because of the monotonicity requirement, they have to assume that o > 1.

Jarohs and Weth [2016] without going through the extended equation (1-4),
introduced antisymmetric maximum principles and applied them to carry on the
method of moving planes directly on nonlocal problems to show the symmetry of
solutions. The operators they considered are quite general; however, their maximum
principles only apply to bounded regions.

Chen, Li and Li [Chen et al. 2017] developed a systematic approach to carry
out the method of moving planes for nonlocal problems, either on bounded or
unbounded domains, corresponding to approaches for local elliptic operators that
were introduced more than twenty years ago in the paper [Chen and Li 1991] and
then summarized in the book [Chen and Li 2010].

In this paper, we will establish the direct method of moving planes for the system
of the fractional Laplacian equations. This will be accomplished in Section 2, in
which the main results are the following:

Theorem 2.1 (maximum principle for antisymmetric functions). Let T be a hyper-
plane in R". Without loss of generality, we may assume that

T={xeR"|x;=X, forsomelecR}.

Let
X=0QA—x1,x2,...,X,)
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be the reflection of x about the plane T. Denote

H={xeR"|x; <A} and H={x|%eH)}.

Let Q be a bounded domain in H. Assume that u € Ly N c!

loc (§2) and is lower
semicontinuous on Q2. If

(— A)¥?u(x)>0 inQ,
(— A% (x) >0 in Q,
ux)=>0 and vx)=0 in H\S,
u(x)=—u(x) in H,
v(X) = —v(x) in H,

then
u(x)>0 and v(ix)>0 in Q.

This conclusion holds for unbounded region 2 if we further assume that

lim u(x)>0 and lim v(x)>0.
|x[—o00 [x]—o00

If u =0 and v = 0 at some point in 2, then
u(x)=0 and v(x)=0 almost everywhere in R".

Theorem 2.2 (narrow region principle). Let T be a hyperplane in R". Without loss
of generality,we may assume that

T={x=x"x)eR" |x; =1 forsome i cR}.

Let

i = (2)"_-x17-x27 s 7-xn)a
be the reflection of x about the plane T. Denote
H={xeR"|x <A}, H={x|%eH)

Let Q2 be a bounded narrow region in H such that it is contained in {x | A—l <x; <A}
with small l. Suppose that u,v € Ly N Clldc;l (2) and both are lower semicontinuous
on Q. If c1(x) and c»(x) are both bounded from below in 2, ¢1(x) <0 and c>(x) <0

and
(= AN)*2u(x)+c1(x)vx) >0 inQ,

(— A)*?u(x) + c2()u(x) >0 in Q,
u(x) >0 and v(x)>0 in H\ Q,
u(x) = —u(x) in H,
u(x) = —u(x) in H,
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then for sufficiently small |, we have
u(x)>0 and vx)>0 in Q.
This conclusion holds for unbounded regions 2 if we further assume that

lim u(x)>0 and lim v(x)>0.
|x|—00 |x|]— o0

Theorem 2.3 (decay at infinity). Let H ={x e R" | x; <X for some A € R}and
let Q2 be an unbounded region in H. Assume

(= A)*u(x) +c1(x)vx) =0 in Q,

(— A)*2u(x) + c2(x)u(x) >0 in L,

u(x) >0 and vx)=>0 in H\ Q,
u(x) =—u(x) in H,
v(x) =—v(x) in H,
with
lim |x|%(x) =0, ci(x) =<0,
[x]—o00
and

lim |x[*ca(x) =0, c2(x) <0,
[x]—o00

then there exists a constant Ro such that if

u(x%) = minu(x) <0 or v(x%) = minv(x) <0,

then
Ix°] < Ro.

As a simple application, we consider system (1-1).

1,1

Theorem 3.1. Assume that0 <a <2 andu,v € LyUC,,,

of equation (1-1). Then

is a nonnegative solution

(1) in the subcritical case 1 < p,q < (n+a)/(n —a), (u,v) = (0,0);

(ii) in the critical case p =q = (n+a)/(n—a), (u, v) is radially symmetric about
some point.

2. Various maximum principles

Maximum principle for antisymmetric functions.
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Theorem 2.1. Let T be a hyperplane in R". Without loss of generality, we may
assume that

T ={xeR"|x; =\ for some ) € R}.

Let

X=0QA—x1,x2,...,X,)
be the reflection of x about the plane T. Denote

H={xeR"|x <A} and H={x|%eH)}.

1,1
loc

Let Q2 be a bounded domain in H. Assume that u € L, N C,
tinuous on Q. If

(2) is lower semicon-

(— A)*?u(x) >0 in Q,
(—A)*?u(x) >0 inQ,
(2-1) ux)>0 and vx)=0 in H\S,
u(x) = —u(x) in H,
v(x) = —v(x) in H,
then
(2-2) u(x) >0 and vix)=0 in Q2.

This conclusion holds for unbounded region 2 if we further assume that

lim u(x)>0 and lim v(x)>0.
|x|—o00 |x|]— o0

Ifu =0 and v = 0 at some point in <2, then
u(x)=0 and v(x)=0 almosteverywherein R".

Proof. 1f (2-2) does not hold, then the lower semicontinuity of u and v on Q
indicates that there exists a x € Q such that

u(x) =minu < 0
Q

or

v(xo) =minv <0,
Q

and one can further deduce from condition (2-1) that x° is in the interior of .
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If u(x") < 0, it follows that

0y _
(—A)“/zu(xo):CnaPV/ u(x”) —u(y)
’ n |x0 — y|nte
u(x®) —u(y) /u(xo)—u(y)
=CpoPV /—dy—l— ——dy
1 |x0—y|"+°‘ i |x0—y|”+0‘
u(x®) —u(y) fu(xo)—u(i)
=CpoPV /—dy—l— ———dy
o |x0—y|”+°‘ by |x0—y|"+°‘
0y 0
_Cy PV fu(ﬁg) u(y)d _i_/u()g )qu(y)d
g |x0—y|rte X0 —yrte
—c /{u(x°>—u<y)+u<x°>+u<y>}d
— na " |x0_§|n+a |x0_)";|n+oz
2u(x%)
=Cn,a/—~dy
H|x0_y|n+a
<0,

which contradicts inequality (2-1).
Similarly, if v(x%) <0, we also get a contradiction with (2-1). This verifies (2-2).
Now we show that # > 0 and v > 0 in H. If there is some point x% € Q, such
that u(x°) = 0 and v(x®) = 0, then from

Ae/2 0y __ —u(y)
0=(-A) “(x)_c"’“PV/H—|x°—y|"+a ,
Ae/2 0y __ —v(y)
0<(—A)v(x )_C"’“PV/H—IxO—yI"JF“ ,

we derive immediately that
u(x)=0 and wv(x) =0 almost everywhere in R”".
This completes the proof. U

Narrow region principle.

Theorem 2.2. Let T be a hyperplane in R". Without loss of generality, we may
assume that

T={x=x"x)eR" |x; =1 forsome X<R}.

Let
F=0QA—X1,%2, ..., %),

be the reflection of x about the plane T. Denote

H={xeR'|x <A}, H={x|%eH).
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Let Q2 be a bounded narrow region in H such that it is contained in {x | A—1 <x; <A}
with small l. Suppose that u,v € Ly N CIIO’C] (2) and both are lower semicontinuous
on Q. If ¢1(x) and cy(x) are both bounded from below in 2, ¢1(x) <0 and cy(x) <0
and

(= AN)*?u(x)+c1(x)v(x) >0 inQ,

(— A v(x) +e(ux) =0 inQ,

(2-3) u(x)=>0 and v(x)=0 in H\ Q,
u(x) = —u(x) in H,
V(%) = —v(x) in H,

then for sufficiently small |, we have
(2-4) ux)>0 and vx)=0 in Q.
This conclusion holds for unbounded regions Q2 if we further assume that

lim u(x)>0 and lim v(x)>0.
|x[—o00 [x]—o00

Proof. 1f (2-4) does not hold, then the lower semicontinuity of u and v on Q
indicates that there exists an x° € Q such that

u(x?) =minu <0 or v(x%) = minv < 0,
Q Q
and one can further deduce from condition (2-3) that x° is in the interior of 2.
Next we discuss the problem in three different cases.

Casei. (u(x°) = ming u < 0 and v(x°) > 0).
It follows that

(—A)*u(x%) = Cp 0 PV /L]S;Oi—;rliy“)
= C, o PV /Hﬁ?—;;g)dy /ﬁbtliﬁgoi—;;g)d
=CunaPV Lﬁ?—ﬁderLﬁ?—;ﬁ@dy
(2-5) =CpaPV /Hbjif)oi—;;g)d +/H”|Sf)oi—7;|ﬁya)d
0y _ 0
< Cu [T gpoe + oo e | &

2 0
—Cya / )
H

|x0_)~,|n+a
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Let D={y |l <y —x) <1, |y =% |<1}, s=y —x), t =y — (x°) and
wp—> = |B1(0)| in R"~2 Now we have

1 1
- dy> | ———d
/H|x0_)~,|n+a y_/;)lxo—y|"+“ y
// Wn-2T" S dtds
0 (s2+r2) 3

s n— 2
(2-6) =// On 2G0T g
l

0 s"+"‘(1 )5

e th
f W/ O dtds
st o (142"

-2
wp_2t"”

/ 1+a/ s dtds

1S 0 t2) 2

@) zC/l g ds = 00,

where (2-6) follows from the substitution T = st and (2-7) is true when [ — 0.
Hence ¢ (x) <0 leads to

1
(=)ux”) + (v’ < € / % ds u(x®) +c1(x))v(x")
;S

1 1 0
:u(x0)|:C/l Tz dsHak?) E 3]

<0,

when [ sufficiently small. This is a contradiction with condition (2-3).

Caseii (v(x°) = mg%n v < 0 and u(x®) > 0). Similarly to Case i, c2(x) < 0 leads to

1 M(XO)
(=N (x" + e (xOu(x?) < v(x? [c / ds +c2(x%) ] <0,
1

glte v(x0)
when [ sufficiently small. This is a contradiction with condition (2-3).

Case iii (u(x°) = ngn u <0and v(x%) <0). Similarly to Case i, by (2-3), we have

2-8) 0<(—A)*?u(x" 4% <C f —ds u(x" + 1 (x"v (2.
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By v(x%) < 0, there exists x' € Q such that v(x') = ming v < 0. Similarly to

Case ii, by (2-3) and c2(x) <0, we have

(2-9) 0<(—A)*?v(x") 4+ ca(xHulx )<c/ 0 ds v(x%) + e (Hux0).

Adding (2-8) to (2-9), we get

| |
(2-10) [c/l T ds+c2(x1):|u(x0)+|:C/l e

As u(x%) < 0and v(x") < 0, if (2-10) holds, then at least one of

— ds +cl(x0):|v(x0) > 0.

1 1
1 1
CfmdS+C2(xl)SO or C\/mdS+C](X0)SO
l l

holds.
Equivalently,

(2-11) / ds+cz(x)<0 or / ds+cl(x0)<0

However, when [ sufficiently small, from the fact that ¢;(x) and c;(x) are both
bounded from below in 2, we have

1 1
1 1
C/l S1+ads+cz(xl)>0 and c/l sl+ads+cl(x0)>0.

which is a contradiction with (2-11).
Similarly, we can prove the case v(x%) = ming v < 0 and u(x°) < 0.
Therefore, (2-4) must be true. This completes the proof. ([
Decay at infinity.
Theorem 2.3. Let H = {x € R" | x; < A forsome A € R} and let 2 be an
unbounded region in H. Assume
(—A)*2u(x) +ci(x)v(x) >0 inQ,
(— A2 v(x) +c()u(x) >0 inQ,

(2-12) u(x)>0 and v(x)=>0 in H\ Q,
u(x) =—u(x) in H
v(x) =—v(x) in H

with

(2-13) lim |x[*ci(x) =0, c1(x) =<0,

[x]—o00
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and

(2-14) lim [x[%c2(x) =0, ¢ (x) <0.

|x]—o00

Then there exists a constant Ry such that if

(2-15) u(x®) = minu(x) <0 or v(x%) = min v(x) <0,
then
(2-16) 1x°] < Ro.

Proof. Following from (2-15), there are three different cases for this proof.

Casei (u(x?) <0 and v(x") > 0). It follows that

(=AY 2 (x0) = C,wPV/ u(x®) —u(y) J

o |x0 — y|rte
— v [ Sy [
= Cuorv| [ M) 4y [ MDD,
=Cuapv| [ i [ e @
<G [ { oS + 2

2u(x%)
= C”""fH |x0 _ §n+a| a'y

For each fixed A, when |x°| > A, we have B0, (x")Cc H withx!' = (3|x0|—|—x(1), x9)),
and it follows that

1 1
- dy=| ————d
/H|x0—y|"+“ Y /g|x0—y|"+“ Y
>[ ! d
= T . ay
B0 ) X0 — yInHe

1
(2-17) > f g dy =
leo‘(xl) 4n+(x |x |n+a 4n+a |x |n+oz

where (2-17) follows from |x* — y| < |x0 — x| + |x°] = 4|x0| for all y € By,0/(x").
Then we have

2a)ncn o
L (x%) + 1 (o).

@18) 0= (=) Pu) +er (i) = G0
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Following from (2-13), c1(x%) < 0 for all x° € H, we have

2w, Cn,a

Wu(xo) o1 "0 <.

This contradicts (2-18).
Case ii (v(x?) < 0 and u(x%) > 0). Using the same method as Case i, we have

2wy Cn,ot

WU(XO) + e (xOu% >0,

which is a contradiction with

2w, Cn,oz

YTETTIUIT X0 v(x") + e (x"ux?) <0,

for c,(x%) < 0 for all x° € H.

Case iii (#(x?) < 0 and v(x?) < 0). We have
a/2, .0 0 0 20, Cp o 0 0 0
(2-19) 0= (=2)"u(x")+c1(xHvx") < Wu(x )+ (xHvx"),

2wy Cn,oz

2200 0< (=AY (") + () u () < 2 p(x%) + e (V) u(x).
4n+a|x0|a

Adding (2-19) to (2-20), we get

2(l)ncn,ot
4n+a |x0|a

2w, Cn,a

@2 g

+ Cz(xo):|u(x0) + [ + cl(xo)]v(xo) > 0.

As u(x%) < 0 and v(x®) < 0, if (2-21) holds, at least one of

anCn,a a)ncn,a

0 0
4n+(x|x0|a +o() =0 or 4n+a|x0|a +aG) =0
holds. Equivalently,
2wy, Cn,a 0 2wy, Cn,oz 0
(2-22) W—i—cz(x ) <0 or W-I—cl(x ) <0.

However, if |x°] is sufficiently large, following from (2-13) and (2-14), we have

ancn,a
4n+a |x0 |oz

2w, Cn,oz

—|—cz(x0) >0 and 4n+a—|x0|a +c1(x0) > 0.

which is a contradiction with (2-22).

Therefore, (2-16) holds. This completes the proof.
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3. Method of moving planes and its applications

Theorem 3.1. Assume that u, v € Cllo’c1 N Ly and

(3-1) {(— A u(x) = vi(x), xeR",

(— A)*?y(x) =uP(x), xeR"
Then
(1) in the subcritical case 1 < p,q < (n + «a)/(n — «), (3-1) has no positive
solution;
(i1) in the critical case p = q = (n + «)/(n — «), the positive solutions must be

radially symmetric about some point in R".

Proof. Because no decay condition on u near infinity is assumed, we are not able to
carry out the method of moving planes on u directly. To circumvent this difficulty,
we make a Kelvin transform.

Let x” be a point in R”, and let

— 40 _ .0
A= u<|x * +x0>, Sy v<|x * +x0>

|x—x0|"—°‘ |x_x0|n—a x_x0|2

be the Kelvin transform of (u, v) centered at x’. Then it follows that

7 00) 1 x —x0 410
u(x) = u X
Ix_x0|n—a |X—X0|2
1 / v (y)
= d
|x — X017 Jgu |y — ﬁ — xOjn—a
1 (J—q yfxo 0
_ ! (=) ¥ (5= +47)
= x0 |y — x0 — 2= | Y
[x—x?
1 |z — x0]901=0 54 (7) 1
(3-2) = Ix —x0|”—“ | _2=x0 Y—x0 [n—a |Z —X0|2” dz
R | lz—x02 |x7x0|2|

v (2)
:f 0 dZ,
R |2 — XV |x — 2]

where the step (3-2) follows from the substitution z = (y — x% /|y —x%2 +x° and
T=n4+aoa—qh—oa).

This means
v? (x)

(3-3) (=8)"Pa() = — .
lx —x|*
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Similarly, we have

] A2y HT)
(3-4) (=A) U(X)—|x_x0|y,

with y =n+ o — p(n — ). Obviously, T = y = 0 in the critical case.
Choose any direction to be the x; direction. For A < x?, let
To={xeR'|xi=1}, x*=Qr—x.x), ixx)=u(x"),
w), (x) = it (x) — (%), U (x) = 0(x"), 93.(x) = U (x) — D(x),

and
So={xeR"|x; <A}, Tp={xt|xeX).

First, notice that, by the definition of w, and ¢;, we have

lim w;((x) =0, lim ¢, (x) =0.
[x]—o00 [x]—o00
Hence, if w;, or ¢, is negative somewhere in %,, then the negative minima of w;,
or ¢, was attained in the interior of ;.
From (3-3), at points where ¢; is negative, we have
_q —
v; (%) v (x)
— A (x) = —2 -
( ) ( ) |x)‘—x0|f |x_x0|r
v] (x) — 9 (x)

lx — X0
—q—1
(3-5) . qv (x)w(x),
lx —xO7

where (3-5) follows from the mean value theorem, that is,
(—A)*Pwy (x) + c1 ()@ (x) = 0
with

g )

(3-6) c1(x) = X0

From (3-4), at points where w;, is negative, we similarly have

(3-7) (—A)*20; (x) + c2(x)wi(x) > 0
with

—p—1
(3_8) Cz(x) — M

lx —x07”



A DIRECT METHOD OF MOVING PLANES 315

The subcritical case. For1 < p,q < (n+a)/(n —a), we show that (3-1) admits
no positive solution.

Step 1. We show that, for A sufficiently negative,
(3-9) w(x) >0 and ¢ (x) >0 in %,.

This is done by using Theorem 2.3 (decay at infinity).
It follows from (3-6) that,

1 q-1 g—1(_x=x"
q(lx,x()ln—a) v (|x X0|2 +.X )
|x _x0|n+a qg(n—a)

c1(x) =

qvq—l(xx +x)

|x—x02
|x —x0|2°‘

It is easy to verify that, for |x| sufficiently large,

(3-10) CI(X) ~ W.
In the same way,

1
(3-11) CZ(X) ~ W.

In addition, following from (3-6) and (3-8), we have ¢;(x) <0 and ¢, (x) <0. Hence,
c1(x) and c(x) satisfy conditions (2-13) and (2-14) respectively in Theorem 2.3.
Applying Theorem 2.3 to w; and ¢; with Q2 = H = X,, we conclude that, there
exists an Ry > 0 (independent of 1), such that if X is a negative minimum of w; or
@, in X, then

(3-12) %] < Ro.
Now for A < —R(, we must have

w(x)>0 and ¢, (x) >0 forall x € Z,.
This verifies (3-9).

Step 2. Step 1 provides a starting point, from which we can now move the plane T
to the right as long as (3-9) holds to its limiting position.
Let

Ao =supf{r < x? lw,(x) >0 and ¢,(x) >0, forall xe X,, u=<Aa}

In this part, we show that
Ao = x?
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and
(3-13) wy,(x) =0 and ¢,,(x) =0, forall x € X,.

Suppose that Ag < x?. We show that the plane 7; can be moved further right. To be
more rigorous, there exists some € > 0, such that for any A € (19, Lo+ €), we have

(3-14) wy(x) >0 and ¢;(x) >0, forall x € %;.
This is a contradiction with the definition of Ay. Hence we must have
(3-15) ro =Y.

Now we prove (3-14) by combining the use of the narrow region principle and
decay at infinity.

Again by (3-12), the negative minimum of w, cannot be attained outside of
Bg,(0). Next we argue that it can neither be attained inside of Bg,(0). Actually, we
will show that for A sufficiently close to Ao,

(3-16) wi(x) >0 and ¢y (x) >0, forall x e X, N Bg,(0).

From the narrow region principle, there is a small § > 0, such that for A € [Ag, Ag+3),
if

(3-17) wi(x) >0 and ¢@u(x) >0 forall x € 3;,_s,
then
(3-18) wi(x) >0 and ¢ (x) >0 forall x e X\ Z,,_s.

To see this, in Theorem 2.2, we let H = X, and the narrow region 2 = X, \ X, s,
while the lower bound of ¢ (x), c2(x) can be seen from (3-10) and (3-11).
Then what is left to show is (3-17), and actually we only need

(3-19) wp(x) >0 and ¢, (x) >0 forall x € X),_5 N Bg,(0).
In fact, when Ao < x?, we have
(3-20) wy,(x) >0 and ¢,(x) >0 forall x € &),

If not, there exists some x such that

Wy, (X) =minw;,(x) =0 or ¢;,(*) =ming;,(x) =0.
i Tio
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Case i (w;,(X) =0 and ¢,,(x) > 0). It follows that

ANe/2 Ay _wko(Y)
( A) w)LO(X)_C”’aPVAn |£_y|n+ot

=Cn,aPVf — Wy, (y) dy+f —w;, () dy

L5, 12—yt £, 1X — yImte

:Cn’aPV / _wlo(y) dy+/ _w)»()(y) dy
p)) J

s, 15—yl N B

:prvf — Wy, (¥) dy+/ Wi, (¥) dy
> .

|z, R —ylme JE— e
— Wy, (y) Wi, ()’)
<C d
= ./2 [ F—ypre Ty
(3-21) —0.
On the other hand,
NEY 99 (%)

(—A) 2wy, () =

|)210—x0|f |)E_x0|r

b (B) = 94(H)

|£ — x0|7
- g1 (R, (%)
|£ —x0|7

>0,
which is a contradiction with (3-21).
Case ii (¢;,(X¥) =0 and w,, (%) > 0). As in Case i, there will be a contradiction.

Case iii (w;,(¥) =0 and ¢;,(x) = 0). We have

=4 (2 —ag A —_g /A —a A
N A A€ I A ) 0
|£Ao_x0|r |)?—x0|f I)?}‘O—x0|f |)?—x0|f ’

(=) 2w,y (§) =

a contradiction with (3-21).

These three cases prove (3-20). It follows from (3-20) that there exists a constant
co > 0, such that

Wy, (x) >cp and @y, (x) >co forall x € X;,_s N Bg,(0).

Since w, and ¢; both depend on A continuously, there exist € > 0 and € < §, such
that for all A € (Lo, Ao + €), we have

(3-22) wy,(x) >0 and @,(x) >0 forall x € 5,,_5 N Bg,(0).
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Combining (3-18), (3-12) and (3-22), we conclude that for all A € (Ag, Ao + €),
(3-23) wy(x)>0 and ¢, (x) >0 forall x € I;.
This contradicts the definition of Ay. Therefore, we must have
Ao :x? and w;, >0, ¢, >0 forall x € &;,.

Similarly, one can move the plane 7 from +oo to the left and show that
(3-24) Wy, (x) >0 and ¢;,(x) >0 forall x € X,.
Now we have shown that

r=x) and w;,(x) =0, ¢, (x) =0 forall x € Xy,
This completes Step 2.

So far, we have proved that (u, v) is symmetric about the plane 7, 0. Since the
x1 direction can be chosen arbitrarily, we have actually shown that (i, v) is radially
symmetric about x°.

For any two points X' e R" i =1,2. Choose xq to be the midpoint, i.e.,
x0 = (X' + X?)/2. Since (i, v) is radially symmetric about x°, so is (u, v), hence
(XY, v(X")) = w(X?),v(X?)). This implies that u is constant. A positive
constant function does not satisfy (3-1). This proves the nonexistence of positive
solutions for (3-1) when 1 < p,g < (n+a)/(n — o).

The critical case. Let (i, v) be the Kelvin transform of (u, v) centered at the origin.
Then

(3-25) (=N ?a(x) =9 (x), (—A)*?0(x) =i (x).

We will show that either (#, v) is symmetric about the origin or (u, v) is symmetric
about some point.

We still use the notation as in the subcritical case. Step 1 is entirely the same as
that in the subcritical case, that is, we can show that for A sufficiently negative,

w,(x)>0 and ¢, (x) >0 forall x € X;.
Let

A=sup{A>0]w,(x)>0 and ¢,(x)>0 forall xeX,, u=<A»r}

Casei. Ao < 0. Similarly to the subcritical case, one can show that

Wy, (x) =0 and ¢;,(x) =0 forall x € .
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It follows that O is not a singular point of # or v, and hence following from Kelvin
transform of # centered at the origin

1 _/ x
)= =t ()
we have
lim |x"%u(x)= lim ﬁ(iz) —@(0) > 0,
|x| =00 [x|—o00 |x|
that is,
u(x) = 0( 1_ ) when |x| — oo.
|x|n o
Similarly for v,
v(x) = O(%) when |x| — oo.
|x|n o

This enables us to apply the method of moving planes to («, v) directly and show
that (u, v) is symmetric about some point in R”.

Case ii. 1o = 0. Then by moving planes from near x| = 400, we derive that (iz, v)
is symmetric about the origin, and so is (u, v).

In any case, (u, v) is symmetric about some point in R". ([
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A VECTOR-VALUED BANACH-STONE THEOREM
WITH DISTORTION /2

ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

Let K and S be locally compact Hausdorff spaces and H a real Hilbert space
of finite dimension at least two. We prove that if 7 is an isomorphism from
Cy(K, H) onto Cy(S, H) whose distortion | T||]|7 ']l is exactly 72, then K
and S are homeomorphic. This is the vector-valued Banach—Stone theorem
via isomorphisms with the largest distortion that is known. It improves a
1976 classical result due to Cambern.

1. Introduction

If K is a locally compact Hausdorff space and X is a Banach space, we denote
by Co(K, X) the Banach space of continuous functions vanishing at infinity on K,
taking values in X, and provided with the usual supremum norm. If K is compact,
we use the notation C (K, X) to represent this space. Moreover, if X = R we will
denote these spaces by Co(K) and C(K) respectively. In the present paper, the
word “isomorphism” means “linear homeomorphism”.

The well-known Banach—Stone theorem states that if K and S are locally compact
Hausdorff spaces, then the existence of an isometric isomorphism 7" of Cy(K') onto
Co(S) implies that K and S are homeomorphic [Banach 1932; Behrends 1979;
Stone 1937]. Cambern [1966; 1967] strengthened this theorem by showing that the
conclusion holds if the requirement that 7 be an isometric isomorphism is replaced
by the requirement that 7 be an isomorphism satisfying | T||||T | < 2. Amir
[1965] established the same result independently for K and § compact. Cambern
[1970] showed that 2 is indeed the greatest number for which the formulation of
the Banach—Stone theorem given in [Cambern 1967] is valid, by exhibiting a pair
of locally compact Hausdorff spaces K and S, with K compact, S noncompact,
and an isomorphism 7" of C(K) onto Co(S) with ||T|| T~ =2. Cohen [1975]
showed there was such an example where both K and S are compact.

Cambern [1976] was also the first to get a vector-valued Banach—Stone theorem
via isomorphisms with distortion A > 1. He proved:

MSC2010: primary 46B03, 46E15; secondary 46B25, 46E40.
Keywords: vector-valued Banach—Stone theorem, C (K, X) spaces, finite-dimensional Hilbert space.
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Theorem 1.1. Let K and S be locally compact Hausdorff spaces and H a finite-
dimensional Hilbert space. If there exists an isomorphism T from Co(K, H) onto
Co(S, H) satisfying ||T || 174 < V2, then K and S are homeomorphic

It is still an open question whether the bound /2 can be improved. Moreover,
after Cambern’s theorem, all vector-valued Banach—Stone theorems have been
obtained via isomorphisms with distortion 1 < A < V2; see [Cidral et al. 2015].

Thus, in view of the above mentioned isomorphisms with distortion 2 between
Co(K, H) spaces constructed independently by Cambern and Cohen in the case
where H is the scalar field, it is natural to turn our attention to the isomorphisms with
distortion ~/2 between Co(K, H) spaces in the case where H is an n-dimensional
Hilbert space with n > 2. In other words, the following question arises naturally.

Problem 1.2. Let K and S be locally compact Hausdorff spaces and H a Hilbert
space of finite dimension greater than or equal to 2. Suppose that there exists an
isomorphism T from Co(K, H) onto Co(S, H) satisfying |T|IT || = V2. Does
it follow that K and S are homeomorphic?

The principal purpose of this paper is to show that Problem 1.2 has a positive
solution when the scalar field is the real numbers R.

So, henceforward H = R} the space of n tuples of real numbers with the usual 2
norm and n > 2. Our main theorem is as follows.

Theorem 1.3. Let K and S be locally compact Hausdorff spaces. Suppose that
there exists an isomorphism T from Co(K, H) onto Cy(S, H) satisfying

”yfi” <IT(HI <2111,

forevery f € Co(K, H). Then K and S are homeomorphic.

(1-1)

Then, the solution of Problem 1.2 follows immediately from Theorem 1.3 by
considering t =T || 77274 and noticing that (1-1) holds for the isomorphism .
Moreover, Theorem 1.1 in the real case is also a direct consequence of Theorem 1.3.
Indeed, put |77~ | =X < V2 and T = T||T || A~ Y/2. Therefore, it suffices to
observe that (1-1) again holds for the isomorphism .

It is worth mentioning that Theorem 1.3 cannot be extended to infinite dimen-
sional Hilbert spaces. Indeed, let I be an infinite set and write I = I} U I, with
I1 NI, = @ and the cardinalities of I; and I, equal to the cardinality of /. Let
K ={1} and K, = {1, 2} be two discrete compact Hausdorff spaces. Consider the
natural isometries

©:C(Ka, (1)) = Ih(I) @ [2(I2) and Y : (1) — C(Ky, (1)).
Now, define T : (1)) ®oo [ (I3) — (1) by

T((ai)ier, biien) = (¢i)ier,
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where ¢; = a; if i € I} and ¢; = b; if i € I,. Then, it is easy to check that
ITTO|=+2 and [(YTO) ' =1.

But, of course K| and K, are not homeomorphic.

As we will see, the proof of Theorem 1.3 depends not only on the fact that H
has finite dimension but the intrinsic geometry of H as a real Hilbert space. It is
divided into five sections.

2. Special sets associated to isomorphisms between Cy(K, H) spaces

We begin by recalling that a bijective map T : Co(K, H) — Cy(S, H) is said to
be a bijective coarse quasi-isometry if for some constants M > 0 and L > O the
inequalities

%Ilf—gll —L=|T(H-TOI=M|f—-gl+L,

are satisfied for all f, g € Co(K, H).

In our recent study of these maps ([Galego and Porto da Silva 2016]; henceforth
abbreaviated [GPS]) we introduced some classes of subsets I, (k, v) and ', (s, w)
of S and K respectively, where k € K, s € § and v and w are suitable elements of
R. We shall define these sets for v, w € H instead of R.

In order to prove Theorem 1.3, we will need to state some new properties of
these sets in the particular case where T is linear, M = J2and L =0. So, in this
short preliminary section we will remember some definitions and results already
adapted to the context of Theorem 1.3.

From now on M = +/2 and T will be an isomorphism of Co(K, H) onto Co(S, H)
satisfying

Il
(2-1) WSIIT(f)IISMIIfII,
for every f € Co(K, H).
Letk e K, f € Co(K, H) and v € H. Following [GPS, Definition 2.2] we set

w(k, f,v) =max{| I, [l.f (k) = vl}.

Moreover, if v, w € H with v # 0 satisfy ||w]| = ||v||/M, following [GPS,
Definition 3.1], we also set

Lyk,v)={s € S:ITf(s) —wl < Mow(k, f,v),Vf € CCo(K, H)}.
Analogously, for s € S, w and v € H with w # 0 and ||v|| = ||w]||/M, we set

Ty(s, w)={k e K: T g(k) —v| < Maw(s, g, w), Vg € Co(S, H)}.
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Let us summarize the results concerning these sets which will be used in the
present paper. We will denote by (-, -) the usual inner product on H. When the
vectors v and w of H are orthogonal we will write v L w.

Proposition 2.1. Let k € K and v € H with v # 0.

(1) There exists w € H such that Ty, (k, v) # @.

(2) Forallt e Rwitht #0and w € H we have 'y, (k, v) =TI’y (k, tv).
(3) Letv',w,w’ € H and k' € K with k # k'. Suppose that

Fw(ka v) N Fw’(k/» v/) ?é g,

then w L w'.
(4) Let w € H and suppose that s € T'y,(k, v). If T',(s, w) # & for some z € H
then T',(s, w) = {k}.

Proof. (1) The proof is essentially the same proof of [GPS, Proposition 3.2]. We
leave it to the reader to transpose to the Hilbert context.

(2) It suffices to prove that I'y, (k, v) C 'y (k, tv) for all  # 0. Let s € 'y (k, v).
Given f € Co(K, H) put f' = 71 f. By the definition of I'y, (k, v) it follows that

ITf'(s) —wll < Mow(k, f',v),
and hence
ITf(s) —tw| = t|ITf'(s) —wll < Mltlw(k, f',v) = Mw(k, f,tv).

Consequently s € I'yy, (k, tv).

(3) By item (2) of the proposition we may assume that ||v|| = |[v'|| = 1. By
Urysohn’s lemma pick f € Co(K, H) such that || f] = % fk)=73and f (k') = %
It is easy to check that w(k, f, v) =w (K, f,v) = 5. Pick s € [, (k, v) N Ty (K, V).
Then, by the definitions of these sets we have

lw = w'l| <ITf(s) —wll+ITf(s) —w'll <

NS

+ % =M.
Now, by applying the law of cosines we see that
(w, w') = 3wl + w'|* = M),
Since |w|| = ||w'|| =1/M and M = V2, it follows that
(w, w') = %(% - M2> =0.
On the other hand, by item (2) of the proposition we have
s ey, k,v)NT_, kK, =v).

So, proceeding as above we obtain that (w, —w’) > 0. Hence (w, w’) = 0.
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(4) According to item (2) of the proposition we may assume that ||v|| = 1. By
item (1) of the proposition there is z € H such that I'; (s, w) # &. Fix m € ', (s, w);
we need to show that m = k. Assume then that m # k and choose h € Cy(K)
satisfying

v

_1 v .
Ikl =5, h(k) =7 and h(m)=

Z

1

2 zIl”
Since I'y (k, v) and I';(s, w) are well defined, we have |z| = l/M2 = 1/«/5.
Moreover, observe that z is negatively proportional to #(m). Thus, we have

1 1
2-2 him)—z|| = |lh(m)|| + |z|| = = + —.
(2-2) IA(m) —z|l = |h(m)|| ””2ﬁ
On the other hand, w(k, h, v) = % and s € 'y, (k, v) imply that
M
||Th(s)—w||§7.

Since ||Th| < M/2 it follows that w(s, Th, w) < M/2 and by the definition of
I'.(s, w) (using the function T/ and the map 7~!)
M* 1
hm)—z|| < Mow(s, Th,w) < — = —,
A (m) —z|| ( )= 7
which by (2-2) lead us to a contradiction. O
Note that since the definitions of I'y(k, v) and ', (s, w) are symmetric the
properties proved in Proposition 2.1 on k € K and I'y, (k, v) are also valid for s € S
and ', (s, w).
Henceforth our task will be to construct a homeomorphism ¢ : K — S using the
subsets 'y, (k, v), for every k € K. In fact, we will see that these subsets contain
the candidates to be the image of k by ¢.

3. On the subsets I', (k, v) of K containing irregular points

The purpose of this section is to establish Proposition 3.1. It allows us to relate the
vectors v and w involved in the construction of certain special sets 'y, (k, v). For
convenience, we introduce the following definition.

A point s € S is said to be irregular if there exist two different points k and k" € K
such that s € 'y, (k, v) N Ty (K, v') for some v, w, v/, w’ € H. Symmetrically, we
will say that a point k € K is irregular if k € 'y (s, w) Ny (s', w’) for some different
points s, s’ € S and v, w, v, w' € H.

Proposition 3.1. Suppose that k € K and s is an irregular point of S.

(1) If s € 'y, (k, v1) N Ty, (k, v2) for some vy, v2, w1, wy € H then

(v1, v2) = M*(wy, wa).
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(2) If (vi)1<i<i is a linearly independent set of H and s € Ty, (k, v;), for some
w; € H,1 <i <, then (w;)1<i< is a linearly independent set.

Proof. In virtue of Proposition 2.1(2) we can assume that ||v;|| = ||v2|| = 1. Hence
lwi|| = |lwal| = 1/M. Since s is irregular, there exists k' € K, k’ # k and vectors
v/, w' € H with ||v/|| =1 and ||w’|| = 1/M such that s € T",/ (K, v'). According to
Proposition 2.1(3) we have

(3-1) wLlw and w L ws.
Since k # k' by Urysohn’s lemma there exist f, f' € Co(K) satisfying:

@) f(K), f/(K) 0, 1].

i) [0 = f'(K)=1.
(iii) supp f Nsupp ' = &.
Puthy = f-(v1/2), ha = f - (v2/2), h3 = f'- (V'/2) and
(3-2) h=nhi+hy+ v + v2| h3.
According to (iii)
(3-3) IRl = 3 llvr + w2l

Next we will calculate || Th(s)||. In order to do this consider the function /| + h3.
It is easy to see that

w(k, b +h3, v1) = oK', hi +h3, 0') = 5.
Thus, since s € 'y, (k, v1) Ny (K, v) it follows by the definition of these sets that

M

(3-4) IT(hy+h3)(s) —will = % and [T (h1 +h3)(s) —w'| < 5

On the other hand, (3-1) gives us that

2
(3-5) Ile—w/II=\/||w1||2+||w’I|2=,/m=M-
By (3-4) and (3-5) we deduce that

(3-6) T+ hy)(s) = D
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In the same way we obtain

3-7) T~ hy)(s) = VT
and
(3-8) T(hs +hy)(s) = 2

By combining (3-6), (3-7) and (3-8) we infer that

_w _ w2 _w
Th](S) = 3 Thz(s) = ) and Th3(S) = 7
Thus, taking in mind (3-1) and (3-2) we get

llwi + wol|? lw’ I|2
IThS)I? = ————+llvi + v ——
4 4
Since that || Th| < M| k|| and (3-3) holds, it follows that

lwi 4+ wal? 5 lw'|? 5 [V + va|?
4 Ten —_— <M .
1 + [Jvr 4+ v2| 7 = )

Recalling that ||w'|| = 1/M, we have
lwy +wa* < <M2— —)||v1 + .
But ||wy + wy||? =2/M? 4+ 2(w;, ws) and |Jv; + v2]|?> =24 2(vy, v2). Hence

% +2(wy, wy) < (M2 - W>(2+2<U1’ v2)).

By using that M? = /2 we conclude
M (wi, wa) < (vi, v2).
Similarly working with —v, and —w; instead of v, and w, we derive that
M?(wy, —w2) < (v1, —v2),

so the equality holds.
(2) It suffices to notice that item (1) of the proposition implies the following
identity of matrices:

[(vi, vi)li<i,j<t = M [{wi, wi)li<i j<i- O
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4. The functions ® : K — ?(S)and ¥ : § —» P(K)

Here it is convenient to introduce two functions ® : K — P(S) and ¥ : § — P(K)
given by

o®=U{ruw o0 ama i =1

M

and

W(s) = U{Fv(s, w):w#£0 and ||| = ”—Au;”}

Our next step is to prove that the sets ®(k) and W(s) are singletons, see
Proposition 5.1. The next proposition works on the assumption that & (k) is not
a singleton set. Later, in the proof of Proposition 4.1, we will use it to derive a
contradiction.

Proposition 4.1. Let k € K. Suppose that ® (k) is not a singleton set. Then:
(1) k is an irregular point of K.
(2) ®(k) contains only irregular points of S.

Proof. (1) Pick two different points s, s’ € ® (k). So, there are v, v, w, w’ € H
such that
sely,k,v) and s €Ty (k,v).

By Proposition 2.1.4 there exist z and 7’ € H satisfying
kel (s,w)NT,(s", w),

hence k is an irregular point of K.

(2) First of all notice that by item (1) of the proposition applied to W(s), it
suffices to prove that for all s € ®(k), W (s) is not a singleton set.

Assume by contradiction that W (s) is a singleton set for some s € ® (k). Since
s € ®(k), there exist v, w € H such that s € Iy, (k, v). By Proposition 2.1(4) there
exists z € H satisfying I';(s, w) = {k}. Then k € W(s) and therefore

“4-1) W(s) = {k}.

Now fix (w;)1<i<n, a basis of H with ||lw;|| =1 for every 1 <i < n. There exist,
by Proposition 2.1(1), (vi)1<i<n in H such that I, (s, w;) # & forevery 1 <i <n.
Thus (4-1) implies that

(4-2) Ty, (s, wi) = {k},

forevery 1 <i <n.
On the other hand, since by item (1) of the proposition k is an irregular point of K,
it follows from (4-2) and Proposition 3.1(2) that (v;)1<;j<s is linearly independent.
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Next, since k is an irregular point of K, there exist s’ € S, s’ #s and w’,v' € H
such that k € T'y/ (s”, w’). So, by (4-2) and Proposition 2.1(3) we conclude that

v L v,
for every 1 <i < n, a contradiction because the dimension of H is n. O

5. The cardinality of ® (k) for every k € K

We are now in position to state the key proposition for proving Theorem 1.3. The
span of a subset V of E will be denoted by [V].

Proposition 5.1. ®(k) is a singleton set for every k € K.

Proof. Assume that there exists k € K such that ® (k) = {s; : i € I} with cardinality
of I greater than or equal two. For all i € I put

Vi={ve H,v#0:s; € I'y(k, v) for some w € H}.

It follows from the definition of ® (k) that V; % & for every i € I, and according to
Proposition 2.1(1)

Jvi=H\ (0},
iel
and therefore
(5-1) Jvi=H.
iel

On the other hand, for all i € I set
Zi={ze H,z#0:k el',(s;, w) for some w € H}.

Pick i € I. Since V; # @ there exists v € H such that s; € 'y, (k, v) for some w € H.
By Proposition 2.1(4), I';(s;, w) = {k} for some z € H. Hence Z; # &.

According to Proposition 2.1(2) we can assume that ||z;|| = ||z;|| and by the
definition of (Z;);¢; there are w; and w; € H such that

k€T (si, wi) Ny (s5, wy).
So by Proposition 2.1(3), z; L zj. Consequently
(5-2) 1Z:] L 1Z;).
Now we will prove that for all i € 1

(>-3) [Zi1=Vil.



330 ELOI MEDINA GALEGO AND ANDRE LUIS PORTO DA SILVA

First we will show that Z; C V;. Indeed, let z € Z; and take w € H such that
k € T',(s;, w). By Proposition 2.1(4) there exists w’ € H satisfying I, (k, z) = {s;}.
SozeV,.

Next we will complete the proof of (5-3) by showing that the dimension of [V;]

is less than or equal to the dimension of [Z;]. Let {vy, ..., v} C V; be a basis
of [V;]. Thus, by the definition of V; there are {wy, ..., w;} C H such that
(5_4) Si € ij (ka Uj),

for every 1 < j <. Since the cardinality of / is greater than or equal to two, k is
an irregular element of K. Thus, according to Proposition 4.1(2), s; is an irregular

element of S. Then, by (5-4) and Proposition 3.1(2) we see that {wy, ..., w;} is
linearly independent.
In view of (5-4), Proposition 2.1(4) implies that there are {z;, ..., z;} C H such

that forall 1 < j </,
(5-5) [z (si, wy) = {k}.

So, forall 1 < j <1, z; € Z; and by (5-5) and Proposition 3.1(2) we deduce that
{z1, ..., z;} is linearly independent. Then, we are done.
Finally, by combining (5-2) and (5-3) it follows that for all i, j € [ withi # j

[Vil L[V;],
a contradiction with (5-1), because H would be a union of nontrivial mutually

perpendicular subspaces. (]

6. The isomorphisms between Cy(K, H) spaces with distortion V2
Proposition 5.1 allows us to define two functions ¢ : K — S and ¥ : § — K by

(k) ={pk)} and W(s) = {¥(s)}.

Thus, to complete the proof of Theorem 1.3 it remains to prove the following
proposition.

Proposition 6.1. The functions ¢ : K — S and v : S — K are continuous
and = ¢~

Proof. First we will show that ¢ = ¢~!. Fix k € K. By the definition of ® (k) there
are v, w € H such that

@(k) € Ty (k, v).

Thus, applying the items (1) and (3) of Proposition 2.1, there exists z € H satisfying

[ (@(k), w) = {k}.
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Therefore k € W(p(k)) = {Y(p(k))}. That is, k = ¥ (@(k)). Hence ¥ o ¢ = Idg.
Analogously we deduce that ¢ o ¢y = Idg.

We now prove that ¢ is continuous. The proof that ¥ is continuous is analogous.

Observe that it suffices to prove that each net (k;);c; of K converging to k € K
admits a subnet (k;,) pep such that (¢(k;,)) pep converges to (k).

Assume then that (k;);e; is a net of K converging to k. By Propositions 2.1(1)
and 5.1, for all j € J take v; and w; € H with ||v;|| = I such that

(6-1) ¢(kj) € T, (K}, v))-

Since the nets (vj)jes and (wj)je, are contained in compact sets, we can assume
that there are v, w € H such that v; — v and w; — w.
For each f € Co(K, H) we have

(6-2) w(kj, f,v;) > ok, f,v),
and according to (6-1),
(6-3) ITf(@k;)) —wjll = Mw(k;, f,vj), VjeJ.
Fix f1 € Co(K, H) satisfying || f1]| = % and fi(x) = 5. Then (6-2) and (6-3)
imply that
ITfile&iNll = lwill = ITfi(ek;)) —wjll = = —Mw(k f1,v)

for every j € J. Notice that w(k, f1,v) = lT = %, so by (6-2) we have

o M
liminf| Tfiek)] = 37 = 5 > 0.

Since T f1 vanishes at infinity, this implies that (¢(k;));c; admits a subnet converg-
ing to some s € S, so we assume that ¢(k;) — 5. Hence, by (6-2) and (6-3),

”Tf(s)—U)”EMC()(k, fs v)7 erCO(KaH)’
which means that s € I'y, (k, v) C ® (k) = {p(k)}, and consequently s = ¢(k). U

7. Open questions

In view of Theorem 1.3, the following questions arise naturally:

Problem 7.1. Is Theorem 1.3 optimal, in the sense that ~/2 is the best number for
formalizing it?

Problem 7.2. What are the Banach spaces X satisfying the following property:
whenever K and S are locally compact Hausdorff spaces and there exists an
isomorphism T from Co(K, X) onto Co(S, X) with |T||IT~ || = V2, then K and
S are homeomorphic?
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DISTINGUISHED THETA REPRESENTATIONS
FOR CERTAIN COVERING GROUPS

FAN Gao

To Professor Freydoon Shahidi on his 70th birthday

For Brylinski-Deligne covering groups of an arbitrary split reductive group,
we consider theta representations attached to certain exceptional genuine
characters. The goal of the paper is to study the dimension of the space of
Whittaker functionals of a theta representation. In particular, we investi-
gate when the dimension is exactly one, in which case the theta representa-
tion is called distinguished. For this purpose, we first give effective lower
and upper bounds for the dimension of Whittaker functionals for general
theta representations. Consequently, the dimension in many cases can be re-
duced to simple combinatorial computations, e.g., the Kazhdan—Patterson
covering groups of the general linear groups, or covering groups whose
complex dual groups (a la Finkelberg, Lysenko, McNamara and Reich) are
of adjoint type. In the second part of the paper, we consider coverings of
certain semisimple simply connected groups and give necessary and suffi-
cient conditions for the theta representation to be distinguished. There are
subtleties arising from the relation between the rank and the degree of the
covering group. However, in each case we will determine the exceptional
character whose associated theta representation is distinguished.

1. Introduction and main results

1A. Introduction. Let F be a nonarchimedean local field of characteristic 0 and
residue characteristic p. Let G be a connected split reductive group over F, and
let G := G(F) be its rational points. One of the central ingredients in the study of
irreducible admissible representation of G is the uniqueness of Whittaker functionals
(see [Rodier 1973; Shalika 1974]). For instance, this uniqueness property is crucial
in the Langlands—Shahidi theory of L-functions [Shahidi 2010] for the so-called
generic representations of G, i.e., those with nontrivial Whittaker functionals.

MSC2010: primary 11F70; secondary 22E50.
Keywords: Brylinski-Deligne covering groups, theta representations, Whittaker functionals,
distinguished characters, dual groups.
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For a natural number n > 1, we assume that F'* contains the full subgroup
of the n-th roots of unity, which is then denoted by u,. In this paper, we work
with the Brylinski—Deligne n-fold covering groups G™ of G, see Section 2A for a
description on such covering groups. We may write G™ and G interchangeably
if no confusion arises. For simplicity, the phrase covering groups in this paper
is used to refer to the Brylinski—Deligne covering groups. For this purpose, it is
noteworthy to mention that the Brylinski—Deligne framework is quite encompassing
and contains almost all classically interesting covering groups [Steinberg 1962;
Moore 1968; Matsumoto 1969], in particular the Matsumoto covering groups of
semisimple simply connected groups [Moore 1968] and the Kazhdan—Patterson
covering groups ﬁ,gn) of GL, [Kazhdan and Patterson 1984].

For covering groups, the uniqueness of Whittaker functionals for genuine rep-
resentations of G holds rarely and one nontrivial example is the classical double
cover S_pg) of the symplectic group Sp,,, see [Szpruch 2007]. This uniqueness plays
a pivotal role in the work of Szpruch [2009b; 2013] generalizing the method of Lang-
lands and Shahidi to S_pg) Besides this special family of examples, the uniqueness
of Whittaker functionals fails widely, and one almost never expects such a uniform
property for all genuine representations of a general covering group. For example, it
is well known that certain theta representations for the Kazhdan—Patterson coverings
ﬁﬁ") of GL, could have high dimensional space of Whittaker functionals [Kazhdan
and Patterson 1984]. In fact, such theta representations show that the analogous
standard module conjecture (which is a theorem for linear algebraic groups from
[Casselman and Shahidi 1998]) does not hold for covering groups.

The failure of the uniqueness of Whittaker functionals for general genuine
representations of covering groups, however, has been the source of both obstacles
and inspirations to some advancement of the representation theory of such groups.
On the one hand, for instance, it is not a priori clear how to generalize the Langlands—
Shahidi theory of L-functions to covering groups because of the nonuniqueness of
Whittaker functionals for unramified principal series representations. Equivalently,
the difficulty for such generalization is essentially due to the fact that the analogous
Casselman—Shalika formula for covering groups as in [Chinta and Offen 2013;
McNamara 2016] is vector-valued, whereas for linear algebraic groups it is scalar-
valued; see [Casselman and Shalika 1980].

On the other hand, there are various streams of rich theories stemming from the
nonexistence or multidimensionality of Whittaker functionals. For instance, for
genuine representations of covering groups without Whittaker functionals, one may
consider semi-Whittaker functionals as in [Takeda 2014] or degenerate Whittaker-
functionals [Mceglin and Waldspurger 1987], which interact fruitfully with the
arithmetic and character theory of the representations. Meanwhile, the theory of
unipotent orbit as discussed in [Ginzburg 2006; Friedberg and Ginzburg 2014;
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Friedberg and Ginzburg 2016a] for instance also rectify the situation in the absence
of Whittaker functionals. In the latter case where multidimensionality holds, the
theory of multiple Weyl Dirichlet series makes deep and fascinating connections
between representation theory of covering groups, quantum physics and statistical
mechanics etc, see [Brubaker et al. 2011; Bump et al. 1990; 2012] for some of the
ideas involved. In particular, the book [Bump et al. 2012] contains several excellent
expository articles on multiple Dirichlet series.

Nevertheless, in this paper we consider only the so-called theta representations
®(G™, x) which appear as the local representations for the residue of the Borel
Eisenstein series (see Definition 2.1). Moreover, we are mostly interested in deter-
mining when the space of Whittaker functionals for © (G, ¥) has dimension one,
in which case ®(G™, ¥) is called distinguished following Suzuki [1998]. Here ¥
is an exceptional genuine character (see Definition 2.1) of the center Z(T') of the
covering torus T € G. The reason for considering this problem is two-fold.

First, ®(G™, ¥) is in a certain sense the simplest family of genuine repre-
sentations of a general covering group G. Indeed, if n = 1, then it follows
from definition that ®(G"™, ¥) could be the trivial representation of the linear
group G = GV, depending on a proper choice of the exceptional character ¥.
Therefore, for the genericity question regarding Whittaker functionals of genuine
representations, it is reasonable to consider this family first. Moreover, theta
representations for the Kazhdan—Patterson covering groups of GL,, to which we
have just alluded, are already studied in depth in the seminal paper [Kazhdan and
Patterson 1984]. Despite the fact that the idea therein could be applicable for
general covering groups, to the best of our knowledge, it seems that there is no
systematic treatment on theta representations for general covering groups in the
literature. Perhaps this gap is caused by the tedious cocycle computation to be
carried out by any potential author. However, the Brylinski—Deligne framework
enables us to compute by invoking some neat structural fact of the covering groups
of interest, and to handle only a minimized usage of a cocycle on the torus. In
brief, we wish to fill in the gap by generalizing the relevant work of Kazhdan and
Patterson to Brylinski—Deligne covering groups.

Second, distinguished theta representations have important and emergingly wider
applications. Theta representations are the representation-theoretic analogues of
theta functions, one of the early applications of which was given by Riemann in his
seminal paper to prove the functional equation of the Riemann zeta function. In
the language of modern theory of representations, theta representations for S_pé%)
gain deep applications in the Shimura correspondence [Shimura 1973; Gelbart
1976]. On the other hand, following the work of Kazhdan and Patterson, theta
representations for GL" are also studied extensively in [Bump and Hoffstein 1987;
Suzuki 1998; 2012], to mention a few. In particular, these authors made some deep
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conjectures and also provided evidence for a generalized Shimura correspondence
regarding G_L£”>, and the distinguishedness property is exploited to achieve the goals
in their work. Another significant direction of applications is the Rankin—Selberg
integral representation for the symmetric square and cube L-functions [Bump and
Ginzburg 1992; Bump et al. 1996; Takeda 2014; Kaplan 2016]. Evidently, it should
be mentioned that for distinguished theta representations, the theory of L-functions
could be developed as in the linear algebraic case, since the Casselman—Shalika
formula is then scalar-valued. More recently, the work of E. Kaplan [2015a; 2015b],
and S. Friedberg and D. Ginzburg [2014; 2016a] also relies heavily on the local and
global theta representations in their consideration of Fourier coefficient, Rankin—
Selberg L-function and descent integral etc. Notably in their work, distinguishedness
is responsible for proving that a global integral admits an Euler factorization into
local factors. Besides these, the problem on global cuspidal theta representations
is important and many problems are open (see [Friedberg and Ginzburg 2016a;
Suzuki 1998]). In any case, we believe that distinguished theta representations are
objects of great interest and significance, and we hope that our paper could shed
some light on the relevant questions.

1B. Main results. We consider a Brylinski—Deligne n-fold covering group G .
Let ¥ be an exceptional character for G, Fix an unramified additive character v
of F and consider the space th(®((_}(”), X)) of ¥r-Whittaker functionals of the
theta representation O(G™, x). The pair (G™, %) such that

dim Why, (©(G™, 3)) = 1

is quite unique, and the goal is to investigate when © (G™, ¥) is distinguished. We
remark that for fixed G, the set of unramified exceptional characters ¥ is a torsor
over Z(G"), the center of the complex dual group GV of G. For details on G, see
[Finkelberg and Lysenko 2010; McNamara 2012; Reich 2012; Weissman 2015].

We outline the structure of the paper and state the main results.

In Section 2, we recall the basic structural facts on a Brylinski—Deligne covering
group G which will be crucial for our computations. In this paper, we consider
exclusively unramified covering group G and unramified exceptional character
X . In Section 3, the space Why, (©(G™), ¥) is analyzed following the strategy
in [Kazhdan and Patterson 1984] closely. In particular, it relies crucially on the
Shahidi local coefficient matrix [t ()X, Wy, ¥, ¥)]y,, for covering groups. Note
that [t (X, We, ¥, ¥')]y,, is also referred to as the scattering matrix in [Brubaker
et al. 2016] and transition matrix in [Chinta and Offen 2013]. Since the matrix is
an analogue (and in fact the reciprocal) of Shahidi’s local coefficient in the linear
algebraic case [Shahidi 2010, Chapter 5], we call it the Shahidi local coefficient
matrix in this paper. See also [Budden 2006; Szpruch 2016]. In the unramified



DISTINGUISHED THETA REPRESENTATIONS FOR CERTAIN COVERING GROUPS 337

setting, the matrix is computed in [McNamara 2016]; it is also computed for ramified
places in [Goldberg and Szpruch 2015].
The first main result is Theorem 3.14 from Section 3:

Theorem 1.1. Let G be an arbitrary unramified Brylinski-Deligne covering
group. Let X be an unramified exceptional genuine character of G™ with associated
theta representation ®(G™, x). Then,

90.4(0 )] < dimWhy (©(G™, X)) < |pg.n (0, )-

These two bounds are combinatorial quantities involving certain Weyl-action on
lattices. The readers are referred to Section 2 for details. We highlight here some
consequences from the above theorem.

Firstly, Theorem 1.1 recovers the results of Kazhdan and Patterson. More
precisely, for covering groups G_L£”> studied in [Kazhdan and Patterson 1984], the
authors determine that dim Why, (® (ﬁﬁ"), x)) = 1 if and only if

(1) n=rand @g") is any Kazhdan—Patterson covering group, or

(2) n=r+1and GL™ belongs to a special type of degree n Kazhdan—Patterson
covering groups.

In fact, for any covering group ﬁﬁ") studied in [Kazhdan and Patterson 1984],
one has Og’n = Og,n,sc- Therefore dim Why, (O(GLY, x)) = |50Q7,,(Og’n’sc)|. In
particular, the dimension does not depend on the choice of the exceptional character
x and can be computed effectively. For details, see Example 3.16.

In general, for cases where the two bounds in Theorem 1.1 actually agree,
the computation of the dimension is reduced to a purely combinatorial problem,
and thus amenable to a straightforward calculation. This includes the case where
Yon= Yéc’n, or equivalently Z(G") = 1. For example, odd degree coverings of
simply connected groups of type B,, C, have this property. See Sections 5 and 6.

Secondly in contrast, when the two bounds in Theorem 1.1 do not agree,
dim Why, (®(G, X)) becomes sensitive to the choice of the exceptional character .
The second half of this paper is devoted to investigating this. This phenomenon al-
ready occurs for the degree two metaplectic covering Siéz), see Example 4.7. In this
case ®(ﬁg2), X ) is the even Weil representation. Consider @(S_L(zz), Xv.), where
X v, 18 an exceptional character defined by using the twisted additive character v/,
where a € F*. Itis well known that dim Why, (® (S_L(Z), Xv.)) < 1 and the equality
holds if and only if a € (F*)%. Our analysis shows that similar phenomenon occurs
for higher rank groups, see Section 4B, in particular Corollary 4.5.

In any case, we summarize our results for certain coverings of simply connected
groups as follows. We write for instance A" for the degree n covering of the
simply connected group of type A, of rank r. Here the covering group arises from

a quadratic form Q on the coroot lattice Y = Y*¢ such that Q(«¥) = 1 for any
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short coroot @”. The following theorem is an amalgam of Theorems 4.10, 5.3, 6.2
and 7.1. Only for Zﬁ"), we impose the condition n < r 4 2 for technical reasons.
Theorem 1.2. Let G™ be an unramified Brylinski-Deligne degree n covering of
a simply connected semisimple group of type A,, B,, C, or G». If G™ = A" we
further assume n < r +2. Let X be an unramified exceptional character for G™. In
each case for G™ below, if diim Why, (O(G™, x)) = 1, then the following relations
between r and n must hold:

AP r=1n<r+2 n=r+2orr+1;

(_75"),1”22, n=4r —2, 4r, 4r +2 or 2r +1;
Eﬁ"),rES, n=2r+1 or 2r+2;
(_;gl), n="7 or 12.

Conversely, suppose that r and n satisfy the above relations; then for every
case above except C 54”, there exists a unique exceptional character ¥ such that

dim Why, (@(G™, X)) = 1 for above G™.

We actually determine the unique exceptional character specified in Theorem 1.2,
see Theorems 4.10, 5.3, 6.2 and 7.1. In the Zﬁ’“) case, our result generalizes the re-
sult for the even Weil representation of S_Léz) mentioned above. As noted, the collec-
tion of unramified exceptional characters is a torsor over Z (GY). Moreover, for cov-
ering groups of simply connected groups, the choice of i actually gives a base point
for this torsor. Thus, any exceptional character ¥ gives rise to an element in Z(G"),
depending on the choice of y. That is, the explicit requirement given in those
theorems could be viewed as determining the corresponding element in Z(G").

We note that for classical groups and similitude groups, an extensive study is
included in [Friedberg et al. > 2017]. Our result from Theorem 1.2 also agrees
with the pertinent discussion in [Friedberg and Ginzburg 2016b] for symplectic
groups. For example, the local statement for the second part of Conjecture 1 in
Friedberg and Ginzburg’s paper follows from our Proposition 5.1 here. Moreover,
the factorizability property of the Whittaker function in that paper for S_p(zin_a also
agrees with our result for the C 5") case in Theorem 1.2.

Finally, we remark that groups of type D,, E¢, E7, Eg, F4 could be analyzed by
the same procedure. In principle, Theorem 1.1 coupled with the analogous argument
for Theorem 1.2 enable one to determine completely dim Why, (®(G™, %)) for
arbitrary (G™, ¥).

2. Basic setup

2A. Structural facts on G. For ease of reading, we first recall some structural facts
on G. The main references are [Brylinski and Deligne 2001; Finkelberg and Lysenko
2010; Reich 2012; McNamara 2012; 2016; Weissman 2015; Gan and Gao 2016].
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In this paper, we concentrate exclusively on unramified Brylinski-Deligne covering
groups G (to be explained below). We follow the notations in [Gan and Gao 2016].

Let F be a nonarchimedean field of characteristic 0, with residual characteristic p.
Fix a uniformizer @ of F. Let G be a split linear algebraic group over F with
maximal split torus T. Write (X, ®, A, Y, ®¥, AY) for the root data of G. Here
X (respectively, Y) is the character lattice (respectively, cocharacter lattice) for
(G, T). Choose a set A C @ of simple roots from the set of roots ®, and A" the
corresponding simple coroots from ®". Let B be the Borel subgroup associated
with A. Write Y*¢ C Y for the lattice generated by ®V.

Fix a Chevalley system of pinnings for (G, T, B). That is, fix an isomorphism
ey : Gy — Uy for each o € ®, where U, C G is the root subgroup associated with «.
Moreover, for each o € @, there is a unique morphism ¢,, : SL, — G which restricts
to e on the upper and lower triangular subgroup of unipotent matrices of SL,.

Consider the algebro-geometric covering G of G by [, which is categorically
equivalent to the pairs {(D, )} (see [Gan and Gao 2016]). Here n : Y — F* is a
homomorphism. On the other hand, D is a bisector associated to a Weyl-invariant
quadratic form Q : Y — Z. That is, let By be the Weyl-invariant bilinear form

associated to Q such that By (y1, y2) = Q(y1 +y2) — O(y1) — Q(y2), then Dis a
bilinear form on Y satisfying

D(y1, y2) + D(y2, y1) = Bo(y1, ¥2).

The bisector D is not necessarily symmetric. Any G is, up to isomorphism, incar-
nated by (i.e., categorically associated to) (D, n) for a bisector D and some 7.

Let n > 1 be a natural number. Assume that F'* contains the full group w,
of n-th roots of unity and p { n. Let G be incarnated by (D, n). One naturally
obtains degree n topological covering groups G, T, B of the rational points G :=
G(F), T :=T(F), B:=B(F), such as

pn—— G —» G.

We may write G™ for G to emphasize the degree of covering. For any set H C G,
we write H C G for the preimage of H with respect to the quotient map G — G.
The Bruhat-Tits theory gives a maximal compact subgroup K € G, which depends
on the fixed pinnings. We assume that G splits over K and fixes such a splitting;
call G an unramified Brylinski—Deligne covering group in this case. We remark
that if the derived group of G is simply connected, then G splits over K (see [Gan
and Gao 2016, Theorem 4.2]). On the other hand, we refer the reader to [Gan and
Gao 2016, § 4.6] for a counterexample from a certain double cover of PGL, where
the splitting does not exist.
The data (D, n) play the following role for the structural fact on G:
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o The group G splits canonically over any unipotent element of G. In particular,
we write &y (1) € G, a € ®, u € F for the canonical lifting of ey (1) € G. For
any o € @, there is a natural representative wy 1= ey (1)e_q(—1)eq (1) € K
(and therefore w, € G by the splitting of K) of the Weyl element w,, € W.
Moreover, for hy(a) :=a"(a) € G, a € ®, a € F*, there is a natural lifting
hy(a) € G of hy(a), which depends only on the pinning and the canonical
unipotent splitting. For details, see [Gan and Gao 2016].

o There is a section s of T over T such that the group law on T is given by

) s1(@) -s(2(0) = (@, b)) -5 (y1(@) - y2(b)).
Moreover, for the natural lifting hy(a), one has
2 ha(@) = (n(@"), a), - s(ha(@)) € T.
e Let w, € G be the natural representative of W,, € W. For any y(a) € T,
(3) we - (@) - wy' = (@) ha(a™ ),
where (—, —) is the pairing between Y and X.

Consider the sublattice Yy, := {y € Y : Bo(y,y’) € nZ} of Y. For every
aY € @Y, define ny :=n/ged(n, Q(a")). Write ozé L =nee’ and ag , 1= nla.
Let Ysc C Y be the sublattice generated by {oz 2 Jaed. The complex dual group
GV for G as given in [Finkelberg and Lysenko 2010 McNamara 2012; Reich 2012]
has root data (Y ,, {aQ o) Hom(Yp , Z), {ag ,}). In particular, ch is the root
lattice for G¥. What is most pertinent to our paper is that the center 4 (GV) could
be identified as

Z(GY) :=Hom(Yg,/ Y, C).

2B. Theta representations © (G, ). Fix an embedding ¢ : it,, < C*. A represen-
tation of G is called (-genuine if 11, acts via (. We consider throughout the paper
t-genuine (or simply genuine) representations of G.

Let U be the unipotent subgroup of B = TU. As U splits canonically in G, we
have B = TU. The covering torus T is a Heisenberg group with center Z(T'). The
image of Z(T) in T is equal to the image of the isogeny Y 0.n ® F* — T induced
from Yo , — Y.

Let ¥ € Hom,(Z(T), C*) be a genuine character of Z(T), write i () := IndA x’
for the induced representation on 7', where A is any maximal abelian subgroup of T,
and ¥’ is any extension of x. By the Stone—von Neumann theorem (see [Weissman
2009, Theorem 3.1; McNamara 2012, Theorem 3]), the construction ¥ — i(X)
gives a bijection between isomorphism classes of genuine representations of Z(T')
and T. Since we consider an unramified covering group G in this paper, we take A
to be Z(T) - (K NT) from now.
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View i()) as a genuine representation of B by inflation from the quotient map
B — T. Write I (i(X)) := Indg i () for the normalized induced principal series
representation of G. For simplicity, we may also write I () for 1(i(x)). One
knows that I (x) is unramified (i.e., I (x)X # 0) if and only if ¥ is unramified,
i.e., X is trivial on Z(T) N K. We consider in this paper only unramified genuine
representations (and characters). In fact, one has the naturally arising abelian
extension

4) Mn(_> }_]Q,n — YQ,n

such that unramified genuine characters of ¥ of Z(T) correspond to genuine char-
acters of YQ,,,. Here YQ,n :=Z(T)/Z(T)NK. Since A/(TNK) ~ }_’Q’n as well,
there is a canonical extension (also denoted by x) of an unramified character x of
Z(T) to A, by composing ¥ with A — YQ’n. Therefore, we will identify i ()
as Ind% X for this x.

For any W € W, the intertwining operator Ty, , : I (x) — I (") is defined by

(Toz (@) = /U Fwug) du

whenever it is absolutely convergent. Moreover, it can be meromorphically contin-
ued for all ¥ (see [McNamara 2012, § 7]). For I (x) unramified and w = w,, with
a €A, Ty, , is determined by
1—gq "% (ho ("))

1 = X (ho (")
where fo € 1()) and f; € I1("«)) are the unramified vectors. Moreover, Ty, »
satisfies the cocycle condition as in the linear case. The coefficient c(W,, x) was
determined in [McNamara 2016, Theorem 12.1] and later reformulated in [Gao
> 2017]. We use the latter formalism which is more suitable for our needs in
this paper.

The following definition mimics that in [Kazhdan and Patterson 1984, § 1.2].

Twa,x(fO) =c(Wgy, X) - f(; with ¢c(Wg, ) =

Definition 2.1. An unramified genuine character x of Z(7T) is called exceptional if
¥ (ho (@) = g~ ! for all @ € A. The theta representation O (G, ¥) associated to
an exceptional character ¥ is the unique Langlands quotient (see [Ban and Jantzen
2013]) of I()), which is also equal to the image of the intertwining operator
Twoz : I (X) = I1("x), where Wy € W is the longest Weyl element.

The extension Y g ,, gives rise to an extension Y55 q of Yy, by restriction. All
exceptional characters agree on Y Z; ,» and therefore the set of exceptional characters
is a torsor over Z(GY).

2C. Unitary distinguished characters. Depending on the choice of a nontrivial
additive character v/ of F, a special class of the so-called distinguished genuine
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characters of Z(T) is singled out in [Gan and Gao 2016] for the consideration of
the L-group extension for G. Distinguished characters, in the sense of [Gan and
Gao 2016], may not exist for general Brylinski-Deligne covering groups. However,
if G has a simply connected derived group or if the composition

n:YS = FX = F/(F*)"

is trivial, such characters exist. One special property of a distinguished character is
its Weyl-invariance, and thus it could serve as a distinguished base point in the set
of genuine characters of Z(T).

For the purpose of Sections 4 to 7, we recall the explicit construction in [Gan
and Gao 2016] when a distinguished character exists. In particular, we make the
above assumption on G, which is clearly satisfied in the simply connected case in
Sections 4 to 7.

First, let {y;} be a basis of Y , such that {k;y;} is a basis for the lattice J =
nY +Yp, for some k; € Z. Let Y be a nontrivial additive character of F. Let py-
be the Well index valued in 4 satisfying

Yy ) =1, pp®B)’ =(b.b)2.  yy(be) =y b)yy(c) - (b. o).
For any a € F*, let ¥, : x — v¥/'(ax) be the twisted additive character. Then
Y4, (b) =y (b) - (a, b)a.
By definition, a unitary distinguished character )_(12, of Z(T) is given by

%0, i(@) = pyr(@)2bi=h oo/,

and fory=7> ", n;y; anda € F*,
_ 2icjniniD(i,yj) _ . . YR
S Xy O@) =@ a7 ] Ry i@y e/,

Note that in [Gan and Gao 2016], the exponent of py/(a) in the formula of
X g,(yi (a)) is the negative of what we use here. However, both give rise to distin-
guished characters.

2D. Conventions and notations. Let2p :== ) ._,a" be the sum of all positive
coroots of G. Consider the affine translation £, : Y @ Q — Y ® Q given by y > y —p.
Write w(y) for the natural Weyl group action on Y and ¥ ® Q. Endow the codomain
of £, with this action. By transport of structure, one has an induced action of W on
the domain of £, (i.e., the first ¥ ® Q), which we denote by w[y]. That is,

Wiyl :==w(y — p) + p.

Clearly Y is stable under this action. Write y, := y — p for any y € Y, then
W[yl —y =W(y,) — y,. From now, by Weyl orbits in ¥ or ¥ ® Q we always refer
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to the ones with respect to the action W[y]. Write O (respectively O' ) for the set
of W-orbits (respectively, free W-orbits) in Y.

We remark that for GL,, the Weyl-action considered by Kazhdan and Patterson
[1984, page 78] is actually W(y + p) — p. However, the indexing of Whittaker
functionals also differs from ours by taking an “inverse”, thus our terminology is
different but equivalent to that of [Kazhdan and Patterson 1984].

Definition 2.2. For any subgroup A C Y, a free orbit O, € O' is called A-free if
the quotient map ¥ — Y /A is injective on O,. We write (91( C O' for the set of
A-free orbits of Y.

Note that A-free orbits are assumed to be free by definition. For simplicity, we
write Og n.sc and OF for the set of ¥ écﬁ and Yo ,-free orbits of Y, respectively.
Clearly, the 1nclus10ns 0O>0"D Og nse = Or hold.

Generally, notations will be either self- explanatory or explained the first time they
occur. For convenience, we list some notations which appear frequently in the text:

¢: the element (((—1, @w),) € C*. In particular, for n odd, ¢ = 1. We use the

following identity freely in the paper:
gPOY) = PO forany y e Yp,.,y €Y.

$0.n: the projection Y — Y /Yo ,.

©0.,: the projection Y — Y/Y5 .

Y a fixed additive character of F into C* with conductor Of. For any a € F*,
the twisted character v, is given by ¥, : x — ¥ (ax).

sy: for any y € Y, we write s, :=s(@w”) € T.

[x7]: the minimum integer such that [x] > x for a real number x.

3. Bounds for dim Why, (©(G, X))

3A. Whittaker functionals. We follow the notations in Section 2B. Consider,
in particular, the principal series I (x) := I(i()})) for an unramified character
¥ € Hom,(Z(T), C*).

Let Ftn(i (x)) be the vector space of functions ¢ on T satisfying

ct-2)=c@) -x2), feTand 7 € A.

The support of any ¢ € Ftn(i(¥)) is a disjoint union of cosets in T/A. Moreover,
dim(Ftn(i (x))) = |Y/Y¢.| since T /A has the same size as Y/Yg .

There is a natural isomorphism of vector spaces Ftn(i(x)) =~ i(x)", where
i(x)" is the complex dual space of functionals of i()x). More explicitly, letting
{yi} € T be a chosen set of representatives of 7 /A, consider ¢y, € Fn(i(x))
which has support y; - A and ¢, (yi) = 1. It gives rise to a linear functional
)Lﬁ €i(x)" such that )\fﬁl (fy;) = dij, where f),, € i(x) is the unique element such
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that supp(f,) = A-y; ' and fy,(y;') = 1. Thatis, f,, = i(X)(y;)¢o, where
¢o € i()) is the normalized unramified vector of i () such that ¢o(17) = 1. Thus,
the isomorphism Ftn(i ()) ~i())" is given explicitly by

cH> ACX = Z C()/,‘))mgi.
vieT/A

It can be checked easily that the isomorphism does not depend on the choice of
representatives for T /A.

Let ¢y : U — C* be the character on U such that its restriction to every Uy, @ € A
is given by i o e;l. We may write v for Yy if no confusion arises.

Definition 3.1. For any genuine representation (&, V5) of G, a linear functional
£ : V3 — Cis called a y-Whittaker functional if £(c (u)v) = ¥ (u)-v forallu € U
and v € V5. Write Why, () for the space of y-Whittaker functionals for 7.

An isomorphism exists between i ()" and the space Why, (1 (x)) of ¥-Whittaker
functionals on /() (see [McNamara 2016, § 6]), given by A — W, with

Wy:l(X)—>C, [+ A(/U f(wgluw(u)“u(u)),

where f € 1()) isani(x)-valued function on G. Here U~ is the unipotent subgroup
opposite to U; also, wy = W, W, - - Wy, € K is a representative of Wy, where
Wo = WgWe, « - - Wy, 1S @ minimum decomposition of Wy. For any ¢ € Ftn(i(x)),
by abuse of notation, we will write 2oe Why, (I (x)) for the resulting y-Whittaker
functional of 7 ()x) from the isomorphism Ftn(i (X)) >~ i(x)" =~ Why (I (X)). An
easy consequence is

dim Why, (1 (7)) = ¥/ Yg.ul-

Let J(w, x) be the image of 7, 3. The operator Ty, 3 induces a homomorphism
TW*, % of vectors spaces with image Why, (J(w, X)):

Ty 7 Why (1 ("X)) ———— Why (I (X))

Why, (J(W, X))

given by (hc”, =) > (he”, Tw,z () for any ¢ € Fn(i("¥)). Letting {*,"}, o7,z
be a basis for Why, (1 (")), and {kﬁ,} a basis for Why, (1 (x)), the map ij;j is then
determined by the square matrix [t (X, W, ¥, y’)]y,y,ef/; of size |Y /Y »| such that

Toy = D t(x. Wy, v) 2L,
y'eT/A
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Some immediate properties are as follows.
Lemma 3.2. Forwe W and z, 7 € A, the following identity holds:
(X Wy 2.y - ="0"@ 1wy, ¥) - X @)
Moreover, for Wi, Wy € W such that [(W,W1) = [(W) + [(W}), one has
(W vy = Y (MW v ) TR we v ),
y'eT /A
which is referred to as the cocycle relation.

Proof. The first equality follows from a change of basis formula from a different
choice of representations for T /A. The second equality follows from the cocycle
relation of intertwining operators. U

3B. Reduction of Why (@((_}, x)). Let wy be the longest Weyl element of G.
Consider the theta representation (G, ) = Tw,, 7 (I (X)) attached to an unramified
exceptional character x (see Definition 2.1).

Definition 3.3. A theta representation ®(G, ¥) attached to an unramified excep-
tional genuine character ¥ is called distinguished if

dim Why, (©(G, X)) = 1.

The distinguishedness of a theta representation here is not to be confused with
that of a distinguished genuine character as given in Section 2C.

Proposition 3.4. Let X be an unramified exceptional character of G, and A the set
of simple roots. Then

Why (©(G, %)) = ﬂ Ker(Ty, way : Why (1(X)) — Why (1(" X)),
acA
where Ty, woy is the intertwining operator from I (Y« x) to I (x).
Proof. The same proof for [Kazhdan and Patterson 1984, Theorem 1.2.9] applies

here mutatis mutandis. ([l

Let 2} € Why (I(¥)) and « € A, then

T wag WD) = ("X, We. .7 .A”y“fjx_

/

14

In general, let ¢ € Ftn(i())), and write
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Then,

o wa z (A )_ZC(V)(Z ("X War v ¥) - kw”)

>
= Z(Z cT(M X, W, ¥, y’)))\v;‘,yx.

As an immediate consequence of Proposition 3.4, one has (see also [Kazhdan
and Patterson 1984, page 76]):

Corollary 3.5. A function ¢ e Ftin(i (X)) gives rise to a functional in Why, (© (G, %))
(i.e., M} € Wh¢,(®(5, X)) if and only if for all « € A,

Z C(V)T(Wa)_(’ Wy, Vs )//) =0 for all ]//.
yeT /A

The left-hand side is independent of the choice of representatives for T /A by
Lemma 3.2.

3C. The Shahidi local coefficient matrix. We would like to compute the matrix
[T(X,Wq, ¥, ¥y, for any unramified character x (not necessarily exceptional)
and simple reflection W, o € A.

For Kazhdan—Patterson coverings ﬁﬁ"), the matrix [t (X, We, ¥, ¥")],,, is first
studied in [Kazhdan and Patterson 1984]. It also appears in the work of Suzuki
[1998], Chinta and Offen [2013] among others. For a subclass of Brylinski—-Deligne
covering groups, the study of matrix [t (X, Wy, ¥, ¥')],,, is conducted in [McNa-
mara 2016] for unramified characters x, generalizing that of Kazhdan and Patterson.
Meanwhile, for ramified characters, it is included in the work of [Goldberg and
Szpruch 2015]. However, in order to work with the full class of Brylinski-Deligne
covering groups and also remove the assumption po, € F* in [McNamara 2016], we
refine the computation in [McNamara 2016] slightly. This is achieved by invoking
the structural facts of Brylinski—Deligne covering groups, in particular those from
Section 2A. We also note that interesting phenomena dissipate when the assumption
Won © F* is imposed, for example for the type A, case in Section 4. There are
subtleties arising from the fact that —1 is not a square root. For this purpose, it is
important to rigidify the formula for the matrix and express its entries in terms of
naturally defined elements of the group.

Consider the Haar measure p of F such that £ (Op) = 1. Thus,

w0 =1-1/q.

The Gauss sum is given by

Gw(a,b):/ u, ™) Y (@ u)pu(w), a,bel.
0F
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It is known that

0 if b < —1,

1-1/q if nla, b >0,
Gy(a,b)=40 ifnta,b>0,

—1/q if nla, b = —1,

Gy(a,—1) with |Gy (a, —1)|=¢~V? ifnta,b=-1.

Recall ¢ :=((—1, @),) € C*. One has Gy (a, b) =¢€“ -Gy (—a, b). Forany k € Z,
we write

gy (k) =Gy (k,—1).

As in [McNamara 2016, § 9], let f, € I()) be the function with supp(f,) =
BwoK, and Sy (wy 1) =i(X)(y")¢o for a certain compact open subgroup K. Here
¢o € i(x)T"X is the unramified vector in i(X). From [McNamara 2016, Corol-
lary 9.2], one has t (X, Wy, ¥, ¥') = ()LV;YX, Tw,.5 (fy))/IU™ N K;|. More precisely,
from equality (9.3) of [McNamara 2016] one could evaluate (), Wy, ¥, ¥’) by
applying A\]’,V” € i(""‘*)‘()v to the integral

(©6) /ny/(fza(xb e (—x)-wy )y e () x) €i (M x).

Note that the integrand of (6) takes values in i()x). However, on the one hand,
as vector spaces of functions on 7', the underlying space i (¥) is identical to that
of Yi(x) (see [Gao > 2017]); on the other hand, it follows from the Stone—von
Neumann theorem that =i (x) >~ i ("W~ x) as representations of T. Therefore, there
is a canonical vector space isomorphism i () 2~ i (W« x). For the computation below,
we will follow [McNamara 2016] closely and adopt this viewpoint implicitly.

To ease notations, write 7 = i()). Use the partition F = |J,,., @ " O} and
write x = & "u"!, where u € O. Then u(x) = |o|™" u(u) and the integral in
(6) is equal to

> @™ /0 fyha(@" - u) - e~ "u™) - wg) Y (@™ 1)) (1)

meZ

=2 | @@ mha(@™)  w o) w0 v @ ).

meZ F

Suppose ' = sy € T for some y € Y. (We write sy:=s(@”’) € T for y € Y, see
Section 2 for notations.) Then the above is equal to

(7) Z Ox(u’ w.)le(aV)—l—B(aV,}’) . N(f_la(zzrm)) . ﬂ(sy)¢0 . 1//—l(w_m ).

meZ F
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From now, we write ['(m, y, V) := g™+ 0:eDDGa) and T (y, V) :=T (-1, y, aV),
which lie in {£1}. Following (3), ho (&™) - 8y = we - (F(m, y, &) - Sy1mav) - Wy —1
Therefore (7) is equal to

S TG, v, @) (S ) o / (u, e QB D) g gy ),

meZ

There are three cases for each term in the sum:

« For m < —2, the integral over O vanishes, and thus the contribution to
(X, Wy, ¥, y') is 0.
o For m = —1, the contribution 7 (), W, ¥, ¥’) is nonzero only when W, (y;) =

y —a’ mod Yy , where y =s,,, ¥’ =s,. When W, (y1) =y —a", the contri-
bution to 7 (X, Wy, ¥, ¥') is

L(y.a’)-gy-1(Bla’,y) = Q@) =T(y,a”) - gy-1((yp, @) Q"))

o For any x € R, recall that we denote by [x] the minimum integer such that
[x] > x. The sum for m > 0 is equal to

> T(m.y. o) " (Swy (y4mav) B0 - / (u, )" C@OFB@Y) ()
m>0
_ Z T(m, y,a”)-gmtoenDe’.y)

m=kng—B@" 1)/Q@") e (S m—tv.ang” ) ET(s (1—g~!
k=[Ba".y)/m O@")] ( (—m—(y,a))x ) (y)¢0 ( q )

=(—qh 3 I g ) sy
k=[{y,a"}/na

=(l—qg" Y Xa(@")* - ew(sy)do
k=[(y,a¥)/nq]
1y X (hg (@)
=(1—g! = Mg (s , where ky o = [(y, a)/ng].
( q )1—)_((]10[(&)'”“)) ( y)¢0 v, |—<y )/ a—l
The contribution is nonzero only for y =s,, with yj =y mod Y ,. In particular,
if y; =y, then the contribution to 7(), Wy, y, ') (for y =y’ =s,) is

~(h na\Yky,«
|— g X(ha(Z_ZT ) h =
(I—q )1 @)’ where ky, {

To summarize, we state the following theorem by McNamara which generalizes
[Kazhdan and Patterson 1984, Lemma 1.3.3]:

<y,a>].

Ny
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Theorem 3.6 [McNamara 2016, Theorem 13.1]. Suppose that y =s, is represented
by y1 and y' = s, by y. Then we can write T(X, Wy, ¥, ') = T' (X, We, ¥, ¥') +
(X, Wy, v, y') with the following properties:

o T (X We ¥ 2, ¥ -2 =)D - T (X W v, ¥ - X (@D, 7.7 €A
o ' (X, Wy, ¥, ') =0 unless yy =y mod Y ;
o T2(X, Wy, ¥, ¥) = 0 unless y; =Wy [y] mod Yg .
Moreover,
» If y1 =y, then

z@a?%»@a
1 — ¥ (ho (@)’

where ky o = {M]

Ny

X Wa, v, ¥) =1 =g

o If y1 =Wqlyl, then
(X, W, v, ¥) =T, ") - gy-1((yp, @) Q™).

As an analogue of [Kazhdan and Patterson 1984, Corollary 1.3.4], we have the
following result.

Corollary 3.7. Let X be an unramified exceptional character. Let )»Z( € Why (1(X))
be the vr-Whittaker functional of I (X) associated to some ¢ € Ftn(i(x)). Then, A%
lies in Why, (©(G, X)) if and only if for any simple root a € A one has

®)  clw,p)) =g Ty a") - gy1({yp. ) Q@) - e(sy) forall y.
Proof. By Corollary 3.5, for all @ € A, we have

c(sy) - T(M X, We, Sy, Sy) + €Sy (y) - TCUX, Wes Swy [y, §y) =0,
where y € Y is any element. The preceding theorem gives

(X (ho(@™)))
1= % (ha (")) !
=" LT (y,a") gy 1((yp, @) Q@) " -e(sy). -

c(sw,)=—(1—gh Ty, ") gy-1((yp.a) Q@) -e(sy)

From now on, for y € Y and @ € A, we write

) tWy, ¥) :=g" " T(y,a") - gy-1((yp, @) Q@)™
where
ky,a = {M—‘ and T'(y, aV) — E(y,,,a)-D(y,aV).

Ny

It is clear (W, y) # 0.
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Definition 3.8. For ¢ € Ftn(i())), we say that ¢ vanishes on y € Y if and only if
¢(sy) = 0. It is said to vanish on the orbit O, C Y if and only if it vanishes on all
y € Oy,, in which case we write ¢(O,,) = 0.

Assume that ¢ gives rise to )LZ( € Wh¢(®(5, X)). Since t(W,, y) # 0 for all y
and a € A, it follows from Corollary 3.7 that ¢ vanishes on O, if and only if it
vanishes on any y € Oy, . It is therefore easy to see that

(10) dim Why, (G, X))=|90..(Oy,): exists ¢ € Ftn(i (¥)) satisfying (8) for

{ Oy, € Ois a W-orbitin Y, and there ”
alla € A, y € Oy,. Also ¢(Oy,) #0.

In the remaining part of this section we will prove an effective lower and upper
bound for dim Why, (®(G, ¥)).

3D. A lower bound for dim Wh¢(®(6, x)). The Weyl group W of G has the
presentation

W = (W : (WaWg)" =1 for a, B € A).

Lemma 3.9. Let O, € ol beaY Z;n—free orbit in Y. Then the following holds:

Q,n,sc
t(Wy, Wo[y]) - t(Wy, y) =1 forall @ € A.

Proof. Note that Wy[y] = We(¥) +a¥ = y + (1 — (y, a))a”. It follows that
(We[y], @) =2 — (y, a). Therefore

t(Wy, Wy [y])
=g Wl 1e)/na =1 P (W, [y], @) - g1 (Q (@) (W [y], o) — 1)

qf(2—<y,01>)/ﬂu1—1 ,8()’p,DO'(D(y,Olv)—(yp,Dlv)Q(Olv)) ‘ngrl(_Q(av)()’p’ O())_l

and

t(Wq, We [y]) - E(Wg, ¥)
_ _ 2, \ _
— qf(z e /nal+1{y,a)/nal=2  o(yp.0)”-Q(a”) | gy (Q(O(v) . <yp, o)) 1

gy (—0@") - (yp.a) .

However, it follows from g, -1 (k) = gk -8y -1 (—k) that |g,—1 (k)| = g~'/2. Moreover,

since Oy is a Yéc’n—free orbit, Wy [y] —y ¢ Ysc’n. Therefore, ny 1 (1 — (y, «)) and so

En

Now it can be checked easily that ¢ (W,, We[y]) - £(Wgy, ¥) = 1. O




DISTINGUISHED THETA REPRESENTATIONS FOR CERTAIN COVERING GROUPS 351

Consider adjacent o, 8 € A from the Dynkin diagram. We would like to show
that for the YZ; ,-iree orbit O, the equality

Map

[ Jewaws, Wowg) [y]) =1

i=1
holds, where #(W,Wg, y) 1= t(Wy, Wg[y]) - £(Wg, y). This will follow from a case
by case discussion. We will give the details for m,g = 3, 4 below and leave the
case for mqp = 6 to the reader.
Case mgyg = 3: The relation (W,Wg)"*# =1 is equivalent to WoWgW, = WgWWg.
By Lemma 3.9, it suffices to show

(IT) t Wy, WeWq[y])-tWg,We[y])-t(We,y) =t Wg,WeWg[y])-tWe,Wg[y])-tWg,y).
We first note that
(p.e)+1q . v _
EWo, ) =g 7 171 b DO g (Bo (v, 0¥)) 7,

We also have (WgWy (y,), o) = (y,, B) since the pairing (—, —) is W-equivariant
and W,Wg(a) = B. Similarly, (WoWg(y,), B) = (yp, @). A simple computation
gives
p.a)+17 ) v _
tWyy) =g e 1 e0n PO g (3 0) Q)

|'(yp.a+ﬁ)+l -| -1 ‘ v |
tWg,Wy[y]) =g ™ £ atPIDWYLED) gy ((y,, 0+ B8) Q(BY) T,

Up A+ ‘ v B
t(Wa’WﬂWa[y]):q[_gna - | 1_8<>'p,ﬂ)D(wﬂwa[)],a ),g¢71(<yp”3>Q(av)) 1

Meanwhile,

|—<yp~ﬁ>+1-|_1 N |
tWg,y)=q " e PIDOLD g1 (9, BYQ(BY) L,
(yp,a+p)+1
tWo Wely]) =gl

gt DML g (3,048 Q@)
Op.a)+17 y

t(W,BvWaWﬂWoe[y]):ql— "g | 1.8(yp’a)D(WaWﬁ[)’]aﬂ )'g1//*1(<yp’a)Q(,Bv))71.

Since Q(a") = Q(B") and thus n, =ng, to show that (11) holds, it suffices to check

that the powers of ¢ on the two sides of (11) are equal. However, a straightforward
computation shows that this is indeed the case, and we may omit the details.

Case myg =4: Let a, B € A be two adjacent roots such that m,g = 4. We assume
that « is the longer one. Thus, (¢, B) = —1, (8", a) =—2,and Q(8Y) =2Q(a").
As in the preceding case, we want to show
(12) t(Wﬁ7 WaWﬂWa[y]) : t(Wou WﬂWot[y]) : t(Wﬁy Woz[y]) . t(Wav )7)

= t(Wo, WgWoWp[y]) - £ (Wg, WeWp[Y]) - £ (We, W[ y]) - £(Wg, ).
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A simple computation yields
p.a)+lq v
(W, y) =g 1700 @POE g (3, @) Q@)

|'(_Vp,ot+/3)+1

-1 1 8Y _
(gD =g! e DO g (y, 0k B)Q(BY)

1 t(WouW,BWa [Y])
I’(yp.aJrZﬂ)Jrl

Tl gD g (y, 0 +26) @),

p.B)+1 1 .
t(W,BsW(xWﬂWa[y]) :ql— ng 1 . £(¥p:B) D(WeWgWo[y]. )'gi//—l(<yp7:8>Q(:3v))_l-

On the other hand, for the right-hand side of (12), one has

=q

|'(."',0ﬁ)+1'|_1 oy |
t(wg,y)=q " e PIDOLD g ((3,.8)0(BY) 7,
(yp,a+2B)+1 v
W WLy =gl e 1Lt e 2D g (a4 26) Q)
t(W,BvWaW/SWa[y])
|'<,Vp,0(+/3>+l'|7l v
—q ng .g()’p,a—Fﬂ)D(WaW,s[y],ﬁ ),gw_l (()7p,05+/3>Q(/3v))_1,

p.a)+1 v
[ ]—1g<yp,a>D(WrsWaWﬁ[y],a )-gll,—l((yp,a)Q(av))_l.

t(Wy ,WgWoWpg [}7]) =4q

To show equality (12), again it suffices to show that the powers of ¢ of the two
sides have the same parities, which is achieved from a straightforward check.
Analogous argument for mqg = 6 works, and we give a summary.

Proposition 3.10. Let O, be a Yéc’ ,-Jree orbit. For all adjacent a, B € A, one has

Map

[ [t waws. (Wawp)'[yD) =1,

i=1
Definition 3.11. Let O, € Og’n’sc be a Yy ,-free orbit. For any
W=WWi_1---Wow; €W

written as a minimum expansion, write

k
T W, y) = [ [ewi wisy - wyly]),
i=1
which, by Lemma 3.9 and Proposition 3.10, is independent of the choice of minimum
expansion of W.

Let O, € Og,n be a Yy ,-free orbit (and therefore Yécyn-free). We define a nonzero
¢ with support O, as follows. First, let ¢(sy) =1, and for any o € A, let

c(swa[y]) = t(Wa’ )’) : C(Sy).
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Inductively, one can define ¢(swiy)) := T(W, y) - ¢(sy) for any w € W. It is well
defined and independent of the minimum decomposition of w. Second, extend ¢ by

c(swiy) - 2) = c(swpy) - X (3), 7 € A,

and

c®=0if 7 ¢ | supy - A
weW
By using the property that T'(W, y) and c¢(sw,]) are independent of the minimum
decomposition of W, we see that equality (8) is satisfied. It follows that ¢ ,(O,)
belongs to the right-hand side of (10). Therefore,

(13) dim Why, (G, x)) = 90.# (0} )]

3E. An upper bound for dim Why, (© (G, Xx)). First we show a result in the gen-
eral setting regarding the usual Weyl action. Let ¥ be a root system and W be a
fixed choice of simple roots. Write L := (W) for the lattice generated by ¥ and
V =L ®R. The Weyl group W associated to W acts on V naturally by the usual
linear transformation generated by simple reflections. Recall that we write w(v),
we W, v eV for this action.

Lemma 3.12. Let v € V be any vector such that W(v) = v mod L. Then there exist
W e W and a € Y, such that W, (W (v)) =W (v) mod L.

Proof. Let Wy = L xW be the affine Weyl group, and denote any element of
Wate by W, = (y, w). We call w the Weyl component of w,. The congruence
W(v) = v mod L is equivalent to W, (v) = v for some W, which projects to w € W.

If w,(v) = v, it then follows that v € V lies on the boundary of C, where C is
an alcove (i.e., a fundamental domain) of the action of W, on V, see [Bourbaki
2002]. Note that C is a simplicial complex whose boundary consists of |W,| + 1
walls {E;}. Moreover, we may assume that for 1 <i < |W|, the wall E; lies in the
hyperplane fixed by w, whose Weyl component is W,, for some «; € Ws. In this
case, one also knows that Ejy, 41 is fixed by (y, Wg) € Wy for some B € W — W,

Since v € Ul. E;, there are two cases. First, suppose v € E; for some 1 <i < |Wg];
then clearly Wy, (v) = v mod L for some «; € W;. Otherwise, suppose v € E |y, |11.
Let W' € W be such that W' (B) € ;. It follows that W (Ey,|+1) is fixed by some
W, = (y,Wy) with @ € ¥;. That is, W, (W (v)) = W (v) mod L. The proof is
completed. ([
Proposition 3.13. Consider ¢ € Ftn(i(x)) such that A} is a -Whittaker func-

tional on O (G, %). If Oyo is not Y5 ~free, then ¢ is zero on Oy. It follows that
dim Why (O(G, 1)) < I90.(Oh , -

Proof. Write V=Y @ R. One has V = (Y* ® R) & Vy where V, C V is fixed by
W pointwise with respect to the usual action, i.e., the action W(v) of W. In general
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yg € V; however, without loss of generality, we may assume yg € Y* ® R now.
There is a canonical W-equivariant isomorphism Y 5 2 @R~ Y* ®R with respect
to that usual action. Moreover, {aé’n}a@ forms a root system.

If Oyo is not Y5 -free, there exists w € W such that w[y°] = y° mod Y}, i..,
W(yg) = yg mod Y gn By the preceding Lemma, there exist y € Oy and & € A
such that W, (y,) =y, mod Y’ gn Now it suffices to show that ¢ vanishes on y.

By Corollary 3.7, ¢(sw,[y]) = t(Wy, y) - ¢(sy). Since Wy (y,) =y, mod Yéc’n, it
follows that ny|(y,, a). Write (y,, ) =k -ny. Since

Swaly) = Sy S—(ypaar - €00 PE,
one has
c(Swyiy)) = X (S—knyav) - €(8y) - e D@".y)
—g*. ckna-D(@”.y) ce(sy).
On the other hand,

tWy, ¥)-e(sy) =g T(v,a) - gy-1((yp, ) Q)" - e(sy)

=g*- (=1, @)k PO (g7l e (sy).

It follows that ¢(sy) = —q_l -ghnaB(y.a¥) c(sy) = (—q_l) -¢(sy). Therefore c(s,) =0.
The proof is completed. O

Theorem 3.14. Let G be an unramified Brylinski—Deligne covering group incar-
nated by (D, n). Let X be an unramified exceptional character and O (G, Xx) the
theta representation associated with x. Then

90.1(0) )| <dimWhy (O(G, X)) < [£0.,(Of., ).

Q,n,sc

The group Hom(Yg ,/ Yg’ 4o C°) is identified with Z (GV), the center of the dual
group GV of G, so Y3, = Yo, if and only if Z(GY) = {1}. Immediately it follows

that:

Corollary 3.15. If the dual group GV of G is of adjoint type, i.e., Z(G") = 1, then
dim Why, (©(G, X)) = |90.x (O -

For groups of type Es, F4 and G», the complex dual group of their covering
group has trivial center and thus Corollary 3.15 applies.
More generally, if Og’n = Og’n’sc, then the dimension of th(G)((_}, X)) can
be uniquely determined. We will illustrate below that Theorem 3.14 recovers the

result of Kazhdan and Patterson in this case.

Example 3.16. Let {e, e, ..., e,} be a basis for the cocharacter lattice ¥ of GL,.
The simple coroots A" of GL, are AY ={o,” :=e; —e€;4+1}1<i<r—1. The isomorphism
class of (D, n) in the incarnation category corresponds to a Weyl-invariant quadratic
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form Q, or equivalently, to the bilinear form By. Let Bg(e;, e;) be the Weyl-
invariant bilinear form determined by

Bo(ei, e;) =2p, Bo(ei,ej)=q ifi #j.

For any root «, one has Q(«¥) =2p — q. We assume 2p — g = —1 and therefore
ny = n. The covering groups GL™ arising from such B are exactly those studied
by Kazhdan and Patterson. The parameter p corresponds to the twisting parameter
c in [Kazhdan and Patterson 1984].

From By, the lattice Yy , is given by

-
{inei € @Zei X1 =xp=---=x, modn, and n|(gr — l)x,'}.
i =

The lattice Yy, is generated by {aé’n}a@. It is easy to check Y5, = Yo , N Y™,
and this has the following implications:
Suppose that Oy is not Y ,-free, i.e., W[y] —y € Yy , for some W # 1€ W.
Clearly W[y] —y € Y* as well. It follows that w[y] — y € Y, that i 1s (9 is not
y ,-free. Therefore, for the Kazhdan—Patterson covering group GL™, one has
that (’)F is equal to (’) 0.t Consequently, for the covering group GL( " with
parameter (p, q) such that 2p — g = —1, Theorem 3.14 yields

dim Why, (®(G X)) = g0, n(OQ n, ol

which is the content of [Kazhdan and Patterson 1984, Theorem 1.3.5]. Moreover,
distinguished theta representations (see Definition 3.3) for GL™ are completely
determined in [Kazhdan and Patterson 1984, Corollary 1.3.6].

In the remaining part of the paper, we will determine the distinguished theta
representations for coverings of simply connected groups of type A,, B,, C, and G».
To ease the computations, we will use the standard coordinates for the coroot system
of each type as in [Bourbaki 2002, pages 265-290].

4. The A,, r > 1 case

Consider the Dynkin diagram for the simple coroots of A,:
ozlv (xzv 0‘;/—2 aY v

The cocharacter lattice is ¥ =Y =@D;_, Za,'. As in [Bourbaki 2002, page 265],
consider the embedding i, : @;_, Za,’ — @r“ Ze;, which is given by

ig:y=(x1,x2,...,%) > 0a(y) = (X1, X2 — X1, X3 = X2, ..., Xp — Xp_1, —X;).
In particular, we can identify the image of i 4: anyl(yl, V2, eeos Yry Yrtl) € @lril] Ze;
is equal to i 4 (y) for some y if and only if er+1 yi=0
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Meanwhile, p = Y"!_ | £(r —i + De;’. Weuse ia : B)_; Qo) — @] Qe; to
denote the canonical extension of i 4. Then,

ia(p) = (; r22"”’—(r 2) _—r> @@ez

It follows that for any y € Y,

iA(yp)=(x1—%,...,x,-—xi_l+(i—1)—%,...,—xr+r—%), l<i<r

= (o —xi L —x A =1 —x, (_—r,_—r,...,_—r).

(x1 X2 —x1 + Xi—Xxi1+ (@ ) x+r)+ ) >
From now, we write iy (y,) := (x{, x5, ..., x5, x7, ;) for

(xl,xz—xl—l—l,...,xi—xi_l—l—(i—l),...,—xr—l—r)E@Zei.

i
Thus,
r —r —r
lA(Yp)—lA(Yp)+< ) 77‘”, 7)

Meanwhile, any (x}, x5, ..., x}, x", ) € €P; Ze; is equal to i}; (y,) for some y if

and only if Y71 x* =r(r 4+ 1)/2.
Consider the quadratic form Q on Y = (o, 1 <i <r) with Q(e;”) =1 for all .
Then
2, ifi=j,
Bo(@/,a)=14—1, ifj=i+],
0, ife)’, och are not adjacent.
This gives rise to the degree n covering group S_Lf'fg |- Any element Y ;| x;a €Y

lies in Y , if and only if
2x1—x2, —x1+2x2—x3, —X2+2x3—Xx4, ... =X 2+2X,1—X;, —X,_1+2X;
are in nZ.

By using i 4, we see

r+1 r+1
YQ,nZ{()’Lyz,---,yr)G@Zei : Zy,:o, and y|=---=y,=y,4 modn}
i=1 i=1

and

r+l1 r+l1 }

Yéfn: {(yl,yg,...,yr)e@lei : Zy,- =0, and n|y; forall i.
j i=1

The Weyl group W = S, acts as permutations on EB’H Ze;. In particular, Wy,
for a; € A acts by exchanging ¢; and e; .
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4A. Case I: S_L(")l, n<r. Suppose n < r, then for any y € Y with i}(y,) =
(x{, x5, ..., x5 p), there exists x;' x ,1 # j such that n|(x] — x*) Then clearly

W(y,) = ¥p Y5C for some W € W That is, Oy ¢ or and one has in this case

Q,n,sc

O'L

Qn@c_g'

Therefore, dim Why, (© (SL"”

r+1,x))=0f0rn§r.

4B. Case II: S_Li'zl, n =r + 1. In this case, the dual group for S_L,(,") is SL,,, see
[Weissman 2015]. Consider O, € Og’n’sc such that

r+l1

i:(yp):(ov1,2v---,r_1,r)E@Z€i.

It is easy to check p (0 i) =855 ,(O))}, and this implies |0 ,(OF, , (I =1.
However, O, ¢ (9 For example, let Wy be such that i (Wy(y,))=(1,2,...,7,0),
then iy (Wy(y,)) — lA(yp) ={,1,...,1,—r) € Yg . Thatis, Wy[y] —y € Yg ,.
Therefore,

190.0(0h ) =0

It follows that 0 < dlmWhl/,(G)(SL("), x)) < 1. In this case, determining
dim Why, (® (SL("), X)) is delicate, and there are additional constraints on the
exceptional character x such that @(S_L,(i"), X ) is distinguished. The analysis below
is devoted to this.

4B1. The reduction step. 1Itis clear thati%(y,) =(0,1,2,...,r—1,r) if and only
if y =0. Moreover, i (W;(y,)) =(1,2,3,...,r,0) for Wy =Wg, Wg,_, - - W, Wy, .
As above,

p
w,[0]—0=) i €Yg,.
i=1
Write yg , := > ;_; i -’ In fact, the set {ne)’ : 2 <i <r}U{yg,,} forms a basis
for Yo ., whereas {na;’ :2 <i <r}U{n-yp,,} is a basis for Y5y, It follows that
any exceptional character X is determined by its value at s, .
We choose the bisector D on Y*¢ such that D(e;”, o) is given by

(o) if i =,
D(aiv,oz]y): 0 if i <},
BQ(ozl.V,oe]Y) if i >j.
Recall from Corollary 3.7 that ¢ € Ftn(i () )) gives rise to a ¥ -Whittaker functional
of ®(SLY, ¥) if and only if for all y and « € A,

c(swyiy) =g T (v ) - gy-1(B@”, )" - e(sy).
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For 1 <i <r, write y;) = Wg,Wq,_, - - - Wy, [0] and we set y = 0. Recall that
t(Wy, y) is the coefficient in the above formula. In this case, it reads t(W,, y) =
ghe . T(y,a") - gy ((yp, a))~! since Q(«¥) = 1 (and therefore n, = n) for
all @ € A. In order to have dim Why, (@(S_L,([’), X)) = 1, we must have the equality

(14) X (8yo,) =T Wy, 0) where T'(wy, 0) = Ht(Wai, Yii—1))-

i=1

We would like to show that the equality (14) is also sufficient. Consider any
W e W,y € Op, one has ¢(swiy) =T (W, y)-c(sy). Now assume W[y] —y € Yg n,
we have

C(Swiyl-y+y) = X (Swiy-y) - €(sy) - PP,
To show dim Why, (@(S_L,(f’), X)) = 1, it suffices to show ¢(s,) to be nonzero for all
y € Op such that W[y] —y € Yg ,. That is, it requires

(15) X (Swiyl—y) = PWDI=YD T (W, y).

Write W [y]—y =) "i_,ki-a)y ,+ki-yo.n- Note that Op is Y5 -free, thus k; #0.
We may reduce the negative case to the positive case by a simple computation, and
therefore we can assume that k; > 1. Furthermore, we may apply induction on ki,
and thus it suffices to: i) prove the inductive step, ii) check the equality (15) when
Whyl—y=Y'_, kiot) o0.n T Y0 The assertion i) can be checked easily, and thus
we will only outline the proof of ii).

For ii), if W[yl —y = Y/, kiaiV’Q,n + yo.n, then it is not hard to see that
Wyl —y =W(yg..), i.e., W W[yl —w~![y] = yo., for some w € W. We may
change W if necessary such that w~![y] = 0. With this assumption, w~!w'w = w,
e, W = WWJW_I. Therefore, we need only show that for any w € W,

(16) )_((SWWJ[O]—W[O]) — SD(WWU[O]—W[O],W[OD . T(WWHW_l , W[O])

To show (16), we would like to apply induction on the length of w. When w =1,
it is just the equality (14). For the induction step, assuming the equality (16), we
would like to prove that for « € A the following equality holds:

(17) )_((SW,;,WWJ[O]—W[O]) — 8D(Waww;[0]—waw[0],waw[0]) . T(WaWWuW_lwojl, WaW[O]).

For this purpose, write x := wWw,[0] — w[0] € Yy ,. We have nq|(x, o). Write
(x,a) =k -ng.
The left-hand side of (17) is

)_((sx—(x,oz)otv) = )_((sx) : )_((s—knmotv) . 8D(x,—knaa )

=7 (s2) - X (ho (@) * = g* - 7 (s).
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The right-hand side of (17) is

g PWaCOWaWIOD ¢ (wy, W, [0]) - T (Wwyw !, w[O]) - £(W,, WeW[0])
= gD WaWIOD=WIOD . 5 (5. ) - £ (We, WW;[0]) - £(Wg, WoW[O]) by (16)

= gD WaWIOD=WIOD . 5 (5.} - £ (We, WW;[0]) - £(We, W[O]) ™!

- D“’W‘IW[OD‘W[OD-W[() T g (W0, @) Q@)

(W(Op) a)-D(Ww;[0],« ¥ (50) q_( WioLe) ] 4 g

gy 1 (W(0,), ) O (@) - g0 DOl

= )_((sx) . qk . 8(W(Oﬂ)aa)D(x,aV) ) 8(W(O/,),a)D(x,on)

=X(s2) 4",
which is clearly equal to the left-hand side. To summarize, we have:

Proposition 4.1. Let ¥ € Hom,(Z (T), C*) be an exceptional character of SL(").
Then

dim Why, (©(SL™, %)) = 1
if and only if X is the unique exceptional character satisfying (14).
We would like to explicate the condition given by (14).

Lemma 4.2. One has

—r/2 . is odd
Tw, =17 ., |, Tnisodd
gnn=2/8 . g=n/ - gy-1(—n/2) if n is even.
Proof. We compute each #(W,,, yi—1y) for 1 <i <r. First, one can check easily
that Yiy = lezl i -O(iv :Ol;/ —{-20(5/ 4+ O(lv Thus, Yi-1y, ;) = —( — 1)
and therefore

ky; e =0 forall 1 <i<r.

(i—1)»
Second, I (yi—1y, @) = g~ POG-02")  Since D(ajv, a)=0forall j <i, we see
T (yi-1y, ;) = 1. Thus, t(We,, yi-1)) =¢q " - gy-1(—=i)"". Now, if 1 <i, j <n
and i + j = n, one has

gy (=g (=N =gy (=7 (gy ()&
=gy (N7
=gq gl

The result then follows from simply multiplying together each term. (]
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4B2. Interlude: Weil-index. Let yy be the Weil-index given in Section 2C.

Lemma 4.3. Suppose n =2m is an even number. Then the following equality holds:

—1/2

= oy

Proof. By definition, g, -1(m) is equal to
AX(M,W)Q-wl(wlu)M(u) - /Oxyw(wu)m(w)lmu)l-wl(wlum(u)

=y¢,(w>1-/0xyw(wu>-wl(wlu)u(u).

F

However, by Equation (3.7) of [Szpruch 2009b, Lemma 3.2],

yw(wu)=q‘”2<1+q/ w<w—‘v2u>u<v>).
oF
Thus,

g¢1<m>=qWw(w>1-f0x(1+qf0xw<wlvzum(w)wl(wlu)u(m

=q—‘/2-m<w>"'<_é+q'/ / w(w_l”(vz_”)“(”)“(”)>
ox Jo

Let D={ve Oy :|1—v*|=1}and H={ve OF :|1 —v?| <q~'}. We get

/ ( w(w—1u<v2—1>m<u>)u(v>
o \Jor

:/ 0o leu(vz—l)mwm(vwf V(@ u @ =1)) () )

veDJ Oy
= ,u(H)-(l—qil)—HJL(D)-(—q*l) by (8.19) of [Szpruch 2009b, Lemma 8.6]

=27 (1—¢g7H+1-3¢7"-(=¢™") by [Szpruch 2009b, Lemma 8.9]
— q—l _|_q—2‘
The result follows easily by simplification. ([

4B3. An explicit criterion. Consider the unitary distinguished character )‘(3/ con-
structed in [Gan and Gao 2016], which we recalled and gave in (5). Then the
character x = )_(12, -85 (-)1/?" is an exceptional character. In the simply connected
case, J = Yéc’ ,- For the definition of x 2,, we pick a basis {y;} for Y , such that
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{k;y;} is a basis for J = Yféc’ »- Then by definition,

%0 (5y,) = pyr (@) 2= DO/

and, for y =), n;y; € Yo », one has

Xlg/(sy) — l_[ Xlg/(wni)z(ki_l)Q(yi)/n . gi<jminjDGLy))

i

For the covering group S_L,(l"), we take y; = noziv, 2<i=<randy = ygpu, with
ki=1for2<i<randk; =n.
An easy computation shows Q(yg,,) =r(r +1)/2, and thus

— — € —1)2 —(n—
(18) XW/(syQ,n)leg/(s}’Q,n).aB(syQ,n)zn =y‘///(w-)(ﬂ 1) q (n l)/2

Proposition 4.4. For the exceptional character Xy = X ,-0p (- )2n given above,

one has that the dimension of Why, (© (SL,(Q"), X)) equals 1 in the following cases,
and 0 otherwise:

any ¥, if n is odd,

Yy (@) = yy (@), if n=0,2 mod 8;
vw(@)=(=1,@)s-py(w) if n=4modS8;
Yo (@) =y (@)} if n =6 mod 8.

Proof. By the value of Xy(sy,,) in (18), it follows from Lemma 4.2 that the
equality (14) is equivalent to

q~"? if n is odd;

19 (o (n_l)z' _(nz”:{ - n
(19) yy (@) K (—1,)"" 2)/8-q_i-g¢71(—ﬂ)_1 if n is even.

For n odd, the equality holds for any v/". Now we assume n even.
For n = 4k + 2, by Lemma 4.3, the required equality in (19) becomes

Yo (@) = py (@),

In particular, if k is even, it is equivalent to yy/ (@) = pyy (). If k is odd, it is
equivalent to yy/ (@) = py ()L
For n = 4k, applying Lemma 4.3 again, the equality in (19) reads

Yo (@) = (=1, @) py (@) = (=1, @)1 py ().

A special case is when k is even. In this case (=1, @)4 = 1 and therefore it is
equivalent to yy/ () = yy (o). O
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Corollary 4.5. Consider ' = v, for some a € F*. Assume , has conductor O,
i.e.,a € OF. Then dimWhy, (©(SLY”, %y.)) = 1 if and only if the following hold:

acOp ifn is odd,
ae(0))? ifn=0,2 mod 8,
a*e —(0;)* ifn=4mod8,
a€—(05)? ifn=6modS8.

Remark 4.6. The facts that for any exceptional representation @(ﬁf,") , X) there
exists ¥ such that it is v-generic, and that dim Why, (©(SLy", ¥)) < 1 for all ¥
also follow from the work of [Kazhdan and Patterson 1984] on ﬁlﬁ,") combined
with the relation between S._IJ,S") and (ﬁ,,(z") in [Adams 2003]. (We thank the referee
for pointing this out.) However, our Corollary 4.5 gives precise information for
the matching between Y and the distinguished theta representation in terms of the
distinguished character.

Example 4.7. The first nontrivial example is the metaplectic covering S_ng). In
this case, we have Yo, =Y =Z-«" and Yo, =1 (2a¥). As mentioned at the
beginning of Section 4B, one has that the lower and upper bounds in Theorem 3.14
are 0 and 1 respectively and thus

0 < dim Why (©(SLY, 1)) < 1

for any exceptional ). For the character y,, the representation @(SL( ) s X)) 18
the even Weil representation in the following exact sequence:

SU(X ) 1 (X y,) — OGLY, %),

where St( y,) is the metaplectic analogue of the Steinberg representation. From
Corollary 4.5, we can recover the well-known fact, which follows from the work of
Gelbart and Piatetski-Shapiro [1980], that for SL(Z) the even Weil representation
®(SL(2), X ,) (for unramified data) is y-generic if and only if a € (O )2. We note
that this also follows directly from the computation of the local coefficient for SL(Z)
in [Szpruch 2009a].

Example 4.8. We also discuss explicitly the example S_Lg3). Consider S_Lg) with
cocharacter lattice Y = («;’, ;). Consider Q such that Q(«;") = 1. Then

Yon =) +a),3a)) = 205 +a), 3ay).

Note Y = 2oy + o, o)) = 2oy + ), ). We know p = )" + ;. For y =0
one has
Yo =0, = — () +ay).
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Consider Wy = Wy, Wq,, then W,,[y] = o) and moreover Wy, W, [y] = 20r) + ;.
One has

c(Swws(y)) = g2 T TWaly ], @)) - gy-1(Q (e ) (Waly], o) — 1)~
gR e T (v, ) - gy -1 (Q@)(y, ) — 1) - e(sy)

— g2 P oy oY) - T, o)
gy 1 (=) gy (=D - eligro)

=q 7 q clge)=q"".

where ¢ is normalized to take value 1 at the 1 € S_Lg3). This implies that necessarily
c(Swywo[y) = ¢~ ', and thus ~ »
X (Swiwoiy) =4

Note, this is not a consequence of x being exceptional, although it is compatible.
Clearly, an exceptional character ¥ is such that

{)_((SW1W2[y])3 = q_37

)_((s3a;’) = q_l'

In particular, if for some third root of unity & # 1, X (Sw,w,[y]) 1S equal to ¢ -qil,

then dim Why, (©(SLY”, %)) = 0 for such ¥.

4C. Case IlI: S_Li'_'k)l, n=r+2. Forn=r+2, weshow Yp , =Y}, and therefore
Corollary 3.15 applies. Picking any (y1, y2, ..., yr+1) € Yp,., we have

a=y =y;=--=y4 modn,

where a € {0, 1,2, ...,r+ 1}. Write y; = k;n 4+ a. Since er;l y; =0, one has

r+1
n‘(Zki)—l—(r—i-l)-a:O.

i=1

In particular, n|(r + 1)a. However, gcd(n,r + 1) = 1, so n|la and a = 0. That

is, Yon = Yéﬁn and therefore dimWh,;,(@(S_Lfflz), X)) = |ggQ,n(OF’n)|. Note

that, the equality Yy , = Y, , reflects the fact that the dual group for STJ,S”H)

,n

is PGL,, (see [Weissman 2015, § 2.7.2]).
We claim that the dimension is equal to 1 in this case. Let O, € O be a

,1,SC

YSs, ~free orbit with % (y,) = (0, 1, ..., 7 — 1, 7) € ]| Ze;. We know that O, is

4
Y »-free (or equally, Y, EC’ ,-free). Moreover, one can check easily that g , (Og’ )=
{£0.,(Oy)}. Therefore dim Why, (® (S_Lirflz), %)) = 1 for the unique exceptional
character x in this case.
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4D. Case IV: S_Lﬁ'_':l, n>r+3.

Lemma 4.9. Consider y € Y such that i}(y,) = (x|, x5, ..., x7, x* ) with x} =
i— 1. Ifn>r+3,the orbit O, is Yo ,-free.

Proof. Suppose not, then there exists W # 1 such that w[y] —y € Yo ,. Identify w
with a permutation, then we have

* * * * * *
(.xl 5 XZ, ceey xr+1) - (xW(l)’ xw(z), ceey XW(I'+1)) S YQ,}’[

More precisely, i —W(i) = j —w(j) mod n for all i, j. Clearly, n{ (i —w(i)) for
all i, otherwise one can deduce W(i) = i for all i and therefore w = 1. That is,
(i —w(i@)) is either negative or positive. We reorder the terms (i —Ww(i)) as

—r <((1=W(@1) = (=W))< <0<+ < =W(ir)) < (U1 =W(0r41) <7

Write (i; —wW(i;)) = —s, s e Nand (i, —W(i,+1)) =t, t € N. It is easy to see
that any negative i —W(i) must be equal to —s, and any positive i — W(i) must be
equal to ¢.

We claim that 2 <7 +s <r + 1 and therefore n { (t +s), i.e., Wyl —y ¢ Yo n
for all w # 1. Note 0 —w(0) = —s and r —W(r) = ¢. Suppose t +s > r + 1, then
there exists i such that » +1 — ¢ < iy < 1 + 5. However, there exists no i’ such that
w(i") = ip. This is a contradiction, and the claim follows.

Therefore O, is Y ,-free for the given y. ([

It follows that dim Why, (® (SL;’_’F)1 , X)) > 1for n > r+3. In principle, one could

proceed as in Section 4B to analyze every element in @Q,n(og,n,sc) and determine

completely dim th(®(SLf'_l:1, %)) in this case. However, the level of complexity
of the computation depends inevitably on (the center of) the dual group of SLﬁ")
and could be quite involved for general n > r + 3.

We summarize for the n < r + 2 cases below.

Theorem 4.10. Consider the Brylinski-Deligne covering S_Ly_"_)l, n <r+42 with

Q) =1 for_ all coroots a”. Let ¥ be an exceptional character of S_Lf'f:] Then
dim Why (@(SL",, x)) = 1 if and only if

e n=r+2 and X is the only exceptional character, or

e n=r+1and X is the unique exceptional character satisfying (14).

5. The C,, r > 2 case

Consider the Dynkin diagram for the simple coroots for C,:
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Let

sC __ \%4
Y=Y"=(o),0),...,0) |,

)
be the cocharacter lattice of Sp,,, where , is the short coroot. Let Q be the
Weyl-invariant quadratic on Y such that Q(e,”) = 1. Then the bilinear form By is

given by

2 ifi=j=r,
v o ifl<i=j<r—1,
Bole )= 5 ipj—is1,

0 if e/, o) are not adjacent.

A simple computation gives

YQn—{Zx, :n|(2x;) }

We write ny :=n/ gcd(2, n). Then

Yo = (may, nmay, ..., noe) |, maa,’)
and
Yy, = (may, may, ..., nma |, na).
The map ic : B;_, Zo; — @P._, Ze; is given by
Ic: (X1, X2, %3, ..., X )= (X1, X0 — X1, X3— X2, .., Xp ] —Xp—2,Xp — Xp_1).

Here ic is an isomorphism. The Weyl group is W = S, x (Z/27)", where S,
is the permutation group on €, Ze; and each (Z/2Z); acts by e; — +e;. In
particular, Wy, 1 <i <r —1, acts on (y1, y2, ..., yr) € ; Ze; by exchanging y;
and y;, while w,_ acts by (—1) on Ze,.

Moreover, y € Y lies in Y ,, if and only if all entries of ic(y) are divisible by n,.
It is easy to obtain

.
Yon= {(yl, Y2, ..., 9r) € @,:1 Ze; : nyly; for all i.}
and

.
Y&C,n = {(yl, Y2, ..., V) € @izl Ze; : nyl|y; forall i, and n|zi y,-.}

We further note

r

2p=) @r—2i+1ej =) iQ2r—i).

i=1 i=1

Assume xg = 0, then

ic(yp) =i —xi—1 —(r—i+1/2))1<i<r.
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Write x7 :=x; — x;_1 — (r —i), and also i :(y,) := (x{, x5, ..., x"_;,x}). Then

. , 11 11
lC(yp) = lz‘(yp) - <§’ 57 ety 55 E)
We will discuss the two cases depending on the parity of n separately.

5A. The case where n is odd. Here, n, = n and
nY = Yzfn =Ypn= {(yl, co, V) € @;1 Ze; : nl|y; for all i}.

The complex dual group for S_pg:) for n odd is SOy, 41.

Proposition 5.1. Let n be an odd number, one has

90O, I =2 ifn=2r+3,
l90n(O =1 ifn=2r+1,
|@Qn(OQn5C)|:O ifn <2r—1.

So, we have dim Why, (©(Sp\”, %)) = 1, for n odd, if and only if n =2r +1 for
the only exceptional character of Sp2r

Proof. We have written
. . 11 11
icOp) =10 = (553 3)

Since x1, ..., x, are arbitrary, the associated x;" are also arbitrary.
First, when n > 2r + 3, consider the orbits O, and O, where

it(y,)=(,2,...,r—1,r) and ié(y;))=(1,2,...,r—1,r+1).

If r =2, consider O, and Oy with if.(y,) = (1,2) and i?}(y;) =(1,3). Both O,
and Oy are Y ,-free orbits. For example, for Oy, this follows from the fact that
the entries of ic(W(y,)) —ic(y,) are either j —ior j+i—1,for0<i, j<r—1.
One can check also that ¢ ,(Oy) # £0,,(Oy), and therefore |@Q.n(og,n)| > 2.

Second, assume n = 2r + 1. Consider Oy, such that i;(y,) = (1, 2, . —1,r).
For r =2, consider i (y,) = (1, 2)(2 IL():an be checked easily that pg, n(OQ a) =
{£0.1(Oy)}. Thus, dim Why, (©(SpS, ™., 7)) = 1.

Third, assume that n < 2r — 1, we want to show that OIQ,n,sc =a. Ifij(y,) =
(x], xz, .o X[, ..., x)) is such that x[ = x;.‘ mod n for some i #£ j, then clearly
O, ¢ OQ nasct Now if n t (x —x*) foralli # j; since n <2r—1, it is not hard to see
that there always exist i, j such that nl(x —1/2)+(x]—1/2), e, nl(x +x—1).
In this case, one also has O, ¢ (’)Q n.sc- 1D any case, OQ nse =@ forn < 2r — 1.
The proof is completed. (]



DISTINGUISHED THETA REPRESENTATIONS FOR CERTAIN COVERING GROUPS 367

5B. The case where n is even. Writing n = 2m,

Vv 4 \4 \% N¢ Vv % \4 \%
Yon={moa/,moy,...,ma_;,ma,), on={(may,may,....ma._ na).

Equivalently, one has:

-
Yon= {(yl, Y2, ..., V) € EBf:] Ze; : m|y; for all i.}

and
P
1= (01030 <@ Zec b forat and 5,

The dual group for S_pg? with n even is Sp,,.

SB1. The case where m > 2r + 2. Here, consider the orbits O,, O, given in the
proof of Proposition 5.1. They are Yy ,-free; moreover, O, and O, are distinct in
the image of ¢ ,. Thus, we have |g,)Q,n((’)gyn)| > 2.

5B2. The case where m <2r — 2. Here, we can easily check Og’n’ «=9.
5B3. The case where m =2r—1. Consider y withi/.(y,)=(1,2,...,r—1,r),ie,

] 1 1 1 1
lC(y,o)—(1—5,2—5,...,(r—1)—§,r—§>‘

Consider Wy, € W, then ic(Wo, (y,)) = (1 —1,2—1,.... ¢ =D =1, - - D).

Note O, is Yé‘in—free, and pSQC’n((‘)ryn’SC) = {goSQC’n(Oy)} = {pch’n(OO)}' However,
itis not Yg ,-free, since ic(y, —Wq, (y,)) = (0,0, ..., m) € Yp ,. Remember that
any ¢ € Ftn(i(x)) which gives rise to A € Why, (®(G, X)) satisfies c(Sw,, [y]) =
t(Wy,, y) - ¢(sy) where

tWo,, ) = ¢ Ty )) - gy-1(0()) - (yp, )"

Meanwhile, in our case Wy, [y] —y = (—m)a,” € Y . It follows that
C(Swar b)) = P Wy (¥p)=¥p,¥) ')_((SWar (yp)—y,]) -e(sy).

For ¢ to be nonzero on Oy, i.e., ¢,,(Oy) contributes to the right-hand side of (10),

one has
X (Somar) =g gy (0@@)) - (yp, 0,

Moreover, we can argue as in Section 4B that this condition is also sufficient. One
has (y, a,) = 2r and thus k, o = 1. The equality is thus simplified to

(20) X (S_may) = gy-1(m)~".

Consider the exceptional character x = )_(12, . 8}3/ 2", which relies on the distin-
guished unitary character )‘(2, depending on a nontrivial character ' : F — C*
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(see Section 2C). Since x 2/ (Smay) = y]/,/(zv)’"Q("’rv ), by Lemma 4.3, equality (20)
becomes py () = (—1, w)’"2 - yy ()™, which can be further reduced to

yo (@)= (1, @)y (@)= (-1, @), yy ().

In particular, if ¥' = v, with a € O, then the equality is equivalent to
(a(=1)* @), =—1,ie,ae (=) (0;)%

5B4. The case where m = 2r. We claim that here (9’ = (’)’Q nse Clearly it
suffices to show that (’)f 02 (’)’LQ nse- Equivalently, 1f (’)y is not Yy ,-free, we
would like to show that 1t is not Yscy -free. Write i/(y,) = (x], x3, ..., x}). By
assumption,

ic(y —wlyD) =i (yp —W(yp)) € Yo.n

for some w € W. Entries of ic(y —W[y]) cannot be of the form 2x — 1 since m is
even; thus they are of the form 0, x; — x}k or x; +x;‘ — 1 for i # j. In this case, it
is easy to see that ic(y —W'[y]) € Yéfn for some W' € W, i.e., Oy is not Yé‘in—free.
Consequently,
. 4, —
dim Why (©(Sp5,”, X)) = l90..(O} ).

On the other hand, consider O, with i (y,) = (1, . —1,r). It is easy to see
90, n(OF n) ={p0..(0,)}. Therefore, we always have d1m Wh¢(®(Spgr), X)) =1
for any of the two exceptional characters of Sp(4r).

5BS. The case where m =2r + 1. Consider O, with ij(y,) =(1,2,...,r—1,r).
One can check £0.,(0y, ) = (0.1 (0,))} With O, € O, i.e., |90 (Of ) =1.
On the other hand,

9010} ) = (90O} Ulpa(O): 1<i <r)

with z; described as follows. Recall that we write z; , :=z; —p. For 1 <i <r —1,
z; issuch thatif(z; ) =(0,2,3, ..., i/—l—\l, ..., r, r+1), which denotes the r-tuple
obtained from the (r+1)-tuple (0,2, 3,...,r —1,r, r + 1) by removing the entry
i + 1. Meanwhile, z, is such that i (z,,,) = (2,3,...,r = L,r,r +1).

Note that O, € (’)g nse \ Og’n, since

ic(We, [2i] — 2i) = icWe, (2i,p) — 2i,p) = —(0,0,...,0,m) =ic(—ma,) € Yo .
The r + 1 elements pg ,(Oy) and pg ,(O;) (1 <i <r) are all distinct. It follows
that |5<)Q,n((9’ | = r + 1. Therefore,

,n,sc)
1 < dim Why, (©Spsr ™, x)) <r +1.

However, because there are only two exceptional characters x, the dimension
th(®(Sp(4r+2), X)) can take at most two values. In fact, we will determine
completely the value and its dependence on ¥.
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Proposition 5.2. Let X be an exceptional character of S_pgﬂrz). Then

if )_((s—mocrv) = —41/2 ’ yw(w)a
r+1 lf )_((S—may)=ql/2')’l//(w)-
172

dim Why, (©(SpSy ™+, %)) = {

Proof. First, we show that X () 1s equal to +¢
character. Consider

-yy (@) if ¥ is an exceptional

X (S—ma)? = X (S_ngy) - €™ Q@)
= X(Snay) ' - &
—q- (-1, @),
1/2

which has square roots exactly +¢'/“ - yy, (z). That is, an exceptional character x
of Sp(4r+2) is uniquely determined by the sign.

Second, arguing as in Section 4B , we see that ¢ ,(O;), 1 <i <r contributes
to the right-hand side of equality (10) if and only if (as in equality (15))

(21) )—((swar [zi]fzi) — 8D(Wozr [zil=zi,zi) . t(WOtr’ Zi)-

That is, dim Wh¢(®(Sp(4r+2), %)) =1+|{z;: the equality (21) holds for z;}|. Note
that, Wg, [z;] —z; = —ma,” for all i. On the other hand, we claim that the right-hand
side of (21) is independent of i. A simple computation gives (z; ,, &) = m and
therefore

SD(WM [zil—zi,2i) 't(Wa,» Zi)

(z,-,p,ozr)+l

Vo —1 ; . oY -
el gl e gl DG g (2 ) - Q@) )

— 8BQ(Zi,0l,v) . q |'mT+l'| -1 . g]//il (m)—l
= gv,fl(m)_l, by the evenness of Bg.
Thus, it follows that dim Why, (@(Sp(4r+2), X)) =1 or r + 1. Moreover, it is equal
to 1 if and only if X (S_may) # &y-1(m)~'. By Lemma 4.3,
gy m)~ =¢'"2py (@)
Thus, dim Why, (©(SpSy ™, %)) = 1 (respectively, r + 1) if and only if ¥ (S—may)
is equal to —q'/?. vy () (respectively q'’?. Yy (@)). U
We summarize the results in this section as follows:

Theorem 5.3. Consider the Brylinski-Deligne covering group S_p ") , Wherer > 2,
andn>1. Let X be an unramified exceptional character, then dim Why, (© (Sp(") X))
is equal to 1 if and only if the following hold:

o n=4r — 2 and X is the unique exceptional character satisfying (20), or

o n =4r and X is any exceptional character of Spgr), or
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o n =4r +2 and X is the unique exceptional character from Proposition 5.2, or

e n=2r+ 1 and X is the only exceptional character of S_pgrﬂ).

Further, consider the exceptional character ¥ y,, := )_(?//a -811;/ " associated with Y.
Assume ., has conductor Op, i.e.,a € 0;. Then,

dim Why, (@(SpSy =2, %)) = 1

ifand only if a € (—1)"*1.(0%)?, and dim Why, (©(SpS¥ 2, % y.)) = 1 if and only

ifae (=1 - (0%
6. The B,, r > 2 case

Consider the Dynkin diagram for the simple coroots for the type B, group Spin,, , ;:

Vv Vv
¥ % ) Y—1 ®r
O——O" e o of—==0
Let Y = (o), o), ..., |, ) be the cocharacter lattice of Spin,, ;, where

o, is the long coroot. Let Q be the Weyl-invariant quadratic form on Y such that
Q(a))=2,ie., Q(a;)=1for 1 <i <r—1. Then the bilinear form By, is given by

4 ifi=j=r;
2 ifl<i=j<r—1:
BQ(aiV,a}/= -1 ifl<i<r—2andj=i+1;

=2 ifi=r—1,j=r;
0 if o, «] are not adjacent.

The map i : P_, Zoy — @P:_, Ze; is given by

ip:(X1,X2,X3, ..., %) > (X1, X2 — X1,X3 = X2, ..., Xp1 — Xp—2, 2Xy — X;_1).
In particular, any (yy,...,y,) € @?:1 Ze; is equal to ig(y) for some y if and only
if 213; vi)-

The Weyl group is W = S, x (Z/2Z)", where S, is the permutation group
on P, Ze; and (Z/27); : e; — =e;. In particular, Wy,, 1 <i <r — 1, acts on
V1, y2, ..., Yr) € €D; Ze; by exchanging y; and y; 4. Also, Wy, acts by (—1)
on Ze,.

A simple computation gives

Yon={01.y2,.... 7)) €Bi_ 1 Ze;i :2|(X 1 i), yi=+=y, mod n, n|2y; for all i.},
Yéfn:{(yl,yz,...,y,)e@lelei :21(X0_1vi), nly; forall i.}

In particular, if n is odd, then Y , = Ysc’n.
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We note that 2p =Y . _, 2(r —i + 1)e;, and therefore p = > i, (r —i + 1)e;. If
y=(x1,%2, ..., %) € P; Za;, then
ig(p)= = =1+, 0-—x1—=F=2+1),...,5—xi1—F—i+t]),
Xl =X, — (= (=D +1),2x —x, — (r —r+1))
*

. * * ES %
=X, Xy, X X, X)),

Any (x{,...,x)) € @; Ze; such that 2 | (Zl xF+r(r+ 1)/2) is equal to ig(y,)
for some y.

6A. The case where n is odd. Here,

nY =Yy, =Yon.

Therefore, dim Why, (© (Sp1n2r w1 X)) =190, 2 (0! nse)ls where ¥ X 1s the only ex-
ceptional character of Spln(Zr)Jr - For n odd, the dual group for Sp1n2r +1 18 PGSp,,.

Proposition 6.1. Letting n be an odd number, one has
|6OQn(OQ,,SC)|22 ifnz2r+3,

90 (0, =0 ifn=<2r—1,
90 (0, I =1 ifn=2r+1.

Therefore, when n is odd, we have dim th(G)(SElg;)Jrl, x)) = 1 if and only if
n=2r+1.

Proof. First, assume that n > 2r + 3. We write

i5(y)) = (W5 b Xty xY), with 2 |<Z " r(r;l))

i=1

Forr >3,letyeY y' besuchthatig(y,)=(1,2,3,...,r—2,r—1,r) and y’' be
such that iB(y/’)) =(,2,...,r=2,r,r+1)). Forr =2, we take (x{, x3) = (1,2)
or (2,3), and let y and y’ be the associated element in Y respectively. In any case,
the two orbits O, and O, are Y ,-free. Moreover, ¢ ,(0,) # ©0,,(Oy). Thus,
for n > 2r + 3, one has

190.(0Oh, I = 2.

Second, assuming that n < 2r — 1, we want to show that (’)fQ nse =9 If
ig(yp) = (x{,x3,...,x", ..., x7) is such that x = xj mod n for some i # j,
then clearly O, ¢ (’)g n.ser Suppose n f(x)— x*) for all i # j, then since n <2r —1,
it is not hard to see that there always exist 7, j such that nl(x + x}). That is,

O, ¢ ob for any O,.

,n,sC
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Third, if n = 2r + 1, consider the orbit O, with

ig(yp) =, x5, ..., x 1, x)=(1,2,3,...,r=2,r—1,r).
(For r = 2, consider iz (y,) = (1, 2).) One has gpg, n((’)Q nse) = {90,1(Oy)}, and
therefore |gg, n(OQ nse)| =1 forn=2r+1. ([

6B. The case where n is even. Write n = 2m. Here,

Y={(G1.y2 ... y) € B Zei 2130, il
Moreover,

.
Yon={1.y2...y) €B,;Ze; : 2| Y yi. if yi=kin+m for all i or y;=k;n for all i},
i=1

Ygszfn:{(yl,yg,...,yr)e@ilei :n|y; for all i}.

We see easily that for y; = k;n +m, one has (yi1, y2,...,y,) € Yg , if and only
if 2|(rm). In fact, for n even, the dual group for Sp_mgz)H is equal to SOy, 41 if m
and r are both odd; otherwise, the dual group is Spin,, , |, see [Weissman 2015].
We discuss case by case according to the parities of r and m.

6B1. The case where m and r are odd. In particular, one has r > 3. In this case,
Yon= YQ ,» and @Q,n(og,n) = @Q,n(og,n,sc)- Consider the following situations:

e If n>2(r+1) (i.e.,, m > r + 1 and therefore m > r 4 2), consider y such that
ig(yp) = (X7, x5, ..., x}) is equal to
1,2,...,r=2,r—1,r) or (1,2,...,r=2,r,r+1).
We can check the two orbits Oy, for these two choices of y are Y ,-free, and

moreover their i 1mages with respect to the map g , are distinct in g , (O}, on)-
Thus, [pg, ,,(O )| > 2 in this case.

e If n <2r (i.e., m <r and so m <r —2), one can check that @Q,n(og,n,sc) =.
o If n=2r (note n #2(r+1)), i.e., m =r, one can also check g "(Og,n,sc) =J.
Therefore, dim th(®(Sp1n2r +1> X)) # 1 for both r and m odd.

6B2. The case where m is odd and r > 2 is even. Here, Yo , # Yéc’ - One has the
following situations:

e Assume n > 2(r +1) (i.e., m > r + 1 and thus m > r + 3).
Case I: If r > 3, consider y and y’ such that
ip(yo))=(0,2,...,r=2,r—1,r) and iB(y;)):(1,2,...,r—2,r,r—|—1).

We can check the orbits Oy, Oy are Yo ,-free and pg ,(Oy) # 90.,(Oy).
Thus, |£0.,(0p ) = 2.
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Case II: If r =2 and m > r + 5, consider O, and Oy with ig(y,) = (1, 2)
and i B(y;) = (2, 3). Then as in the preceding case, they are Y ,-free and
£0.0(0y) # ©0.n(Oy). Thus, [£0.,(0f )| = 2.

Case III: If r =2 and m =5, consider O, with ig(y,) = (1, 2). It is easy
to check pQ,n(OF’n) = {§0.,(Oy)}. On the other hand, let z, z’ be such that
ip(z,) =(1,4) and iB(z//O) = (2, 3). Then

@Q,n(og,n,sc) = {@Q,n(oy)» @Q,n(oz)’ @Q,n(oz’)}’

which is a set of size 3. Note, O,, O, € Og,n,sc\OF,,,. Thatis, |@Q,n(og’n)| 1
and |pQ,n(OF’n’SC)| = 3 in this case.
Let w, W € W be such that

igW[z] —2) =igWz']1=2) =—(5,5) € Y.

Write yg,, = ig(W[z] — 2) € Y ,. Then, dim Why, (@ (Spin'”

to 1, as in Section 5BS, if and only if

, X)) is equal

(22)  X(sy,,) #ePV0mI T(w,z) and R(sy,,) # P00 TW, 2).

However, as in Proposition 5.2, that e ?0en2) . T'(w, z) = eP0en) . T (W, )
can be easily checked, and the condition (22) is equivalent to

(23) X (s—sav) = —q"* - py (@).

This agrees with the result from Proposition 5.2 for the C g P case.

o If n <2r (i.e., m <r and therefore m <r—1), one can check @Q,n(og,n,sc) =d.

o If n=2(r+1) (note n # 2r), i.e., r =m — 1, one can check @ch,n(Og,n,sc)
{pSQC’n(Oo)} (and thus @Q,n(og,n,sc) = {$0,,(Op)}) is a singleton with

ig(0)=(r,—(r—1),...,-2,-1).

That is, Oy is Y&CY ,-free. However, it is not Yy ,-free, since there exists
w e W such that ig(W(0,)) = (1,2, ...,r — 1, 7). It follows that

ipW0,)—0,)=m,m,...,m,m) €Yg,.

Write yp , =W(0,) — 0, =w[0] — 0. It follows from an analogous argument for
Proposition 4.1 that dim Why, (©(Spin$.”, X)) = 1 if and only if ¥ is the unique
exceptional character satisfying

(24) X (8y0,) = T(W, 0).

One can explicate the equality by computing the right-hand side as in Lemma 4.2.
We omit the details here.
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6B3. The case where m is even and r > 3 is odd. Here, Yp , # Yféc’ .- We have:
e If n >2(r +1) (i.e., m > r + 1 and therefore m > r + 3), consider y and y’
such that
ip(yo))=(0,2,...,r=2,r—1,r) and iB(y;)):(1,2,...,r—2,r,r—|—1).
We can check the orbits Oy, Oy are Yo ,-free and pg ,(Oy) # 0., (Oy).
Thus, [, (O )] = 2.
o If n <2r (i.e., m <r and therefore m <r—1), one can check @Q,n(og,n,sc) =d.
e fn=2(r+1) (note n #2r),i.e.,r =m—1, then 90 , (O} , () = {£0..(Oy)}
is a singleton with
ig(0p) =(=r,—(r—=1),....,=2,-1).

The situation is exactly as in the third case of Section 6B2, i.e., Op is Y, S"’n—free
but not Yy ,-free. Consider W € W such that ig(w(0,)) =(1,2,...,r—1,7)
and

ipW(@O0,)—0,)=(m,m,...,m,m)€Ygp.

Write yg., = W(0,) — 0, = w[0] — 0. Then dim Why, (@ (Spins." %>, 7)) = 1 if
and only if x is the unique exceptional character satisfying

(25) X (8y,,) =T(W,0).

6B4. The case where m is even and r > 2 is even. Here, Yo , # Y}y ,. One has the
following situations:

o If n>2(r+1) (i.e.,, m > r+ 1 and therefore m > r + 2), there are two cases
to consider.

Case I: r > 4. Consider y and y’ such that
ip(yp)=(,2,...,r=2,r—1,r) and iB(y;,)=(1,2,...,r—2,r,r—|—1).

We can check easily that the orbits Oy and O, for these two choices are
Yo »-free. Note that |5OQ’"(06J1)| > 2, since 0 ,(Oy) # £0,.(Oy).

Case II: r =2. Consider y and y’ such thatig(y,) = (1, 2) and iB(y;) =(2,3).
For m > 4, O, and O, are both Yy ,-free. Moreover, we can check that
90100 5 € (£0.1(0)), 90.,(Oy)}. Now if m > 6, then o (Oy) #
£0.,,(Oy). On the other hand, for m =4, one has pg ,(0,) = o ,(Oy) and
so dim Wh,,,(@(Sping&, x)) = 1 for any exceptional character x in this case.

To summarize for the case m > r + 2:

dim Why (©(Spiny’, |, x) =1 ifm=4,r=2,
dim Why, (©(Spin, |, ¥)) =2 ifr >4andm >r+2, orr =2 and m > 6.
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e If n < 2r (i.e., m < r and therefore m < r — 2), one can check easily that
@Q,n(og,n,sc) =d.

o If n =2r (note n £ 2(r + 1)), i.e., r = m, one also has @Q.n(og,n,sc) = .

From the above discussion, we observe that for r = 2, the result agrees with that
for covering groups of type C,, as expected. Therefore, we just summarize our

result for covering Spingz)Jrl with r > 3 as follows.

Theorem 6.2. Consider Brylinski-Deligne covering ﬂlgﬁ)ﬂ withr > 3. Let X be

an exceptional character, then dim Why,(@(ﬁlgzr 1» X)) = 1 if and only if one of
the following holds:

e n=2(r—+1) and X is the unique exceptional character satisfying (24) or (25),

2r+1)

e n=2r+ 1 and ¥ is the only exceptional character of Sp_iHZr 1

7. The G, case

Consider G, with Dynkin diagram for its simple coroots:
af o
C—==0
Let Y = (&), ay) be the cocharacter lattice of G, where «;’ is the short coroot.
Let Q be the Weyl-invariant quadratic on Y such that Q(ozlv) =1 (thus Q(oe2v ) =13).
Then the bilinear form By is given by

2 ifi=j=1,
Bo(ey,af)=1-3 ifi=1,j=2,
6 ifi=j=2.

A simple computation gives
Yon= Yécn = Z(nalalv) ® Z(no,zozzv),

where ny, =n/ged(n, 3) and ny, =n.
The map ig : @1.2:1 Za) — @?:1 Ze; is given by

ig:(x1,x2) > (X1 —2x2, X2 — X1, X2).

Any (yi); € EB?:] Ze; lies in the image of i if and only if y; + y» + y3 =0.
The Weyl group W = (Wg,, Wy,) generated by w,, and W,, is the dihedral
group of order 12. In particular, Wy, (y1, y2, y3) = (2, Y1, ¥3) € EB?ZI Ze;, and

We, (V15 Y2, ¥3) = (=y1, —=¥3, —)2).
By using i, we could identify

You=Y5,={01.y2. )€ @D;_ Zei iy +y2+y3 =0,y =y = y3 mod n}.
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We have p = 5" 4+ 3y withig(p) =(—1,-2,3) € @?:1 Ze;. 1t follows that for
any y = (x1, x2) € @1‘2:1 Za

i) =(x1 —2x— 1, xa—x1 =2, %2+ 3) € P;_, Ze,.

We may write iG(y,) = (x], x5, x3). In particular, (x}, x3, x3) € @1‘3:1 Ze; lies in
the image of i¢ if and only if x] + x5 + x5 =0.

Since Yo, = Y5, it follows that dim th((a(G;”), ) = 90.4 (0 )], where
X is the only exceptional character of G ) as Z(GV) =1.

To determine the n such that dim Why, (@(Gé”), X)) = 1, we only give an outline
of the argument, the details of which consists of basic combinatorial computations:

e Forn=7,8 orn > 10, the orbit O, with ig(y,) = (=2, —1, 3) is Y ,-free.

e Forn=38, 10, 11 orn > 13, the orbit O, with ig(y;))z(—?), —1,4)is Y n-free.
Moreover, for n = 8,10, 11 or n > 13, one has pg ,(O,) # ©0.,(O,) for
ic(yp) =(=2,—1,3)and ig(y,) = (=3, —1,4).

o If Og n.sc 7 9, then necessarily |Y/Y3in| >|W|, ie.,n-ng, >12. Thus n > 4.
o One can also check by hand that O/ nse =9 forn=4,5,6,9.

e Forn="7or 12, gaQn(OFn)_{gan((’) )} withig(y,) = (=2, -1, 3), i.e,,
d1mWh¢(®(G(n), %)) =1 forn=7or12.

To summarize:

Theorem 7.1. Consider the Brylinski—Deligne covering G( " Let X X be the only
exceptional character on Gg ), then dim Wh,,,(@(Gg’), x)) = Llifand onlyifn =17
or 12.
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LIOUVILLE THEOREMS FOR f-HARMONIC MAPS
INTO HADAMARD SPACES

BoBO HUA, SHIPING L1u AND CHAO XIA

We study harmonic functions on weighted manifolds and harmonic maps
from weighted manifolds into Hadamard spaces introduced by Korevaar and
Schoen. We prove several Liouville-type theorems for these harmonic maps.

1. Introduction

Weighted Riemannian manifolds, also called manifolds with density or smooth
metric measure spaces in the literature, are Riemannian manifolds equipped with
weighted measures. Appearing naturally in the study of self-shrinkers, Ricci solitons,
harmonic heat flows and many others, weighted manifolds have been proven to
be nontrivial generalizations of Riemannian manifolds. There are many geometric
investigations of weighted manifolds; see Morgan [2005], Wei and Wylie [2009]
and many others. In this paper, we investigate various Liouville-type theorems for
harmonic functions on weighted manifolds as well as harmonic maps from weighted
manifolds into Hadamard spaces, i.e., globally nonpositively curved spaces in the
sense of Alexandrov (also called CAT(0) spaces), see, e.g., [Jost 1997b; Burago
et al. 2001].

A weighted Riemannian manifold is a triple (M, g, e fd Vg), where (M, g) is
an n-dimensional Riemannian manifold, dV, is the Riemannian volume element
induced by the metric g and f is a smooth positive function on M. The f-Laplacian

Ap=A-Vf-V

is a natural generalization of Laplace—Beltrami operator A as it is self-adjoint with
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respect to the weighted measure e~/ dVg,ie.,
f Afuve ™l dV, = / ulA pve=l dv, for u,ve C(M).
M M
A function u € W2

loe (M) is called f-harmonic ( f-subharmonic, f-superharmonic
resp.) if it satisfies A yu =0 (> 0, < Oresp.) in the weak sense, i.e.,

/ (Vu, V(p)e_f dVa=0 (<0, >0resp.) forany 0 < ¢ € C;°(M).
M
The Dirichlet f-energy of u is defined by
Df(u) = / \Vul?e=' dv,.
M

On the other hand, f-harmonic maps from weighted manifolds (M, g, e fd Ve)
to (singular) metric spaces (Y, d) have wide geometric applications. Harmonic
maps into metric spaces were initiated by Gromov and Schoen [1992] and then
investigated independently by Korevaar and Schoen [1993] and Jost [1994]. In
particular, when the domain is a Riemannian manifold, Korevaar and Schoen [1993;
1997] gave a complete exposition. In this paper we callamap u: M — Y f-harmonic
if u locally minimizes the f-energy functional E/ in the sense of Korevaar and
Schoen. For a detailed definition and its properties, we refer to [Korevaar and
Schoen 1993] or Section 4 below. For the special case, f-harmonic maps from
the Gaussian spaces, (R”, | - |, eI /4 dx), to Riemannian manifolds are called
quasiharmonic spheres, which emerge in the blowup analysis of harmonic heat flow
[Lin and Wang 1999; Li and Tian 2000]. In this paper, we study Liouville theorems
for f-harmonic maps into metric spaces, which generalize the previous results for
harmonic maps in both aspects of domain manifolds and target spaces.

Analysis on weighted manifolds and the corresponding f-Laplacian have been
extensively studied recently. We refer to [Munteanu and Wang 2011, 2012; Brighton
2013; Li 2005, 2016] for the f-harmonic functions on weighted manifolds, to [Li
and Wang 2009; Zhu and Wang 2010; Li and Zhu 2010; Li and Yang 2012] for
f-harmonic functions on the Gaussian spaces, to [Grigor’yan 2006, 2009] for heat
kernel estimates, and to [Lin and Wang 1999; Wang and Xu 2012; Chen et al. 2012;
Rimoldi and Veronelli 2013; Sinaei 2014, 2016] for f-harmonic maps.

In the first part of the paper we are concerned with Liouville-type theorems for
f-harmonic functions on weighted manifolds. Several Liouville-type theorems for
f-harmonic functions on the Gaussian spaces, also called quasiharmonic functions,
have been proved in [Zhu and Wang 2010; Li and Wang 2009], in which the main
techniques adopted are gradient estimates and separation of variables coupled with
ODE results. In this paper, we propose another approach, which seems to be
overlooked in the literature, to reprove many previous results. This method can
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be easily generalized, so that we may obtain Liouville theorems for f-harmonic
functions for a large class of weighted manifolds; see Section 2.

Our observation is that the weighted version of L”-Liouville theorem for weighted
manifolds can be used to derive various Liouville theorems concerning the growth
of f-harmonic functions. Yau [1976] first proved the L”-Liouville theorem (for
1 < p < 00) for harmonic functions on any complete Riemannian manifold. Later,
Karp [1982] obtained a quantitative version of this result. Li and Schoen [1984]
proved other L?-Liouville theorems (e.g., 0 < p < 1) under the curvature assumption
of manifolds. Karp’s version of L”-Liouville theorem has been generalized by
Sturm [1994] to the setting of strongly local regular Dirichlet forms. In particular,
our f-harmonic functions lie in this setting. By applying Sturm’s L?-Liouville
theorem to f-harmonic functions, we immediately obtain several consequences
which generalize previous results of [Zhu and Wang 2010; Li and Wang 2009; Li
and Zhu 2010; Li and Yang 2012]. Although the proof of L?-Liouville theorem is
quite general and only involves integration by parts and the Caccioppoli inequality
(thus it holds for all reasonable spaces), it is surprisingly powerful to obtain various
Liouville theorems for weighted manifolds with slow volume growth, especially
for the Gaussian spaces; see Corollaries 2.5 and 2.6 in Section 2. This does provide
another approach to derive Liouville theorems without using any gradient estimate.

In the second part, we study Liouville-type theorems for harmonic maps from
weighted manifolds to Hadamard spaces. For applications of f-harmonic maps with
singular targets we refer to Gromov and Schoen [1992]. Our first result is an ana-
logue to Kendall’s theorem [1990, Theorem 3.2]. The essence of Kendall’s theorem
is that validity of a Liouville theorem for f-harmonic maps into Hadamard spaces, a
priori a nonlinear problem, is reduced to that of a Liouville theorem of f-harmonic
functions, a linear problem. Kendall [1990] proved this theorem for harmonic maps
between Riemannian manifolds, by using probabilistic methods and potential theory.
Kuwae and Sturm [2008] generalized Kendall’s method to a class of harmonic maps
between general metric spaces in the framework of Markov processes. Note that
the harmonic maps they were concerned with are different from those of Korevaar
and Schoen [1993] when targets are singular. In this paper, we consider harmonic
maps into Hadamard spaces in the sense of Korevaar and Schoen. Following the
argument by Li and Wang [1998], we are able to prove the following Kendall-type
theorem by assuming local compactness of the targets. Recall that a geodesic space
(Y, d) is called locally compact if every closed geodesic ball is compact.

Theorem 1.1. Let (M, g, e~ /d Vy) be a complete weighted Riemannian manifold
satisfying that any bounded f-harmonic function is constant. Let (Y, d) be a locally
compact Hadamard space. Then any f-harmonic map from M to Y having bounded
image is a constant map.
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In the same spirit as Kendall’s theorem, Cheng, Tam and Wan [Cheng et al. 1996]
proved a Liouville-type theorem for harmonic maps with finite energy. Our second
result is a generalization of their theorem to f-harmonic maps into Hadamard spaces.

Theorem 1.2. Let (M, g, e /d Vg) be a complete noncompact weighted Riemann-
ian manifold satisfying that any f-harmonic function with finite Dirichlet f-energy
is bounded. Let (Y, d) be an Hadamard space. Then any f-harmonic map from M
to Y with finite f-energy has bounded image.

We will follow the line of Cheng, Tam and Wan’s reasoning, but using the
techniques in potential theory, especially the theory of Royden and Nakai’s decom-
position on Riemannian manifolds [Royden 1952; Nakai 1960; Sario and Nakai
1970]. This possible approach of potential theory was implicitly suggested by Lyons
in [Cheng et al. 1996, pp. 278]. We figure out the detailed arguments of this insight
and apply them to Liouville theorems of f-harmonic maps. The Royden—Nakai
decomposition theorem and Virtanen’s theorem, see, e.g., Section 5 for weighted
versions, play important roles in the classification theory of Riemannian manifolds
developed by Royden, Nakai, Sario et al. many years ago. We shall dwell on these
theories in the framework of weighted manifolds in Section 5 and utilize them to
prove Theorem 1.2.

The following theorem is, more or less, a consequence of the combination of
Theorems 1.1 and 1.2.

Theorem 1.3. Let (M, g, e /d Vg) be a complete noncompact weighted Riemann-
ian manifold satisfying that any bounded f-harmonic functions is constant. Let
(Y, d) be a locally compact Hadamard space. Then any f-harmonic map from M
to Y with finite f-energy is a constant map.

This theorem has an interesting application which motivates our studies in some
sense. Bakry and Emery [1985] introduced weighted Ricci curvature for weighted
manifolds. In particular, the so-called co-Bakry—Emery Ricci curvature

Ricy := Ric+V? f

turns out to be a suitable and important curvature quantity for weighted mani-
folds. The nonnegativity of Ric ; corresponds to the curvature-dimension condition
CD(0, co) on metric measure spaces via optimal transport, in the sense of Lott
and Villani [2009] and Sturm [2006a; 2006b]. By a theorem of Brighton [2013],
see also [Li 2016], the weighted manifold (M, g, e=/d V) satisfying Ricy > 0
admits no nonconstant bounded f-harmonic functions. Hence by Theorem 1.3 we
immediately have:

Theorem 1.4. Let (M, g, e /d Vg) be a complete noncompact weighted Riemann-
ian manifold satisfying Ricy > 0 and (Y, d) be a locally compact Hadamard space.
Then any f-harmonic map from M to Y with finite f-energy is a constant map.
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The novelty of the result lies in the generality of targets, i.e., including singular
metric spaces. In the smooth setting, Hadamard spaces are in fact Cartan-Hadamard
manifolds, i.e., simply connected Riemannian manifolds with nonpositive sectional
curvature. On Riemannian manifolds, Theorem 1.4 has been proved by Wang and
Xu [2012] and Rimoldi and Veronelli [2013] independently under an additional
assumption of fM e fd V, = oo for domain manifolds, while simply-connectedness
of the targets is not needed. Note that the weighted volume assumption here
cannot be derived from the curvature condition Ricy > 0 in general. In addition,
there is a nontrivial f-harmonic map from a domain manifold with Ricy > 0 and
f " e=ld Ve < 00 to a nonpositively curved target manifold, constructed by Rimoldi
and Veronelli [2013, Remark 3.7]. Our contribution is to drop the weighted volume
assumption by assuming simply-connectedness of the targets and to extend the
result to singular spaces.

For harmonic maps into singular Hadamard spaces, the arguments in [Wang and
Xu 2012; Rimoldi and Veronelli 2013], both following Schoen and Yau [1976], do
not work any more since we cannot apply Bochner techniques as in those works
due to the singularity of targets. Although a weak Bochner formula can also be
derived following Korevaar and Schoen [1993], it is insufficient for our purpose.
Fortunately, we can circumvent these technical problems by proving Theorem 1.3,
which follows from Kendall-type theorems. This does provide another approach to
Liouville theorems for f-harmonic maps without using Bochner techniques. This
is one of the main points of the paper.

The rest of the paper is organized as follows. In Section 2, we study L? Liouville
theorem for f-harmonic functions and give some applications. In Section 3, we
consider harmonic maps with smooth targets. In Section 4, we define f-harmonic
maps into Hadamard spaces and prove Theorem 1.1. In Section 5, we dwell on the
Royden-Nakai theory and prove Theorems 1.2 and 1.3.

2. f-harmonic functions

In this section, we study L”-Liouville theorems for f-harmonic functions and
their applications. We will show that L”-Liouville theorems are quite powerful for
weighted manifolds with finite volume.

The L?-Liouville theorem, 1 < p < oo, for harmonic functions (or nonnegative
subharmonic functions) was initiated by Yau [1976] on complete Riemannian
manifolds. Karp [1982] obtained a quantitative version of this Liouville theorem.
Later, Sturm [1994] proved an L?-Liouville theorem for strongly local regular
Dirichlet forms. The following theorem is a special case of Sturm’s result for
f-harmonic functions. We denote by B, := B,(xp) the closed geodesic ball of
radius r centered at a fixed point xg € M.



386 BOBO HUA, SHIPING LIU AND CHAO XIA

Theorem 2.1 [Sturm 1994, Theorem 1]. Let (M, g, e~ /d Vg) be a complete weighted
Riemannian manifold and u be a nonnegative f-subharmonic function (or an f-
harmonic function). For 1 < p < 00, set v(r) := fBr lulPe=f dVy. Then either

* r
inf/ ——dr < o0,
o U(

a>0 v r)
or u is a constant.

We state several consequences of Theorem 2.1.

A quite useful consequence is about f-parabolicity of M. Recall that a weighted
manifold (M, g, e~ /d Vg) is called f-parabolic if there are no nonconstant nonneg-
ative f-superharmonic functions on M. For a compact set K C M, the f-capacity
of K is defined as

cap/(K):= inf f IVopl?e™ dV,,
M

@€eLipy (M)
plk=1

where Lip, (M) is the space of compactly supported Lipschitz functions on M.
Proposition 2.2 ( f-parabolicity). Let (M, g, e~ /d Vg) be a complete weighted man-
ifold. Then the following are equivalent:

(i) M is f-parabolic;

(ii) cap/(K) = 0 for some (then any) compact set K C M,
(iii) any bounded f-superharmonic function on M is constant.
Proof. (1) < (ii). This follows from [Grigor’yan 1985, Proposition 3]; see also
Proposition 2.1 of [Grigor’yan 1999].

(i) < (iii). This follows from the fact that any nonnegative f-superharmonic
function u can be approximated by bounded f-superharmonic functions u, =
min{u, n}, n € N. O

We say a weighted manifold (M, g, e=/d V,) has the moderate volume growth
property if

© r
(D /; v, (B) dr = o0,

where V;(B,) := [, e™/ dV,.

Corollary 2.3. Let (M, g, e~ /d V¢) be a complete weighted Riemannian manifold
satisfying the moderate volume growth property. Then M is f-parabolic.

Proof. Let u be a bounded f-superharmonic function on M. Then for any a > 0,

* <y
——dr>C dr = o0.
/a v(r)  — /a Vi (By)
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Theorem 2.1 yields that u is a constant. This proves the corollary. (|

Remark 2.4. Corollary 2.3 slightly generalizes [Wang and Xu 2012, Theorem 1.4].
In particular, this corollary implies [Zhu and Wang 2010, Theorem 2].

We can also derive several Liouville-type theorems for f-harmonic functions
from Theorem 2.1.

Corollary 2.5. Let (M, g, e~/ dVy) be a complete weighted Riemannian manifold
and u be a nonnegative f-subharmonic function (or f-harmonic function). Assume
one of the following holds:

(1) u= 0 Ww%) for some nonnegative function w with wad_z( . ,xo)e_fd\/;, <00
and some a € (0, 1);
(i1) fM d (-, xp)e ! dV, < oo for some k > —2 and u = O(dP (-, xp)) for some
B €0, k+2);
(iii) [}, e/ dV, <ocoandu= 0(d’(-,xp)) for B € (0,2);

(v) f > Cd(-,x0)? for some C >0, B > 0 and fMe*‘Sdeg < 00 for some
0 <6 < 1 and u has polynomial growth;

W) f=0Cd(, x0)P for some C > 0, B > 0 and the Riemannian volume has
polynomial volume growth and u = O(e“Cd('*XO)ﬁ), ae(0,1).

Then u is a constant.

Proof. For (i), we see that there exists p € (1, oo) such that |u|” = O (w). Hence

v(r) 1 / lulPe=" dV,
B,

m ) logr

¢ wEx) - _
= Togr /B P’ Ve =o

It follows from Theorem 2.1 that u is a constant. The case (ii) follows from (i) by
letting w = d*t2(., x0). The case (iii) follows from (ii) by letting k = 0.
For (iv), let us observe for any 1 < p < o0,

/ |u|pe_deg < C/ d”’(x,xo)e_f(x)dvg(x) < Cf e_‘sdeg < 00,
M M M

where s > 0. Then the statement also follows from Theorem 2.1. The case (v) can
be proved in a similar way. ([

The following result is a direct corollary of the above (v).

Corollary 2.6. Let u be an f-harmonic function on the Gaussian space, i.e.,
Au — %(x, Vu) =0.

2 .
Ifu= 0 (1'% as x — 00, for some 0 < «a < 1, then u is a constant.
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Remark 2.7. Corollary 2.6 implies that there are no nonconstant polynomial growth
f-harmonic functions on the Gaussian space. This improves the result in [Li and
Wang 2009, Theorem 4.2]. By Caccioppoli’s inequality, Corollary 2.6 can be also
derived from Li and Yang [2012, Corollary 1.2] .

In the remaining part of this section, we study the L”-Liouville theorem in-
troduced by Zhu and Wang [2010] using a different measure from ours. We
shall explain why the critical exponent of the L”-Liouville theorem in [Zhu and
Wang 2010, Theorem 3] is p = n/(n —2) (n > 3) by applying our result. Let
(M, g, e 1d V,) be an n-dimensional (n > 3) complete weighted manifold. In fact,
they consider the L? space with respect to the Riemannian volume in a modified
Riemannian manifold M = (M, g, dV3), denoted by LP(M, d V3), where g is a
conformal change of g given by g = e~2//("=2¢_ Since this new manifold M may
be incomplete, e.g., Gaussian space, Yau’s L?-Liouville theorem fails in this setting.
In the following, we use the L”-Liouville theorem on weighted manifolds to show
the one on modified Riemannian manifolds.

Theorem 2.8. Let (M, g, e /d V) be an n-dimensional (n > 3) complete weighted
manifold, M= (M, g,dV3) be the modified Riemannian manifold and u be a
nonnegative f-subharmonic function (or f-harmonic function) on M. For any p >
n/(n—?2), there exists a constant § = 6(p, n) € (0, 1) such that iffM e~ dVy <00
andu € LP(M, dV3), then u is a constant.

Proof. Forany p>n/(n—2),letq =2p/(p+n/(n—2))>1, a=p/q>n/(n—-2)
and o* =a/(@—1) € (1,n/2). Set § = (n —2a*)/(n —2) € (0, 1). By Holder’s
inequality, we can verify that

1

2f i 20" f oF
/uqe_fd\/ng uqe"—ZdVg,f(/ uq“dVE) (f en—Zd\/g)
M M M M
. L
:(/ u”dVg) (/ e_‘sdeg> < 00.
M M

The statement follows from Theorem 2.1. O

This yields a direct corollary which generalizes [Zhu and Wang 2010, Theorem 3],

which is restricted to the Gaussian spaces, to general weighted manifolds. The
Riemannian manifold (M, g, dV,) is said to be of subexponential volume growth if
Vg (r) := Vo (B, (x0)) = €° for some (then all) xo € M.
Corollary 2.9. Let (M, g, e_deg) be an n-dimensional (n > 3) complete weighted
manifold satisfying that f > CdP (-, xq) for some C >0, B > 0 and Ve(r) = o),
Let M = (M, 8. dV3) be the modified Riemannian manifold. Then for any p >
n/(n —2), the f-harmonic function in L”(M, dV;) is constant. In particular, for
B =1, it suffices to assume (M, g, dV,) has subexponential volume growth.
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Proof. By virtue of Theorem 2.8, it is sufficient to prove |, M e d Ve < 00 where 8
is the constant in Theorem 2.8. We see by the coarea formula that

1 00
f e_‘sdeg :/ f e dA, dr+/ / e dA, dr
M r(X()) 1 r(x())
< C0+f / ¢
Sr(x0)

_c0+/ = d “Ve(r)dr
1
=c0+e—3Cr"1@(r)]‘l’°+5c/1 Bri=1e " v (ry dr.

Since V,(r) = ™) there exists R large such that

scrf

1
Ve(r) <e2 for r > R.

It follows that lim,_, o e °"" V,(r) = 0 and [ grP=1e 5"V, (r) dr < oo. Tt
follows that [, e 0 dV, < 0o. This completes the proof. (]

3. f-harmonic maps into Cartan—~Hadamard manifolds

In this section, we prove Theorem 1.4 in the case that the target Y = N is a
Cartan—Hadamard manifold.

Theorem 3.1. Let (M, g, e~ /d Vy) be a complete weighted Riemannian manifold
which is f-parabolic and N be a Cartan—Hadamard manifold. Then any f-
harmonic map with finite f-energy, i.e., Ef(u) := fM |Vu|?e= dV, < o0, is a
constant map.

Proof. We use a construction by Rimoldi and Veronelli [2013] which associates an
f-harmonic map with a harmonic map on some higher dimensional warped product
manifold.

Precisely, let M := M x,; S! denote a warped product, where S' = R/Z with
Vol(S!) = 1, with the metric on M given by g(x,1) =g(x) + e 2/ ™Mdr?. Note that
M is complete. It follows from [Rimoldi and Veronelli 2013, Proposition 2.5 and
Lemma 2.6] that M is parabolic and the map u : M — N, defined by u(x, t) =u(x)
is a harmonic map. Moreover, Ej; (u) = E 1{,[(14) < 00.

Now by applying [Cheng et al. 1996, Proposition 2.1 and Theorem 3.1] to # and
M, we know that the i image of i, (M) = u(M), is bounded in N. Since N is a
Cartan—-Hadamard manifold, d2(it( - ), Q) is a subharmonic function for any Q € N,
which is also bounded. By the parabolicity of M, we know that d?(u(-), 0) is
constant for any Q € N. This proves the theorem. (]
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Theorem 3.2. Let (M, g, e /d Vi) be a complete weighted Riemannian manifold
satisfying Ricy > 0 and N be a Cartan—-Hadamard manifold. Then any f-harmonic
map with finite f-energy E/(u) < oo is a constant map.

Proof. We divide the theorem into two cases:
(@ [,e dVy, =00,
(b) [, e dVy < oo

For case (a), it was already proved in [Wang and Xu 2012, Theorem 1.2] or [Rimoldi
and Veronelli 2013, Theorem 3.3] for general Riemannian target of nonpositive
curvature (without the assumption of simply-connectedness). For case (b), we
observe that M satisfies the moderate volume growth property (1). By Corollary 2.3,
M is f-parabolic. Then the statement follows from Theorem 3.1. ]

Remark 3.3. Comparing Theorem 3.2 with [Wang and Xu 2012, Theorem 1.2] or
[Rimoldi and Veronelli 2013, Theorem 3.3], we remove the condition of the infinity
of f-volume for M but add the assumption that N is simply connected.

4. f-harmonic maps into Hadamard spaces

In this section, we define f-harmonic maps from an n-dimensional complete
weighted Riemannian manifold (M, g, e~/ dVy) to a general metric space (Y, d).
For that purpose we investigate an f-energy functional E/ whose definition given
here follows Korevaar and Schoen [1993], where a Sobolev space theory for maps
from Riemannian domains to metric spaces was developed. Note that the energy
functional has been further extended to maps from complete noncompact Rie-
mannian manifolds, and even more generally the so-called admissible Riemannian
polyhedrons with simplexwise smooth Riemannian metric, in Eells and Fuglede
[2001] (see Chapter 9 therein).

We consider Borel-measurable (equivalently, measurable with respect to e ~/d Ve)
maps u : M — Y (u then has separable range since M is a separable metric space;
see [Dudley 2002, Problem 10 in Section 4.2]). The space L? (My,Y) is defined

loc

as the set of Borel-measurable maps u for which d(u(-), Q) € leoc (M, e_deg)
for some point Q (and hence for any Q by the triangle inequality) in Y. Since this
space is unchanged if we use the unweighted measure d'V, instead of e d Ve in
its definition, we will write L2 (M, Y) for simplicity in the following. When M is

loc R
compact, L120C(M, Y) is a complete metric space, with distance function d defined by

d*(u, v) := / d?(u(x), v(x))e D dV, (x),
M

provided that (Y, d) is complete.
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The approximate energy density for amap u € L2 (M, Y) is defined for ¢ > 0 as

loc

(2) es(u) == —

Wy

’

1 / d?*(u(x), u(y)) doy ¢ (y)
S(x,¢)

82 gn—l

where doy . (y) is the (n — 1)-dimensional surface measure on the sphere S(x, ¢)
of radius ¢ centered at x induced by the Riemannian metric g, and w, is the
volume of the n-dimensional unit Euclidean ball. One can check that the function
e.(u) € L\ (M) (see [Korevaar and Schoen 1993]). Then we can define the f-

loc

energy functional E/ by

Ef(u) ‘= sup (limsupf neg(u)e_fdvg)
neCo(M) e—0 M
0<n<1
2
loc

WIL’CZ(M, Y),if EX (1)) < oo for any relatively compact domain  C M.

We say a map u € Li (M,Y) is locally of finite energy, denoted by u €

Theorem 4.1. Ifu € WI’Z(M, Y), then there exists a function e(u) € Ll (M), such

loc loc

that for any n € Co(M), the following limit exists
3) lim neg(u)e_fd\/;, ::/ ne(u)e_deg,
e—>0 M M

which serves as the definition of e(u).

Proof. By definition, u € WIL’CZ(M, Y) implies that for any connected, open and
relatively compact subset Q C M, uq € L3(Q,Y) and

sup <limsup/ {eg(um)dVg) < 00,
£eCy(2) =0 Q
0=¢=l

that is, u|q € W12(, Y) in Korevaar and Schoen’s notation [1993].
Now by their Theorem 1.5.1 and Theorem 1.10, we know that there exists a
function e(u|q) € L' () such that

@) liII(l) Ceg(u)dV, =/ Ce(u)dV, forall ¢ e Cy(R2).
E—> Q Q
In particular, one has
®)) lim neg(u)e_deg =f ne(um)e_deg for all n € Cy(R2).
e—>0 Q Q

We then define a function e(#) on M by e(u)|q := e(ujq) for any 2 C M with
smooth boundary. One can show that e(u) is well defined. For that purpose, one
only needs to check e(u|o) = e(u|o,) on | C Q2 where both €2; and 2\ €21 have
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Lipschitz boundary. This is true since by the trace theory [Korevaar and Schoen
1993, Theorem 1.12.3], one has

fe(ug)d‘{ng €(M|Ql)d‘{g+f e(um\gl)dVg.
Q Ql Q\Ql

Then (3) follows from (5) which proves this theorem. U
Remark 4.2. By the definition of e(x) and (4), we know

e(u)(x) = |Vul*(x),

where |Vu|?(x) is the energy density function in [Korevaar and Schoen 1993]. This
function is consistent with the usual way of defining |du|? for maps between Rie-
mannian manifolds. Therefore we use |Vu|?(x) instead of e(u)(x) in the following.

Remark 4.3. By a polarization argument, we can check that for any two functions
hi,hy € WA (M, e=TdV,),
1 h —h h —h d
T / (h1(x) 1(y))§ 2(x) = ha(y)) doy, g(y) O qv, (x)
M S(x,¢) € &"

e—0

:/ n(x)(Vh1(x), Vha(x))e /@ dV,(x) forall e Co(M).
M

Remark 4.4. With (3) in hand, by the definition of E/, we can derive (see [Eells
and Fuglede 2001, Theorem 9.1]),

Ef(u)=/ |Vul>e=/ dV, forall ue WM, ).
M

loc

In particular, we define DY (u) = Ef(u) when u is a scalar function.

Remark 4.5. As in [Korevaar and Schoen 1993], the definition of E/ is unchanged
if we replace e.(x) by ye.(x) := fo €,:(x) dv(A), where v is any Borel measure on
the interval (0, 2) satisfying v >0, v((0, 2)) =1, fo ~2dv()) < oo. For example,
the approximate energy density function can be chosen as follows.

(1) When n > 3, for the measure dv; (L) = nA" 'dr, 0 < <1,
n / d*(u(x), u(y)) dVy(y)
B(x,e)

UleE(x)=_ dz(x,y) on )
(2) For the measure dvs(A) = (n +2)A"1dr, 0 <A < 1,
n+2 / d*(u(x), u(y)) dV, )
B(x,e)

vzea(x) =

Wy, g2 gn

Remark 4.6. For n > 3, by introducing a conformal change of the metric M=
(M, g,dV3) where g = e~2//"=2) ¢ and employing the energy density ,, e, many
problems for weighted manifolds can be reduced to those on (possibly incomplete)
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unweighted manifolds. However, we prefer to write the proofs in a unified way
which includes the case n = 2.

We call a map u € W]Lf(M, Y) f-harmonic if it is a local minimizer of the
energy functional E/, i.e., for any connected, open and relatively compact domain
Qc M, Ef(u) < Ef(v) for every map v € WIL’CZ(M, Y) suchthatu = v in M\ Q.

We now investigate the properties of the function d(u(-), Q) on M, where

u:M — Y is an f-harmonic map and Q € Y. The first observation is that
6) E(d(u, 0)) < E/ ).
This can be derived from the triangle inequality

d(x), Q) —d(y), @)% <d*w(x), u(y)).

Recall that an Hadamard space (also called global NPC space) is a complete
geodesic space which is globally nonpositively curved in the sense of Alexandrov,
i.e., Toponogov’s triangle comparison for nonpositive curvature holds for any
geodesic triangle. The class of Hadamard spaces, natural generalizations of Cartan—
Hadamard manifolds, includes all simply connected local NPC spaces (see, e.g.,
[Burago et al. 2001]). When the target space (Y, d) is an Hadamard space, we have
the following theorem.

Theorem 4.7. Ifu € le’CZ(M, Y) is an f-harmonic map into an Hadamard space Y,
then for any Q €Y,

(7) —/ (Vn(x), Vd(u(x), Q))e_deg >0 forall0<neLipy(M),
M

ie,dulx), Q)€ WIL’CZ(M) is an f-subharmonic function.

This theorem is a consequence of Jost [1997a, Lemma 5]. The subharmonicity
of d(u(-), Q) for harmonic maps from an admissible Riemannian polyhedron with
simplexwise smooth Riemannian metric to an Hadamard space was obtained by Eells
and Fuglede [2001, Lemma 10.2]. Their argument essentially also works in our set-
ting. Using Remark 4.3, Jost’s lemma can be reformulated in our setting as follows.

Lemma 4.8 [Jost 1997a, Lemma 5]. Ifu € W,"*(M, Y) is an f-harmonic map into

loc

an Hadamard space Y, then for any Q € Y and n € Lipy(M), 0 <n <1,
®) — / (Vi(x), Vd*(x), Q))e /¥ dVy (x) = 2 f (o) Vul* (x)e ™/ dV, (x).
M M
In fact, (8) still holds for nonnegative functions n € W12(M) with compact

support. (When E'(u) is finite, (8) even holds for 0 <7 € WOI’Z(M).) Now we can
prove Theorem 4.7 concerning the f-subharmonicity of d(u(-), Q).
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Proof of Theorem 4.7. Denote ¢(x) :=+/x2 + ¢ for ¢ > 0. For any 0 < n € Lip,(M),
we choose a compactly supported function

n(x) 1.2
— e W"*(M).
M) = S dw), 0)) ()

Then we calculate (we suppress the measure e~/ d V, in the notation)

de(u(X) 0)
. V& u®),0)
f (V). VVd> (u(x),Q) + £) = [M< "2p(d(u(x), Q)>>

- _/M(Vm(X),Vd (u(x),Q))

~ f2n d(u(x),0)¢' (d(u(x),0))
| pdu(x),0)

du(x), 0)¢'[d(ux), Q) _ d*(ux), Q) <1
p(d(u(x), Q)) d*(u(x), Q)+ =

and by (6), |Vd(u(x), Q)|> < |Vu(x)|% we obtain

©) - / (V). Va2 (). Q) 6] = /Vn1(X)Vd2(u(X) 0)- / mIVu P,

Applying Lemma 4.8, and letting ¢ — 0, we complete the proof. O

IVd(u(x),0)|%

Note that

Now we adopt the method of Li and Wang [1998], a geometric analysis method,
to prove Kendall’s theorem when the target is a locally compact Hadamard space.

Proof of Theorem 1.1. By assumption, the space of bounded f-harmonic functions
is of dimension one. Then by the arguments of Grigor’yan [1990], every two
f-massive subsets of M have a nonempty intersection. Here by a f-massive subset,
we mean an open proper subset of 2 C M on which there is a bounded, nonnegative,
nontrivial, f-subharmonic function 4 such that /3o = 0. Such function 4 is called
an f-potential of the set 2.

Let M be the Stone-Cech compactification of M. Then every bounded continuous
function on M can be continuously extended to M. Let  be an f-massive subset
of M, we then define the set

S= (] {FeM|h@®) =suph).
h: f-potential
functions of
By the maximum principle for f-subharmonic functions, we know S C M \ M.
Then, by the same arguments as in [Li and Wang 1998, Theorem 2.1], we can
prove S # &. Furthermore, for any bounded f-subharmonic function v, we have
Sci{teM|v®) = sup v}.
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Let us take a point Q¢ € u(M). If u(M) = {Qo}, then we complete the
proof. Otherwise, we have u(M) \ {Qo} # @. Since u is an f-harmonic map,
by Theorem 4.7, the function h(x) :=d(u(x), Qp) is an f-subharmonic function,
which is bounded and nonconstant. Hence £ attains its maximum at every point
of S. For a point X € S, there is a sequence {x,} in M converging to X in M. Note
that u# has bounded image. Thus by local compactness of the target Y, there exists
a subsequence of {u(x,)} converging to Q; € Y. Now again, if u(M) = {Q}, the
proof is complete. Therefore, we can assume u(M) \ {Q1} # &. By Theorem 4.7,
the function 4, (x) :=d(u(x), Q1) is a bounded f-subharmonic function. Thus 4,
achieves its maximum on S, in particular at X. That is,

sup ha(x) = ha(X) =d(Q1, Q1) =0.
This contradicts our assumption. Therefore u(M) = {Q,} is a constant map. [

Remark 4.9. As pointed out to us by K. Kuwae, one can prove Kendall’s theorem
by combining the methods of Li and Wang [1998] and Kuwae and Sturm [2008] for
harmonic maps into Hadamard spaces if the weak topology on the target (see [Jost
1994, Definition 2.7]) coincides with the strong one, or equivalently any distance
function d(x, - ) on the target is weakly continuous for any x € Y.

5. Liouville-type theorems

In this section, we shall prove our main theorem. First, we review the classical clas-
sification theory of Riemannian manifolds in the framework of weighted manifolds.
For more details we refer to [Glasner and Nakai 1972] and [Sario and Nakai 1970].

We recall some function spaces of (M, g, e_deg). Let D/(M) be the set
of Tonelli functions' on M with finite Dirichlet f-energy. The Royden algebra
BD/(M) is the set of bounded functions in D/(M). Under the norm |u| =
sup,, lul + v/ Df(u), BDY(M) becomes a Banach algebra. For a sequence {u,} in
D/ (M), we say u = C — limu, if u,, converges to u uniformly on compact subsets
and u = B—limu, if in addition {u,} is uniformly bounded. We say u = D/ —limu,
if lim D/ (u, — u) = 0. We also write u = CD/ —limu,, or u = BD/ —limu, to
indicate two types of convergence.

Let C3°(M) be the set of smooth functions with compact support and D({ (M) be
its closure under the CD/-topology. We also denote by HD/(M) and HBD/(M)
the sets of f-harmonic functions in D/(M) and BD/(M) respectively.

Proposition 5.1. Ler (M, g, e_deg) be an f-parabolic weighted Riemannian
manifold. Then any f-subharmonic function with finite Dirichlet f-energy is
constant. In particular, any function in HDY (M) is constant.

1 A Tonelli function is a continuous function with locally L2-integrable weak derivatives.
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Proof Let u € D/(M) be f-subharmonic. we may assume u > 0 since max{u, 0}
is also f-subharmonic. Let {M,} be an exhaustion of M and take wy € BD/(M)
with wi|y, = 1, wilp\m, = 0 and f-harmonic in M \1\70. It follows from the
f-parabolicity of M that BD/ — lim wy = 1. On the other hand, set vy € BD/(M)
with vi|y, = u, vklm\m, = 0 and f-harmonic in M \ M, one can verify that
v = BDY — lim vy exists. Set now it = u — v, and ii,, = min{ii, m}. Then ii =
DY —1limi,,. Since i is nonnegative and f-subharmonic, we can compute

(10)  0>-— f iimwiA piie™ dV, = / (V(imwy), Vitye™ dV,.
M\ Mo M
As w; — 1 in D/-topology, we deduce from (10) by letting k — oo that
/ (Vity, Vitye ' dV, =0,
M
which yields D/ (ii) = 0 by letting m — oo. Since i| M, =0, we see u = v. Finally,

Df(u)=/ (Vu, Vye ™ dV, = lim [ (Vu, Vop)e ™/ dV, <0,
M k—)OO M

and hence u is a constant. O

The following are the weighted version of the Royden—Nakai decomposition
theorem and the Virtanen theorem. The proofs are almost the same as the unweighted
case. For the convenience of the reader, we shall give proofs here.

Theorem 5.2 (Royden—Nakai decomposition theorem). Let (M, g, e 'd V) be a
non- f -parabolic weighted Riemannian manifold. Then any function u € DY (M) has
a unique decomposition u =h+g, where h € HD/(M) and g € D({(M). Moreover,
if u is f-subharmonic, then u < h.

Proof. Let u € Df(M). Assume first u > 0. Let {M;} be an exhaustion of M.
Take h; € Df(M) such that Ay, is f-harmonic in My and hy|y\m, = u. Denote
gr = u — hy. It follows from the maximum principle that /; > 0. One can check

Dﬁw:i/uvmﬂ+wv%ﬁ+2ﬁmhV&»é*d%f=DRM)+DR&x
M

where in the second equality we used integration by parts and the facts g |\, =0
and hy is f-harmonic in M. Similarly we have for m < k

DY (hy — hy) = DY (hy) — DY ().

Thus {h;} is a Df—Cauchy sequence, i.e., DY(hy — h,,) is small enough when m
and k are large enough.
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Let wy € BD/(M) with wilmy, = 1, wi|lm\m, = 0 and harmonic in Mj \ M.
It follows from the non- f-parabolicity of M that w = BD/ — lim wy, satisfies
D/ (w) > 0.
We can compute
- - Owk
(Vegr, Vwie™ dV, = (Vegr, Vwie™ dV, = gk—e ' dAg,
M Mi\M oMy OV

where v is the unit inward normal of d M. Since wy is f-harmonic in M \ My, it
follows from the Hopf lemma that 0wy /dv > 0 along M. It follows that

0 0
(1nf hy —supu) ﬂe_f dAg < / —gkﬂe_f dA,
aMy  Jam, OV Mo v

:—/ (Vg, Vuy)e ™ dV,
M
1/2
< [Df (g0 D (wi)]"? < [D! ) DI (wi)] "
Combining this with the fact that faMo Qwy/dv)e~/ dV, = DY (wy), we find

Bl

infhy < inf hy < supu +
My Mo M,

Since w = BD/ — lim wy, satisfies D/ (w) > 0, we see infyy, hy is bounded. Conse-
quently, by the Harnack inequality for f-harmonic functions, sup,, /i is bounded.
Hence there exists a subsequence of Ay, still denoted by /Ay, such that {h;} is a
C/-Cauchy sequence.

Together with the fact {A;} is a D/-Cauchy sequence, we conclude that /iy
converges to some 4 in the CD/ -topology and h € HD/(M). One may directly
check that g converges to g = u — h in the CD/-topology and thus g € D({ (M).

Furthermore, if u is f-subharmonic, from the construction of /; we see u — hy,
is f-subharmonic and vanishes on d M} and in turn by the maximum principle that
h>u.

If u is not nonnegative, we can run the same process for u™ = max{u, 0} and

u~ = —min{u, 0} as before and get the same result.
The uniqueness follows from the fact that any 4 € HD/(M) and g € D({ (M)
satisfy [,,(Vh, Vg)e ™/ dV, =0. O

Theorem 5.3 (Virtanen’s theorem). For every u € HDY(M) there exists a sequence
hx € HBDY(M) such that u = CD' —lim hy. In particular, M admits no noncon-
stant f-harmonic function on M with finite Dirichlet f-energy if and only if M
admits no nonconstant bounded f-harmonic function on M with finite Dirichlet

f-energy.
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Proof. We may assume M is non- f-parabolic, since otherwise, any u € HD/(M)
is constant, due to Proposition 5.1, whence the statement is trivial. We may also
assume u > 0, since otherwise we do the same analysis on u™ and u~. Set for any
k € N, uy = min{u, k}. Then u; is f-superharmonic and u = D/ — limuy. By
Royden—Nakai decomposition, uy = hy + gx, where hy € HD/(M) and gk € D({ (M).
Moreover, g; > 0. One can verify

DY (u —uy) = DY (u — hy) + D' (gr).

Hence D/(u — h) — 0 and Df(gk) — 0. Since 0 < gx < uy < u is bounded in
any compact set of M, we conclude that g; converges to some constant function
c in the CD/-topology. It follows from the non- f-parabolicity of M that ¢ = 0.
Therefore h; converges to u in the CD/ -topology.

The second assertion follows easily from this approximation. U

The following lemma was first proved by Cheng, Tam and Wan [Cheng et al.
1996, Theorem 1.2].

Lemma 5.4. Let (M, g, e~ /d V) be a weighted Riemannian manifold. Then the
following two statements are equivalent:

() any u € HDf(M) is bounded,

(ii) any nonnegative f-subharmonic function on M with finite Dirichlet f-energy
is bounded.

Proof. (ii) =(i). This is quite simple by observing the fact that if u € HD/(M),
then ~/u? + 1 is a nonnegative f-subharmonic function on M with finite Dirichlet
f-energy.

(i) =(ii). Assume u is a nonnegative f-subharmonic function on M with finite
Dirichlet f-energy. If M is f-parabolic, then the two statements are both true by
virtue of Proposition 5.1 and hence equivalent. If M is non- f-parabolic, then by
Theorem 5.2, u =h + g for h € HD/(M) and g € D({(M). Moreover, since u is
f-subharmonic, we know u < h. By the assumption (i), /# is bounded. Thus u is
also bounded. This proves the lemma. U

Using Lemma 5.4, we can prove the main Theorem 1.2.

Proof of Theorem 1.2. Letu be an f-harmonic map from M to Y with finite f-energy.
It follows from Theorem 4.7 that the functionv: M — R, v(x) = \/ d?(u(x), Q) +1
is subharmonic, where Q € Y. Also, the finiteness of the f-energy of u# implies the
finiteness of the Dirichlet f-energy of v (recall (6)). Using the assumption and the
equivalence in Lemma 5.4, we know that any nonnegative f-subharmonic function
on M with finite Dirichlet f-energy is bounded. Hence v is bounded, and in turn,
u has bounded image. This proves the theorem. (]
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For harmonic maps from f-parabolic weighted manifolds, we don’t need the
local compactness assumption of the targets to obtain the Liouville theorem.

Corollary 5.5. Let (M,g,e~/d Ve) be a complete noncompact f-parabolic weighted
Riemannian manifold and (Y, d) be an Hadamard space. Then any f-harmonic
map from M to Y with finite f-energy is a constant map.

Proof. Let u be an f-harmonic map from M to Y with finite f-energy. By
Proposition 5.1 and Theorem 1.2, the image of u is bounded. Hence for any Q € Y,
the f-subharmonic function d(u(x), Q) is bounded. By the f-parabolicity of M
and Proposition 2.2, the function d(u(x), Q) is constant for any Q € Y. This yields
that u is a constant map. The corollary follows. (]

Combining Theorems 1.1 and 1.2, we obtain Theorem 1.3 by the potential theory.

Proof of Theorem 1.3.. By assumption, any bounded f-harmonic function on M is
constant. By Theorem 5.3, we know that any f-harmonic function on M with finite
Dirichlet f-energy is constant. Using Theorem 1.2, we see that any f-harmonic
map from M to Y with finite f-energy must have bounded image.

On the other hand, by Theorem 1.1, we know that any f-harmonic map from M
to Y having bounded image is constant. Hence any f-harmonic map from M to Y
with finite f-energy is a constant map. This proves the theorem. ([

Proof of Theorem 1.4.. By a theorem of Brighton [2013], the weighted manifold
(M, g, e fd Vg) satisfying Ricy > 0 admits no nonconstant bounded f-harmonic
functions. The assertion follows from Theorem 1.3 immediately. U
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THE AMBIENT OBSTRUCTION TENSOR AND CONFORMAL
HOLONOMY

THOMAS LEISTNER AND ANDREE LISCHEWSKI

For a conformal manifold, we describe a new relation between the ambient
obstruction tensor of Fefferman and Graham and the holonomy of the nor-
mal conformal Cartan connection. This relation allows us to prove several
results on the vanishing and the rank of the obstruction tensor, for exam-
ple for conformal structures admitting twistor spinors or normal conformal
Killing forms. As our main tool we introduce the notion of a conformal
holonomy distribution and show that its integrability is closely related to
the exceptional conformal structures in dimensions five and six that were
found by Nurowski and Bryant.

1. Introduction

A conformal structure of signature (p, g) on a smooth manifold M is an equivalence
class ¢ of semi-Riemannian metrics on M of signature (p, ¢), where two metrics g
and g are equivalent if § = e?/g for a smooth function f. For conformal structures
the construction of local invariants is more complicated than for semi-Riemannian
structures, where all local invariants can be derived from the Levi-Civita connection
and its curvature. For conformal geometry, essentially there are two invariant
constructions: the conformal ambient metric of Fefferman and Graham [1985;
2012] and the normal conformal Cartan [1924] connection with the induced tractor
calculus [Bailey et al. 1994]. We investigate a new relationship between two essential
ingredients of these invariant constructions, the ambient obstruction tensor on one
hand, and the conformal holonomy on the other. We briefly introduce these notions:

The ambient metric construction assigns to any conformal manifold (M, [g])
of signature (p, g) and dimension n a pseudo-Riemannian metric g on an open
neighborhood M of 0=MxR%inRx Q, of signature (p + 1, g + 1) and with
specific properties that link [g] and g as closely as possible. More precisely, denoting
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the coordinates on R>? and R by ¢ and p, respectively, g is required to restrict to 12 g
along Q and moreover its Ricci tensor vanishes along Q to infinite order in p when
n is odd and to order p"/?~! when n is even. The seminal result in [Fefferman and
Graham 1985; 2012] is that for smooth conformal structures, such an ambient metric
always exists and is unique to all orders for n odd or n =2 and up to order p*/?~!
when n > 4 is even. Moreover, in even dimensions the existence of an ambient
metric whose Ricci tensor vanishes along Q to all orders is closely related to the
vanishing of a certain symmetric, divergence-free and conformally covariant (0, 2)-
tensor O on M, the Fefferman—Graham obstruction tensor or ambient obstruction
tensor. In four dimensions the obstruction tensor is given by the well-known Bach
tensor, but in general even dimension no general explicit formula for O exists. The
obstruction tensor will be the focus of the present article.

The other invariant construction in conformal geometry is the normal conformal
Cartan connection. This is an so(p + 1, ¢ + 1)-valued Cartan connection defined
on a P-bundle, where P is the parabolic subgroup defined by the stabilizer in
O(p+1, g+1) of alightlike line in R?*1:9+1 and it satisfies a certain normalization
condition that defines it uniquely. The normal conformal Cartan connection defines
a covariant derivative V" on a vector bundle 7, the conformal tractor connection
on the standard tractor bundle. To (T, V") one can associate the holonomy group
of V"¢-parallel transports along loops based at x € M. As this group only depends
on the conformal structure, it is denoted by Hol, (M, c) and called the conformal
holonomy. 1t is contained in O(p + 1, ¢ + 1) and its Lie algebra is denoted by

hol, (M, c) Cso(p+1,qg+1).

Many interesting conformal structures are related to conformal holonomy re-
ductions, i.e., conformal structures for which the conformal holonomy algebra
is a proper subalgebra of so(p + 1, g + 1). Examples are manifolds admitting
twistor spinors, for which the spin representation of the conformal holonomy group
admits an invariant spinor. This includes conformal Fefferman [1976] spaces
that are closely related to CR-geometry, and for which the conformal holonomy
reduces to the special unitary group. Other fascinating examples are the conformal
structures that are determined by generic distributions of rank 2 in dimension 5.
Such distributions played an important role in the history of the simple Lie algebra
with exceptional root system G,: Cartan [1893] discovered that for some of these
distributions the Lie algebra of symmetries is given by the noncompact exceptional
Lie algebra g, of type G,. Related to the equivalence problem for such distributions,
Cartan [1910] constructed the corresponding g,-valued Cartan connection. It was
then realized by Nurowski [2005] that to any such distribution one can associate
a conformal structure of signature (2, 3) whose conformal holonomy is reduced
from s0(3, 4) to g>. Similarly, Bryant associated to any generic rank 3 distribution
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in dimension 6 a conformal structure of signature (3, 3) whose holonomy reduces
to spin(3, 4) C so(4, 4). Both, and in particular the latter will be relevant to us.

The ambient metric construction and the normal conformal Cartan connection
turn out to be closely related. Indeed, in [Cap and Gover 2003] tractor data are
formulated entirely in terms of ambient data, and in [Gover and Peterson 2006] the
ambient curvature tensors are rewritten in terms of tractor curvature and derivatives
thereof. The main result in our paper reveals another interesting correspondence,
now between the ambient obstruction tensor O and the conformal holonomy. We
show that the image of O, when considered as a (1, 1)-tensor, can be identified
with a distinguished subspace in the conformal holonomy algebra hol, (M, c). To
be more precise, recall that the Lie algebra so(p + 1,q + 1) is |1|-graded as
so(p+1,g+1)=9g_1 B goP g1, where go > co(p, q) is the conformal Lie algebra
and go @ g1 = p is the Lie algebra of the parabolic subgroup P. It is important to
note that g; can be identified with R”-¢ and hence with the tangent space 7, M. This
allows us to prove the following theorem:

Theorem 1.1. Let (M?9, c) be a smooth conformal manifold of even dimension
n > 4 and with ambient obstruction tensor O. Then the image of O at x € M
is contained in hol . (M, c) N g1. In particular, the rank of O at each point is
limited by the dimension of hol (M, c) N g1. Moreover, if hol(M, c) is a proper
subalgebra of so(p+1, g+1), then the image of O is totally lightlike. In particular,
tk(O) < min(p, q).

The implications of this result are evident. On the one hand it shows that if the
obstruction tensor has maximal rank n at some point, then the holonomy is generic.
Hence, O can be interpreted as a universal obstruction to the existence of parallel
tractors on (M, c) of any type. Namely for such a tractor to exist, O needs to have
a nontrivial kernel everywhere. On the other hand, conformal holonomy reductions
can be used to restrict the rank of the obstruction tensor. For example, it is well
known that the existence of a parallel standard tractor (and hence of a local Einstein
metric in ¢) forces the obstruction tensor to vanish, however no substantially more
general conditions on the conformal class are known to have a similar effect on O.
Our results provide such conditions. For example, we obtain:

Corollary 1.2. Under the assumptions of Theorem 1.1, O = 0 for each of the
following cases:

(1) the conformal structure is Riemannian and hol(M, c) C so(1,n+ 1);
(2) the conformal structure is Lorentzian and hol(M, c) C su(l,n/2);

(3) the conformal class contains an almost Einstein metric or special Einstein
product (in the sense of [Gover and Leitner 2009]);
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(4) there is a normal conformal vector field V of nonzero length or the dimension
of the space of normal conformal vector fields is > 2. In particular, this is the
case for Fefferman spaces over quaternionic contact structures in signature
(4k + 3, 41 + 3) (characterized by hol(M, c) C sp(k+ 1,1+ 1));

(5) (M, c) is spin and for g € c with spinor bundle Sé there are twistor spinors
wi=12€'(M, S8) such that the spaces { X € TM | X -¢; =0} are complementary
at each point.

Corollary 1.3. Under the assumptions of Theorem 1.1, 1k(O) <1 for each of the
following cases:

(1) (p,q) =(3,3) and hol(M, c) & spin(3, 4);
(2) (p,q) = (n,n) and hol(M, c) C gl(n+1);
(3) Hol(M, c) fixes a nontrivial 2-form, i.e., (M, ¢) admits a normal conformal

vector field. In particular, this applies to Fefferman conformal structures, i.e.,
to(p,q)=Q2r+1,2s+1)and hol(M,c) Csu(r+1,s+1);

(4) the action of Hol(M, ¢) on the light cone N' C RPT1-9%1 does not have an
open orbit.

For each of these geometries one can give an explicit subspace V. C TM with
Im(O) C V at each point.

Two results in these corollaries can be found in the literature — the statement
about almost Einstein [Fefferman and Graham 1985] and special Einstein products
[Gover and Leitner 2009] in Corollary 1.2 and the statement about Fefferman
conformal structures [Graham and Hirachi 2008] in Corollary 1.3 — but the general
theory as developed here allows alternative proofs of these facts. Note also that the
last two conditions in Corollary 1.2 are conformally invariant and do not refer to a
distinguished metric in the conformal class.

As the main tool in proving these results, we introduce what we call the conformal
holonomy distribution. At each point x € M it is defined as

Ey :=bhol (M, c)Nygy.

The vector space &, can be canonically identified with a subspace in 7, M. When
varying x, its dimension however may not be constant. Instead, varying x provides
a stratification of the manifold into sets over which the dimension of £, is constant.
We will see in Theorem 4.1 that these strata are unions of the curved orbits defined
by conformal holonomy reductions, introduced recently in [Cap et al. 2014] in
the context of Cartan geometries. Moreover we will show that an open and dense
set in M can be covered by open sets over which the dimension of £, is constant.
Very surprisingly, we find that, when considered over such an open set, £ is closely
related to the aforementioned generic distributions:
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Theorem 1.4. Let (MP-9, ¢) be a smooth conformal manifold. Then there is an
open and dense set in M that is covered by open sets U over which E|y is a vector
distribution. Over each such U, E|y is either integrable, or

e (p,q) =(2,3) and &y is a generic rank 2 distribution, or

e (p,q) = (3,3) and |y is a generic rank 3 distribution.

In both cases, |y defines the conformal class c on U in the sense of [Nurowski
2005; Bryant 2006].

We should also point out that the statements in Theorem 1.1 remain valid when
rk(O) at x is replaced by the dimension of £,. We believe that the conformal
holonomy distribution will turn out to be a powerful tool that allows us to obtain
not only results about the obstruction tensor but also about other aspects of special
conformal structures.

This article is organized as follows: Section 2 reviews the relevant tractor calculus
and the ambient metric construction in conformal geometry. Moreover, we discuss
special conformal structures that will be important in the sequel from the point of
view of holonomy reductions. Section 3 is then devoted to the proof of the first
part of Theorem 1.1. The key ingredient is a recently established relation between
conformal and ambient holonomy [Cap et al. 2016]. In Section 4A we introduce
the conformal holonomy distribution £ and study its basic properties. These results
are then applied in Section 5 to derive constraints on the obstruction tensor for
many families of special conformal structures, in particular those in signature (3, 3)
discovered by Bryant.

2. Conformal structures, tractors and ambient metrics

2A. Conventions. Let (M, g) be a semi-Riemannian manifold with Levi-Civita
connection V8. denote by AF .= A¥T*M the k-forms and by so(TM) the endo-
morphisms of TM that are skew with respect to g. By R=R& € A2 ® s0(TM) we
will denote the curvature endomorphism of V&, i.e., one has for all vector fields
X, YeX(M)

RE(X,Y) =[Vy, Vil = Viy y;-
By contraction one obtains the Ricci tensor and scalar curvature,
Ric®)(X,Y) :=tr(Z — R8(Z, X)Y), scal® :=tr, Ric?,
and we denote by P8 the Schouten tensor

1 . 1
8 .— g 8
(O P = . 2(RIC =1 scal g).
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Using g to raise and lower indices, we will also consider P8 and Ric8 as g-symmetric
endomorphisms of TM denoted with the same symbol. The metric dual 1-form of
avector Ve TM is VP = g(V, -) and from a 1-form « € T*M we obtain a tangent
vector o via g(a”, -) = a. From the Schouten tensor we obtain the Cotton tensor
CeA’QTM,

C8(X, Y) := (VgP$)(Y) — (Vy PE)(X),

and the Weyl tensor W € A2 @ s0(TM), considered as skew-symmetric bilinear
map from TM x TM to so(TM),

WE(X,Y):=R(X,Y)+ X" ®PS(Y)+PS(X)®Y —PS(Y) @ X — Y’ @ P§(X).

We will also write C8(Z; X, Y) := g(Z, C8(X, Y)) for the metric dual of C$, drop
the g and use the index convention Cy;; = C(0; 9;, 9;).

2B. Conformal tractor calculus. Let (M, c) be a smooth conformal manifold of
signature (p, q), dimension n = p+¢q >3 and let T — M denote the standard tractor
bundle for (M, ¢) with normal conformal Cartan connection V"¢ and tractor metric &
as introduced in [Bailey et al. 1994]. The tractor bundle 7 is equipped with a canon-
ical filtration Z C T+ C T, where T is a distinguished lightlike line. For each metric
g € ¢, one finds distinguished lightlike tractors s4 which lead to an identification

) T>ROTMOR, T as_+V+Bsyr>(a,V, B,
under which the tractor metric becomes

h((a1, Vi, B1), (a2, V2, B2)) = a1 B2 + a2 B1 + g(V1, V2),

and in this identification, s_ generates Z. Under a conformal change g = ¢%*° g, the
transformation of the metric identification (2) of a standard tractor is given by

o e (@ —Y(o)— 3B grad® o ||2)
3) Y|~ e (Y +B-grad® o)

B B e’

From this one observes the image of a linear subspace H C Z+ C T under the map

R
Il

IL—>IL/I—> T, oas_+Vi>las_+V]—V

is conformally invariant, i.e., independent of the choice of g € c. For V"¢ expressed
in terms of the splitting (2) we find

o X (@) —P$(X,Y)
4) VELY | = ViY +aX + BPE(X)
B X(B)—gX,Y)
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The curvature of V™ is given by R"(X, Y) = C8(X,Y) A s” + W8(X,Y), where
we identified the bundles so(7", &) and A27* by means of /4 in the usual way by
the musical isomorphisms ° and .

Turning to adjoint tractors, it follows from identification (2) that for fixed g € c,
each fiber of the bundle so(7, &) of skew-symmetric endomorphisms of the tractor
bundle can be identified with skew-symmetric matrices of the form

—a [ 0
d(u, @ A, 2)=| Z A —utl],
0 -2’ a

where Z is a vector, i a 1-form, a € R, and A is skew-symmetric for g. For example,
the curvature of V" is identified with

0 C8(X,Y) 0
) RX,Y)=|0 W8(X,Y) —C8(X.Y)
0 0 0

In particular, each choice of g yields an obvious pointwise |1|-grading of so(7, h)
according to the splitting

)  g-1={20,0,2)}, go={PQO,(a, A),0}, g1={Pu, 00}
with brackets given by
[(a, A), ZI=(a+A)Z, [(a, A), ul=—po(A+ald), [Z, ul=(u(Z), urZ").

In particular, [g;, g;] C gi+;. It follows that the induced derivative V" on a section
O =D(u, (a, A), Z) of so(T, h) is given by

(7) Vo
—X(a)—P8(X,Z)—pn(X) Viu—P8(X,(A+ald)-) 0
= ViZ—(A+a)X  ViA+uAX"—Z°APE(X,-) —Viui+(a—A)Ps(X) |.
0 ~ViZ'+(AX)" +aX" X(a)+P(X,Z)+un(X)

2C. Holonomy reductions of conformal structures. In this section we list def-
initions and properties of the conformal structures which have appeared in the
introduction and to which the main Theorem 1.1 can be applied. They all turn out to
be characterized in terms of a conformal holonomy reduction. Here, for (M?-9, c)
a smooth conformal manifold, its conformal holonomy at x € M is defined as

Hol, (M, ¢) :=Hol,.(T, V™)

and gives a class of conjugated subgroups in O(p+1, g+ 1). The interplay between
conformal holonomy reductions, i.e., when Holg (M, ¢) is a proper subgroup of
SO(p + 1, g + 1), and distinguished metrics in the conformal class has been the
focus of active research. We will review the most important ones relevant here.
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2C.1. Geometries with reducible holonomy representation. One initial result is that
holonomy invariant lines L C RP+1:9+! are in one-to-one correspondence to almost
Einstein scales in ¢ [Gauduchon 1990; Bailey et al. 1994; Gover 2005; Gover and
Nurowski 2006; Leitner 2005; Leistner 2006] by which we mean that on an open,
dense subset of M there exists around each point locally an Einstein metric g € c. If
L is lightlike, g is Ricci flat and otherwise one has sgn(scal®) = —sgn(L, L) p41,g+1-

A holonomy-invariant nondegenerate subspace H C RP+14*! of dimension
k > 2 corresponds locally and off a singular set to the existence of a special Einstein
product in the conformal class [Leitner 2004; Armstrong 2007; Armstrong and
Leitner 2012]. Here, we say that a pseudo-Riemannian manifold (M, g) is a special
Einstein product if (M, g) is isometric to a product (M1, g1) x (M>, g2), where
(M;, g;) are Einstein manifolds of dimensions k — 1 and n —k — 1 for k > 2 and in
case k # 2, n we additionally require that

scal®! = — k—Dn—2) scal®? #£ 0.
nmn—k+1)(n—k)

Finally, if H ¢ RPT14+! ig totally degenerate, of dimension k + 1 > 2 and
holonomy invariant, there exists — again locally and off a singular set — a metric
g € ¢ admitting a Vé-invariant and totally degenerate distribution £ C TM of rank
k which additionally satisfies Im(Ric®) C L, as has been shown in [Leistner 2006;
Leistner and Nurowski 2012; Lischewski 2015].

2C.2. Geometries defined via normal conformal Killing forms. Suppose next that
Hol(M, c) lies in the isotropy subgroup of a (k + 1)-form, i.e., there exists a V"°-
parallel tractor k + 1-form & € I'(M, A**!7*). Such holonomy reductions have
been studied in [Leitner 2005]. For fixed g € ¢, consider the splitting of 7" with
respect to g and write & as

N b b b b
(8) a=s, ANa+og+s_As, ANaL+S5_ Ao

for uniquely determined differential forms «, «g, o+, ®— on M. The k-form « €
QK (M) turns out to be normal conformal (nc), that is « is a conformal Killing form
subject to additional conformally covariant differential normalization conditions
that can be found in [Leitner 2005]. Moreover, «g, o+, ¢_ can be expressed in
terms of o and V&. Conversely, every normal conformal Killing form determines a
parallel tractor form. The situation simplifies considerably if k = 1, i.e., there is
a parallel adjoint tractor. In this case it is convenient to consider the metric dual
V = af € X(M) of the associated normal conformal Killing form «, which is a
normal conformal vector field. By this, we mean that V is a conformal vector field
which additionally satisfies C8(V, ) = W8(V,-) =0.

Examples of manifolds admitting normal conformal vector fields are so-called
Fefferman spaces [Fefferman 1976]. They yield conformal structures (M, c¢) of
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signature (2r + 1, 2s + 1) defined on the total spaces of S!-bundles over strictly
pseudoconvex CR manifolds. From the holonomy point of view they are (at least
locally) equivalently characterized by the existence of a parallel adjoint tractor
[Leitner 2007; éap and Gover 2010], which is an almost complex structure for
the tractor metric, i.e., Hol(M, ¢) C SU(r + 1, s + 1). Here, we used a result from
[Leitner 2008; Cap and Gover 2010] which asserts that unitary conformal holonomy
is automatically special unitary.

Other geometries that are characterized by the existence of distinguished normal
conformal vector fields include pseudo-Riemannian manifolds (M, g) of signature
(4r + 3, 4m + 3) with conformal holonomy group in the symplectic group

Sp(r+1,m+1) C SO@r +4, 4m + 4),

see [Alt 2008]. The models of such manifolds are S3-bundles over a quaternionic
contact manifold equipped with a canonical conformal structure, introduced in
[Biquard 2000].

2C.3. Conformal holonomy and twistor spinors. If (M, c) is actually spin for one,
and hence all, g € c, the presence of conformal Killing spinors always leads to
reductions of Hol(M, ¢). To formulate these, let $§ — M denote the real or complex
spinor bundle over M which possesses a spinor covariant derivative V3 and vectors
act on spinors by Clifford multiplication ¢l = -, see [Baum 1981]. Given these data,
the spin Dirac operator is given as D¢ = cl oV, Now assume that (M, g) admits
a twistor spinor, i.e., a section ¢ € I'(M, S¢) solving

) v§g¢+%x-0g<p=o.
Equation (9) is conformally invariant, see [Baum et al. 1991], and to ¢ we can
associate the union of subspaces

Lo ={XeTM|X -¢=0}CTM,

which does not depend on the choice of g € c¢. Equation (9) can be prolonged, see
[Baum et al. 1991], and using this prolonged system it becomes immediately clear
that a twistor spinor ¢ is equivalently described as a parallel section ¥ of the spin
tractor bundle associated to (M, ¢). Its construction can be found in [Leitner 2007],
for instance. As 1 is parallel, it is at each point annihilated by hol, (M, ¢) under
Clifford multiplication, i.e.,

(10) hol,(M,c) -y, =0 forall x e M.

2C.A4. Exceptional cases. Finally we describe conformal structures in dimension 5
and 6 with holonomy algebra contained in g» C s0(3, 4), the noncompact simple



412 THOMAS LEISTNER AND ANDREE LISCHEWSKI

Lie algebra of dimension 14, or in spin(3, 4) C so(4, 4), respectively. They turn
out to be closely related to generic distributions:
Recall that a distribution D of rank 2 on a 5-manifold M is generic if

[D,[D, DN1+[D, D] +D=TM.

It is known by work of Nurowski [2005] that D canonically defines a conformal
structure cp of signature (2, 3) on M 5 whose conformal holonomy is reduced to
g2 C 50(3, 4), see also [Cap and Sagerschnig 2009]. Analogously, a distribution D
of rank 3 on a 6-manifold M is generic if [D, D] + D = TM, and Bryant [2006]
showed that D canonically defines a conformal structure cp of signature (3, 3) on
M whose conformal holonomy is reduced to spin(4, 3) C so(4, 4). In both cases,
the holonomy characterization implies that (M, cp) admits a parallel tractor 3- or
4-form, respectively. Moreover, [Hammerl and Sagerschnig 2011b] shows that there
is in both cases a distinguished twistor spinor ¢ which encodes D in the sense that

(11) Ly, =D ateach point.

2D. Conformal ambient metrics. Let (M, c¢) be a smooth conformal manifold of
dimension > 3. For our purposes we do not need the general theory of ambient
metrics as presented in [Fefferman and Graham 2012], which can be consulted for
more details, but it suffices to deal with ambient metrics which are in normal form
with respect to some g € c¢. A (straight) preambient metric in normal form with
respect to g € c is a pseudo-Riemannian metric  on an open neighborhood M of
{1} x M x {0} in RT x M x R such that for (¢, x, p) € M

(12) g=2tdtdp+2pdt> +1%g,(x),

with go = g. We call (M, g) an ambient metric for (M, [g]) in normal form with
respect to g if
« Ric = 0(p™) if n is odd, and

« Ric = O (p™/?~1y and trg(pl_(”/z)ﬁfc|TM®TM) =0 along p =0, if n is even.

The existence and uniqueness assertion for ambient metrics [Fefferman and Graham
1985; 2012] states that for each choice of g there is an ambient metric in normal
form with respect to g. In all dimensions n > 3, g, has an expansion of the form

8o = Y p=0 8™ p* starting with
80 =8 +2pP* + 0(p?),

and in odd dimensions the Ricci flatness condition determines g®) for all k, whereas
in even dimensions only the g<"/?) and the trace of g"/? are determined.
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We shall sometimes work with ambient indices I € {0, i, oo}, where the i are
indices for coordinates on M, O refers to d; and oo to 9, i.e.,

TM >V =V, + V' + V>0,

For the Levi-Civita connection of any metric of the form (12) one computes [Fef-
ferman and Graham 2012, Lemma 3.2],

~ 1 ~ ~

VB,-a] = 2tgl]8l+rljak+(pgl] gij)apa Va,at =Va,,3p=0,
(13)

S 1 S . 1

Vidi=10 Vi0,= 38" gud. Vi, = 0.

where, abusing notation, g;; denotes the components of g, and Fk the Christoffel
symbols of g,. In particular, T := 19, is an Euler vector field for (M g2),ie.,

(14) VT =1d.

For n even a conformally invariant (0, 2)-tensor on M, the ambient obstruction
tensor O, obstructs the existence of smooth solutions to Ric = O(p"/?). For gin
normal form with respect to g it is given by

(15) O = cn(p'~""? Ricirmeri)) p=o-

where ¢, is some known nonzero constant; see [Fefferman and Graham 2012].
From this one can deduce that O is trace- and divergence-free.

Tractor data can be recovered from ambient data as shown in [Cap and Gover
2003]. For ambient metrics in normal form with respect to g € ¢, this reduces to the
following observation, see [Graham and Willse 2012] for more details: Identify M
with the level set {p =0, =1} in M. Then TM|M splits into R3; ®TM ®R0,,, which
is isomorphic to the g-metric identification of the tractor bundle 7 under the map

(16) s, TMESTM, 8, s,.

The map (16) is an isometry of bundles over M with respect to ¢ and 2 and the
pullback of %, the Levi-Civita connection of g, to ™ \m coincides with (4). This
also follows directly from an inspection of (3) and (13). With these identifications,
for fixed g € ¢ we view the tractor data as restrictions of ambient data for an ambient
metric which is in normal form with respect to g.

3. The ambient obstruction tensor and conformal holonomy

We outline how the image of the obstruction tensor can be identified with a distin-
guished subspace of the infinitesimal conformal holonomy algebra at each point.
This requires some preparation:
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Let V be a vector space. The standard action # of End(V') on V extends to an
action on the space T"*V of (r, s) tensors over V. This action will be denoted by
the same symbol. Thus, End(V) ® End(V) acts on T"*V with a double #-action,
explicitly given by

(17) (A® B)##(n) = A# (B#n).

Given a pseudo-Riemannian manifold (N, &), we can view its curvature tensor R”
as section of the bundle so(N, h) @ so(N, h), and applying (17) pointwise yields
an action R"## of the curvature on arbitrary tensor bundles of N.

Returning to the original setting, let (M, g) be a pseudo-Riemannian manifold of
even dimension and let (M, £) be an associated ambient metric which is in normal
form with respect to g. Let A =V, VA denote the usual connection Laplacian on the
ambient manifold. In [Gover and Peterson 2006] a modified Laplace-type operator

(18) A=A+ 1Rt

is introduced and will be used in the subsequent calculations.
The previous observations enable us to prove the main result of this section:

Theorem 3.1. Let (M, c = [g]) be of even dimension > 2. For every g € c one has
s A (X10) ebol, (M, [g]) forall xe M and X € TM.

Proof. The proof uses the notion of infinitesimal holonomy: within in the Lie algebra
hol, (M, c¢) of Hol, (M, c) at a point x € M, we consider the infinitesimal holonomy
algebra at x, i.e., the Lie algebra of iterated derivatives of the tractor curvature
evaluated at x,

hol'.(M,c) i=spang{Vy, (---(Vyx,  (R™(X;—1, X)) (x) [ >2,X1,..., X; € X(M)}.

For more details on the infinitesimal holonomy refer to [Kobayashi and Nomizu
1963, Chap. I1.10] or [Nijenhuis 1953a; 1953b; 1954]. We will in fact show that
s” A(X_0) € hol'. (M, [g]) forall x € M and X € T M.

Assume first that n > 4. Let (M , &) be an associated ambient manifold for
(M, [g]) which is in normal form with respect to some fixed g in the conformal
class. For x € M let

hol, (M, §) := spang{Vy, (- - Vx,_,(R(X;_1, X)) (x) [ [ =2, X; € X(M)}

denote the infinitesimal holonomy algebra of (M, g) atx and for k >0 let ho[ﬁ M, g)
denote the subspace of elements for which at most k of the X; have a not identically
zero d,-component. Then [Cap et al. 2016, Theorem 3.1] asserts that under the
identifications from Section 2D,

(19) hol' (M, ¢) = hol™?D=2(M, 3).
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Indeed, for (1\7[ , &) which is in normal form with respect to g, equality (19) can be
verified as follows:

From the identifications from Section 2D one obtains immediately the inclusion C
in (19). In order to prove the converse, we obtain with [Graham and Willse 2012,
Lemma 3.1] and [Fefferman and Graham 2012, Propositon 6.1] that

R(3;, 9;)(x) = R™(8;, 8;)(x), R(3;, 87)(x) =0,

(20) o kl ;xgncpnc
R(0p, 9))(x) =387 (V5 R™) (31, 9;)(x).

The right sides of these expressions clearly lie in hol' (M, ¢). To proceed, using
linearity and commuting covariant derivatives, it suffices to prove that

1) (V§, V5, VA R)(Y, Z)(x) € hol (M, ©),

where k, j,1 >0, X; e T\M, Y, Z € T,C]\;I and [ < %n —3or %n — 2 (depending on
whether one of Y, Z has a d,-component): given an element of the form (21) one
first applies Proposition 6.1 from [Fefferman and Graham 2012], which rewrites o,
derivatives of ﬁ, and obtains a linear combination of elements of the form (21) with
j =0and Y, Z have no d;,-component. Thus, it suffices to prove (21) for j = 0.
This is then achieved by induction over /. Indeed, for / = O the statement follows
from the last equation in (20). Furthermore, we may assume that ¥ = 9, (otherwise
all differentiations are tangent to M or we use the second Bianchi identity) and
Z € T,M. However, Lemma 3.1 from [Graham and Willse 2012] allows us to
rewrite d,-derivatives (%gpﬁ) (0p, Z)uptol < %n — 3 in terms of (%épf{)lTMXrM.
Then applying the second Bianchi identity and the induction hypothesis shows the
claim (21). This proves the equality (19).

Using again the identifications from Section 2D, we will now show that for
x €M and X € T,M we have

(22) 3, (x) A (X_L0)(x) € hol"P=2(M, g).

With this, equality (19) and the inclusion hol'.(M, c) C hol(M, c) will imply
Theorem 3.1. In order to verify property (22), note that, as observed in [Gover and
Peterson 2006], on any pseudo-Riemannian manifold one has (in abstract indices)

o < BT _AD - 5C > 5C
(23) 4VA]VBIR1CA232 - ARA]AzB]B2 - RICCAIR A»B| B, +R1CCBIR BrA1 Ay

where here Aj, A, and By, B, are pairwise skew-symmetrized. Indeed, (23) is a
straightforward consequence of the second Bianchi identity. As in our situation,
Ric = O(p™/?~1), it follows that

(24) 45,4, Vs, Rica,5, = AR 4, a,5,5, + 0 (027D,
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In the next steps we use the general fact that if B is a tensor field on M, for example
a (0, 2)-tensor field, such that B = O(p™) foran m > 1, then, forall X, Y € TM

25) p"B(X. V)l p=0 = (V3 B)(X. Y) o0,
(V4 BY(X. V)lpmg =0 fork=0,....m—1.
Indeed, B = O(p™) implies for k =0, ..., m — 1 that

0= d5(B(X. V)lpm0 = (V}, BY(X, V)0,

where the second equality holds because of %a ,9p = 0 and %3 ,X € X(M) for
X € X(M). This also implies that

p~ " B(X, Y)|p=0 =0,/ (B(X,Y))|p=0 = (633)3)(?(, Y)|p=0,

proving both relations in (25).
Now we return to equation (24) and see, using (25), that it implies

26) (V" AR) (Y, Ya, Z1, Zo)(x) = 4V 70y, Vg, Rio) (s, Zo)(x),

where now x € M, Y;, Z; are ambient vector fields and Y1, Y» as well as Zy, Z»
are skew-symmetrized. Now let Y| = 9, and Y, = X € X(M) and insert Ric =
O (p"/»~1y into the right side of (26). It follows that, with x € M, the resulting
expression is zero unless one of the Z; is proportional to 0, and the other one is a
tangent vector Y € T, M. For this choice of vectors we have

Q) (VPP AR, X, 8, V() = (VP TIRIOX, V) (),

for X, Y € TM. Hence, by definition (15) and the observation (25), one obtains a
multiple of O(X, Y),

(28) (Vi 27 KR (3, X) () = k(n) - 3/ (x) A (X2 O) (),

for some nonzero numerical constant k(n) which depends only on the dimension #.
Note that along M = {p =0, t =1} we have af =dp. To proceed, we analyze the
left side in (28). Equations (13) show that the ambient Laplacian applied to some
tensor field n has an expansion of the form

~ e~ o~ 1~ =~ lo ~ 20~ ~ ~ ~
(29) Ap=5"vV,V,;n= ;Vap (Va, 77)+;Va, (Vapﬂ)—t—zvap (Va,m~+fVy,n+Dn,
where f is a certain known function on M and D is an operator of the form

(30) Dn=>Y ayVi(Vim+ > bxVin.
ij K e{k,0}
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We conclude inductively that for an arbitrary ambient tensor field n and an element

YAS 50(TM) one has
an n=0(") = An= 00",
Z(x) € holl (M, §) = (A*Z)(x) € hol* (M, ).

Moreover, a straightforward linear algebra calculation using the algebraic Bianchi
identity for the ambient curvature reveals that (in abstract ambient indices and with
brackets denoting skew symmetrization)

(R##R) apcp
~ SVw 5 POy ~V 5 ~V =
=2R,pywR" " ¢cp +8R¢ [A RB]PDQ_2(R1C R vep HRiC (¢Rpyagp).

For each A, B the first term on the right hand side is contained in the holonomy
algebra as it is a linear combination of curvature tensors. Similarly, the second term
is a linear combination of commutators of curvature tensors and hence also in the
holonomy algebra. D1fferentlat1ng this 1 >h — 3 times in 9, direction and using that
Ric vanishes to order 1 >n — 1 shows via 1nduct10n that

(VP R##R)) (9, X) (x) € hol "D 72(M, §).

Next, we focus on the p-derivatives of A in (28). Using the form of A in (29) and
(30) and calculating mod ho[;"/ D=2(M, g), we find they are given by

(VPP AR) (3, X)(x) = VP (AR, X)) () = 1) (V5P R) (3, X)(x)
for some numerical constant /(7). Thus, we have found that for x e M, X € T, M,
(32) k(m)d; () A (X2 0)(x) —1(m) - (V" P *R) (8, X) = Ex

for some Ex € bo[)(c”/z)_z(]\;[, g). Now insert Y € T,M and 9, into the 2-forms in
(32). One obtains

(33) k(n)O(X,Y) —l(n)(%§Z/z>—zﬁ)(ap, X.Y.d,) = Ex(Y, 3p).
By [Fefferman and Graham 2012, Proposition 6.6] we have
2(%”/2)_213)(% 0, 0, 0p) =t gij) + Kij,

where K;; can be expressed algebraically in terms of (" 08ij)Ip=0, k < 2n as well
as g| »—o- Moreover, as follows from reviewing the above argument, £ can be
expressed algebralcally in terms of derivatives of g, and its inverse in M-directions
and at most n — 1 derivatives in p- dlrectlon and O is a natural tensor invariant.
But then, as the ambiguity, i.e., the term tf(ap gl ), can be arbitrary, equation (33)
can only be true if /(n) = 0 from which the theorem follows if n > 4.
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In general, it holds in every dimension that for X € TM one has

trg VIR™(X, ) = (n —4)C(X: -, -) + B(X) As” € hol(M, ©),
where
_ wk ki
Bij =V Cijx — P" Wiiji

is the Bach tensor, and where for each pair j, k we understand R‘;i as an element
in A%7* From this observation the theorem follows in case n = 4, as here O is a
multiple of the Bach tensor ]

Remark. Consider the case n = 6. It is an entirely mechanical process to turn the
formulas in [Gover and Peterson 2006], section 4B into an explicit formula for
derivatives of the tractor curvature, which gives a more explicit proof of Theorem 3.1
for this dimension. In order to make this more explicit, assume that there is a metric
g € ¢ and a totally lightlike subspace £ C TM such that Im(Ric®) C £ and L is
V¢ invariant. Such geometries correspond to invariant null subspaces which are
invariant under Hol(M, ¢) and are of importance in Section 5B. Let V denote the
tractor derivative V" coupled to V4. One can explicitly compute for this case that
85" N Opid; = g7 MV V; ViR + 4P VR, + 2[R0y, VIR™]+2C,, 'Ry

Jj mi’
4. The conformal holonomy distribution

In this section we will introduce and study the fundamental object that provides us
with the link between conformal holonomy and the ambient obstruction tensor.

4A. The conformal holonomy distribution. Let (M, c = [g]) be a smooth confor-
mal manifold of arbitrary signature (p, ¢) and dimension n = p+¢q. For x e M
consider the conformal holonomy algebra hol (M, ¢) C so(7y, hy). Fix g € c.
Theorem 3.1 motivates us to study the following subspaces of T, M,

(34) &% :={pry, Im(A) | A € hol,(M,c), AT=0,h(AZ",I") =0} C T, M.

It follows immediately from the transformation formulas that £ does not depend
on the choice of g € ¢, so that we can write &,. With respect to g € ¢, however, &,
is identified with the space of elements of the holonomy algebra that are of the form
s” A X" for some X € T, M. Equivalently and more invariantly, the space £, can be
identified with the space hol, (M, c) N g;. We call the subset of TM defined by

£:= U & CTM
xeM

the conformal holonomy distribution. This is a slight abuse of terminology, as the
dimension of £ may vary with x, so that £ is not a vector distribution in the usual
sense. Indeed, the holonomy algebras with respect to different base points are
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related by the adjoint action of elements in O(p + 1, ¢ + 1) that generically do not
lie in the stabilizer of s_. Instead, define a function on M by

rg(x) = dim &,

The function € need not be constant over M but leads to an obvious stratification

n
M= M,
k=0
where My = {x € M | r®(x) = k}.

4B. Relation to the curved orbit decomposition. We now proceed to establish a
relation between the stratification defined by £ and the curved orbit decomposition
for holonomy reductions of arbitrary Cartan geometries in [Cap et al. 2014]. When
doing this, we restrict to the case that hol(M, c) equals the stabilizer of some tensor:

Starting with the tractor data (7 — M, h, V"), one recovers an underlying Cartan
geometry as follows [Cap and Gover 2003]: Fix a lightlike line L  R?+14+! and
at each point x € M consider the set of all linear, orthogonal maps RP+1-4+1 — 7,
which additionally map L to Z,. This defines a principal P-bundle G — M, where
P CG=0(p+1, g+1) is the stabilizer subgroup of L. Then the tractor connection
V"™ induces a Cartan connection w € Q!(G, g) of type (G, P), i.e., @ is equivariant
with respect to the P-right action, reproduces the generators of fundamental vector
fields, and provides a global parallelism 7G = G x g. In this way, (G —> M, w) is
a Cartan geometry of type (G, P). Conversely, one obtains the standard tractor
bundle from these data as T =G x p RPT14T1 =G x ; RPHL4+] where G =G x p G
denotes the enlarged G-bundle. The Cartan connection w lifts to a principal bundle
connection & on G and V™ is then the induced covariant derivative on the associated
bundle 7.

Now assume that there is a faithful representation p of G on some vector space V
with associated vector bundle H = @x ¢V and induced covariant derivative V* such
that Hol(M, ¢) equals pointwise the stabilizer of a V*-parallel section v € I'(M, H)
(if actually (M, c) is spin, the same discussion is possible for spin coverings of
the groups and bundles under consideration). Such a ¥ is equivalently encoded in
a G-equivariant map s : G — V which is constant along w-horizontal curves. To
this situation the general machinery developed in [Cap et al. 2014] applies and one
defines for x € M the P-type of x (with respect to i) to be the P-orbit s(G,) C V.
Then M decomposes into a union of initial submanifolds M, of elements with the
same P-type, where o runs over all possible P-types, which in turn can be found
by looking at the homogeneous model G — G/ P. In that work, the M|, are called
curved orbits and it was shown that they carry a naturally induced Cartan geometry
of type (H, PN H).
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Theorem 4.1. If Hol(M, ¢) is equal to the stabilizer of a tensor, then the subsets
of M on which r€ is constant are unions of curved orbits in the sense of [Cap et al.
2014]. In particular, they are unions of initial submanifolds.

Proof. We fix a curved orbit M, with element x;. By definition, x; € M, if and
only if

(35) 5(Gx,) = 5(Gx,)-
We unwind the condition (35) as follows: Let u,, € G,, and let
[ux,]: V30> [uy, vl € Hy,

denote the associated fiber isomorphism. As p is faithful the holonomy group
Olux,- (@) C G will coincide with the stabilizer of [ux,.]_1 Yy, € V under the (p, G)-
action. Moreover (35) is equivalent to the existence of p € P such that

p(P) [ty 1 W) = [, ] s,

from which one deduces that

(36) Ad(p~h(hol,, (@) = hol, @)

Using that [g;, g;] C gi+;, one sees that (36) restricts to a map between the g;-
components of hol, (a)) which therefore have the same dimension. As

hol, = [ux]ohol, (@) o[u,]™" Cs0(Tx, hy)

and [u, ] preserves the lightlike line by definition of G, we obtain that the dimensions
of hol, Ng; also agree. Consequently, r¢ is constant on the curved orbit M,. [

Theorem 4.1 shows that, in general, the holonomy distribution £ as studied here
will induce a stratification of M that is coarser than the curved orbit decomposition
in [Cap et al. 2014]. The following example shows that in some cases it induces
the same stratification.

Example. Suppose (M, c) is of Riemannian signature and Hol, (M, c¢) equals the
stabilizer of some tractor ¢, € 7. For any metric g € ¢ write { = («, Y, B) T for
smooth functions ¢, B and a vector field Y on M. Evaluating V"¢ = 0 using (4)
yields

Y =grad® 8, ag = BP% —Hess?(B).

An element V° A sb_ lies in hol, (M, c) N g; if and only if dB(V) = 0 as well as
B-V=0atx.If h(¢, ) #0, we conclude that

M=MyUM,_;, withMo={B#0}and M,,_; ={B =0}.
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For x € M,,_; we have &, = kerdf # T.M. In particular, M,_; is a smooth
embedded submanifold of M. Similarly, if £(¢, ¢) = 0, we have

M=MyUM,={B#0}U{g =0}

Here { =0} consists only of isolated points because 8(x) =0 implies that d8(x) =0
and Hess® (8)(x) is proportional to g,.

4C. Open sets adapted to the holonomy distribution. We analyze the function r€
in more detail. Obviously, if hol (M, c) is generic at some point of M, i.e., if
hol, (M, c) =so(p+ 1, g + 1), then r® = n. Conversely, one finds:

Proposition 4.2. Suppose that there is a curve y in M with g(y,y) # 0 and

r€ oy =n. Then bol(M, c) is generic. In particular, r¢ = n.

Proof. All calculations are carried out with respect to some fixed g € ¢. By
assumption, S AV e bol, (M, c) for every vector field V along y. Applying
VZ© to this expression using (7) reveals that

37) —g(V, 7)s” Asy+ 7" AV® e hol, ) (M, ).

Letting V = y shows that sb, /\Si € ho[y(,)(M, ¢). Moreover, letting (Vy, V2, y)
be mutually orthogonal to each other and taking the Lie brackets of the expressions
(37) with V = V| and V = V,, respectively, shows that

. b b
1717V AV, € bol, (M, c).

But this establishes that go € hol,, ;) (M, ¢). Thus, g, & go € hol,,,, (M, ¢). Dif-
ferentiating elements y”> A V’ e hol, (M, ¢) in the direction of y, where V is
again a vector field along y shows using (7) that also g_; Ny~ is contained in the
infinitesimal holonomy along y and differentiating s” A si along y shows that all
of g is contained in the holonomy. Thus, hol,, (M, c¢) is generic along y, and
thus generic everywhere. ([

In order to continue with our analysis, we need to show that there are sufficiently
many open sets U on which r€ is constant, i.e., such that £|y is a vector bundle,
and on which there is a basis of local smooth sections of U — &. For this purpose
we define: An open set U C M is an £-adapted open set if

(1) r€ =k constant on U,
(2) there are smooth and pointwise linearly independent sections V1,...,Vi: U — &.
Then:

Theorem 4.3. For each open set U C M there exists an E-adapted open subset
V C U. In particular, there is an open dense subset of M which is the union of
E-adapted open sets.
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Proof. After restricting U if necessary, we may assume that U is contained in
a coordinate neighborhood for M. It is then possible to choose a local basis of
hol, (M, c) over U which depends smoothly on x. Write such a basis as

(38) Usx Wx) As + A (x),

wherei =1, ..., m:=dimhol(M, ¢), for certain v; € T,M and A’ € g,®g_;. With
respect to the fixed coordinates we may think of the A’ = (A;k)j,k asso(p+1,g+1)-
matrices. Let

Al = (Aill’ Ai12’ X A2+1,n+2’ Aiz+2,n+2)—r
and introduce the (n+2)? x m-matrix A := (Al . -Am). By elementary linear algebra,
(39) ré(x) = k <= k = dimker A = dim hol (M, ¢) —rk A,.

The set of matrices with rank greater or equal to some fixed integer is open in the
set of all matrices. Thus, it follows from (39) that {x | 7 (x) <k} is open in M. In
particular, (¢)~1(0) = {x | ®(x) < 0} is open and ¢ < n is an open condition.

Assume now that there is x € U with r¢(x) = 0. It follows that 7 = 0 on some
open subset V C U. Thus the claim follows for this case. Otherwise, we have
ré>1 everywhere. If there is x € U with r€(x) = 1, it follows that there is an
open neighborhood V in U with r¢ < 1 of x in U. Thus, ¢ =1 on V. Otherwise
we have 7€ > 2 on U etc. So the statement regarding the existence of V with
ré|y =:1 = constant follows inductively. The above proof starts with a smooth
local basis (38) and constructs (on an open subset of V') via smooth linear algebra
operations a basis on V of the form (f)l.b:1 ..... (A si, ...). It is thus clear that the v;
depend smoothly on x € V and yield local sections.

Finally, if every open set in M contains an £-adapted open subset, the union of
all £-adapted open sets is open and dense in M. ([

By virtue of this theorem, after restricting to an open and dense subset of M if
necessary, we may from now on always assume that M is the union of £-adapted
open sets. In particular, the level sets of ¢ are then (possibly empty) unions of
E-adapted open sets. From this point of view, we may restrict ourselves to such
open sets in the following local analysis. Note that restricting to an open and dense
subset in the context of Cartan holonomy reductions is a basic feature of the curved
orbit decomposition as revealed in [Cap et al. 2014].

Proposition 4.4. Let U C M be a £-adapted open set. Then &y is a totally lightlike
subspace of TyM for every x € U or hol(M, c) is generic.

Proof. Let V be a vector field defined on U such that s A VP(x) € hol, (M, c) for
x € U. Differentiating in the direction of some X € TM using (7) reveals that

(40) —VE(s” AV")(x) =g(V, X)s" As 4+ X" AV +(Vx V)’ As” € hol, (M, c).
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Suppose that there is x € U with g(V, V)(x) # 0. It follows that g(V, V) # 0 on
some open neighborhood x € W C U. Let X be orthogonal to V on W. As hol, (M, ¢)
is a Lie algebra with the usual commutator Lie bracket, it follows that on W also

A1) [X°AV + (V)P AsT, 5P AV = —g(V, V)X? As” € hol(M, ¢).
Thus, r€|w = n and the statement follows from Proposition 4.2. U

4D. Rank and integrability of the holonomy distribution. Interestingly, it turns
out that, at least locally, £ is always integrable or it is maximally nonintegrable and
one of the exceptional holonomy reductions occurs. More precisely, we will see
that if £ is not integrable, M is of dimension 5 or 6, £ is generic and of rank 2 or 3,
respectively, and hol(M, c) is g, or spin(4, 3), respectively.

In order to analyze the integrability of £, we need some preparations.

Proposition 4.5. Let (M", ¢) be a conformal manifold of even dimension. Either
there is an open dense subset of M on which ré<1or HolO(M ,C) acts on the
lightcone N' C R4+ with an open orbit.

Proof. Suppose first that 7€ > 2 on some open set U C M. After restricting to
an open, dense subset of U, if necessary, we may assume that U is an £-adapted
open set. We may also assume that the holonomy is not generic and hence that £ is
lightlike. Let V be a local section of £ and let V' be a lightlike vector field with
g(V, V') = 1. Moreover, let X € (V, V’)+. We have on U

(42) V(" AV =s" As) + Ap € hol(M, ¢),
(43) VISV (s” AV")) = —X" A5’ + A; € hol(M, ¢),

where A1 € go® g1 =p. As r€ > 2 on U and £ is totally lightlike, linear algebra
shows that at x € U, equation (43) implies

(44) so(p+1,g+1)="hol (M, c)+p.

This, together with equation (42) shows that the orbit of HolO(M , ¢) through s_ e N
has dimension n + 1, i.e., it is open. Otherwise, the subset of M on which r€<1is
dense. It is also open as follows from the proof of Theorem 4.3. ([

In relation to this proposition, we point out that conformal structures for which
the holonomy group acts not only with an open orbit on N/, but transitively and
irreducibly on the homogeneous model were classified in [Alt 2012].

Proposition 4.6. Suppose that (M, [g]) admits an nc-Killing form a € QX(M).
Then V° Aa =0 for every V € E.

Proof. Following the discussion in Section 2C, every nc-Killing k-form o uniquely
determines a parallel tractor (k + 1)-form &. With respect to a metric g in the
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conformal class, decompose & as in (8). Pointwise, & is annihilated by the action #
of hol(M, c) on forms. In particular, one has for every V € &, that

(s" AV #é, =0.
Inserting (8), one immediately obtains that V> A« = 0. [l

Proposition 4.7. Suppose M is orientable and the action of Hol(M, c) leaves
invariant a nontrivial nondegenerate subspace of RPY1-4+1 Then £ =0 on an open,
dense subset of M.

Proof. As the holonomy invariant space (of dimension k + 1) is nondegenerate and
M is orientable, there is actually a decomposable parallel tractor form in Q¥7* The
associated nc-Killing form « is of the form o =1 A- - - Atg, defining a k-dimensional
nondegenerate subspace H C TM on an open, dense subset of M as follows from
the discussion in [Leitner 2005], Thus, Proposition 4.6 implies that £ C H on an
open dense subset M’ of M. On the other hand, by Proposition 4.2, £ is over M’
contained in a totally degenerate subspace. We conclude &y = 0. U

Proposition 4.8. Suppose that Hol(M, c) fixes a totally lightlike (with respect to h)
subbundle H C T. Then there is an open and dense subset of M and at least locally
a metric g € c such that with respect to g

(45) H=Rs; L,
with L C TM a V8-parallel distribution containing £ and the image of Ricé.

Proof. The existence of a parallel distribution £ C TM containing the image of Ric®
was proven in [Lischewski 2015]. To see that at each x € M, the fiber £, contains
&y, consider V € &, such that s AVP e hol, (M, c). Then (sb, AV (sy) =V lies
in H, which shows that £ C L. ([

These results enable us to prove the main result of this section:

Theorem 4.9. Let U C M be a E-adapted open set. Then exactly one of the
following cases occurs on U:

(1) & is integrable.

(2) The dimension of M is 5 and £ is a generic rank 2 distribution. Moreover,
hol(M, ¢) = gy and hence the conformal structure ¢ = c¢ is defined by the
generic distribution &.

(3) The dimension of M is 6 and £ is a generic rank 3 distribution. Moreover,
hol(M, c) = spin(3, 4) and the conformal structure c = cg¢ is defined by the
generic distribution &.
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Proof. If hol(M, c) is generic the statement is trivial as £ = TM in this case.
Thus, we may assume that the holonomy algebra is reduced and by the previous
Proposition, &, is a totally lightlike subspace of T, M for x € U.

Let Vi, V, be vector fields on U such that s* A Vlb:1 , €hol,(M,c)forx e U. It
follows that ’

(46) VIE(s A V) = VEE(sZ AV)) = =V AV, 452 A(IV1, Val) € hol(M, ¢).

Moreover, let X be a vector field on U which is orthogonal to V; fori =1,2. It
follows from evaluating [V(s” A V), VE(s” A V;)] that

(47) 28(Vx Vi, V) X* As” +g(X, X)V] A V) € hol(M, ¢).

Combining (46) and (47) it follows for X orthogonal to (Vi, V,) that

(48) X-g(VxVi,Vr) €& for g(X, X)=0,
26(Vx Vi, V-

(49) Vi vy = 8V VD) e for (X X) 20,
g(X, X)

Now we distinguish several cases: Obviously the statement is trivial in case
r¢ < 1. Thus, we may assume that V;, V, are linearly independent. Fix a local
g-pseudoorthonormal basis (s, ..., s,) over U such that

(50) E=span(V; :=sy_1+so |i=1,...,7%).

Moreover, let V/ :=s5;_1 — sy fori =1,...,e. Thatis, g(V;, Vj’) = 24;;.

Case1: r® >3 andn > 6. In (48) let X = V3’. It follows that g(V, V1, Vo) =
8(V V1, V2). But then letting X =55, s¢, (49) can only be true if [V}, Va]—f- V3/ €&
for some function f. On the other hand, applying (49) to X = s, reveals that
[Vi, Vo] — h - s, € € for some function /4. But this can only be true if f =h =0,
i.e., [V], V2] eé.

Case 2: r© =2 and n > 5. In complete analogy to the previous case, we obtain
that [V1, V] — fs5 € € for some function f as well as [V}, Vo] — hsg € € for some
function & from which one has to conclude that f =h = 0.

Case 3: r® =2 and n = 4. Necessarily, M is of signature (2, 2). It follows
from (48) that for i, j, k € {1, 2} we have g(Vy,, V;, Vi) = 0. But this implies that
g(Vy, Vo — Vi, Vi, Vi) =0, ie, [V}, Va] € EL = €.

It remains to show that in signatures (3, 2) with £ of dimension 2 and in signature
(3, 3) with £ being of dimension 3 and not integrable, £ is generic.

First, let us consider signature (3, 2) and assume that £ is not integrable. In
particular, £ is of rank 2 on an open and dense set. One could proceed with the
proof for this case analogously as with the (3, 3) case below. However, as we
are considering a conformal structure in odd dimension, one of the main results
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in [Cap et al. 2016] yields that hol(M, c) is the holonomy algebra of a Ricci
flat pseudo-Riemannian manifold of signature (4, 3). If the standard action of
hol(M, c) was reducible, then by Propositions 4.7 and 4.8, £ would be either zero
or contained in an integrable totally lightlike distribution, both contradicting the
assumptions in the current case. Thus, the action of the holonomy algebra is
irreducible and from £ # TM and the pseudo-Riemannian version of the Berger
list it follows that hol(M, ¢) = g», where g, denotes the noncompact simple Lie
algebra of dimension 14. For this case, however, £ is generic. This follows from
the discussion of gp-conformal structures in Section 2C in complete analogy to the
proof of Corollary 5.11 in Section 5B.

Let us now treat the 6-dimensional case. Fix a local basis (V;, Va, V3, Vl’ , Vz’ , V3/ )
for TM over U as specified in (50) such that g(V;, V/) = 28;;. Moreover, without
loss of generality, we may assume that

(5D [Vi,Val ¢ £.
From (48) we obtain g(Vy; V1, V2) =0 and (49) applied to X = V3 + V; then yields
(52) [Vi, Val = g(Vv, Vi, V) V5 € €.

We conclude from (51) that g(Vy, V1, V2) #0. Moreover, it follows from subtracting
Vi, (s” A V) € hol(M, ¢) from (46) that

(53) Vi, Vi + Vi, Vol € €.

In complete analogy to the derivation of (52) we obtain [Vy, V3]—g(Vy, V1, V3) VZ/ e&.
Inserting (53) and then using (51) and (52) reveals that the coefficient g(Vy, Vi, V3)
is nonzero. The same argument applies to [V,, V3] and we conclude that there are
nowhere vanishing functions f; for k =1, 2, 3 such that

[Vi’ V]] = Eijkfkvk/ mod &.

In particular, [£, £] = TM.
It remains to show that in this case we have hol(M, ¢) = spin(3, 4). Using (7),
it is straightforward to compute that the 15 elements, i, j =1, 2, 3,

(54) LAV VEGLAVY) and VEGLAV)), i<

are pointwise linearly independent in hol(M, ¢) Np. Then Proposition 4.5 comes
into play, which ensures that so(p + 1, g + 1) = hol(M, c¢) + p and hence that dim
hol(M, c) > 15+ 6 = 21, which is the dimension of spin(4, 3). Then the equality
hol(M, c¢) = spin(4, 3), and with it the last point in the theorem, follows from
Lemma 4.10 below. ([l
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Lemma 4.10. Let h C so(4,4) be irreducible of dimension at least 21. Then
h =spin(3, 4).

Proof. Since b acts irreducibly, it is reductive. Then either h is semisimple and the
complexified representation C ® R*# is irreducible, or h C u(2,2) and C ® R**
is not irreducible (see for example [Di Scala and Leistner 2011, Section 2]). The
second case however is excluded by the assumption dim() > 21. Hence, we
may consider h® C s0(8, C) semisimple acting irreducibly on C& Inspecting the
dimensions of simple complex Lie algebras below 28, it turns out that the only
possibilities for f, apart from so(7, C), are slsC and sl,C @ sl3C. Then s(sC is
excluded as it does not have an irreducible representation of dimension 8. On the
other hand, any irreducible representation of sl,C @ s[3C is a tensor product of
irreducible representations, which is excluded as sl3C does not have an irreducible
representations of dimension 2 or 4. ]

Finally, we want to derive universal integrability conditions for the Weyl and
Cotton tensors for conformal manifolds with reduced holonomy.

Proposition 4.11. Let (M, ¢) be a conformal manifold with nongeneric holonomy.
Locally, and off a singular set there is a totally degenerate subspace L C TM, which
is integrable if (p, q) ¢ {(3,2), (3, 3)}, such that

(55) W(L, LY =0,
(56) (n—4C(L, L) =0.

In even dimensions, one has Im(O) C L. In particular, if a conformal manifold in
even dimension > 4 admits a parallel tractor (of any type) other than the tractor
metric, then the conformally invariant system (55) — (56) either becomes a nontrivial
integrability condition on the curvature (and it couples O to the curvature) or O =0.

Proof. We restrict the local analysis to £-adapted open sets and let £ = &. The
conditions (55) and (56) are easily seen to be an equivalent reformulation of

(57) [R™(X, Y), s A V"] € hol(M, ),

(58) [try V.R™(-, X), s A V"] € hol(M, ¢),

where X, Y € TM and V € £. The statement follows from the definition of £ and

Theorems 3.1 and 4.9. |
5. Applications to the obstruction tensor

Recall that according to Theorem 3.1 the image of the obstruction tensor O is
contained in the holonomy distribution £. In this section we apply the results about
£ to obtain the results in Corollaries 1.2 and 1.3. In the following we will always
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assume we have given a smooth conformal manifold (M, c¢) of even dimension n
and with obstruction tensor O. We view O as a (1, 1)-tensor by means of some
g € c and define the rank of O at a point to be the rank of this (1, 1)-tensor. The
holonomy reductions we will consider now were described in Section 2C.

5A. The obstruction tensor and holonomy reductions. We begin with a well-
known case of a conformal holonomy reduction, the case of a parallel standard
tractor. The existence of a parallel standard tractor is equivalent to the existence of
an open dense subset in M, on which the conformal class contains local Einstein
metrics. It is well known since [Fefferman and Graham 1985, Proposition 3.5], see
also [Gover and Peterson 2006, Theorem 4.3] and [Fefferman and Graham 2012]
that the existence of local Einstein metrics in the conformal class forces O = 0.
Our Theorem 3.1 provides us with an independent and alternative proof:

Corollary 5.1. If locally on an open and dense subset of M there is an Einstein
metric g € c, then O =0.

Proof. Given an Einstein metric on U C M and splitting the tractor bundle over U
with respect to g, there is on U a parallel standard tractor

scal®

= —mé‘, +S+

In particular, hol, (U, [g]) T, =0. Theorem 3.1 yields (sb_ ANX_ONWT)=0(X)=0
on U for each X € TU which is equivalent to O =0 on U. ([

A weaker condition than admitting a parallel tractor is the existence of a subspace
that is invariant under the conformal holonomy. In this situation Propositions 4.7
and 4.8 imply:

Corollary 5.2. Suppose M is orientable and the action of Hol(M, c) leaves invari-
ant a nontrivial subspace H of RPT1411 Then we have the following alternatives
(possibly replacing H with HNH* if it is degenerate):

(1) If H is nondegenerate, then O = Q.

(2) If H is totally lightlike, then, locally on an open dense subset of M there is a
metric g € ¢ and a V&-parallel distribution L C TM containing the image of
Ric# and of O.

Specializing the total lightlike case in this corollary further, in Section 5B we
will consider Bryant’s conformal structures as examples. Another example is the
following:

Example. Suppose that M is of split signature (n, n) and that Hol(M, c) leaves
invariant two complementary totally lightlike distributions H & H' = T, i.e.,
Hol(M,c) CcGL(n+ 1, R) C SO(n + 1, n + 1). Such conformal structures arise
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from Fefferman type constructions starting with n-dimensional projective structures,
see [Hammerl and Sagerschnig 2011a; Hammerl et al. 2015]. For % and ' define
L and L’ as above and fix a local metric g such that 7 is of the form (45) on some
set U C M. Elementary linear algebra shows that on U the space L N L' is at each
point at most 1-dimensional. Moreover, we have from the conformal covariance of
O and Corollary 5.2 that Im(O) C L N L. Tt follows that the rank of O is less than
or equal to one on an open, dense subset of M.

Proposition 5.3. Let (M, ¢) be an even-dimensional conformal manifold admitting
a twistor spinor ¢. Then, at each point

(59) Im(0) C L,.

In particular, O vanishes if there are twistor spinors whose associated subspaces L
are transversal on an open and dense subset of M.

Proof. Combining Theorem 1.1 with relation (10) yields that
(60) s—-0X)-¢y=0.

Filling in the technical details how 1 is related to ¢ by means of a metric in the
conformal class as done in [Leitner 2007] reveals that (60) is equivalent to

(61) O(X)-9(x) =0 for ¢(x) #0,
which is clearly equivalent to (59). (]

We continue by combining Theorem 3.1 with the results in Section 4C. In the
nongeneric case, i.e., when hol(M, c) # so(p + 1, g + 1), Proposition 4.4 shows
that the image of O is lightlike over an open dense set in M, and hence everywhere:

Corollary 5.4. If hol(M, c¢) is not generic, then Im(O) is totally lightlike. In
particular, if (M, c) is Riemannian and Hol(M, c) is not generic, then O = Q.

The statement in Corollary 5.4 about Riemannian conformal structure can be
pieced together from several results in the literature: The decomposition theorem
in [Armstrong 2007] states that a conformal structure with holonomy reduced from
so(1,n+ 1), locally over an open dense subset of M, contains an Einstein metric
or a certain product of Einstein metrics. Corollary 5.1 and the results in [Gover and
Leitner 2009] about products of Einstein metrics then ensure that (M, ¢) admits
an ambient metric whose Ricci tensor vanishes to infinite order, and hence that
the obstruction tensor vanishes. Our proof of @ = 0 for Riemannian nongeneric
conformal classes in Corollary 5.4 is self-contained and does not make use of the
results in the literature.

We consider now several options for the rank of O. From Proposition 4.5 we get:
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Corollary 5.5. If Hol®(M, ¢) has no open orbit on the lightcone N' C RP+14+1,
then 1k(O) < 1.

Indeed, if Hol®(M, ¢) has no open orbit on the lightcone A" C R?*+14+1, then by
Proposition 4.5 the rank of O is < 1 on an open dense set. Hence, the rank is < 1
everywhere.

Again we refer to [Alt 2012], where conformal structures with a transitive and irre-
ducible action of the conformal holonomy are classified. Moreover, Proposition 4.2
implies:

Corollary 5.6. If the rank of O is maximal at some point x € M, then hol(M, c¢) =
so(p+1,q+1) is generic. In particular, all parallel tractors are obtained from
the tractor metric h only.

Corollary 5.6 demonstrates that the ambient obstruction tensor O can also be
interpreted as an obstruction to the existence of parallel tractors on (M, c¢) of any
type. Namely for such a tractor to exist, O needs to have a nontrivial kernel
everywhere. We analyze this phenomenon in more detail by focusing on parallel
tractor forms and the associated normal conformal Killing forms (see Section 2C).
Proposition 4.6 implies:

Corollary 5.7. If (M, ¢) admits a nc-Killing form a € QK(M), then Im(O) Ao = 0.

Corollary 5.8. IfV is a normal conformal vector field for (M, c¢), then Im(Q) CRV
whenever V = 0. In particular, O vanishes if there is a normal conformal vector
field that is not lightlike, or if the space of normal conformal vector fields has
dimension greater than 1.

In particular, Corollary 5.8 applies to Fefferman conformal structures (M, c)
of signature (2k + 1, 2r + 1), i.e., Hol(M, c) C SU(k + 1,7 + 1). They admit a
distinguished normal conformal Killing vector field V. Thus,

(62) ImO C RV,

for which an independent proof can be found in [Graham and Hirachi 2008]. For
the Lorentzian case, i.e., k = 0, any additional holonomy reduction will force O to
vanish.

Proposition 5.9. Let (M, ¢) be a Lorentzian conformal manifold of even dimension
n with hol(M, ¢) C su(l, 5). Then O = 0.

Proof. From the classification of irreducibly acting subalgebras of so0(2, n) in
[Di Scala and Leistner 2011] and the results in [Alt et al. 2014] it follows that
hol(M, c) has to act with an invariant subspace. If the holonomy representation
fixes a nondegenerate subspace or a lightlike line in R>" the result follows with
Corollaries 5.1 and 5.2. Otherwise, hol(M, c) fixes a totally lightlike 2-plane in
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R>" and again Corollary 5.2 applies. That is, there is (at least locally) a metric g € ¢
admitting a recurrent and nowhere vanishing null vector field U, i.e., VEU =0 @ U
for some 1-form 6 and Im(Q) C RU. Assume now that O is nonzero at some point.
It follows from (62) that there is an open subset of M on which RVy =RU. However,
this contradicts the fact that the twist! of U is given by wy =8 AU A U” = 0 but
wy, # 0; see [Baum and Leitner 2004]. Thus, O =0. O

Remark. In similar fashion, Fefferman spaces over quaternionic contact structures,
see [Alt 2008], admit 3 linearly independent Hol(M, c)-invariant almost complex
structures which descend to pointwise linear independent nc-vector fields (or 1-
forms) on M. Thus O = 0 for this case by Corollary 5.8.

5B. The obstruction tensor for Bryant conformal structures. We now specialize
to Bryant conformal structures in signature (3, 3) induced by a generic 3-distribution
D C TM as in Section 2C, and deduce several new results about the relation of the
generic distribution D and the image of O.

Every Bryant conformal structure admits (and is equivalently characterized by) a
parallel tractor 4-form & € I'(M, A*T) whose stabilizer under the SO(4, 4)-action
at each point is isomorphic to Spin(4, 3) C SO(4, 4). In particular, Hol(M, ¢) C
Spin(4, 3). For a fixed metric g € ¢ and the corresponding splitting (8), i.e.,

(63) =5 Aa+aot- -,

one finds that ¢ =1 T /\l;/\lg for /;—1 2,3 some basis of D and « transforms conformally
covariantly under a change of g. Using this, we can derive constraints on the
obstruction tensor for Bryant conformal structures.

As an immediate consequence of Proposition 4.6 and Corollary 5.7 we obtain:

Corollary 5.10. Let (M, cp) be a Bryant conformal structure induced by a generic
3-distribution D C TM. Then £ C D, and in particular, Im(O) C D.

Moreover:
Corollary 5.11. If hol(M, c) = spin(4, 3), then D = £ everywhere on M.

Proof. The Lie algebra spin(4, 3) equals the stabilizer algebra of a spinor ¥ of
nonzero length in signature (4, 4) which corresponds via some g € ¢ to a twistor
spinor ¢ with L, =D at every point (see Section 2C). Thus, (s" AI%)- Y =0 for
everyl € D,ie,DCE. O

Remark. This agrees with the curved orbit decomposition from [Cap et al. 2014],
cf., the discussion in Section 4B for this particular case. Indeed, as discussed in
that work for the general case, the curved orbits correspond to the Spin(4, 3)-orbits

I Recall that for a vector field X € X (M), its twist is the 3-form wy = ax® A x°. Clearly, the
condition dwy = 0 depends on RX only.
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on SO(4, 4)/ Stabso4,4)(£), where £ C R** is a null line. However, there is only
one such orbit as Spin(4, 3) acts transitively on the projectivized lightcone in R**,

Proposition 5.12. Assume that hol(M, c) C spin(4, 3) C so(4,4). Then rk(O) < 1.

Proof. Suppose first that there is an open set U C M on which £ has dimension 3, i.e.,
by Corollary 5.10 we have £ = D over U. By passing to a subset of U if necessary,
we may assume that U is a £-adapted open set. Let V;—; 2 3 be a pointwise basis
of £ over U depending smoothly on x. Let V/ be lightlike vector fields on U such
that g(V;, VJ/ ) = &;j. We have seen that in this case the 15 elements in (54) are
pointwise linearly independent in hol(M, ¢) Np. But then it follows immediately
from Proposition 4.5 that dim hol(M, c) > 15+ 6 = 21, which is the dimension of
spin(4, 3). Thus hol(M, c) is no proper subalgebra of so(4, 4).

We have to conclude that the set on which r¢ < 2 is open and dense in M. In
particular, rk(Q) < 3 on an open and dense subset of M. However, the set on which
rk(O) < 3 is also closed and since M is connected it follows that rk(O) < 3 on M.
Assume next that there is x € M such that rk(O) =2 at x. Since the subset on which
rk(O) > 2 is open in M it follows that rk(O) = 2 on some open set U of M. After
restricting U we may assume that U is a £-adapted open set and € =2 on U. Thus,
€ is over U a 2-dimensional subbundle of D. By Theorem 4.9, £ is integrable over
U which contradicts D being generic. Consequently, rk(O) < 1 everywhere. [l

Example. Proposition 5.12 applies to the situation when Hol(M, ¢) lies in the in-
tersection of Spin(4, 3) with the stabilizer of a totally degenerate subspace # C R**.

For dim H = 4, this intersection is isomorphic to

spin(3,4)y = {(g _);T) ‘ Z e esprR, X eso(d),r(XJ) = 0},

(0 1

cspR={ZegR|ZTJ+JZ—-Lu(Z)] =0} =Rl ®sp,R.

where

and

Moreover, since the Lie group Spin(3, 4) C SO(4, 4) corresponding to spin(3,4) C
50(4, 4) acts transitively on triples

{(s4,H,s_) | H atotally null 4-plane, s; € H,s_ € R® null, g(s4,s_) = 1},
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we can express the stabilizer of H in conjunction with the |1|-grading spin(3,4) =
g 1Dgo® g inabasis (Sy,e,,8-,e;) fora=1,2,3anda=a+3, as

spin(3, 4)x
rowTl 0 BT |w=w)eR, w=@) R, v=(v) € (R},

Tz |-w x X =(Xt) es0(3), Z=(Z")) € gi4R,

_ 0 0 |w_z u)3=221, w1=_223’ V] =—Z32, U3=le,
0 0 |-w-2T r=2'—7%+ 7% w?=-X,

Here (r, Z, X) corresponds to the go part whereas (w, w) correspond tot he g_; and
v to the gj-part. In particular, the intersection py; of spin(3, 4)4, with the parabolic
p is given by setting w and w to zero, and the intersection £ of spin(3, 4)4 with g
by requiring in addition that X = Z = r = 0. Note that £ is one dimensional.

In regards to examples of this situation, we recall that in [Anderson et al. 2015]
a certain class of Bryant’s conformal structures was studied. They are defined by a
rank 3 distribution Dy on RS with coordinates (x!, x2, x3, yl, yz, y3) given by the
annihilator of three 1-forms

01 =dy' +x%dx>, 6, =dy’+ fdx', 63=dy’ +x'dx?,

where f = f(x', x2, x3) is a differentiable function of the variables (x!, x2, x3)
only. It was shown that, whenever f depends only on x> and x', the corresponding
conformal class contains a metric for which the image of the Schouten tensor lies in
a parallel rank 3 distribution, which implies [Lischewski 2015] that the conformal
holonomy is contained in spin(3, 4)y. In addition, these conformal structures
turned out to have vanishing obstruction tensor, and therefore they admit ambient
metrics. For the conformal class defined by Dy with f = x'(x*)% an ambient
metric with holonomy equal to spin(3, 4)4, was found, and for this example also
the conformal holonomy is equal to spin(3, 4).

Remark. We point out that there is a large class of examples of Bryant conformal
structures with f depending on three variables x!, x2, x3 for which the obstruction
tensor has rank 3, e.g., the one with f = 22+ x'x2 4+ (x2)2 + (x3)? in [Ander-
son et al. 2015]. From our Proposition 5.12 it follows that these examples have
hol(M, cp,) = spin(4, 3).

More difficult is the question of finding examples with rk(O) = 1. Of course, a
general conformal structure with holonomy su(2, 2) C spin(4, 3) has rk(O) =1, but
we are not aware of an explicit example with tk(O) =1 and hol(M, cp) C spin(4,3) 4.
Other examples with rk(Q) = 1, not necessarily with hol(M,cp) C spin(4,3), are
given by pp-waves and their generalization to arbitrary signature [Leistner and
Nurowski 2010; Anderson et al. 2017].

Finally, Theorem 4.9 implies:
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Corollary 5.13. Suppose (M, c) is of signature (3, 3) and rk(O) < 3 on some open
set and Im(Q) is not integrable. Then hol(M, c¢) is either equal to so(4,4) or to
spin(4, 3).

Proof. From the assumptions, rk(Q) > 2 on an open set. If tk(O) = 2 on an open
set, it follows from Theorem 4.9 that £ must have dimension at least 3 on this set.
Otherwise the image of O would be integrable. But then the statement follows
from Theorem 4.9. Otherwise the set on which rk(Q) > 3 is open and dense and
the statement is an immediate consequence of Theorem 4.9. O
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ON THE CLASSIFICATION
OF POINTED FUSION CATEGORIES
UP TO WEAK MORITA EQUIVALENCE

BERNARDO URIBE

A pointed fusion category is a rigid tensor category with finitely many
isomorphism classes of simple objects which moreover are invertible. Two
tensor categories C and D are weakly Morita equivalent if there exists an
indecomposable right module category M over C such that Fung (M, M)
and D are tensor equivalent. We use the Lyndon—-Hochschild—Serre spec-
tral sequence associated to abelian group extensions to give necessary and
sufficient conditions in terms of cohomology classes for two pointed fusion
categories to be weakly Morita equivalent. This result allows one to clas-
sify the equivalence classes of pointed fusion categories of any given global
dimension.

Introduction

Pointed fusion categories are rigid tensor categories with finitely many isomorphism
classes of simple objects with the property that all simple objects are invertible.
Any pointed fusion category C is equivalent to the fusion category Vect(G, w) of
complex vector spaces graded by the finite group G together with the associativity
constraint defined by the 3-cocycle w € Z3(G, C*). Whenever we have a right
module category M over C we can define the dual category C}, := Func(M, M)
which becomes a tensor category via composition of functors. Whenever C is a fusion
category and M is an indecomposable fusion category, the dual category C} , is also
a fusion category [Ostrik 2003a, §2.2]. An indecomposable module category M
of Vect(G, w) may be defined by M = M(K, ), where K is the space of cosets
K := A\ G for A a subgroup of G and u € C%(G, Map(K, C*)) is a cochain that
satisfies the equation 8. ~! = w. Two tensor categories C and D are weakly Morita
equivalent if there exists an indecomposable right module category M over C such
that C}, and D are tensor equivalent [Miiger 2003, Definition 4.2].

The author acknowledges the financial support of the Max Planck Institute of Mathematics in Bonn,
Germany, and COLCIENCIAS through grant number FP44842-617-2014 of the Fondo Nacional de
Financiamiento para la Ciencia, la Tecnologia y la Inovacién.
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Now, if we have two pointed fusion categories Vect(G, w) and Vect(@, ), what
are the necessary and sufficient conditions for them to be weakly Morita equivalent?
This question was raised in [Davydov 2000; Movshev 1993], it was answered by
Davydov [2000, Corollary 6.2] for the case in which both w and @ were trivial, and
the general case was answered by Naidu [2007, Theorem 5.8] in terms of the prop-
erties that A, w and u need to satisfy. Nevertheless these conditions were given in
equations that a priori had no interpretation in terms of known cohomology classes.

We continue the work started by Naidu [2007] and frame all the calculations
done there in the language of the double complex associated to an abelian group
extension which induces the Lyndon—Hochschild-Serre (LHS) spectral sequence.
By doing so we are able to obtain in Corollary 3.2 cohomological conditions on w
in order for the tensor category Vect(G, w)jvl( VG40 to be pointed, namely that w
must be cohomologous to a cocycle appearing in C>! @ C3° of the double complex
which induces the Lyndon—Hochschild—Serre spectral sequence associated to the
extensionl - A —> G —> K — 1.

With the previous result at hand, we construct explicit representatives of w and p
in terms of coordinates and we determine explicitly the groups G and the cocycles @.
The main result of this paper is Theorem 3.9, in which we give the necessary and
sufficient conditions for the categories Vect(H, 1) and Vect(ﬁ , 1) to be weakly
Morita equivalent. We may summarize the conditions as follows: Vect(H, n) and
Vect(H, 7)) are weakly Morita equivalent if and only if there exist isomorphisms of
groups ¢ : AxpK => H and é: K x A =5 H for some finite group K acting on the
abelian group A, with F € Z%(K, A) and F € Z2(K, A) where A := Hom(A, C¥),
such that both [ﬁ ] and [ F'] survive respectively the LHS spectral sequence for the
groups A X r K and K X z A, and such that ¢*» is cohomologous to

w((ay, k1), (@, ky), (a3, ks)) := F(ky, k) (@3)e (ky, k2, k3)

and ¢*7) is cohomologous to

@((k1, p1), (ka, p2), (k3, p3)) == €(ky, ko, k3) p1 (F (k2, k3)),

where € : K3 — C* satisfies dxe = F AF.

Theorem 3.9 may be used to determine the weak Morita equivalence classes
of pointed fusion categories of a given global dimension but the cohomological
calculations can become very elaborate and are beyond the scope of this article. Nev-
ertheless in Section 4 we include a calculation in which we show how Theorem 3.9
can be used to prove that there are only seven weak Morita equivalence classes of
pointed fusion categories of global dimension four and calculate the pointed fusion
categories which are weakly Morita equivalent to Vect(Qs, 1) for the quaternion

group Qg.
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1. Preliminaries
1A. Abelian group extensions. Consider the short exact sequence of finite groups
(1-1) l1-A->G—-K—1

with A abelian. Consider u# : K — G any section of the projection map p: G — K,
p(g) = (Ag) such that u(1gx) = 15 and denote the right G-action on K by

k<g = p((u(k)g)

for k € K and g € G. The elements u(k)g and u(k<g) differ by an element x; o € A
satisfying the equation

(1-2) u(k)g = ki gu(k<g),
which furthermore satisfies the relation

Kk,g182 = Kk,g1Kk<g1.g2

for k € K and g;, g2 € G. Since A is an abelian normal subgroup G, there is an
induced K -left action on A by conjugation:

kg :=u(k)au(k)™" for ke K and ac€A.

Since the isomorphism class of the extension (1-1) can be classified by the
cohomology class of the cocycle F € Z(K, A),i.e.,amap F : K x K — A such that

8k F (ki ko, k3) ="V F (ka, k3) F (kika, k3) ™ F (ki koks) F (ki ko)™ =1,
without loss of generality we will further assume that
G =AxpK,
where the product structure of G is given by the formula
(a1, ki) (a2, k2) = (a1(Max) F (ki k2), kika).

With this explicit choice of the group G, we choose the function u : K — G to
be u(k) := (14, k) and therefore we have that

Kk, (a,ka) = k]aF(kh kz),

thus obtaining F'(ki, ko) = ki, (1,k,). We furthermore have that for x € K and
g=1(a, k) €G,
x<g = x<(a, k) = xk.

Denote the dual group A := Hom(A, C*) and note that there is an induced
K -right action on A defined as p*(a) :=p*a) forpeAandk € K.
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1B. Cohomology of groups and the LHS spectral sequence. In what follows we
will construct an explicit double complex whose cohomology calculates the co-
homology of the group G, and whose associated spectral sequence recovers the
Lyndon—Hochschild—Serre (LHS) spectral sequence of the extension (1-1).

Endow the set Map(K, C*) with the left G-action (g>f) (k) := f (k<g), where
g€G, ke K and f: K — C* and consider the complex C*(G, Map(K, C*))
with elements normalized chains

C%(G,Map(K,C*)):={f:KxG?— C*| f(k;g1,...,8) =1 whenever some g; =1}
and boundary map

(1-3) (bg f)(k; g1,-..,8¢)
q—1 _
= f(k<gi: 2. 8)] [fkigr. o 8iir1 o 8) TV kigr o gg- )T
i=1

Since the natural morphism of groupoids, defined by the inclusion of the group A

into the action groupoid defined by the right action of G on K, is an equivalence of
categories, we have that the restriction map

Y :C*(G,Map(K,C")— C*(A,C", ¥(f)ai,...,aqy):=f(k;ai, ..., aq),
is a morphism of complexes which induces an isomorphism in cohomology

v H*(G,Map(K, C*)) => H*(A, C*).
The inverse map can be constructed at the level of cocycles as follows:

Lemma 1.1. The map ¢ : C1(A, C*) — C4(G, Map(K, C*)),

(p(a)(k’ glv ctt gq) = a(Kk,gla Kk<1g1,g2a cet Kk<1g1g2...gq,1,gq)9

defines a map of complexes which induces an isomorphism in cohomology ¢
H*(A,C*) = H*(G, Map(K, C*)) which is the inverse of the map V.

Proof. On the one hand we have

Scpl)(k;g1s-..,8p)
qg—1
= p(@)(k<gi:g2.-...80) [ [e@K:gr..... 811,89
i=1
= 0t (Kiag), g2 Kikagi g2, 3>+ Kkagr .gg-1,2,)
q—1
(=1
O (Kk g1, Kiagy, g2+ +> Kkagr...gim1,8igis1 -+ Kkgi.gg-1,8)
i=1

(-1 (—1yt

p@)(k;815---584—1)

(=11
O(((Kk,gl aKk<1g1 , 829 Kk<1g1 A..gqu,gqfl)
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and on the other

pga)(k;g1,....8p)
= SGa(Kk,gl ,qugl,g2’ e »quglgg,...,gq,l,gq)

= a(Kk<1g1 .82 Kk<gi 9,835 -1 Kk<gy...gq—1 ,gq)

g—1

( )(*1)"

O\Kk, g5 Kkagi,gas 1 Kkagr...gi—1,8iKk<gi...gi—18i.8iv17 -+ Kkagi...84-1.84

i=1

_1)¢

a((Kk,glka<1g|,gzv---v"k<g1-.-gq—z,gq—1)( "

The equality g () = ¢(ga) follows from the identity
Kkagy...gi—1,8i8i+1 = Kk<gi...gi—1,8iKk<g1...gi—18i &i+1*
Finally, the composition ¥ (¢(«)) = « follows from k1, = a fora € A. O

The complex C*(A, C*) can be endowed with the structure of a right K-module
by setting for « € C4(A, C*) and k € K

odrar, ..., ap) = a@®autk)™, ... uk)auk)™),

and the complex C*(G, Map(K, C*)) can also be endowed with the structure of a
right K-module by setting for f € C4(G, Map(K, C*)) and k € K

(f<k)(x; 81, ..., 8g) = flkx; 81, ..., 8)-

The map ¢ fails to be a K-module map; nevertheless it induces a K-module map
at the level of cohomology:
Lemma 1.2. The isomorphism ¢ : H*(A, C*) => H*(G,Map(K, C*)) is an iso-
morphism of K -modules.
Proof. Take o € Z9(A, C*) and k € K. We claim that ¥ (p(a)<k) = ¥, and since

¥ (p(a*)) = ok, we conclude that ¢(a)<k and ¢(a¥) are cohomologous. Now, let
us calculate

V(pla)<k)(ai, ..., aq) = (p(0)<k)(1; ay, ..., aq)

=g@()(k;ai, ..., aq)
= a(Kk,al » Kk<aay,azs «+ + s qualaz,...,aq_l,aq)
= a(Kk.ay» Kk.ays - - - » Kk.a,)

=auk)au®) ", uk)auk)™", ... utk)a uk)™")
= ozk(al, a,...,aq);

the lemma follows. O
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1B1. Double complex. Since C*(G, Map(K, C*)) is acomplex of right K -modules,
we can consider the complexes

C*(K, C1(G,Map(K, C*))),
with C? (K, C1(G, Map(K, C*)) consisting of normalized cochains
{f:KP — C1(G,Map(K,C*) | fky,..., kp) = 1 whenever some k; = 1}
and whose differentials are

Ok f)kr, ... kp)

p—1 )
= flha . k) [ f Gt kikigr, k) TV F R ko) <k,) T
i=1

These complexes assemble into a double complex
CP4:=CP(K,C(G,Map(K, C"))).

Let us denote by Tot(C**) the total complex associated to the double complex and
let 810 := 8k @ (86) V" be its differential.

We may filter the total complex by the degree of the G cochains, thus obtaining
a spectral sequence whose first page becomes

E{? = HP(K,CY(G, Map(K, C")).

Since the K-modules C?(G, Map(K, C*)) are free K-modules, we conclude that
the first page localizes on the y-axis,

EY? = HY(K, C%(G, Map(K, C*))) = C(G, Map(K, C*)X = c1(G, C*)

and E f ' = 0 for p > 0. The spectral sequence collapses at the second page, with
the only surviving elements on the y-axis

EX? = H1(G, C*).
Hence we have:
Proposition 1.3. The inclusion of K -invariant cochains
C*(G,Map(K, C*))X — Tot(C*(K, C*(G, Map(K, C*))))
is a quasi-isomorphism. Therefore the cohomology groups
H*(G,C*) = H*(Tot(C*(K, C*(G,Map(K, C*))))

are canonically isomorphic.
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Filtering the double complex by the degree of the K cochains we obtain the
Lyndon—-Hochschild—Serre spectral sequence associated to the group extension
1> A— G— K — 1; see [Evens 1991, §7.2]. The first page becomes

EP? =CP(K, H1(G, Map(K, C*))),
and the second page becomes
E}Y = HP(K, HY(G, Map(K, C*))).

Since the projection map & : H1(G, Map(K, C*)) =5 HY(A,C*) is an isomor-
phism of K-modules, we conclude:

Proposition 1.4 (LHS spectral sequence). Filtering the total complex by the degree
of the K -chains, we obtain a spectral sequence whose second page is

EyY = HP(K, H1(A,C"))
and that converges to H*(G, C*).

We will denote by d; : EPY — EP*"47'*! the differentials of this spectral
sequence.

1C. Tensor categories. Following [Bakalov and Kirillov 2001, §1], a tensor cat-
egory consists of (C,®, 1¢, @, A, p), where C is a category, ® : C x C — C
is a bifunctor, « is the associativity constraint, i.e., a functorial isomorphism
apyw:(UQV)IQW = UR(VRW) of functors CxCxC — C, 1¢ € 0bj(C) is a unit
element and A, p are functorial isomorphisms Ay : 1, QV =V, py: V®1lc = V
satisfying the pentagon axiom

(Vi®@V)RV3)QVy

VM@ (V2,®V3)® Vs Vi®@WV)® (V30 Vy)
Lal,zm la1.2,34
Vi (VL@ V3) @ Vu) T V1R (V2® (V3R Vy)))

and the triangle axiom

o

Vi®le)®@ W, Vieec® V)

m%

ViV,
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1D. The fusion category Vect(G, w). A fusion category over C is a rigid semisim-
ple C-linear tensor category, with only finitely many isomorphism classes of simple
objects, such that the endomorphisms of the unit object is C; see [Etingof et al.
2005].

For G a finite group and a 3-cocycle w € Z3(G, C*), define the category
Vect(G, w) whose objects are G-graded complex vector spaces V = @gec Ve,
whose tensor productis (VW) :=ED),,_ th ®Wy, whose associativity constraint is

av, v,v, = (g, b, ky with y(x®@y)®2) =x® (y®2),
and whose left and right unit isomorphisms are
a,=w(, 1,97 idy, and py, =w(g, 1, Didy,.

The category Vect(G, w) is a fusion category where the simple objects are the
1-dimensional vector spaces.

We will assume that all group cochains are normalized, and hence the left and
right unit isomorphisms become identities.

For convenience we will work with a category V(G, w) which is skeletal, i.e., one
on which isomorphic objects are equal, and which is equivalent to Vect(G, w). The
category V(G, w) has for simple objects the elements g of the group G, the tensor
product is g ® h = gh and the associativity isomorphisms are w(g, h, k) idgxk.

A finite tensor category is called pointed if all its simple objects are invertible. It
is thus easy to see that any finite tensor category which is pointed is equivalent to
Vect(G, w) for some finite group G and some 3-cocycle w.

1E. Module categories. Following [Ostrik 2003b, §2.3], a right module category
over the tensor category (C, ®, l¢, o, A, p) consists of (M, ®, u, T), where M is
a category, ® : M x C — M is an exact bifunctor,

Inxy MO (X®Y) = (MOX)®Y

is a functorial associativity and 7y : M ® 1¢ = M is a unit isomorphism for any
X,Y €eC, M € M, satisfying the pentagon axiom

(1-4) MRUX®Y)®2Z)
M (X®(Y®Z)) MRIXQY)®Z
lﬂM.X,Y@Z l“MVXVY@idZ
MRIX)® (Y ®Z) (MRX)QRY)RZ

UMRX,Y,Z
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and the triangle axiom

[L2/RVNY
(1-5) M®(1c®Y) MR1)®Y
MY

A module functor (F,y): (My, u', ') — (M, u?, %) between two module
categories consists of a functor F : M; — M, and a functorial isomorphism
vux  FIM®X)— F(M)® X forany X € C, M € M, satisfying the pentagon
axiom

FIM®(X®Y))
F(IM®X)®Y) FIM)®(X®Y)
jVM®X,Y l”zF(M),X.Y
FIM®X)®Y v (FIMY@X)QY

and the triangle axiom
F(t})
F(M® 1¢) u F(M)
FM)® 1¢

Two module categories M and M, over C are equivalent if there exists a module
functor between the two which is moreover an equivalence of categories. The
direct sum M| @ M, is the module category with the obvious structure. A module
category is indecomposable if it is not equivalent to the direct sum of two nontrivial
module categories.

A natural module transformation n: (F', y') — (F?, y?) consists of a natural
transformation 7 : F' — F? such that the square

nMeXx

FIM®X) —> F*(M ®X)

1 2
YMm.x l lyM,X

FIM)® X —= F2(M)® X
Ny ®idx

commutes for all M € M and X €C.
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1F. Indecomposable module categories over V (G, ). Let M be a skeletal right
module category over V(G, w). The set of simple objects of M is a transitive right
G-set and therefore it can be identified with the coset K := A\ G for A a subgroup
of G. The isomorphisms 14 ¢, ¢, for k € K and gy, g2 € G are scalars, and we can
assemble these scalars as an element

1€ C*(G, Map(K,C"), (ki g1 82) =tk g5,
The pentagon axiom (1-4) translates into the equation
(g1, &2, 83)(k; g1, 8283 1 (k<g1; &2, g3) = n(k; 8182, g3)n(k; g1, 82),
which in view of the definition of the differential 55 in (1-3) becomes
(1-6) ™! =n*w,
where m*w € C3(G, Map(K, C*))X is the K -invariant cocycle defined by w, i.e.,
o (k; g1, 82, 83) = w(81, 82, &3)-

Since w is normalized and the unit constraint in V(G, w) is trivial, we have that
the triangle axiom (1-5) implies that the unit constraint in M is trivial.

Denote this skeletal module category M = M(A\ G, u). Note that two V(G, w)-
module categories M| = M(A1\ G, 1) and My = M(A>\ G, up) are equivalent
if and only if there exist a right G-equivariant isomorphism F : A\ G => A;\ G
and an element y € C'(G, Map(A; \ G, C*)) such that

y(A18; 81822 (F(A18); 81, 82) = n1(A1g; g1, 82) v (A1881; 82)v (A18; 81).

This information implies that A; and A, are conjugate subgroups of G and that

H1

In the case that A = A} = A», the G-equivariant isomorphisms are parametrized
by the elements of the group A \ Ng(A), and the equation gy = F*uy /i) im-
plies that F*u,/u; is trivial in H>(G, Map(A \ G, C*)). Since we know that
v :H(G, Map(A\G, C¥)) => H*(A, C*)isan isomorphism, we can conclude that
the isomorphism classes of module categories over V(G, w) may be parametrized
(in a noncanonical manner) by pairs ([A], [¥ (®)]), where [A] is a conjugacy class
of subgroups of G, and [{(u)] is a representative of a cohomology class in the
group of invariants H>(A, C*)/Ng(A).

1G. Dual category. Let C be a tensor category and M an indecomposable right
module category. The dual category C}, := Fun¢ (M, M) is the category whose
objects are module functors from M to itself and whose morphisms are natural
module transformations.
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The category C}), becomes a tensor category by composition of functors; namely
for (y!, F1), (y2, F») € Obj(C},), where vyl v? represent the module structures on
the functors F; and F; respectively, we define the tensor structure by

Y, F)®(: F)i=(y, FioF),

where the module structure y is defined by yy, x 1= y[}"Z(M),X oF (yAZ,I’X) forM e M
and X €C. For two morphisms n: (y!, F) — (y%, Fo) andn’: (y'1, F))— (y'*, F3)
in C}, their tensor product is (n ® n")(M) := nEyon © Fi (nh)-

Whenever C and M are semisimple, the dual category C}, is semisimple [Ostrik
2003a, §2.2]. Moreover, since M is itself a left module category over C} , it has been
shown in [Ostrik 2003b, Corollary 4.1] that the double dual is tensor equivalent to
the original category, i.e., (C})’y = C. Furthermore, the module categories of C and
of C}{; are in canonical bijection (Proposition 2.1 of the same work) by the following
maps. For M| a module category over C, the category Fun¢ (M, M) of module
functors from M to M is a left module category of C}, = Func(M, M) via the
composition of functors. Conversely, if M is a left module category over C},, then
Funcjw (M, M) is a right module category over Func;/1 M, M) =)y =C
via composition of functors. These maps are inverse from each other.

1H. Center of a tensor category. The center Z(C) of the tensor category C is the
category whose objects are pairs (X, ), where X is an object in C and 7 is a
functorial set of isomorphisms ny : X ® ¥ — Y ® X such that the hexagon diagram

Nyez

XQY)QRZ—2>XQ(YQZ) — (YRZ)QX

lﬁy@l loz
1®nz

YRX)RZ—>YR(XQRZ) —YR(Z®X)
and the triangle diagram

Ne

X® 1C 1(}69 X

N

X

are commutative. A morphism f : (X, n) — (¥, v) consists of a morphism f: X — Y
for which the diagram

X®Z-Y-70X

f@ll ll@f
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commutes for any object Z in C. The tensor structure is defined as (X, n)® (Y, v) :=
(X ®Y, y), where yz is defined as the composition

XQY)®Z - >X0(YeZ) 24 Xxe(ZaY)

a~ !

1
X®2)QY 2 (Z@X)®Y — >~ Z@(X®Y)

The center Z(C) is moreover braided and the braiding for the pair (X, 1), (¥, v)
is precisely the map ny.

The center Z(Vect(G, w)) of the tensor category Vect(G, w) contains the in-
formation necessary for constructing the quasi-Hopf algebra that is known as the
twisted Drinfeld double D®(G) of the group G twisted by w (see [Dijkgraaf et al.
1991, §3.2)).

11. Weak Morita equivalence of tensor categories. Two tensor categories C and D
are weakly Morita equivalent if there exists an indecomposable right module cate-
gory M over C such that C};; and D are tensor equivalent [Miiger 2003, Definition
4.2]. In Proposition 4.6 of the same work it is shown that weak Morita equivalence is
an equivalence relation, and in [Etingof et al. 2011, Theorem 3.1] it is shown that two
tensor categories are weak Morita equivalent if and only if their centers are braided
equivalent. In particular we have that for M an indecomposable module category
over C there is a canonical equivalence of braided tensor categories Z(C) >~ Z(C},)
[Ostrik 2003a, Proposition 2.2].

2. The dual of V (G, w) with respect to M(A\ G, )

Let us consider the tensor category C = V(G, w) and the right module category
M= M(A\ G, n) described in Section 1F. In this chapter we will review the main
results of [Naidu 2007], where explicit conditions are stated under which the dual
category C}, is pointed. For the sake of completeness and clarity we will review the
constructions done in §3 and §4 of that work and we will reinterpret the equations
given there in the terminology that we have set up in Section 1A and Section 1B.

2A. Conditions for C, , to be pointed. Let us set up some notation for this section:
let K :=A\G, u: K — G satisfty pou=1g and u(p(1g)) = 1¢ for p: G — K the
projection, k : K x G — A satisfy u(k)g =y qu(k<g) and K 4 be the elements of K
fixed under the conjugation by elements of A. The module category M(A\ G, u)
is the skeletal category whose simple objects are the elements of K = A\ G, whose
tensor structure is k ® g := k<g for k € K and g € G and whose associativity
constraint p satisfies Sgu ™! = 7*w; see (1-6). In what follows we will focus on
parametrizing the invertible objects of C},.
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Following [Naidu 2007, Lemma 3.2] any invertible module functor in C}, is
of the form (Fy, y), where the functor Fy : M — M is the one that extends the
G-equivariant map f, : K — K, f,(k) = p(u(y)u(k)), for y € K4 and y is a
functorial isomorphism y ¢ : F,(k ® g) = F, (k) ® g that satisfies the pentagon
axiom. Writing yx ¢ := ¥ (k; &) id pu(y)uk«g)) for y € cl(G, Map(K, C*)) we have
that the pentagon axiom of a module functor translates into the equation

uik; g1, g2)y (k<gi; g2)y (k; g1) =y (k; g1g2)mu(fy(k); g1, &2),

which can also be written as

w(fy(k); g1, &2)

Sy (ks yi,v2) =
wu(k; g1, &2)

The inverse of (Fy, y) is the module functor (F,,(y)-1), ¥) with

y(k; g) =y (pu() ue)) )7

Defining for each y € K* the set

k); g1,
Fun, = { y € C'(G, Map(K, ©) | 867 (k: g1, 82) = M}

wk; g1, &2)

for all k € K and g1, g2 € G, we have that of invertible objects of C}) ; are precisely
the module functors (Fy, y) where y € K Aand y € Fun,. To simplify the notation
we will denote such a module functor by the pair (y, y).

Two invertible module functors (yi, y') and (y2, y?) in C}, are isomorphic if
and only if y; = y, and if there exists natural transformation parametrized by a
map 1 € C%(G, Map(K, C*)) satisfying the equation

2-1) v (ks 9)n(k) = n(k<g)y*(k; g)

for all k € K and g € G. These equations can be rewritten as the equation

2
14

dgn=—+
14

in C'(G, Map(K, C*)). Therefore for each y € K“ we may define an equivalence

relation on the elements y!, 2 € Fun, by setting % =~ y! whenever there exists 7

such that §gn = y2/y'; denote by ﬁy the associated set of equivalence classes.
For each y € K4 let us choose an element ¥y € Fun,, and note that the maps

Fun, — Z'(G, Map(K, C*)), Br> E,

Yy
Z'(G,Map(k, C*)) — Fun,, € €Yy



450 BERNARDO URIBE

are inverse to each other. Therefore we obtain bijections
Fun, = H'(G, Map(K, C*)) = H'(A, C*) = A,
which are realized by the maps

(2-2) &y:A—Funy, &y(0):=vyp(p), Oy :Funy — A, 0,(B):=v¥(B/yy).

Recall from [Etingof et al. 2005, Definition 2.2] that the global dimension dim(C)
of a fusion category C is the sum of the squared norms of its simple objects, and
note that by Theorem 2.15 of the same paper we have dim(C}; ) = dim(C) whenever
C is a fusion category and M is an indecomposable module category over C.

Let us suppose now that the dual category C3; = V(G, @) 4(4\¢.,,) IS pointed.
Therefore its global dimension

dim(C}y) = IA[IK*|

must be equal to the number of isomorphic classes of invertible objects, since on
pointed categories all simple objects are invertible. On the other hand, by [Etingof
et al. 2005, Theorem 2.15 ] we have dim(C} ) = dim(C) and dim(C) = |G|. There-
fore in order for the category C}, to be pointed it is necessary that |A[|K Al =|G|.
Since |G| = |A||K|, |A| < |A| and |[K4| < |K], the equality holds if and only if A
is abelian, thus giving that |[A| = |A|, and if A is normal in G and KA =K.

On the other hand, if A is abelian and normal on G, then the number of iso-
morphism classes of invertible objects in C}, is |A||K| = |G|. Since dim(C},) =
dim(C) = |G|, we have that the set of isomorphism classes of invertible objects
exhausts the set of simple elements, and therefore C}}, must be pointed.

Summarizing we have:

Theorem 2.1 [Naidu 2007, Theorem 3.4]. The tensor category

is pointed if and only if A is abelian and normal in G and the cohomology class
[(u<y)/u] is trivial in H*(G, Map(K, C*)) forall y € K.

Note that since A is normal in G, we may use the notation introduced in
Section 1B so that w(fy(k); g1, g2) = u(yk; g1, 82) = (n<y)(k; g1, g&2). Since
we have that Sgu~! = 7w = §g(u™'<y), the quotient (u<y)/u defines a cocycle
in Z%(G, Map(K, C*)). The equation 8¢ ¥y = (u<ty)/p implies that the quotient is
trivial in cohomology.

2B. The Grothendieck ring of the pointed category C’ . From now on we will
assume that the dual category C}, is pointed. Therefore we have that A is abelian
and normal in G and that we can choose elements y, € C (G, Map(K, C*)) for
each y € K such that gy, = (u<y)/u.
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The Grothendieck ring K¢(C},) of the category C}, is the ring defined by the
semiring whose elements are the isomorphism classes of objects and whose product
is the one induced by the tensor product. Since C}, is pointed, Ko(C} ) is isomorphic
to the group ring Z[A] for some finite group A. In this section we will recall the
construction of this isomorphism carried out in [Naidu 2007, Theorem 4.5].

The tensor product of two invertible elements (yy, y'), (y2, ¥2) in Ci as defined
in Section 1G is

017D ® 02, ¥ = Gy, (v 'y v?).

This tensor product defines a group structure on the set of isomorphism classes of
invertible objects

A= U {y} x ﬁy
yek

by the equation (y1, [¥']) * (2, [¥2]) = (y1y2, [(¥'<y2)¥?]), where [y] denotes
the equivalence class of y in Fun,.
Define the element y € C'(K, C L@, Map(K, C*))) by the equation

y(») i=vyy
and note that the equations gy, = (u<y)/u are equivalent to the equation
Sy =Sk 1.

Define the element v := éx y, i.e., V(y1, y2) = (¥ (y2) ¥ (y1)<y2)/¥ (y1¥2), and note
that

Sk =082y =1 and 86D =868y =8kdcy =8ep=1.
Hence v € Z2(K, Z!(G, Map(K, C*))) and we may define
(2-3) vi=vobe Z*K, Z (A, C") = Z*(K, A),

thus having v(yi, y2)(a) := v(y1, y2)(1; a).
With this 2-cocycle v we may define the crossed product K x,, A by setting on
pairs of elements of the set K x A

1. 1) - (2, p2) 1= (¥1y2, P> 020 (Y1, ¥2))-
Using the notation of (2-2) we have:

Theorem 2.2 [Naidu 2007, Theorem 4.5]. The map

T:Kx,A— A, T{(y,p)=, LD,

is an isomorphism of groups. Hence Ko(Cy,) = Z[K %, Al.
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Proof. On the one hand we have

T((y1, p1)- (2, 2)) =T (312, P2 020 (Y1, Y2))) = 12, [Ly13, (072 020 (Y1, y2))])
and on the other
T((y1, p)) * T((y2, p2)) = (1, [Ey, (1)) * (2. [y, (02)])
= (y1y2, [(&y, (P1)<¥2) &y, (02)]).
The result follows if we check the equality

leyz((§y1 (/01)<‘}’2)§y2 (102)) = pijzpzv(yl’ )’2)

since this implies that gy, y, ((p1<y2) p2v (1, y2)) and (¢y, (p1)<y2)y, (p2) are coho-
mologous; hence we have

((&y, (e <y2) (1; @) &y, (02) (1; @)
0) ) ) ), =
)1)2((5}1(/01)4)72){)2(/)2)) (Cl) J/(ylyz)(l, a)

_ (y(yD)<y20(p1)<y2) (15 a) (Y (y2)9(02))(1; a)
YOy (s a)
= Sk y(y1, y2)(1; @) py (@) p2(@)

= (W1, y2)p1°02)(@). O

2C. A skeleton of the pointed category C},. A skeleton sk(C},) of C}, is a full
subcategory of C, on which each object of C}y ; is isomorphic to only one object in
sk(C},)- Let us choose for objects

Obj(sk(C3)) == {(y. &y(P) | (v, p) € K x, A}

and define its tensor product e by the one induced by x, i.e.,

(15 Cy (P1) * (72, 3, (02)) := (V1324 Eyyye V(Y14 Y2077 01))-
For each pair of objects, choose isomorphisms in C},
F (s 8y (1)), (02, £y, (02))
SO Gy (p1) # (2, 63, (02)) = (1, &y, (01)) ® (32, £y, (02)),
which by equation (2-1) satisfy
((&y, (p)y2) Gy, (p1)) (k5 8)

— f(()’l ’ §y| (pl))’ ()’2, é‘yz(pZ))(kqg)
F (s 8y (1), (2, 8y, (02)) (k)

The tensor product ® in C}; is associative since it is defined by the composition

X Ly, V1, Y2) 01 P1) (K5 ).

of functors, but the tensor product « in its skeleton sk(C’, ;) may fail to be associative.
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The associativity constraint for sk(C},) is then

&' (V15 8y (P1)s (V25 832 (02))5 (735 §y5(03)))
SO 8 (1), (02, 8y, (02)) ®d gy, (p3).3)
O 8y (01), (2, £, (02)) # (33, 8y (03)))
y F (1, &y, (1) @ (32, 8y, (02))5 (13 £33 (03)))
1de,, (oo ®F (325 £y, (02)), (33, £y (03))).

In [Naidu 2007, Theorem 4.9] it is shown that @’ is K -invariant and moreover
that it can be given in explicit form by the equation

&' (1, &y, (1))s (2, £y, (02)), (935 £y (03))) = (Y1, ¥2) (15 w(33)) 1 (K, u(y3))-

Therefore we may define the 3-cocycle on K x,, A by the equation

&((y1, p1)s (2, P2), (¥3, P3)) = V(¥1, Y2) (13 w(¥3)) 1 (Kyy,u(y3))
and choosing G = A xr K and u(y) = (1, y) as was done at the end of Section 1A,
the 3-cocycle on K ix,, A becomes
(2-4) o((y1, p1), (2, 2), (¥3, p3)) = V(y1, y2) (1 (1, y3)) p1 (F (2, ¥3))-

Therefore the skeleton sk(C3},) of C}, becomes isomorphic to V(K x, A, @), which
is equivalent to Vect(K x, A, @). Therefore we can conclude with:

Theorem 2.3 [Naidu 2007, Theorem 4.9]. The fusion categories
Chv =V(G, a))’j\,((A\G’M) and Vect(K x, A, @)
are equivalent.
Applying the results of Section 11 we have:

Corollary 2.4. The categories Vect(A X r K, ) and Vect(K x,, A, ®) are weakly
Morita equivalent. Hence their centers

Z(Vect(A xf K, w)) ~ Z(Vect(K X, A, @))

are canonically equivalent as braided tensor categories.

3. Weak Morita equivalence classes of group-theoretical tensor categories

We are interested in classifying group-theoretical tensor categories of a specific
global dimension up to weak Morita equivalence. For this purpose we will fix
the group G = A Xz K with A abelian and normal in G and F € Z*(K, A),
and we will give an explicit description of the cocycles w € Z3(A xr K, C*) and
® e Z3(K x,A, C*) such that the tensor categories V(A x r K, w) and V(K X, A, &)
are weakly Morita equivalent.
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3A. Description of o, p and y. In Theorem 2.1 and in Section 2B we have seen the
conditions needed for the tensor category Ciy = V(G, ®)j(4\¢,,,) to be pointed. In
particular we have seen that we need the existence of y € C Y(K,C(G, Map(K, C*)))
such that

Sy = Sk .

Since we also have that g~

Lemma 3.1. In Tot(C*(K, C*(G, Map(K, C*)))), the cocycles n*w and vV are
cohomologous.

Proof. Recall the definition of the double complex C*(K, C*(G, Map(K, C*)))
given in Section 1B1, and note that we have 7*w € C%3 nec®? yechand
D =2dgy € C*>), satisfying 7*w - g = 1 and Skm-dgy t=1.

Consider the element @ y € Tot”> and note that

= 7*w we can obtain the following lemma:

St ®y) = Gk ® 85 " V@ y) =861 ® x-Sy~ ® k.
Therefore 7*w - d1o (L B Y) = V. O

Lemma 3.1 implies further conditions on the cohomology class of w for the
tensor category ), = V(G, ®)’y A\G.) 10 be pointed.
Corollary 3.2. If the tensor category Cy = V(G, w)) ANG.p) 18 pointed then w is

cohomologous to a cocycle that lives in C>' @ C30 of the double complex that
induces the Lyndon—Hochschild—Serre spectral sequence.

Remark 3.3. Note that this implies that the cohomology class of @ belongs to the
subgroup of H3(G, C*) defined as
Q(G; A) :=ker(ker(H* (G, C*) — E%®) — EL?),
which fits into the short exact sequence
1 EX - QG A) - EX - 1.

The cohomology classes in €2(G; A) are the only cohomology classes such that
Cy =V, w)L(A\G’M) is pointed.

In what follows we will construct explicit representatives for w and u, but to do so
we will start by constructing explicit 3-cocycles in Tot(C* (K, C*(G, Map(K, C*))))
which appear in Q(G; A). Let us start by determining the second differential
dy: Eg’l — Eg’o.

Lemma 3.4. The second differential d : E%’l — E;w is isomorphic to the homo-
morphism
H*(K,A) — HYK,CY, [Fl=[(FAF)™,

where (F A F)(ky, ky, k3, k) := F (ky, ko) (F (k3, ks)).
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Proof. First recall that
Ey' = HX(K, H'(G, Map(K, C")) = H*(K, Hom(A, C*)) = H*(K, A),
Ey? = HY(K, H(G,Map(K, C*))) = H*(K, Map(K, C*)%) = H*(K, C*).
"l:ake F € Z2(K,A) and use the map ¢ of Lemma 1.1 to lift this cocycle to
¢(F) e C*(K, Z'(G,Map(K, C*))); in coordinates:
Q(F)(k1, ko) (x1, (a2, x2)) = F ki, k2) (lexy (ar, 1))
= F(ky. k) (" F (x1, x2))
= F(ky. k) (" ax) F (ky, ko) (F (x1, x2)).
Its boundary is
8ip(F) (k1. k2, k3) (x1. (a2,x2))
= F (k. k3) (" ay F (x1,x2)) F (kika. k3) (" as F (x1,x2)) ™!
F(ky koks) (" ay F (x1,x2)) F (k1 ko) (% ay F (kaxy ,x2)) ™!
= F(ky k) (F (x1,5x2)) F (k1. k) (F (k3x1,x2)) ™!

F(k3,x1) )

= Fky.k
h 2)<F(k3,xlx2)

and we can define u € C*(K, C°(G, Map(K, C*))) as
u(ky, ka, k3)(x) = F ki, ko) (F (ks, x)).

On the one hand we have
Sgu(ky, ky, k3)(x1, (az, x2)) = u(ky, ka, k3) (x1x2)u(ky, ka, k3)(x1) ™!

N F (k3,

and on the other

Sgu(ky, ka, k3, ks)(x)
= F(ka. k3) (F (ka, ) F (kika. k3) (F (ka, )) ™' F (k1. koks) (F (ks, x))
F (ky, ko) (F (kska, x)) ™" F (k1 ko) (F (ks, kgx))

= F(ky, ko) (F (ks x)) F (k1, ko) (F (ksks, x)) ™ F (ky, k) (F (3, kax))
= F(ky, ko) (F (k3, ks)).
Since dgu = 8Kg0(ﬁ) we have that
Stoc(@(F) B u™") =8k p(F)ogu @ Su™" = (F A F)™!;

therefore d2[<p(13”)] = [(I:" AF). O
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Suppose that d2[<p(ﬁ)] =0; hence there is € € C3(K, C*) such that 8xe = FAF.
Define € € C3(K, C°(G, Maps(K, C*))) by the equation
€(ki, ko, k3)(x) 1= e(ky, k2, k3)

and note g€ = F A F and g€ = 1. Hence the class (p(ﬁ) @deulecr 3O
defines a 3-cocycle in the total complex:

(p(ﬁ) ®eu' e Z3 Tot(C* (K, C*(G, Map(K, C%)))).
Define 8 € C*(K, C°(G, Maps(K, C*))) by the equation

Bki, ko) (x) 1= €(ky, k2, x)
and note that
Sk B(k1, k2, k3)(x) = €(ka, k3, x)e (kika, k3, x) "' e(ky, koks, x)e(ky, ko, k3x)™"
= Sk, ko, k3, x)e(ki, ko, k3) ™!
= F(ki, k) (F (ks, x)e(kr, ko, k3) ()~
Therefore 8x Béu~" = 1; hence we have that the class ¢ (F)3g 8 € C*! is a 3-cocycle

in the total complex and moreover that it is cohomologous to the class go(I:“ Y®Eu !,
in coordinates:

GB-1) (9(F)86B) k1. ko) (x1. (a2, x2))
= F(k1, ko) (" ax) F (ky, ko) (F (x1, x2))e(ky, ka, x1x2)€ky, ko, x1) 7"
Summarizing the previous results:

Proposition 3.5. Every cohomology class which appears in Q(G; A) can be rep-
resented by a 3-cocycle ¢(F)8gp € C>! with F € Z*(K,A), Bki, k))(x) =
€' (ky,ky, x) and Sxe’ = F A F.

Proof. Take [w] € 2(G; A) and let [ﬁ ]e E;*l be a representative of the cohomology
class of the image of [w] in Egél. Since da[¢(F)] = 0 we know that the cohomology
class [¢(F) @ éu~'] constructed above belongs to Q(G; A). Therefore we have

[0 "] [p(F)®eu"'] e EX.

~

Hence we can choose a representative cocycle [t] € H3(K, C*) = E; ¥ such that
0] = [(F) ®etu"],
with T € C3(K, C°(G, Maps(K, C*))) defined as

T(k1, ko, k3)(x) :=t(k1, ko, k3).
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Let € := et and define B € C*(K, C°(G, Maps(K, C*))) by the equation
B(ki, ko) (x) := €' (k1, k2, x).

Equation (3-1) implies that 8x 8 = (¢T) '« and therefore the proposition follows
from the equation

(@(F) ®etu")oru = 0(F)86 B ® Sk BeTu™" = p(F)3B. O

Now we need to find an explicit description of w € Z3(G, C*) such that 7*w
and ¢ (F)dg B are cohomologous.

Theorem 3.6. Let G = Ax ¢ K and consider w € C3(G, C*), ue C%? and yech!
defined by the following equations:
w((ar, x1), (@2, x2), (a3, x3)) == F(x1, x2)(a3)€ (x1, x2, X3),
1(x1. (@2, x2). (a3, x3)) = (F (x1, x2) (a3)e (x1, X3, x3)) ",

Y () (x1, (a2, X2)) = F(y, x1)(a2)e(y, x1, X2, ).

Then 7*w - Sttt ® y) = (P(ﬁ)fscﬁ-

Proof. Let us calculate:

Son(xi, (az, x2), (a3, x3), (a4, x4))
= p(x1x2, (@3, x3), (@4, x4))(x1, (@22az F (x2, x3), x2x3), (a3, x3)) "
(x1, (a2, x2) (@3 as F (x3, x4), X3X4)) p(x1, (a2, x2), (az, x3))~"
= F(x1x2, x3)(@a) "' F (x1, x2x3)(ag) F (x1, X2) (@3 as F (x3, x4)) ™"
F(x1, x2)(a3)e(xa, x3, x2) " 'Sxe(x1, x2, X3, X4)
= F(x2, x3)(as) e (x2, x3, x4) 7",

and

o (x1, (a2, X2), (a3, X3), (a4, x4)) = w((az, x2), (a3, X3), (as, x4))
= F(x2, x3)(as)€ (x2, X3, X4);
hence we have that Sgu - m*w = 1.
Now
Sk () (x1, (@2,x2), (a3,x3)) = p(x1, (a2.%2), (a3,x3)) w(yx1, (@2,x2), (@3,x3)) !
_ F(yx1,x2)(a3)€(yx1,x2,%3)

F(x1,x2)(a3)e(x1,x2,x3)
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and
Scy (y)(x1, (a2, x2), (a3, x3))
=y () (x1x2, (a3, x3))y () (x1, (@2a3F (x2, x3), x2x3)) "'y () (x1, (@2, %2))
= F(y, xix2)(@3) F(y, x1)(@®as F (x2, x3) " F(y, x1)(@2)
€(y, X1x2, x3)€(y, X1, X2x3) ' €(y, X1, X2)
= F(yx1, x) (@) F(x1, x2)(a3) " e(yxr, x2, x3)€ (e, x2, x3) 75
hence we have that
Sk -dgy ' =1.
Finally we calculate
Sk (ki, k2)(x1, (a2, x2))
=y (ko) (x1, (a2, 2)y (k1k2) (x1, (a2, x2)) 'y (k1) (kax1, (a2, X2))
= F(ka, x1)(a2) F (kika, x1)(a2) ™' F (k1 kax) (@2)
e(ka, x1, x2)€(kika, x1, x2) e (ky, kax1, x2)
= F(ky, ko) (M ax)dke(ky, ko, x1, x2)e ki, ko, x122)€ (K1, ko, x1) ™!
= F(ki, ko) (“ax) F (ki ko) (F (31, x2))e ki, ka, xix)e(k, ka, x0) 7,
and since by equation (3-1) we have that
(@(F)86B) k1, k2) (x1, (a2, x2))
= F(ki, ko) (") F k1, ko) (F (x1, x2))e ki, ko, xix)e (ki ko, x1) 7
we have that A
Sy = @(F)dgp.
Hence 7*w - (3t @ y) = 9(F)3GB. O
3B. Description of @ and v. Assuming the explicit descriptions of w, p and y

given in Theorem 3.6, we see that v = go(f" )8 B. Applying this explicit description
of ¥ to the definition of v given in (2-3) and of @ given in (2-4) we obtain

vki, ko)(a) =D (k1, k2) (1, (a, 1)) = F (k1. k2)(a),
which implies that v = F and

@((k1, p1), (ka, p2), (k3, p3)) := V(ky, ko) (1; (1, k3)) p1 (F (k2, k3))
= e(ky, ko, k3) p1 (F (k2, k3)).

After applying Corollary 2.4 to the previous explicit construction of @ we obtain
the following theorem:
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Theorem 3.7. Let K be a finite group acting on the finite abelian group A. Consider
cocycles F € Z*(K, A) and Fe Z*(K, A) such that F AF is trivial in cohomology,
i.e., there exists € € C3(K,C*) such that Sxe = F A F. Define the 3-cocycles
weZ3(AxpK,C*)and ® e Z>(K X s A, C*) by the equations:

w((ar, k), (a2, ka), (a3, k3)) := F(ky, ko) (a3)e (ky, ka, k3)
o((k1, p1), (ka, p2), (k3, p3)) :=€(ky, ko, k3) p1 (F (k2, k3)).

Then the tensor categories Vect(A xr K, w) and Vect(K x p A, ®) are weakly
Morita equivalent, and therefore their centers are braided equivalent:

Z(Vect(A xr K, ) =~ Z(Vect(K X ; A, @)).

Note that we may have taken a different choice of n and y in Section 3A
thus producing different ¥ and &. The description of @ depends on the choice of
cohomology class [F] e HX(K,A) = E%’l in the second page representing the
image of [w] in E32 - E2. This choice may be changed by elements in the image
of the second differential d5 : ES’Q — Eg’l.

Changing w by a coboundary o’ = wdg«a, and writing o’ explicitly as

(3-2) o' (a1, x1), (@2, x2), (a3, x3)) := F'(x1, x2)(a3)€’ (x1, x2, x3)

produces a @ which becomes
(3-3) &' ((k1, p1), (ka, p2), (k3, p3)) 1= €' (k1, ko, k3) p1 (F (ka, k3)).
Applying Theorem 3.7 and using the equivalence of categories

Vect(A xr K, w) >~ Vect(A xr K, @)

we obtain that the tensor categories Vect(A xr K, w) and Vect(K x z, A, @) are
also weakly Morita equivalent. The previous argument permits us to conclude the
following corollary:

Corollary 3.8. Suppose that the fusion category C, = V(A X K, w)’j\/t( Ko i
pointed. Then it is equivalent to the category Vect(K x z, A, &'), where &' and o'
are the cocycles defined in (3-2) and (3-3) respectively and o' is cohomologous
10 w.

3C. Classification theorem. Now we are ready to state the key result in order to
establish the weak Morita equivalence classes of group theoretical tensor categories.

Theorem 3.9. Let H and H be finite groups, n € Z>(H,C*) and 1) € Z3(I:I, C*).
Then the tensor categories Vect(H, n) and Vect(H , n) are weakly Morita equivalent
if and only if the following conditions are satisfied:
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o There exist isomorphisms of groups

~

$:G=AxpK = H, ¢:G=Kni

for some finite group K acting on the abelian group A, with F € Z*(K, A)
and F € Z*(K, A) where A :== Hom(A, C*).

o There exists € : K3 — C* such that F A F = Sk €.

o The cohomology classes satisfy the equations [¢*n] = [w] and [dA)*f]] = [®]
with

w((a1, k), (a2, k2), (@3, k3)) : = F(ky, ko) (az)e(ky, k2, k3),
a((ki, p1), (ka, p2), (k3, p3)) : = €(ky, ko, k3) p1 (F (k2, k3)).

Proof. Suppose that Vect(H, n) and Vect(H, n) are weakly Morita equivalent
Then Vect(H n) is equlvalent to the dual category V(H, n)* MA\H. 1) with K :
A\H, ¢ :G=AxpK => H and M(A\ H, ,u) some module category of
V(H, n). By Corollary 3.8 the tensor category Vect(H, 1) is furthermore equivalent
to Vect(K x 5, A, @), where o’ and &' are the cocycles defined in equations (3-2)
and (3-3) respectlvely, and such that o’ is cohomologous to ¢*n. In partlcular we
have that ¢ : G=K XA =5 H and that *1 is cohomologous to @',

The converse is the statement of Theorem 3.7. ([

In the case that both @ and @& are cohomologically trivial, we conclude that
Vect(A xr K, 1) and Vect(K x z A, 1) are weakly Morita equivalent if and only if
the cohomology class [F]e HX(K,A) lies in the image of the second differential
of the spectral sequence d, : H>(A, C*)X — H?(K, A). This result was originally
proved in [Davydov 2000, Corollary 6.2].

4. Examples

4A. Pointed fusion categories of global dimension 4. We can now calculate the
weakly Morita equivalence classes of pointed fusion categories of global dimen-
sion 4.

For G = Z/4 we have that H*(Z /4, 7) = Z[u]/4u with |u| = 2 and that the
nontrivial automorphism of Z/4 maps u to —u; therefore

HYZ/4,7)] Au(Z/4) = (u?) = 7/4.
For G = (Z/2)* we have that

H*((Z/2)*, 7) Zker(Sq' : H*((Z/2)*, F2) — H>((Z/2)%, F2)) = (x*, x%y?, y4),
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where H*((Z/2)?, F») = F»[x, y] and Sq1 is the Steenrod operation, and up to
automorphisms of (Z/2)? we get

0,

@ =yt at oy,

(x2y%) = (x2y2, 292 x4, 1292 4+ y4),

4+ x2y2 4y = (- x2y? 4.

H*((Z/2)*, 7)) Aut((Z/2)*) =

Since we have a clear description for a base of H 4((Z)2)?, 7), we will abuse nota-
tion and denote with the symbols of H*((Z/2)?, Z) the elements of H3((Z/2)?, C*).
With this clarification, the relevant terms of the second page of the LHS spectral
sequence of the extension 1 — Z/2 — Z/4 — 7Z/2 — 1 become

3 122=("

2 0 0

1 Z)2 7)2=(yx) Z)2=(yx?)

0 C* 72 0 - Z2=xY 0
0 1 2 3 4

where the second differential is defined by the assignment d»(yx*) = Sq' (x¥*?)
with the class x? classifying the extension. We conclude that the only weak Morita
equivalence that appears, which does not come from an automorphism of a group, is

Vect(Z /4, 0) ~ Vect((Z/2)?, x*y?).

Therefore we see that there are exactly seven weak Morita equivalence classes
of pointed fusion categories of global dimension 4, namely the three for Z/4:

Vect(Z/4, u?), Vect(Z/4,2u?), Vect(Z/4,3u>);
the three for (Z/2)?:
Vect((Z/2)%,0), Vect((Z/2)*, x%), Vect((Z/2)?, x* + y* + x%y?);
and the one that we have just constructed
Vect(Z /4, 0) ~u Vect((Z/2)?, x*y?).

4B. Nontrivial action of Z/2 on Z/4. Consider the nontrivial action of Z/2 on
Z /4 and the abelian extension 1 — Z/4 — G — Z/2 — 1. The group G is either
the dihedral group Dg in the case that the extension is a split extension or the
quaternion group Qs in the case that the extension is a nonsplit extension.



462 BERNARDO URIBE

In the case of Dg the relevant elements of the second page of the LHS spectral
sequence associated to the extension are

3| z/4=(a)

2 0 0

1 7/2 Z/2=1(e) Z/2=(b)

0 C* z/2 0 Z/2={(c) O
0 1 2 3 4

and they all survive to the page at infinity. Since H3(Dg, C*) =Z/4®Z/2® 7 /2
we may say that H3(Dg, C*) = (a) @ (b) @ (c¢), and since Dg = 7/4 x 7 /2 we
have that F = 0. The element b € H?>(Z/2, Z/4) defines the nontrivial extension
Qs =7/2%xp,Z/4.

The second page of the LHS spectral sequence of the extension Qg =7/2x,Z /4
becomes

3| z/4=(e)

2 0 0

1 72 Z/2=1(e)  Z/2= (4a)

0 c* z/2 0 - Z2=(c) O
0 1 2 3 4

where d; : Eé’l = E;’O is an isomorphism and H3(Q3,C*) = () = Z/8.
Therefore for these extensions we only have the weak Morita equivalences

Vect(Dg, b) >~ Vect(Qg, 0) >~ Vect(Dg, b @ ¢),

where the equivalence of the right is obtained from the fact that ¢ does not survive
the spectral sequence for the group Qg, and the self-Morita equivalence

Vect(Qs, 4a) >~y Vect(Qg, 4a).

4C. Extension of 7/2 x Z[2 by Z /2. Consider the nonabelian extensions of the
form

15 7/2—G—7/2x7)2— 1,

namely Dg and Qg.
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The second page of the LHS spectral sequence for these extensions becomes

3 |z
2 0 0
1 7/2 (Z)2)? (Z/2)3

0 C* (Z)2)? 72 Z/)2)3 (Z/2)?

0 1 2 3 4

and we need only to concentrate on the differentials d; : Eé’ 1 Eé’ 29 petween
the first two rows since we know that Eg’3 = Z/2 survives the spectral sequence in
all the groups.

First we will determine the differential c_lg in the LHS spectral sequence for
coefficients in the field of two elements F5. In this case

E,ZH*(Z)2x 7/2,F) ®, H (Z/2, Fy) Z Falx, y, el,

and c_lg e € H*(Z/2 x Z/2, F,) represents the class that defines the extension G. It
is known that the class x* + xy + y? defines Qg [Adem and Milgram 1994, Lemma
2.10], the classes x2 + xy, xy + y2, xy define Dg (p. 130 of the same book) and
the classes x2, y%, x>+ y? define Z/2 x Z /4.

Second we use the fact that for the group (Z/2)? we have the isomorphism

HI((Z/2),2) Zker(Sq' : H (/2. Z/2) — H'T'(Z/2)%, 2/2)).
where Sq' is the first Steenrod square. This implies that the canonical map
H/((Z/2)°.2/2) — H'((Z/2)*, €
can be seen as the map
HI((Z/2)*,72/2)) S, ker(Sq' : H/T'((2/2)?,2/2) —
HIT2(2/2%,2/2) = HT (2/2°, 2) = H (2/2)°, ©).
Therefore the second differential
dy  HP72((Z/2)*,72/2) — HP((Z/2)*, C*)
is isomorphic to the composite map

df : HP™2((2/2)*,7)2) —> ker(Sq' : HPY'((2/2)*,7/2) —
HP2((2/2)%,2/2) = HP T (Z/2)*, 7) = H? ((Z/2)?, C*)

taking z to Sq'(z U c_lge).
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Without loss of generality we may choose c_lzG e = xy + x? for calculating the
LHS spectral sequence for Dg. Applying the differential d2G to the elements 1, x,
y, x2, xy, y*> we obtain that the surviving terms in the infinite page of the LHS
spectral sequence for Dg become

3 | z)2
2 0 0

1 0 Z/2=(e(y)) Z/2=(e(xy+x?)

* 2__ 2_<x49x2y27 y4>
0 | C @2P=t20Y 0 @/=
0 1 2 3 4

Here we are abusing the notation and we are using the explicit base of H*((Z/2)?, Z)
to denote the elements in H3((Z/2)?, C*). Since E§’1 = (e(xy + x?)), the weak
Morita equivalences that we obtain in the extension are

Vect(Dg, 0) ~y Vect((Z/2)?, Sq' (e(xy + x2))),
Vect(Dg, x*) ~p Vect((Z/2)?, Sq' (e(xy + x2)) + x4,
Vect(Dg, y*) ~u Vect((Z/2)*, 8q' (e(xy +x7)) +y*),

and the self-equivalence
Vect(Dg, e(xy + x2) =~ Vect(Dg, e(xy + x?).

The surviving terms for Qg with c_lzGe =x2 4+ xy+y? are

3 |z

2 | o 0

1] 0 0 7/2=(e(x*+xy+y?)

0 | C° (Z/2)*=(x*y?) 0 Z/2=(x*y*) 0
0 1 2 3 4

with EQ3 =7/2 = (&), (x® +xy+y?) = (2a) and (x*y?) = (4a), where « is a
generator (o) = H>(Qg, C*) that was defined in section Section 4B.
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Hence the only Morita equivalences that we obtain are

Vect(Qg, 0) >~ Vect((Z/Z)S, Sql(e()c2 +xy+ yz)))
Vect(Qs, 4a) ~ Vect((Z/2)3, Sq' (e(x + xy + y%)) 4+ x2y?)

and the self-Morita equivalences
Vect(Qg, 2a) >~y Vect(Qg, 2a) and  Vect(Qg, 6a) >~y Vect(Qg, 6).

Bundling up the previous results for the group Qg we obtain the following result:

Proposition 4.1. Let us suppose that Vect(Qs, ka) is weakly Morita equivalent to
Vect(G, n). Then:

o For k odd or k = 2,6, the group G must be isomorphic to Qg and n must
correspond to jo with j odd or j =2, 6.

o For k =4, G must be isomorphic to Qg or (Z/2)3.
e For k =0, G must be isomorphic to Qg, Dg or (Z/2)*

Proof. First note the action of Aut(Qg) on H>(Qg, C*) is trivial. Second note the
only normal subgroups of Qg are its center and the cyclic ones generated by roots of
unity and that they all fit into the central extension 1 — Z/2 — Qg — (Z/2)* — 1
or the nonsplit extension 1 — Z/4 — Qg — Z/2 — 1 that we have studied before.
Since any weak Morita equivalence between pointed fusion categories comes from
a normal and abelian subgroup of Qsg, the classification that we have done before
exhausts all possibilities. For k£ odd we know that ka survives to the restriction to
the center and to the cyclic subgroups isomorphic to Z/4 and therefore G can only
be Qg. The classes 2« and 6« trivialize on the center of Qg but these classes define
extensions of (Z/2)% by Z/2 which are isomorphic to Qg and define cohomology
classes which are precisely 2« and 6«. The class 4« trivializes in all normal and
abelian subgroups; in the case of the subgroup Z/4 the only group that may appear
is Qg, and in the case of the center we may obtain the weak Morita equivalence

Vect(Qs, 4a) =~ Vect((Z/2)?,  Sq'(e(x? +xy +y?)) +x%y?).

Finally, the trivial class produces only the group Dsg in the case of the subgroup
7/4 and (Z/2)? in the case of the center; some weak Morita equivalences are

Vect(Qsg, 0) ~ Vect((Z/2)*,  Sq'(e(x?+xy +y*))) >~ Vect(Dg, b). [
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LENGTH-PRESERVING EVOLUTION
OF IMMERSED CLOSED CURVES
AND THE ISOPERIMETRIC INEQUALITY

X1A0-L1U WANG, HUI-LING LI AND X1A0-LI CHAO

It is shown that all immersed closed, locally convex curves with total curva-
ture of 2mn and n-fold rotational symmetry (m/n < 1) finally evolve into
m-fold circles under the length-preserving curvature flow. Sufficient condi-
tions for the occurrence of the finite-time singularities in the flow are also
established. As a byproduct, an isoperimetric inequality for rotationally
symmetric, locally convex curves is proved via the flow method.

1. Introduction

In this paper we investigate the evolution of immersed closed curves X (p,t)
parametrized by p and driven by the inner normal speed

(1-D Vip,t) = (—/ k2ds// kds+k(p, t))n(p, 1),
X(-.0) X(-.1)

where k(p, t) denotes the curvature of X (p, t) with respect to inner normal r(p, t).
Denote by X the given smooth closed initial curve. When X is a simple convex
closed curve (m = 1), this flow has been studied by Ma and Zhu [2012]. It is shown
that the flow preserves convexity and length while it increases the enclosed area,
finally converging to a round circle in the C* metric.

When X is an immersed, locally convex closed curve, it is not difficult to show
that the convexity and length of evolving curves are still preserved under the flow,
and the enclosed algebraic area is increasing. Moreover, in [Wang and Wo 2014],
two special classes of rotationally symmetric, locally convex closed initial curves,
which both enclose a positive algebraic area, are found to guarantee the convergence
of the flow (1-1) to m-fold circles. One class consists of highly symmetric convex
curves. Specifically, they are locally convex closed curves with total curvature
2mm and n-fold rotational symmetry where n > 2m. The other is Abresch—Langer
type convex curves, which still have total curvature of 2mm and n-fold rotational
symmetry but with n < 2m and some additional conditions on the curvature (see

MSC2010: 35B40, 35K59, 53C44.
Keywords: curvature flow, nonlocal, blow-up, convergence, isoperimetric inequality.
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its definition in [Wang and Wo 2014]). Note that Abresch—Langer curves [1986]
belong to the later class.

One may naturally ask about the behavior for a general rotationally symmetric
curve under the flow (1-1). Furthermore, is there any possibility of the occurrence
of singularity in the flow (1-1)? We devote this short paper to answering these
questions. For the convenience of the reader, we use the following notation:

ds the differential element of arclength,
6 the normal angle of X (-, 1),

L(t) the length of X (-, 1),

A(t) the algebraic area of X (-, ¢) defined by — %/(X, n)ds,
X

k(-,t) the curvature of X (-, t) with respect to n.

Here, we always take the orientation of X (-, ¢) to be counterclockwise.
Define
Jxkds [ k> ds

k= =
[y kds 2mm

We write down the evolution of various geometric quantities along the flow (1-1).
They can be deduced from the general formulas in [Chou and Zhu 2001].

ok _ 205y, 4L _ _ —ivds—o0 YA__[a_i&
o =k TGk, = ‘émk k)ds =0, ﬁ_'.ém k)ds >0

Here, it can be seen that the length of the evolving curves is preserved while the
enclosed algebraic area is increasing.

Each point on the locally convex solution X (-, #) has a unique tangent and one
can use the tangent angle 6 € S| :=R/2mn Z to parametrize it. Generally speaking,
0 is a function depending on ¢. One can make 6 independent of time ¢ by adding
a tangential component to the velocity vector d X/dt, which does not affect the
geometric shape of the evolving curve (see, for instance, [Gage 1986]). Then the
evolution equations can be expressed in the coordinates of 6 and ¢. If we denote
by k(8, t) the curvature function of X (6, t), the evolution problem of (1-1) can be
reformulated equivalently into equations of the curvature k:

Vﬁzﬂ&%+k—b,(&ﬂelxmjm
k@0, 0) = ko(0), 0el,

where kg is the curvature of X and T is the maximal existence time of the flow. Here
and after, I always denotes the circle S),. In terms of the new coordinates, we have

f] k@©,t)do
2mi '

(1-2)

k=
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The first main theorem is:

Theorem 1. If the initial curve is locally convex, closed and its curvature ky(0)
satisfies

(1-3) /%—%ﬂw;ﬂmfw,
1 1

and ky(0) is nonconstant in I, then the solution k(9, t) to problem (1-2) blows up in
some finite time and a singularity appears during the evolution of the flow (1-1).

We note that the condition (1-3) is not void since by the Poincaré inequality,

/ww%VW5m7@m%a
1 1

If the curvature of initial curve does not satisfy (1-3), how about the behavior of
the flow? In fact, we find a large class of initial curves which do not satisfy the
condition (1-3) and can evolve into m-fold circles under the flow. This is our second
main theorem.

Theorem 2. If the initial curve is locally convex, closed and has total curvature
of 2mm and n-fold rotational symmetry with m/n < 1, then the flow (1-1) exists
globally and converges to an m-fold circle in the C*°-metric as time goes to infinity.

When the initial curve is simple closed and convex, it can be regarded as the case
of m =n =1 in Theorem 2. In addition, its curvature cannot satisfy the condition
(1-3) except by being a constant, in view of the Poincaré inequality.

The third theorem gives an isoperimetric condition such that the singularity
appears.

Theorem 3. Assume the initial curve Xy is locally convex, closed and has total
curvature of 2mm. If Xq satisfies

(1-4) Lj < 4mm Ay,

where Ly and Ay denote its length and enclosed algebraic area respectively, then
the solution k(0, t) to problem (1-2) blows up in some finite time and a singularity
appears during the evolution of the flow (1-1)

As a result, we can present a new proof of the following isoperimetric inequality
for the rotationally symmetric and locally convex curves, which was proven in
[Chou 2003] and [Siissmann 2011]:

Proposition 4. For the rotationally symmetric and locally convex curves, with total
curvature of 2mm and n-fold symmetry (m/n < 1), the length L and the enclosed
algebraic area A satisfy

(1-5) L?>4mrw A.



470 XIAO-LIU WANG, HUI-LING LI AND XIAO-LI CHAO

We give some remarks on the above theorems and the nonlocal flow. As an
interesting variant of the popular curve shortening flow [Gage and Hamilton 1986;
Angenent 1991; Andrews 1998; Chou and Zhu 2001], the nonlocal curvature flow,
arising in many application fields [Sapiro and Tannenbaum 1995; Capuzzo Dolcetta
et al. 2002; Xu and Yang 2014], such as phase transitions, image processing, etc.,
has received much attention in recent years. Before the work of Ma and Zhu [2012],
there was an original study by Gage [1986], where an area-preserving flow was
investigated with its inner normal velocity given by

(1-6) V= (—/ kds// ds—i—k)n.
X(-.0) X(-.0)

After that, there are a lot of papers on the nonlocal flow for simple convex curves,
including [Jiang and Pan 2008; Lin and Tsai 2012]. In the higher dimensional case,
people also consider nonlocal flows. For example, there are volume-preserving mean
curvature flows; see [Huisken 1987; McCoy 2005; Cabezas-Rivas and Sinestrari
2010]. And also there are surface area-preserving mean curvature flows, see [McCoy
2003]. Recently, the study of nonlocal flow extends to the case of Riemannian
manifolds; see [Xu et al. 2014].

In all of the papers mentioned above, the main concern is the global existence
and convergence of the flow. For a study of the singularity, one can refer to [Escher
and Ito 2005], or to [Wang and Kong 2014], where the area-preserving flow of
immersed curves is studied and some geometric initial conditions are given to
guarantee the occurrence of singularity. This urges us to carry the present work on
the length-preserving flow of immersed curves.

One interesting aspect of this paper is that we have obtained the sufficient
conditions for the flow (1-1) to yield the singularity. Moreover, the geometric
condition (1-4) given in Theorem 3 can be interpreted as

(1-7) f (ho — ho)* df > f (hoo)* d,
1 1

where ho(0) is the support function of the initial curve Xy, defined by hg(6) =
—(X0(0), no(0)) with ng being the inner normal of Xg, and ho = fI hodf/(2mm).
Indeed, we can deduce (1-7) from the following observations:

_ do
ko = (ho + hose) ™", L0=/k—=/hod9,
I "0 I

and
1

1
Ag = 5/ hO ds = 5 /hO(hO+h099) de,
Xo I

where kg is the curvature function of X.
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Another interesting aspect is that we have refined the results of [Wang and Wo
2014] in Theorem 2 and showed that the convergence result holds for all rotationally
symmetric, locally convex immersed curves whether the enclosed algebraic area
A of the initial curve X is negative or not. This differs with the flow (1-6), since
a singularity must happen in the flow (1-6) if Ap < 0, see [Escher and Ito 2005]
for reference. One may also compare it with the different evolution of rotationally
symmetric curves in the curve shortening flow, see [Au 2010].

We organize this paper in the following way. Some basic and useful lemmas are
prepared in Section 2. Then we prove Theorems 1 and 2 in Section 3, and prove
Theorem 3 in Section 4.

2. Lemmas

In this section, we present some lemmas for later use. The first lemma shows the
flow exists as long as its curvature is bounded.

Lemma 2.1. When the initial curve is immersed closed, locally convex and smooth,
problem (1-1) has a unique smooth, locally convex solution in a time interval [0, T')
for some T > 0, which can be continued as long as the curvature of evolving curves
is finite.

Proof. The unique existence of the flow can be proven by applying the classical
Leray—Schauder fixed point theorem to problem (1-2). See details in [Mao et al.
2013], where a general area-preserving flow is studied. One can also find the relative
references in [McCoy 2003; 2005; Cabezas-Rivas and Sinestrari 2010], where the
nonlocal flows in higher dimensions are discussed. The preserved convexity will
be proved in the next lemma. U

By the maximum principle, we can show that the local convexity of the initial
curve is preserved by the flow (1-1).

Lemma 2.2. [f the initial curve X is locally convex, then X (-, t) is locally convex
as long as the flow exists.

Proof. By the continuity, minge; k(6, t) remains positive on a small time interval.
Assume that the time span of the flow is 7. Suppose to the contrary that the
conclusion is not true. Then there must be a first time, say #; < T, such that

(2-1) mink(, t;) =0.
oel

We will deduce a contradiction. Consider the quantity

B 1 _L(l)_ 1 t p2mm
0.0 = 16~ dmm 2mn/0/0 k@, 7)dé dr,



472 XIAO-LIU WANG, HUI-LING LI AND XIAO-LI CHAO
with (0, ¢) € I x [0, #;). By (1-2), we have
(6, 1) = —kog —k < k*(0, 1) Dpy (8, 1).

Hence by the maximum principle,

1 1 L(t)—L(O) 1 t p2mm
k@, 1) t) 961 <k0(9)> + 2mm + 2m7'[/0 /0 k(®,t)d0dt

for all (0, t) € I x [0, t;), where we note that L(¢) = L(0) for all time ¢ and

sup k@,t) <Ci(f)) <0
0.,0)€lx[0,1))

for some constant C(¢;). Therefore,

gngk(e, t) > Cy(t1) >0 forall £ €]0,1)
€

for some constant C»(#;). This is a contraction with (2-1)! The proof is done. [J
The following lemma is the gradient estimate.

Lemma 2.3. Along the flow (1-1), we have

/(kQ)ZdQS/kZdG—i-C
1 1

for some constant C independent of time.

Proof. From (1-2), we have

_ 72 . 2 dk dk
2dt/[(k9) k* +2kk]d6 = /k (koo + k — k)? +d fkd@ d kde.

Hence,
dk

/(k)2d0< /(k2 2kk)d6+2d kdo,

and the integration yields

t 2
(k9)2 (k2 2kk)dO + —— ! d kde dt +C;
2m d‘L’
1 2
f(k2 2kk)d9+—(/kd9) +C,
2mim 1
=/k2de—/}/kd9+cz
1 1

§/Hw+g,
1

where C1, C; only depend on the initial data. The proof is done. (]
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By the obtained gradient estimate, if the curvature k blows up, we can show that
the blow-up set for £ must contain at least some open interval.

Denote
kmax (1) = max k@,t), tel0,T).
S

Lemma 2.4. Assume that kpax(t) = k(6;, t) for some 6, € [0, 2mm]. Then for any
small ¢ > 0, there exists a number § > 0, depending only on ¢, such that

(I = &)kmax (1) <k(0, 1) ++/2mm|C]|
forall 6 € (6, —582,6, +32) andallt € (0, T), where C is the constant in Lemma 2.3.

Proof. An easy integration combined with the Holder inequality shows that

6; 6; 1/2
kmax<r>=k<9,t>+f kew,z)desk(e,r>+|e,—0|”2(f k§d9> :
[% [%

Then from Lemma 2.3 we have
1/2
kmax (1) <k (0, 1) + 16, —9|1/2</k2d9 + |C|)
I

<k@®,1)+16, —0"*@mrk2, () +|C])'/?

max
<k, 1)+ 16, — 01" >N 2mkmax (t) + 16, — 61"/2|C|"/?
<k(O, 1)+ 10, — 01>V 2mkpax (t) + /2m7|C|.

Take & such that |6, —6|'/? < § := ¢/+/2mm and the lemma is proved. ([

We need the following lemma, proven in [Wang and Wo 2014], to conclude the
convergence of the flow after we obtain the a priori estimate for the curvature.

Lemma 2.5. If there is a constant C independent of time such that

maxk(@,t) <C, te€][0,7T),
el

with T being the maximal existence time, then the flow (1-1) must exist for all time
and converge smoothly to an m-fold circle as time goes to infinity.

3. Proofs of Theorems 1 and 2

First, we deduce a sufficient condition for the occurrence of the singularity at some
finite time. The following two lemmas are useful in the proof.

Lemma 3.1. If the flow (1-1) exists for all time, then there exists a sequence
{tj};’il — 00 such that

/k(e, 1)do < C
1

for some constant C independent of time.
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Proof. We have
——f(k—l%)dszﬁ/kde—zmn > 0.
I 2mm J;

Since an isoperimetric inequality of Rado (see [Osserman 1978]) says that
L(1)> > 47 A®t)

and L(¢t) = Lo, we know that A(¢) is uniformly bounded from above. Notice that
A(t) is increasing in time. We have fooo (dA/dt) dt < oo. Thus for any small ¢ > 0,
there exists a sequence {;}72,; — 00, such that

dA

d_(tj) <&,
that is,
/k(@ 1) do < 2m—”(e+2 7).
Then we can draw the conclusion by fixing an € > 0. ]
Denote
2
E@t) = /(k9)2d9 — /k2d9 + L(/kd@) :
I I 2mm \ J;
That is,

E(t) = /(kg)z do — /(k —k)*do.
1 1

Lemma 3.2. For the energy E(t) defined as above, we have
dE(t)

dt =0.
Proof. From the equation (1-2), we have
(kf) 46 = /(kgg k—R)k, d6 = ———f[(k )~ k2]d6 — k/kt a0,
I

where

2
. _d [ 1 d ('d
k/lk,de_dtfo k(r)flk,dedr ym d/dr(/kde) dr.

Thus,
LE(®) _ [ ()’
2 dt I k2

dg >0,

and the proof is done. (]
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Proof of Theorem 1. Using the equation (1-2) and integrating by parts yield

i/lnkde = /k(keg +k—k)do =—E@).

From Lemma 3.2, we have
i/lnkde > —E0)=— /(k09)2d<9 +/(k0 —ko)? db.
dt J; I I

First, we consider the case of E(0) < 0. If we suppose to the contrary the flow
exists for all time, then lim,_, oo f, Ink d6 = oo. This implies that for any ¢ > 0, we
can find a 6, € I, such that lim,_, o k(6;, t) = co. Then by Lemma 2.4, we have
lim; s oo fl k(0,t)dO = oo, which is a contradiction to Lemma 3.1. Thus the flow
must exist for some finite time.

If E(0) =0, we claim that kogg + ko — ko # 0 must hold at some point of / and
hence in some interval of / by the continuity. Indeed, if kogg + ko — ko = 0 holds
everywhere in I, we set w = ko — ko and w satisfies

wgg+w=0 in I,

which implies that w is a 2w -periodic function and so is kg. Hence, E(0)=0 tells
us that kg is a constant function in view of the Poincaré inequality, a contradiction
with the assumption! Thus we have shown that kg + ko — ko 7 O must hold in
some interval of /. Then by recalling the proof of Lemma 3.2, we have

dE@) _2]"<»2

which implies that E(¢#) < O for + > 0. At last, we can still show the conclusion
holds via a similar method to the one above. The proof is finished. U

One may naturally ask what happens if the condition (1-3) does not hold for the
initial curve. A large class of rotationally symmetric curves belong to this case. In
fact, the Poincaré inequality tells us the following lemma:

Lemma 3.3. If a curve is locally convex, closed and has total curvature of 2mmw
and n-fold rotational symmetry with m/n < 1, then its curvature k(0) satisfies

/(k —k)%de < (ﬂ)zf(ke)zde.
I n’sJ

Proof. By the Poincaré inequality, we have

2mm/n B m 2 r2mm/n
/ w—kfdes(—)/ (ke)? .,
0 n 0

and then the conclusion follows. O
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Proof of Theorem 2. By equation (1-2) and integration by parts, we have

i/lnkdesz(kgeJrk—l%)de=—/(k9)2d9+/<k—12)2d9.
dr J, I I I

From Lemma 3.3, we have d(fl lnde)/dt < 0. Thus there is a constant C;
independent of time, such that f ;Ink(0,1)d6 < C, forall ¢ € [0, T). This implies
that there is a constant C, independent of time, such that

(3-1) maxk(@,t) < Cp
el

for all t € [0, T'). Indeed, for m/n < 1, using Lemma 3.3 and the fact that E(¢) <
E(0), we can deduce an estimate of kg, which implies (3-1) holds. As a result of
the a priori estimate (3-1), we can show the flow’s global existence and its smooth
convergence to an m-fold circle as time goes to infinity by using Lemma 2.5. [J

4. Proof of Theorem 3

To prove Theorem 3, we need to show the following lemma holds, which states a
subconvergence of the global flow without any a priori estimate on the curvature
like that in Lemma 2.5.

Lemma 4.1. If the flow (1-1) starts from a locally convex closed curve and exists
for all time, then it subconverges to an m-fold circle in C? sense, that is, there exists
a time sequence {t; ?11 — 00 such that k(0, t;) converges to a positive constant
function in the L*° norm.

Proof. Notice that a careful choice of {tj};?‘;] in Lemma 3.1 can guarantee that

(dA/dt)(t;)) — 0 as j — oo, that is,

Ly

-1 2mm

k@,t)d0 — 2mm, j— oo.
I

We claim that along the sequence {#;}72, we have
(4-2) max k(0, t;) < C,
oel

for some constant C; independent of time. Suppose limsup;_, ,,maxge;k(8,1;) =00.
Then we can find a subsequence, still denoted by {tj}f.ip and a sequence {Gj};; Cl,
such that #; — oo and k(6;, ;) — oo. By Lemma 2.4, fl k(9,1;)d6 — oo, contra-
dicting Lemma 3.1! Thus we have (4-2). Furthermore, by Lemma 2.3,

(43) [wre.na0 <.
I
for some constant C, independent of time. Combining (4-2) with (4-3) we obtain

IkC s i) llwreay < C3
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for some constant C3 independent of time. The compactness yields a subsequence
of {k(6, tj)}oo |» still denoted by {k (0, tj)} > |» which converges to a continuous
function ko (9) in the L®> norm as j — o0. Taklng the limit in (4-1) along the time
sequence {tj};’.ozl, we have

L
(4-4) 0 | koo (0)d6 = 2m.
2m7‘[ I

By Fatou’s lemma,

a6 a9
*+3) /,koow) = /, k@) ~ Lo

Thus, substituting (4-5) into (4-4) yields

2
/k d@/koo(g) Qmm)?.
2
(2m71)2:(/1d9> gfkoodefﬁ
I I Ikoo

Thus k., must be a constant function, i.e., the sequence {k(6, tj)}j?il converges to
a constant function in L°° norm as j — oo. U

We notice that

Proof of Theorem 3. Assume the initial curve satisfies
L(z) < 4dmi Ay.

Since dL(t)/dt =0 and dA(¢t)/dt > 0, we have Ly = L(00) :=lim,_, o L(¢) and
Ag < A(00) :=1lim;_, o, A(2). Thus,

(4-6) L?(00) < 4mm A(00).

Suppose to the contrary that the flow exists for all time. Then by Lemma 4.1 the flow

converges to an m-fold circle along some time sequence {tj};?';l — 00, implying

L%(00) = 4mm A(00).

This contradicts (4-6)! Thus, the singularity must happen at some finite time during
the evolution of the flow. (]

As a result of Theorem 3, we can give a proof for Proposition 4.

Proof of Proposition 4. On one hand, by Theorem 2 the flow (1-1) starting from such
rotationally symmetric curves must converge to m-fold circles at t — co. However,
on the other hand, if (1-5) does not hold, then by Theorem 3 there is a finite-time
singularity during the evolution. This contradiction shows (1-5) holds. (]
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CALABI-YAU PROPERTY UNDER MONOIDAL
MORITA-TAKEUCHI EQUIVALENCE

XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

Let H and L be two Hopf algebras such that their comodule categories
are monoidally equivalent. We prove that if H is a twisted Calabi-Yau
(CY) Hopf algebra, then L is a twisted CY algebra when it is homologically
smooth. In particular, if H is a Noetherian twisted CY Hopf algebra and L
has finite global dimension, then L is a twisted CY algebra.

Introduction

In noncommutative projective algebraic geometry, what is now called an Artin—
Schelter (AS) regular algebra A = @D, A; of dimension n was introduced in
[Artin and Schelter 1987] as a homologic_al analogue of a polynomial algebra with
n variables. The connected graded noncommutative algebra A is considered as the
homogeneous coordinate ring of some noncommutative projective space [P”.

In lecture notes, Manin [1988] constructed the quantum general linear group
O4(GL) that universally coacts on an AS regular algebra A. Similarly, we can
define the quantum special linear group of A, denoted by O4(SL), by requiring the
homological codeterminant of the Hopf coaction to be trivial; see [Walton and Wang
2016, Section 2.1] for details. As pointed out in that work, it is conjectured that
these universal quantum groups should possess the same homological properties
of A, among which the Calabi—Yau (CY) property is the most interesting, since A
is always twisted CY according to [Reyes et al. 2014, Lemma 2.1] (see Section 1.2
for the definition of a twisted CY algebra). Moreover, many classical quantized
coordinate rings can be realized as universal quantum groups associated to AS
regular algebras via the above construction [Chirvasitu et al. 2016; Walton and
Wang 2016], whose CY property and rigid dualizing complexes have been discussed
in [Brown and Zhang 2008; Goodearl and Zhang 2007].

Now let us look at a nontrivial example, which is the motivation for our paper. Let
k be a field. AS regular algebras of global dimension 2 (not necessarily Noetherian)
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Keywords: Morita—Takeuchi equivalence, Calabi—Yau algebra, cogroupoid.

481


http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2017.290-2
http://dx.doi.org/10.2140/pjm.2017.290.481

482 XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

were classified by Zhang [1998]. They are the algebras (assume they are generated
in degree one)

A(E):k<xlsx25"~axn>/( Z eij'xi'xj)

I<i,j<n

for E = (e;;) € GL, (k) with n > 2. It is shown in [Walton and Wang 2016, Corollary
2.17] that O4(g)(SL) = B(E~") as Hopf algebras, where B(E~") was defined by
Dubois-Violette and Launer [1990] as the quantum automorphism group of the
nondegenerate bilinear form associated to E~!. In particular, when

_ O—q -1 _ _ 0 1 x
E_(1 O) and E _Eq_(—q_l 0) for some g € k*,

we have A(E) = A, =k(x1, x2)/(x2x1+¢gxx2) is the quantum plane and OAq (SL)=
B(E,) = O4(SL,) is the quantized coordinate ring of SL,(K).

Two Hopf algebras are called monoidally Morita—Takeuchi equivalent, if their
comodule categories are monoidally equivalent. Bichon [2003, Theorem 1.1]
obtained that B(E) (for any E € GL,(K) with n > 2) and O, (SL,) are monoidally
Morita—Takeuchi equivalent when g2 + tr(E'E~')g + 1 = 0. By applying this
monoidal equivalence, Bichon obtained a free Yetter—Drinfeld module resolution
(Definition 2.2.4) of the trivial Yetter—Drinfeld module k over B(E). This turns
out to be the key ingredient to prove the CY property of B(E); see that work or
[Walton and Wang 2016]. Note that the quantized coordinate ring O, (SL;) is well
known to be twisted CY [Brown and Zhang 2008, Section 6.5 and 6.6]. Thus it is
natural to ask the following question:

Question 1. Let H and L be two Hopf algebras that are monoidally Morita—
Takeuchi equivalent. Suppose H is twisted CY. Is L always twisted CY?

The monoidal equivalence between the comodule categories of various universal
quantum groups have been widely observed [Bichon 2003; 2014; Mrozinski 2014;
Chirvasitu et al. 2016] by using the language of cogroupoids. In recent papers,
Raedschelders and Van den Bergh [2015; 2017] proved that, for a Koszul AS
regular algebra A, the monoidal structure of the comodule category of 04 (GL) only
depends on the global dimension of A and not on A itself [Raedschelders and Van
den Bergh 2017, Theorem 1.2.6]. We expect a positive answer to Question 1, which
should play an important role in investigating the CY property of these universal
quantum groups associated to AS regular algebras.

The following is our main result, showing that in order to answer Question 1, it
suffices to prove that the homologically smooth condition is a monoidally Morita—
Takeuchi invariant.
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Theorem 2 (Theorem 2.4.5). Let H and L be two monoidally Morita—Takeuchi
equivalent Hopf algebras. If H is twisted CY of dimension d and L is homologically
smooth, then L is twisted CY of dimension d as well.

Note that for Hopf algebras, there are several equivalent descriptions of the
homological smoothness stated in Proposition A.2. Now Question 1 is reduced to
the following question:

Question 3. Let H and L be two monoidally Morita—Takeuchi equivalent Hopf
algebras. Suppose H is homologically smooth. Is L always homologically smooth?

Though we can not fully answer Question 3, it is true in certain circumstances.
We obtain the following result:

Theorem 4 (Theorem 2.4.7). Let H be a twisted CY Hopf algebra of dimension d,
and L a Hopf algebra monoidally Morita—Takeuchi equivalent to H. If one of the
following conditions holds, then L is also twisted CY of dimension d.

(1) H admits a finitely generated relative projective Yetter—Drinfeld module resolu-
tion for the trivial Yetter—Drinfeld module K and L has finite global dimension.

(i) H admits a bounded finitely generated relative projective Yetter—Drinfeld
module resolution for the trivial Yetter—Drinfeld module K.

(iii) H is Noetherian and L has finite global dimension.
(iv) L is Noetherian and has finite global dimension.

Relative projective Yetter—Drinfeld modules and resolutions will be explained
in Section 2.2. The trivial module K over O, (SL») admits a finitely generated free
Yetter—Drinfeld resolution of length 3 [Bichon 2013, Theorem 5.1]. Every free
Yetter—Drinfeld module resolution is a relative projective Yetter—Drinfeld module
resolution. According to our result above, this immediately implies that B(E) is
twisted CY since B(E) and O, (SL,) are monoidally Morita—Takeuchi equivalent
as mentioned above.

Twisted CY algebras, of course, have finite global dimensions. Theorem 4 leads
to the last question about whether the global dimension is a monoidally Morita—
Takeuchi invariant. A similar question was asked by Bichon [2016] concerning
the Hochschild dimension, and the two questions are essentially the same by
Proposition A.1.

Question 5. Let H and L be two monoidally Morita—Takeuchi equivalent Hopf
algebras. Does gldim(H) = gldim(L), or at least, gldim(H) < oo if and only if
gldim(L) < oo?

If the answer is positive, then the finite global dimension assumptions in condi-

tions (i), (iii), and (iv) of Theorem 4 can be dropped. This will partially answer
Question 1 under the assumption that one of the Hopf algebras is Noetherian. As
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a consequence of Theorem 4, we provide a partial answer to Question 5 answer
under the assumption that both Hopf algebras are twisted CY.

Theorem 6 (Corollary 2.4.8). Let H and L be two monoidally Morita—Takeuchi
equivalent Hopf algebras. If both H and L are twisted CY, then gldim(H) =
gldim(L).

Monoidal Morita—Takeuchi equivalence can be described by the language of
cogroupoids. If H and L are two Hopf algebras that are monoidally Morita—Takeuchi
equivalent, then there exists a connected cogroupoid with 2 objects X, Y such that
H=C(X,X)and L =C(Y, Y). In this case, C(X, Y) is just the H-L-bigalois object
(see Section 1.1 for details). Throughout, we will use the language of cogroupoids
to discuss Hopf algebras whose comodule categories are monoidally equivalent.
We generalize many definitions and results in [Brown and Zhang 2008] to the level
of cogroupoids (see Section 2.4). Especially for Hopf—Galois objects, we define the
left (resp. right) winding automorphisms of C(X, Y) using the homological integrals
of C(X, X) (resp. C(Y, Y)). We also generalize the famous Radford $* formula for
finite dimensional Hopf algebras to Hopf—Galois object C(X, Y) by assuming both
C(X, X) and C(Y, Y) are AS-Gorenstein Hopf algebras.

Theorem 7 (Theorem 2.4.9 and Remark 2.4.10). Let C be a connected cogroupoid.
If X and Y are two objects such that C(X, X) and C(Y, Y) are both AS-Gorenstein
Hopf algebras. Then for the Hopf-Galois object C(X, Y) we have

(1) (SyxoSxy)=yopot™,

where & and ¢ are respectively the left and right winding automorphisms given by
the left integrals of C(X, X) and C(Y, Y), and y is an inner automorphism.

At last, we provide two examples in Section 3. One is the connected cogroupoid
associated to B(E) and the other is the connected cogroupoid associated to a generic
datum of finite Cartan type (D, 1).

1. Preliminaries

We work over a fixed field k. Unless stated otherwise all algebras and vector spaces
are over K. The unadorned tensor ® means ®k and Hom means Homy.

Given an algebra A, we write A°P for the opposite algebra of A and A¢ for the
enveloping algebra A ® A°P. The category of left (resp. right) A-modules is denoted
by Mod A (resp. Mod A°P). An A-bimodule can be identified with an A°-module,
that is, an object in Mod A°.

For an A-bimodule M and two algebra automorphisms © and v, we let “M"
denote the A-bimodule such that *M"Y = M as vector spaces, and the bimodule
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structure is given by

a-m-b=ula)ymv),

for all a,b € A and m € M. If one of the automorphisms is the identity, we will
omit it. It is well known that A* = A as A-bimodules if and only if y is an inner
automorphism of A.

For a Hopf algebra H, as usual, we use the symbols A, ¢ and § respectively for
its comultiplication, counit, and antipode. We use Sweedler’s (sumless) notation
for the comultiplication and coaction of H. The category of right H-comodules
is denoted by M*. We write .k (resp. K;) for the left (resp. right) trivial module
defined by the counit ¢ of H.

1.1. Cogroupoid. We first recall the definition of a cogroupoid.
Definition 1.1.1. A cocategory C consists of:
o A set of objects ob(C),

e For any X, Y € ob(C), an algebra C(X, Y),
e For any X, Y, Z € ob(C), algebra homomorphisms

A%, :C(X,Y) = C(X,Z)®C(Z,Y) and ex : C(X, X) — k

such that for any X, Y, Z, T € ob(C), the following diagrams commute:

z
AXY

C(X,Y) — C(X,Z2)®C(Z,Y)

8| af 81|

VA

C(X,T)®C(T,Y) 188y C(X, T)QC(T,Z)RC(Z,Y)

o [

CX.Y)QC(Y.Y) 20X, Y)  CX, X)®C(X, V) 20X, v).

Thus a cocategory with one object is just a bialgebra.
A cocategory C is said to be connected if C(X, Y) is a nonzero algebra for any
X,Y € ob(C).

Definition 1.1.2. A cogroupoid C consists of a cocategory C together with, for any
X, Y € ob(C), linear maps

SX,Y 2C(X, Y) e C(Y, X)
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such that for any X, Y € C, the following diagrams commute:

CX, X)) — 2 s k—" (X, Y)

A)Y(,Xj T
1®Sy, x

CX. Y)Y ®CY. X) — 2% e(X.Y)®C(X. Y)

cX,X) —* ~k—" C(Y, X)

) w

Sx,y®1

CX,Y)QCY,X) — = C(Y, X)) ®C(Y, X).

From the definition, we can see C(X, X) is a Hopf algebra for each object X € C.
We use Sweedler’s notation for cogroupoids. Let C be a cogroupoid. For any
a*¥ €C(X,Y), we write

A)Z(’Y(aX’Y) = af(’z ® aZZ’Y.
The following lemma describes properties of the “antipodes’:
Lemma 1.1.3 [Bichon 2014, Proposition 2.13]. Let C be a cogroupoid and let
X, Y €ob(C).
(i) Sy.x:CY, X) — C(X, Y)? is an algebra homomorphism.
(ii) For any Z € ob(C) and a¥"X € C(Y, X),

AZ y(Sy x (@) = Sz x(@?*) ® Sy z(al"?).

For other basic properties of cogroupoids, we refer to the same work.

Bichon [2014] reformulated Schauenburg’s [1996] results by cogroupoids. This
theorem shows that discussing two Hopf algebras with monoidally equivalent
comodule categories is equivalent discussing connected cogroupoids. In what
follows, unless otherwise stated, we assume that the cogroupoids mentioned are
connected.

Theorem 1.1.4 [Bichon 2014, Theorem 2.10, 2.12]. If C is a connected cogroupoid,
then for any X, Y € C, we have equivalences of monoidal categories that are inverse
to each other

MC(X,X) ;@ MC(Y,Y) MC(Y,Y) ;@ MC(X,X)
Vi VDC(X’X)C(X, Y) Vi VDC(Y,Y)C(Y, X)

Conversely, if H and L are Hopf algebras such that M™ =® MX, then there exists a
connected cogroupoid with 2 objects X, Y such that H=C(X, X)and L=C(Y,Y).

This monoidal equivalence can be extended to categories of Yetter—Drinfeld
modules.
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Lemma 1.1.5 [Bichon 2014, Proposition 6.2]. Let C be a cogroupoid, X, Y € ob(C)
and V a right C(X, X)-module.

(1) VQC(X,Y) has aright C(Y, Y)-module structure defined by
waX?) < b" =v. b @ Sy x(b] )aX Vb,

Together with the right C(Y, Y)-comodule structure defined by 1 ® A?Y, Ve
C(X,Y) is a Yetter—Drinfeld module over C(Y, Y).

(i1) If moreover V is a Yetter—Drinfeld module, then VU (x x)C(X, Y) is a Yetter—
Drinfeld submodule of V @ C(X, Y).

Theorem 1.1.6 [Bichon 2014, Theorem 6.3]. Let C be a connected cogroupoid.
Then for any X, Y € ob(C), the functor

C(X, C(Y,
VDoY) = YDayy, Vi Ve xnC(X, Y)

is a monoidal equivalence.

1.2. Calabi-Yau algebras. In this subsection, we recall the definition of (twisted)
Calabi—Yau algebras.

Definition 1.2.1. An algebra A is a twisted Calabi-Yau algebra of dimension d if

(1) A is homologically smooth, that is, A has a bounded resolution by finitely
generated projective A°-modules;

(i) There is an automorphism u of A such that

0, i#d,

2 Ext,.(A, A®) =
@ Mo (4, 4D {A“, i=d,

as A¢-modules.

If such an automorphism g exists, it is unique up to an inner automorphism and
is called the Nakayama automorphism of A. In the definition, the dimension d is
usually called the Calabi—Yau dimension of A. A Calabi—Yau algebra in the sense of
Ginzburg [2007] is a twisted Calabi—Yau algebra whose Nakayama automorphism
is an inner automorphism. In what follows, Calabi—Yau is abbreviated to CY.

Twisted CY algebras include CY algebras as a subclass. They are the natural
algebraic analogues of Bieri and Eckmann’s [1973] duality groups. The twisted CY
property of noncommutative algebras has been studied under other names for many
years, even before the definition of a CY algebra. Rigid dualizing complexes of
noncommutative algebras were studied in [Van den Bergh 1997]. The twisted CY
property was called “rigid Gorenstein” in [Brown and Zhang 2008] and was called
“skew Calabi—Yau” in a recent paper [Reyes et al. 2014].
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2. Calabi-Yau property

2.1. Artin—Schelter Gorenstein Hopf algebras. L.et H be a Hopf algebra. We
denote the Hochschild dimension of H by Hdim(H). In the Appendix, it is shown
that the left global dimension and the right global dimension of H are always equal.
We denote the global dimension of H by gldim(H). The left adjoint functor L :
Mod H¢ — Mod H is defined by the algebra homomorphism (id ® S)o A : H — H*.
Similarly, the algebra homomorphism to(S®id)o A : H — (H¢)° = H¢ defines the
right adjoint functor R : Mod(H¢)°® — Mod HP, where 1 : HP @ H — H @ HP
is the flip map. Let M be an H-bimodule. Then L(M) is a left H-module defined
by the action
x —>m=xmS(xy) forany x € H,

while R(M) is a right H-module defined by the action
m < x = S(x;)mx, forany x € H.
The algebra H¢ is a left and right H°-module with left action
3) (@a®b) > (x®y)=ax®yb,
and right action
“) (x*®y) < (a®b) =xaQby.

forany x®y anda®b € H®. So L(H®) and R(H¢) are H-H® and H*°- H-bimodules,
where the corresponding H-module structures are given by

a—> (x®y)=aix®yS(az) and (x®y) <a=xa;® S(a)y

for any a € H and x ® y € H¢, respectively.

Let . H ® H be the free left H-module, where the structure is given by the left
multiplication of the first factor H. Similarly, let H, ® H be the free right H-module
defined by the right multiplication of the first factor H. Moreover, we give . H @ H
a right H°-module structure such that

5) (X ®y) < (@®b) = xa1 ® byS*(a2)

and H, ® H a left H¢-module structure via

(6) (@®b) — (x®y) =ayx ® S*(a1)yb

foranyx®@ye ,HQHor H.QHanda®b € H®.

Lemma 2.1.1. Retain the above notation. Then we have:
(1) L(H®) = .HQ® H as H-H®¢-bimodules.

(i) R(H®) = H, ® H as H¢-H-bimodules.
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Proof. 1t is straightforward to check the corresponding isomorphisms of bimodules
are given by the following four homomorphisms:

L(H) > ,H®H, x®yr> xQyS*(x2)

with inverse
«H®H— L(H), xQ®yt x1®yS(x2),

and
RH) > H.®H, x®@y+>x®S2(x1)y

with inverse
H. @ H—> R(H), x®yr x2®S8(x1)y. g

Lemma 2.1.2. Let H be a Hopf algebra and B an algebra.

(i) Let M be an H¢-B-bimodule. Then Exty,.(H, M) = Ext, (K, L(M)) as right
B-modules for all i > 0.

(ii) Let M be an B-H¢-bimodule. Then Ext’}{e(H, M) = Extﬂqnp (ke, R(M)) as left
B-modules for all i > 0.

Proof. We only prove (i); the proof of (ii) is quite similar. With Lemma 2.4 in
[Brown and Zhang 2008], we only need to prove that for an H¢-B-bimodule N,
there is an H“-B-bimodule monomorphism 0 — N — [, such that / is injective as
an H¢-module. The H*-B-bimodule N can be viewed as an H¢ ® B°°-module. It
can be embedded into an injective H¢ ® B°P-module /. We have

HomHe(—, I) = HOl'n[-]e(—7 HomH6®Bop((He ® Bop)He, I))
= HOHlHe@BOP((He ® BOP)He ® —, I)-

H¢ ® B is clearly free as an H¢-module. Therefore, the functor Hompge(—, 1) is
exact. That is, / is injective as an H°-module. This completes the proof. (]

It is well known that there is an equivalence of categories between the category
of left H¢-modules and the category of right H¢-modules for (H¢)°? = H®. As a
consequence, Ext,,(H, H¢) can be computed both by using the left and the right
H¢-module structures on H¢ defined in (3) and (4).

Proposition 2.1.3. Let H be a Hopf algebra such that it is homologically smooth.
We have

Extl. (H, H®) = Exty, (K, H) ® H = Ext}, (Ko, H) @ H

as H®-modules for all i > 0, where the H¢-module structures on Ext’h ok, HYQ H
and on Ext"Hop(kS, H) ® H are induced by (5) and (6), respectively.
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Proof. We prove the isomorphism Exty,.(H, H®) = Ext"H (¢k, H) ® H. The proof
of the isomorphism Exty,.(H, H®) = Ext"Hop(kg, H) ® H is quite similar.

Since H is homologically smooth, the trivial module .k admits a bounded
projective resolution P, — .k — 0, with each term finitely generated (Proposition
A.2). Now we have the following H°-module isomorphisms:

Extlye (H, H°) = Ext}y (:K, L(H)) =Exty (K, .H ® H)
=H(P,,H®H) =H (P, H®H
= Extyy (-, H) ® H.

The first and the second isomorphism follows from Lemma 2.1.2 and 2.1.1, respec-
tively. The fourth isomorphism holds since P, — .k — 0 is a bounded projective
resolution with each term finitely generated. O

Now we recall the definition of an Artin—Schelter (AS) Gorenstein algebra.

Definition 2.1.4 (cf. [Brown and Zhang 2008, Definition 1.2]). Let H be a Hopf
algebra.

(i) The Hopf algebra H is said to be left AS-Gorenstein if
(a) injdimgH =d < o0,
(b) Exty, (-K, H) =0 for i # d and Ext%, (K, H) = k.

(i) The Hopf algebra H is said to be right AS-Gorenstein if
(¢) injdim Hy =d < oo,
(d) Ext} o (Ke, H) =0 for i #d and Ext?,,,(k., H) = k.

(iii) If H is both left and right AS-Gorenstein (relative to the same augmentation
map ¢), then H is called AS-Gorenstein.

(iv) If, in addition, the global dimension of H is finite, then H is called AS-regular.

Remark 2.1.5. In above definitions, we do not require the Hopf algebra H to be
Noetherian. For AS-regularity, the right global dimension always equals the left
global dimension by Proposition A.1. Moreover, when H is AS-Gorenstein and
homologically smooth, the right injective dimension always equals the left injective
dimension, which are both given by the integer d such that Ext?,, (H, H®) # 0 by
Proposition 2.1.3.

Homological integrals for an AS-Gorenstein Hopf algebra introduced in [Lu
et al. 2007] are a generalization of integrals for finite dimensional Hopf algebras
[Sweedler 1969]. The concept was further extended to any AS-Gorenstein algebra
in [Brown and Zhang 2008].

Let A be a left AS-Gorenstein algebra of injective dimension d with augmentation
¢ : A — k. One sees that Extfi4 (¢k, A) is a one-dimensional right A-module. Any
nonzero element in Ext‘f\ (ek, A) is called a left homological integral of A. Usually,
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Extjg (¢k, A) is denoted by f[i Similarly, if A is a right AS-Gorenstein algebra
of injective dimension d, any nonzero element in Ext Aop(kg, A) is called a right
homologtcal integral. And Ext Aop(kg, A) is denoted by f 4+ Abusing the language
slightly, f 4 (resp. f 4) 1s also called the left (resp. right) homological integral.

A Noetherian Hopf algebra H with bijective antipode is AS-regular in the sense
of [Brown and Zhang 2008, Definition 1.2] if and only if H is twisted CY [Reyes
et al. 2014, Lemma 1.3]. If H is not necessarily Noetherian, we have the following
result:

Proposition 2.1.6. Let H be a Hopf algebra with bijective antipode such that it is
homologically smooth. Then the following are equivalent:

(1) H is a twisted CY algebra of dimension d.

(1) There is an integer d such that
Ext’}i(gk, H)=0 fori#d and dimExt‘fq(gk, H)=1.
(iii) There is an integer d such that
Ext’}{op(kg, H)=0 fori#d and dimExt‘fq(,p(kS, H)=1.

(iv) Ext' Y (K, H) and Ext) oo (Ke, H) are finite dimensional for i > 0 and there is
an integer d such that dim Ext! (K, H) = dim Ext‘}lop(kg, H)=0fori>d,
and dim Ext4, (.K, H) # 0 or dim Ext¢,, (K, H) # 0.

In these cases, we have gldim(H) = injdim Hy = injdim y H = d.

Proof. (1) =(ii), (iii) This proof can be found for example in [Yu et al. 2016, Lemma
2.15].

(ii)=> (i) By Proposition 2.1.3, Ext},. (H, H¢) = Exty, (:k, H)® H for alli > 1 as
H¢-modules. Since Extil (¢k, H) is a one-dimensional right H-module, we simply
write it as Kg, for some algebra homomorphism & : H — K. Therefore,

. (a)
Exty, (H, H) =0 for i #d and Ext}.(H, H)=k:® H = H",

where p is defined by u(h) =§ (h1)S%(hy) for any h € H. The isomorphism (a)
holds because the H°-module structure on Ke ® H is induced by the equation (5)
according to Proposition 2.1.3. Moreover, it is easy to check that u is an algebra
automorphism of H with inverse given by u~'(h) = £(S(h1))S™%(h,) for any
heH.

(iii))=(i) The proof is similar to that of (ii))= (i).

(ii), (iii))=(iv) This is obvious.

(iv)=(i1), (ii1) The proof of [Brown and Zhang 2008, Lemma 3.2] works generally
for this case. Suppose dim Ext‘;{ (ck, H) # 0; the case for dim Ext‘;{gp(ks, H)#0
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is similar. Since H is homologically smooth, by Proposition A.2 and [Brown and
Goodearl 1997, Lemma 1.11], we can apply Ischebeck’s spectral sequence

Ext} o (Bxty? (oK, H), H) = Tor” _ (H, .k)

to obtain dim EX'L’HO,D (ke, H) =0 for i #d. From the proof of [Brown and Goodearl
1997, Lemma 1.11], dimExt4, (M, H) = dim M - dim Ext}, (.k, H) for any finite
dimensional left H-module M. Thus by the finite dimensional assumption,

dim Ext{, (Ext%ep (Ke, H), H) = dim Ext%,, (K, H) - dim Ext, (K, H).
Again by the Ischebeck’s spectral sequence, Extj’, (Ext‘fqop(kg, H), H) = k. Hence,
dim Ext{, (K, H) = dim Ext4o, (K¢, H) = 1.

Now (i1) and (iii) are proved.

Finally, we can apply the same proof of [Berger and Taillefer 2007, Proposition
2.2] to show that for a twisted CY Hopf algebra H of dimension d, we have
Hdim(H) = d. Hence gldim(H) = d by Proposition A.1. The equality of the
injective dimension of H is easy to see since it is always bounded by gldim(H) =d
and we have dim Ext4, (.K, H) # 0 or dim Ext%,, (K, H) # 0. O

Corollary 2.1.7. Let H be a Hopf algebra with bijective antipode. Then the follow-
ing are equivalent:

o H is twisted CY.
o H is left AS-Gorenstein and the left trivial module ;K admits a bounded

projective resolution with each term finitely generated.

e H is right AS-Gorenstein and the right trivial module K, admits a bounded
projective resolution with each term finitely generated.

Proof. It follows from Proposition A.2 and Proposition 2.1.6. ([

2.2. Yetter—Drinfeld modules. In this subsection, we recall some definitions related
to Yetter—Drinfeld modules.

Definition 2.2.1. Let H be a Hopf algebra. A (right-right) Yetter—Drinfeld module
V over H is simultaneously a right H-module and a right H-comodule satisfying
the compatibility condition

S(v-h)= V(0) -hz@S(hl)U(l)h3 forany veV, he H.

We denote by yDZ the category of Yetter—Drinfeld modules over H with mor-
phisms given by H-linear and H-collinear maps. Endowed with the usual tensor
product of modules and comodules, yDZ is a monoidal category, with unit the
trivial Yetter—Drinfeld module k.

We can always construct a Yetter—Drinfeld module from a right comodule.
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Lemma-Definition 2.2.2 [Bichon 2013, Proposion 3.1, Definition 3.2]. Let H be a
Hopf algebra and V a right H-comodule. Endow V ® H with the right H-module
structure defined by multiplication on the right. Then the linear map

VRH—->VRHQH, v®h|—>v(o)®h2®S(h1)v(1)h3

endows V ® H with a right H-comodule structure, and with a right-right Yetter—
Drinfeld module structure. We denote by V X H the resulting Yetter—Drinfeld
module.

A Yetter—Drinfeld module over H is said to be free if it is isomorphic to V X H
for some right H-comodule V.

A free Yetter—Drinfeld module is obviously free as a right H-module. We call a
free Yetter—Drinfeld module V X H finitely generated if V is finite dimensional.

Bichon [2016] introduced the notion of relative projective Yetter—Drinfeld mod-
ule, corresponding to the notion of relative projective Hopf bimodule considered in
[Shnider and Sternberg 1993] via the monoidal equivalence between Yetter—Drinfeld
modules and Hopf bimodules.

Lemma-Definition 2.2.3 [Bichon 2016, Definition 4.1, Proposition 4.2]. Let P be
a Yetter—Drinfeld module over a Hopf algebra H. The following are equivalent:

(1) The functor HomyDZ (P, —) transforms exact sequences of Yetter—Drinfeld
modules that splits as sequences of comodules to exact sequences of vector
spaces.

(2) Any epimorphism of Yetter—Drinfeld modules f : M — P that admits a
comodule section admits a Yetter—Drinfeld module section.

(3) P is a direct summand of a free Yetter—Drinfeld module.

A Yetter—Drinfeld module is said to be relative projective if it satisfies one of the
above equivalent conditions.

It is clear that a relative projective Yetter—Drinfeld module is a projective module.
We call a relative projective Yetter—Drinfeld module finitely generated if it is a
direct summand of a finitely generated free Yetter—Drinfeld module.

Definition 2.2.4. Let H be a Hopf algebra and let M € yDZ. A free (resp. relative
projective) Yetter—Drinfeld module resolution of M consists of a complex of free
(resp. relative projective) Yetter—Drinfeld modules

RZ-~-—>P[+1—>Pi—>---—>P1—>P0—>0
for which there exists a Yetter—Drinfeld module morphism € : Py — M such that
"'_>Pi+] —)P,'—>---—>P1 —)P()—€>M—>0

is an exact sequence in yDZ.
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If each P;, i > 0, is a finitely generated free (resp. relative projective) Yetter—
Drinfeld module, we call this complex P, a finitely generated free (resp. relative
projective) Yetter—Drinfeld module resolution.

Of course each free Yetter—Drinfeld module resolution is a free resolution and
each relative projective Yetter—Drinfeld module resolution is a projective resolution.

Lemma 2.2.5. Let C be a cogroupoid and X, Y € ob(C). The equivalence functor
—Uex, x)C(X, Y) sends any relative projective Yetter—Drinfeld module resolution
P, of the trivial Yetter—Drinfeld module K over C(X, X) to a relative projective
Yetter—Drinfeld module resolution P,Lcx x)C(X, Y) of the trivial Yetter—Drinfeld
module K over C(Y,Y). In particular, if P, is finitely generated (resp. bounded),
then P.Ucx, x)C(X, Y) is also finite generated (resp. bounded).

Proof. Following from Lemma-Definition 2.2.3 and Section 4 in [Bichon 2013], we
see that the functor —[¢(x, x)C (X, Y) is exact and sends a relative projective Yetter—
Drinfeld module over C(X, X) to a relative projective Yetter—Drinfeld module
over C(Y, Y). So PU¢x,x)C(X, Y) is arelative projective Yetter—Drinfeld module
resolution.

Lemma-Definition 2.2.3 and [Bichon 2014, Proposition 1.16] guarantee that if P,
is finitely generated, then P,[c(x x)C(X, Y) is also finite generated. The argument
for boundedness is clear. [l

2.3. Homological properties of cogroupoids. From now on we assume that the
Hopf algebras mentioned have bijective antipodes. We also assume that any
cogroupoid C mentioned satisfies that Sx y is bijective for any X, Y € ob(C). This
assumption is to make sure that Sy x o Sx y is an algebra automorphism of C(X, Y).
Actually, if C is a connected cogroupoid such that for some object X, C(X, X) is a
Hopf algebra with bijective antipode, then Sy y is bijective for any objects X, Y
(see Remark 2.6 in [Yu 2016])).

Let C be a cogroupoid and X, Y € ob(C). Both the morphisms A§,x C(X,X)—
C(X,Y)®C(Y, X) and Sy x : C(Y, X) — C(X, Y)°P are algebra homomorphisms
(Lemma 1.1.3), so the composition of the morphisms

Y

(7) C(X, X) =5 C(X,Y)®C(Y, X) 5C(X,Y)®CY, X)®P(=C(X, Y))
is an algebra homomorphism. This induces a functor
Lx :ModC(X,Y)* — ModC(X, X).

The functor Ly is just the functor £ defined in [Yu 2016]. Let M be a C(X, Y)-
bimodule. The left C(X, X)-module structure of Lx (M) is given by

xX—m =x1X’ymSy,X(x2Y’X) forany m e M, x € C(X, X).
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From the cogroupoid C, we define a coopposite cogroupoid C" as follows:

e 0b(C") = ob(C).

« For any objects Y, X, the algebra C'(Y, X) is the algebra C(X, Y).

« For any objects Y, X and Z, the algebra homomorphism A/YZX C (Y, X) —>
C'(Y,Z) ® C'(Z, X) is the algebra homomorphism 7 o Aiy :C(X,Y) —
C(Z,Y)®C(X,Z)inC,where T :C(X,Z)QC(Z,Y) > C(Z,Y)RC(X, Z)
is the flip map.

« For any object X, ¢} : C'(X, X) — K is the same as ex : C(X, X) — Kin C.

« For any objects Y, X, the morphism ng,x :C'(Y,X)— C'(X,Y) is the morphism
Sy 1 C(X,Y) > C(Y, X).

It is easy to check that this indeed defines a cogroupoid.
For any objects X, Y € ob(C) = ob(C"), the algebras C(X, Y) and C(Y,Y) in C
are just the algebras C'(Y, X) and C'(Y, Y) in C". So we have a functor

LYy :ModC(X, Y)* — ModC(Y, Y).
If M is a C(X,Y)-bimodule, the left C(Y,Y)-module structure of £}, (M) is given by
y—>m= yZX’YmSg,ly(yly’X) forany me M and yeC(Y,Y).

As usual, we view C(X, Y)¢ as a left and a right C(X, Y)¢-module respectively
in the following ways:

(8) @®b) > (x®y)=ax ® yb,
and
©)) (x®y) < (a®b) =xaQby,

forany x ® y and a ® b € C(X, Y)*. Then we have the modules Lx(C(X, Y)¢) and
E’Y (C(X, Y)°). They are all free modules.

Let .C(X, X) ® C(X, Y) be the left C(X, X)-module defined by the left multipli-
cation of the factor C(X, X), and ,C(Y, Y) ® C(X, Y) be the left C(Y, Y)-module
defined by the left multiplication of the factor C(Y, Y). Then we have the following:
Lemma 2.3.1. (i) Lx(C(X,Y)*) = .C(X, X)QRC(X,Y) as left C(X, X)-modules.

The isomorphism is given by

Lx(C(X,Y)) = (X, X)®C(X,Y), x®@yr>x " @ySyx(Sxy@;")).

(i) Ly (C(X,Y)) =LY, Y)RC(X,Y) asleft C(Y, Y)-modules. The isomorphism
is given by

YCX. V) > LY, Y)RCX,Y), x®y>x " ®ySyh(Sy G



496 XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

Proof. (1) is Lemma 2.1 in [Yu 2016]. (ii) can be obtained by applying (i) to the
coopposite cogroupoid C'. U

Lemma 2.3.2. Let C be a cogroupoid, X,Y € ob(C) and B another algebra. Let
M be a C(X, Y)¢-B-bimodule.

(i) EXtly ) (C(X,Y),M) %Exté(x’x)(g K, Lx (M)) as right B-bimodules for all i > 0.
(i) Xty y)(C(X.Y),M) ZExtyy y (K, L} (M) as right B-bimodules for all i > 0.

Proof. By applying Lemma 2.2 in [Yu 2016] to the cogroupoid C and its coopposite
cogroupoid C’, we obtain vector space isomorphisms

Ext)x yye (C(X, Y), M) = Extyy (K, Lx(M))

and
Exty x.yye (C(X, Y), M) = Extgy y, (oK, L3 (M)

for all i >> 0. By a quite similar discussion to that in the proof of Lemma 2.1.2, we
can see that the isomorphisms above are B-linear. ([

2.4. Main results. In order to state our main results we need to define winding
automorphisms of cogroupoids.

Let C be a cogroupoid and X, Y € ob(C). Let & : C(X, X) — k be an algebra
homomorphism. The left winding automorphism [& ]’X’ y of C(X, Y) associated to &
is defined to be

(£l y @XT) =&@F)al forany a eC(X, V).

Let n: C(Y,Y) — K be an algebra homomorphism. Similarly, the right winding
automorphism of C(X, Y) associated to n is defined to be

1 y @) =a;}""n(ay”) forany aecC(X,Y).

Lemma 2.4.1. Let C be a cogroupoid and X,Y € ob(C), let & : C(X, X) — K, and
n:C(Y,Y) — K be algebra homomorphisms. Then
() (&l ) =[ESxx]y y-
(i) £S2 y =&, 50 [Ely y = [6S% 4Ty
(iii) [£]’ YyoSrxoSxy=_SyxoSxyo [S]lx,y-
(@) (I )" =Sryly y
(i) nSyy =n, so [y y =S,y y

(iii’) [nly y o Sy.x o Sx,y =Sy xoSxyolnlyy
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Proof. (1) can be proved directly and (ii) is just Lemma 2.5 (c) in [Brown and Zhang
2008]. Now, we give a proof of (iii). For x e C(X, Y),

Sy.x o Sx.y ol€ly y (@) =& ") Sy x(Sx.y(a3")).
Since A% ; (Syx(Sx.y (@) = 8% x(@"*) ® Sy x (Sx.v (@),
(61 y 0 Syox o Sxy(@*") = £S5 y(ay ™) Sy x(Sx.r (@ "))
By (i), SS;?X =£,s0
Sy.x o Sx.y o[€1'(@®") =[] o Sy x o Sx,y(a®").

Therefore, SY,X o SX,Y o [5]1;(,1/ = [é]{X,Y o SY,X o SX,Y-
('), (i1”) and (iii’) hold symmetrically to (i), (ii) and (iii), respectively. U

The following is the main result of [Yu 2016]:

Theorem 2.4.2. Let C be a connected cogroupoid and let X € ob(C) such that
C(X, X) is a twisted CY algebra of dimension d with left homological integral
fé(X’X) = Ke, where & : C(X, X) — K is an algebra homomorphism. Then for
any Y € ob(C), C(X,Y) is a twisted CY algebra of dimension d with Nakayama
automorphism p defined as @ = Sy x o Sx,y o [é]lX,Y. That is,

wa) =&(@ ") Sy x(Sx.y(ay"))
foranyx e C(X,Y).

Though we do not say that the CY-dimension of C(X, X) and C(X, Y) are the
same in the statement of [Yu 2016, Theorem 2.5], it is easy to see from its proof.
Applying Theorem 2.4.2 to the coopposite cogroupoid C’, we obtain the following
corollary:

Corollary 2.4.3. Let C be a connected cogroupoid and let Y € ob(C) such that
C(Y,Y) is a twisted CY algebra of dimension d with left homological integral
fé(y,y) = k,, where n : C(Y,Y) — K is an algebra homomorphism. Then for
any X € ob(C), C(X, Y) is a twisted CY algebra of dimension d with Nakayama
automorphism |1 defined as (' = Sg,ly o S;g( o[nly y. That is,

1w (@) = Syl (Sy k@ Nnar’)
forany x e C(X,Y).

Theorem 2.4.4. Let C be a connected cogroupoid and let X be an object in C such
that C(X, X) is a twisted CY Hopf algebra of dimension d. Then for any Y € ob(C)
such that C(Y,Y) is homologically smooth, C(Y,Y) is a twisted CY algebra of
dimension d as well.
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Proof. Let Y be an object in C such that C(Y, Y') is homologically smooth. We need
to compute the Hochschild cohomology of C(Y, Y). By Lemma 2.3.2,

EXtGx,y)e (C(X, ¥), C(X, ¥)*) Z Extgqy yym (oK, Ly (C(X, ¥)))

forall i > 0. £, (C(X,Y)¢) is a C(Y,Y)-C(X, Y)*-bimodule. The left C(Y, Y)-
module isomorphism

Ly(CX,Y)) > LY, Y)®CX,Y), x®yr>xy" @ ySyly(Sy (")

in Lemma 2.3.1 is also an isomorphism of left C(X, Y)¢-modules if we endow a
right C(X, Y)¢-module structure on ,C(Y, Y) ® C(X, Y) as follows:

(x®y) < (a®b) =xay" ®bySy'(Sy x @)

forany x®y € ,.C(Y,Y)QC(X,Y) anda®b € C(X, Y)* Therefore, we obtain the
following left C(X, Y)¢-module isomorphisms:

EXth y yye (C(X, Y), C(X, ¥)*) = Bxthy ) (K, Ly (C(X, Y)))
= Exty .y (K <C(Y, Y) ®C(X, Y))
= Exty .y, (K, C(Y. Y) ®C(X, Y)
for i > 0. The third isomorphism follows from the fact that C(Y, Y) is homologically
smooth, the trivial module .k admits a bounded projective resolution with each

term finitely generated (Proposition A.2). The right C(X, Y)¢-module structure on
Ext‘lc(y’y)ep(ks, C(Y,Y))®C(X,Y) induced by the isomorphisms above is given by

(x®y) < (@®b) =xay’ @bySyl, (Sy k@)

forany x ® y € Exté(y’y)op(gk, CY,Y)®C(X,Y)and a®b € C(X, Y)°. Note
that the right C(Y, Y)-module structure of C(Y, Y) induces a right C(Y, Y)-module
structure on Exté(y’y)op(kg, C(Y,Y)).

It follows from Theorem 2.4.2 that C(X, Y) is a twisted CY algebra of dimension
d with Nakayama automorphism @ = Sy x o Sx,y o [é]lx’y. So

: 0, i #d,
Ext/ LC(X,Y),C(X, V)9 =
Koo (C06 1, €O 1) {C(X, Y)*, i=d.
Now we arrive at the isomorphism of left C(X, Y)¢-modules
; 0, i #d,
i >~
Exthy.y) (K, C(Y. Y)) ®C(X, ¥) = { XY i ed

A right C(X, Y)¢-module can be viewed as a C(X, Y)-bimodule. The left module
structure of Exté(y’y)(kg, C(Y,Y))®C(X,Y) is just the left multiplication to the



CALABI-YAU PROPERTY UNDER MONOIDAL MORITA-TAKEUCHI EQUIVALENCE 499

factor C(X, Y). So especially, as left C(X, Y)-modules,

i #d,
{C(X Y), i=d.
This shows that Ex‘[c Y.Y) (k,C(Y,Y)) = 0 for i # d. Moreover, for degree d,
we denote V = Extc(y Y)(ak C(Y,Y)). Then VQC(X,Y)=C(X,Y) as free left
C(X, Y)-modules. Hence 0 < dimV < oo (note that we do not know whether
C(X, Y) has the FBN property). Similarly, Extc(y y)op(kg, ClY,Y))=0fori #d
and ExtC(Y Y)op(kg, C(Y, Y)) is finite dimensional as well. Hence C(Y, Y) is twisted
CY of dimension d by Proposition 2.1.6. ([

Exthy y) (K, C(Y, ¥)) ® C(X, Y) =

Theorem 2.4.5. Let H and L be two monoidally Morita—Takeuchi equivalent Hopf
algebras. If H is twisted CY of dimension d and L is homologically smooth, then L
is twisted CY of dimension d as well.

Proof. This directly follows from Theorem 1.1.4 and Theorem 2.4.4. (]
Before we present our next theorem, we need the following lemma:

Lemma 2.4.6. If H be a Noetherian Hopf algebra, then the trivial Yetter—Drinfeld
module K admits a finitely generated free Yetter—Drinfeld module resolution.

Proof. First we have an epimorphism € : KK H — K, 1®#h > ¢(h) of Yetter-Drinfeld
modules. Set Py = kX H. Since H is Noetherian, Ker € is finitely generated as a
module over H. Say it is generated by a finite dimensional subspace V; of Py. That
is, there exists an epimorphism V; @ H — Kere — 0 given by v ® h +— vh for any
veViand h € H. Let C be the subcomodule of Ker € generated by V,. We know
C is finite dimensional since Vj is finite dimensional by the fundamental theory of
comodules. Construct the epimorphism C1 X H — Kere — 0 via c ® h +— ch for
any c € Cy and h € H. It is easy to check that it is a morphism of Yetter—Drinfeld
modules. Set Py = Cy X H, we have the exact sequence P; — Py — k — 0. Note
that P; is again a Noetherian H-module. Hence we can do the procedure recursively
to obtain a finitely generated free Yetter—Drinfeld module resolution of k. ([

Theorem 2.4.7. Let H be a twisted CY Hopf algebra of dimension d, and L a
Hopf algebra monoidally Morita—Takeuchi equivalent to H. If one of the following
conditions holds, then L is also twisted CY of dimension d.

(1) H admits a finitely generated relative projective Yetter—Drinfeld module resolu-
tion for the trivial Yetter—Drinfeld module K and L has finite global dimension.

(i) H admits a bounded finitely generated relative projective Yetter—Drinfeld
module resolution for the trivial Yetter—Drinfeld module K.

(iii)) H is Noetherian and L has finite global dimension.

(iv) L is Noetherian and has finite global dimension.
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Proof. By Theorem 2.4.4, we only need to prove that if one of the conditions listed
in the theorem holds, then L is homologically smooth.

In case (i) We use the language of cogroupoids. Since H and L are monoidally
Morita—Takeuchi equivalent, there exists a connected cogroupoid with 2 objects
X, Y suchthat H=C(X, X)and L =C(Y, Y) (Theorem 1.1.4). By Proposition A.2,
to show L = C(Y, Y) is homologically smooth, we only need to show that the
trivial module k. admits a bounded projective resolution with each term finitely
generated. By assumption, the trivial Yetter—Drinfeld module k over the Hopf
algebra H = C(X, X) admits a finitely generated relative projective Yetter—Drinfeld
module resolution

(10) ---—>P,~ﬁ>P,-,l—>---—>P1—>P0—>k—>O.
By Lemma 2.2.5,
80C(X,Y)
a1y - — Plex,x)C(X,Y) ——— P 1Uex, x)C(X, Y) — - -

s —> PIDC(X,X)C(Xy Y) e PQDC(X,X)C(X, Y) —> k d O

is a finitely generated relative projective Yetter—Drinfeld module resolution of the
trivial Yetter—Drinfeld module kK over C(Y, Y). So each P;l¢x x)C(X,Y) is a
finite generated projective C(Y, Y)-module. By assumption, the global dimension
of C(Y,Y) is finite, say n. Set K, = Ker(,—1Ucx, x)C(X, Y)). Following from
Lemma 4.1.6 in [Weibel 1994], K,, is projective, so it is a direct summand of
P,Uex, x)C(X, Y). Since P,Lex,x)C(X, Y) is finitely generated, K, is finitely
generated as well. Therefore,

0— Kn —> Pn—IDC(X,X)C(X, Y) —> ..
e —> P]DC(X’X)C(X, Y) — P()DC(X,X)C(X, Y) — k—) 0

is a bounded projective resolution with each term finitely generated. Hence, L =
C(Y, Y) is homologically smooth.

The proof in case (ii) uses a similar argument as in case (i) since equations (10)
and (11) now are bounded finitely generated projective resolutions for K.

Case (iii) is a direct consequence of Lemma 2.4.6 and (i).

That the Hopf algebra L is homologically smooth in case (iv) follows from
[Brown and Zhang 2008, Lemma 5.2]. O

Corollary 2.4.8. Let H and L be two monoidally Morita—Takeuchi equivalent Hopf
algebras. If both H and L are twisted CY, then gldim(H) = gldim(L).

Proof. 1t follows from Theorem 2.4.7 and the fact that for twisted CY Hopf algebras
the CY dimension always equals the global dimension by Proposition 2.1.6.  [J
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Now we discuss the relation between the homological integrals of C(X, X) and
C(Y, Y) when both of them are twisted CY.

Theorem 2.4.9. Let C be a connected cogroupoid. If X and Y are two objects such
that C(X, X) and C(Y, Y) are both twisted CY algebras, then we have

(12) (Sy.xoSxy)* =nlyyo(Elxy) oy,

where & : C(X, X) — Kand n : C(Y, Y) — K are algebra homomorphisms given by
the left homological integrals of C(X, X) : fé(X,X) =Kkg andC(Y,Y): fé(y’y) =k,
respectively, and y is an inner automorphism of C(X, Y).

Proof. From Theorem 2.4.2 and Corollary 2.4.3, it is easy to see that the CY-
dimensions of C(X, X) and C(Y, Y) are equal. Moreover, u = Sy x o Sx .y o (&)
and u = S;vly oS y. g( o [n]" are the Nakayama automorphisms of C(X, Y). Since
Nakayama automorphisms are unique up to inner automorphisms,

SyxoSxyolélyy =S¢y oSy xolnlyyoy.

for some inner automorphism y of C(X, Y). The automorphism [& ]lxyy commutes
with Sy x o Sy, y (Lemma 2.4.1), we obtain that

(Sy.xoSxy)> = ([Elxy) " olnlyyoy. O

Remark 2.4.10. The three maps composed to give (Sy x oS x,y)2 in (12) commute
with each other. This can be proved as in [Brown and Zhang 2008, Proposition
4.6] with the help of Lemma 2.4.1. It is not hard to see that Theorem 2.4.9
holds when C(X, X) and C(Y, Y) are both AS-Gorenstein. The equation (12)
is just (4.6.1) in the same work when X = Y. Since the inner automorphism
y = (Sv.x o Sx.v)* o (Il y) ™" o [£]y y is intrinsic in C(X,Y), it prompts us
to generalize their Question 4.6 to the Hopf-bigalois object C(X, Y) when both
C(X, X) and C(Y, Y) are AS-Gorenstein.

Question 2.4.11. What is the inner automorphism in Theorem 2.4.9?7

3. Examples

In this section, we provide some examples.

3.1. Example 1. We take the field K to be C in this subsection. Let E € GL,,(C)
with m > 2 and let B(E) be the algebra presented by generators (u;;)1<;, j<m and
relations

EY%WEu=1,=uE""WE,

where u is the matrix (#;;)1<;, j<m- u' is the transpose of u and I, is the identity
matrix. The algebra B(E) is a Hopf algebra and was defined by Dubois-Violette and
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Launer [1990] as the quantum automorphism group of the nondegenerate bilinear
form associated to £E. When
0 1
E = Eq == <_q1 0>,

B(E,) is just the algebra O, (SL»(C)), the quantized coordinate algebra of SL,(C).
In order to describe Hopf algebras whose comodule categories are monoidally
equivalent to the one of B(E), we recall the cogroupoid B.
Let E € GL,,(C) and let F € GL,(C). The algebra B(E, F') is defined to be the
algebra with generators u;;, 1 <i <m, 1< j <n, subject to the relations:

(13) FYWEu=1,, uF 'WE=I,.

The generators u;; in B(E, F) is denoted by ugF to express the dependence on E

and F when needed. It is clear that B(E) = B(E, E).
For any E € GL,,(C), F € GL,(C) and G € GL,(C), define the following maps:

p
(14) A% .: B(E,F)— B(E,G)®B(G, F), wij > Y ik @ ),
k=1
(15) EE : B(E) — C, ujj = dij,
(16) Spr: B(E,F)— B(F,E)®, ur E"'W'F.

It is clear that Sg_r is bijective.
Lemma 3.2 in [Bichon 2014] ensures that with these morphisms we have a
cogroupoid. The cogroupoid B is defined as follows:
(i) ob(B) ={E € GL,,(C), m > 1}.
(i) For E, F € ob(B), the algebra B(E, F) is the algebra defined as in (13).
(iii) The structural maps A; , &, and S, , are defined in (14), (15) and (16), respec-
tively.
Lemma 3.1.1 [Bichon 2014, Lemma 3.4, Corollary 3.5]. Let E € GL,,,(C), F €
GL,, (C) withm,n > 2. Then B(E, F) # (0) if and only if tr(E~'E") = tr(F~'F").
Consequently, let . € C, and B" the full subcogroupoid of B with objects

ob(B) ={E € GL,(C),m >2,tr(E"'E") = A}.

Then B* is a connected cogroupoid.

Thus, if E € GL,,(C), F € GL,(C) withm, n >2 satisfy tr(E~'E") =tr(F ' F?),
then the comodule categories of B(E) and B(F) are monoidally equivalent.

The Calabi—Yau property of the algebras B(E) was discussed in [Bichon 2013,
Section 6] (see also [Walton and Wang 2016] and [Yu 2016]). Theorem 2.4.7 pro-
vides a more simplified way to prove that the algebras B(E) are twisted CY algebras.
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Actually, by Lemma 5.6 in [Bichon 2013], the trivial Yetter—Drinfeld module over
the algebra B(E,) admits a bounded finitely generated free Yetter-Drinfeld module
resolution and B(E,) twisted CY of dimension 3 with left homological integral

I .
fB(Eq) = C, given by
-2
q 0

For any E € GL,,,(C) (m > 2), there is a ¢ € C* such that
t(E"'E") =—q—q ' =w(E,;'E}),

so B(E) and B(E,) are monoidally Morita—Takeuchi equivalent. Therefore, the
algebra B(E) is twisted CY by Theorem 2.4.7. Let |, llg( E) = Ce be the left homo-
logical integral of B(E), where & : B(E) — C is an algebra homomorphism. Since
there are no nontrivial units in B(E, E,). Then & and n satisfy the equation

(Sk,.£ 0 SE.£,) =l g, 0 (€15 )7

by Theorem 2.4.9. So £ is defined by £(wf) = (E")"'E(E")™'E. Hence, the
Nakayama automorphism of B(E) is defined by u(u) = (E") "' Eu(E")'E [Reyes
et al. 2014, Lemma 1.3].

3.2. Example 2. In this subsection, we want to present a class of Hopf algebras
such that the inner automorphism in Theorem 2.4.9 can be calculated. We first
recall the definition of the 2-cocycle cogroupoid.

Let H be a Hopf algebra with bijective antipode. A (right) 2-cocycle on H is a
convolution invertible linear map o : H @ H — K satisfying

o (hy, kD)o (haky, 1) = o (ki, D)o (h, kaly), o (h, 1) =0(1, h) =e(h)

for all i, k, 1 € H. The set of 2-cocycles on H is denoted Z?(H). They define the
2-cocycle cogroupoid of H.

Let o, 7 € Z?>(H). The algebra H (o, ) is defined to be the vector space H
together with the multiplication given by

(17) x.y=0(x1, y1)x2y2t '(x3,y3) forany x,y e H.

The Hopf algebra H (o, o) is just the cocycle deformation H° of H defined by
Doi [1993]. The comultiplication of H? is the same as the comultiplication of H.
However, the multiplication and the antipode are deformed:

hok =0 (h, k)hakao ™ (h3,k3),  Syo(h) =0 (h1, S(h2))S(h3)o ™~ (S(ha), hs)

forany h, k € H°.
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Now we recall the necessary structural maps for the 2-cocycle cogroupoid of H.
Forany o, 7,w € Z*(H), define the following maps:
(18) AY. =A:H(o,7)>H(o,0)@H(w,7), XH>Xx1®X2.
(19) e,=¢:H(o,0)—k.
(20) Soz:H(o,7)—>H(t,0), x> 0(x1,5(x2)) S(x3) T (S(x4) ,x5).
It is routine to check that the inverse of S, ; is given as follows:
1) S, H(r,0) > H(o,7), x>0 (x5, S (xa)S™ (x3) (8™ (x2), x1).
The 2-cocycle cogroupoid of H, denoted H, is the cogroupoid defined as follows:
(i) ob(H) = Z*(H).
(i) For o, T € Z>(H), the algebra H (o, 7) is the algebra H (o, t) defined in (17).
(ii1) The structural maps A; , &, and S, , are defined in (18), (19) and (20) respec-
tively.

Following [Bichon 2014, Lemma 3.13], the morphisms A; , &, and S, , indeed sat-
isfy the conditions required for a cogroupoid. It is clear that a 2-cocycle cogroupoid
is connected.

Now we recall the definition of the pointed Hopf algebras U (D, A). For a group
I', we denote by FyD the category of Yetter—Drinfeld modules over the group
algebra KI". If T is an abelian group, then it is well known that a Yetter—Drinfeld
module over the algebra KI" is just a I'-graded I"-module.

We fix the following terminology.

« a free abelian group I" of finite rank s;

» a Cartan matrix A = (a;;) € Z*? of finite type, where 6 € N. Let (di, . . ., dp)
be a diagonal matrix of positive integers such that d;a;; = d;a;;, which is
minimal with this property;

e a set X of connected components of the Dynkin diagram corresponding to the
Cartan matrix A. If 1 < i, j < 0, then i ~ j means that they belong to the
same connected component;

o afamily (g, ) ex of elements in K which are not roots of unity;

e elements g1, ..., gg € I' and characters xi,..., xg € [" such that
d,' ij f o .
22 xiexi)=aq;". xi(g)=4q; forall 1<i, j<0,IeX.
For simplicity, we write g;; = x;(g;). Then equation (22) reads as follows:

23) qi=q% and gjqji=q"" forall 1<i,j<0, I€X.
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Let D be the collection D(T', (a;j)1<i,j<6, (q,)1ex, (8i)1<i<o, (Xi)1<i<o)- A link-
ing datum ) = (X;;) for D is a collection of elements (X;;)1<i<j<g,i~;j € K such
that A;; =01if g;g; = 1 or x;x; # €. We write the datum A = 0, if A;; = 0 for
all 1 <i < j <60. The datum (D, 1) = (T, (i), q,, (&), (xi), (A;j)) is called a
generic datum of finite Cartan type for group I'.

A generic datum of finite Cartan type for a group I defines a Yetter—Drinfeld mod-
ule over the group algebra KI". Let V be a vector space with basis {x1, x2, ..., x5}.
We set

lxil=gi, &gxi)=xi(gxi;, 1<i<0O,geTl,

where |x;| denotes the degree of x;. This makes V a Yetter—Drinfeld module over the
group algebra KI". We write V = {x;, g, xi}1<i<o € FyD. The braiding is given by

c(xi ®xj) =qijxj®x;, 1<i,j<0.

The tensor algebra 7(V) on V is a natural graded braided Hopf algebra in FJJD.
The smash product 7' (V)#KTI is a usual Hopf algebra. It is also called a bosonization
of T(V) by kT.

Definition 3.2.1. Given a generic datum of finite Cartan type (D, 1) for a group I,
define U (D, 1) as the quotient Hopf algebra of the smash product 7 (V)#kI" modulo
the ideal generated by

(ad, x;)' ™% (x;) =0

I<i#j
xixj — xj(g)xjxi =i (gig;— 1D, 1<i<]j

, I,
where ad, is the braided adjoint representation defined in [Andruskiewitsch and
Schneider 2004, Sec. 1].

To present the CY property of the algebras U (D, 1), we recall the concept of
root vectors. Let ® be the root system corresponding to the Cartan matrix A with
{org, ..., g} a set of fixed simple roots, and W the Weyl group. We fix a reduced
decomposition of the longest element wo = s;, - - - s;, of W in terms of the simple
reflections. Then the positive roots are precisely the following:

ﬂ] - aip ,32 = sil(aiz)a ceey ﬁp = Si] o 'Sip_l(ai,,)'

mi mi

For B; = Z _ mja;, we write gg = g go and xp = x{" - xp"

Lusztig [1993] defined the root vectors for a quantum group U,(g). Up to a
nonzero scalar, each root vector can be expressed as an iterated braided commutator.
In [Andruskiewitsch and Schneider 2002, Sec. 4.1], the root vectors were general-
ized on a pointed Hopf algebras U (D, ). For each positive root §;, 1 <i < p, the
root vector xg, is defined by the same iterated braided commutator of the elements
X1, ..., Xg, but with respect to the general braiding.
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Remark 3.2.2. If 8; = oy, then we have xp;, = x;. Thatis, xy, ..., xp are the simple
root vectors.

Lemma 3.2.3 [Yu et al. 2016, Lemma 3.3]. Let (D, 1) be a generic datum of finite
Cartan type for a group T, and H the Hopf algebra U (D, A). Let s be the rank of
I" and p the number of the positive roots of the Cartan matrix.

(1) The algebra H is Noetherian AS-regular of global dimension p +s. The left
homological integral module || Il{ of H is isomorphic to K, where & : H — Kis
an algebra homomorphism defined by £(g) = (]_[lp: | Xﬂ,-)(g) forall g € " and
E(xx) =0forall1 <k <0.

(ii) The algebra H is twisted CY with Nakayama automorphism p defined by
w(xg) = qrrxx forall 1 <k <60, and u(g) = (]_[f.g:1 Xﬂi)(g)for allg el

Let (D, 1) be a generic datum of finite Cartan type for a group I'. The algebra
U (D, 1) is a cocycle deformation of U (D, 0). That is U (D, ) = U (D, 0)?, where
o is the cocycle defined by

(24) o(g.8)=1,
o(g,x))=o0(x;,8)=0, 1<i<0,g, ¢ €T,
)"ij’ i <j,if>°j,

a(xi,xj) = {

0, otherwise.

Lemma 3.2.3 shows that both U (D, 0) and its cocycle deformation U (D, )) are
twisted CY. The algebras U (D, 1) are Noetherian with finite global dimension by
Lemma 2.1 in [Yu and Zhang 2013]. Therefore, Theorem 2.4.7 explains why for
this class of Hopf algebras, cocycle deformation preserves the CY property.

With Lemma 3.2.3, we can write the inner automorphism in Theorem 2.4.9

explicitly.
Proposition 3.2.4. Let H be U(D, 0), then U (D, \) = H°, where o is the cocycle
as defined in (24). Let f 111 = K¢ and f 1;0 =K, be left homological integral of H and
HP? respectively, where & : H — Kand n: H® — K are algebra homomorphisms.
Then the following equation holds.

(So,10S1,60)2 =[], 0 (€1} )" oy,

where y is the inner automorphism defined by y (xi) = []_[f’:1 g,gl.]_1 (xk)[]_[f.":l gﬁ[]
Jor1 < k<0andy(g)=gforanygel.

Appendix

We list two basic homological properties of Hopf algebras. They are well known,
but due to a lack of convenient references, we provide in most cases their proofs.
We do not require bijectivity of antipode or Noetherianity of a Hopf algebra.
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First we want to show that for a Hopf algebra, the left global dimension always
equals the right global dimension.

Let H be a Hopf algebra. We denote the left global dimension, the right global
dimension and the Hochschild dimension of H by Igldim(H), rgldim(H) and
Hdim(H), respectively. We have the left adjoint functor L : Mod H¢ — Mod H and
the right adjoint functor R : Mod(H*¢)°? — Mod H®P. Let M be an H-bimodule.
Then L(M) is a left H-module defined by the action

x —>m=xmS(xy) forany x € H.
While R(M) is a right H-module defined by the action
m < x = S(x;)mx, forany x € H.
Proposition A.1. Let H be a Hopf algebra. Then
projdim k., = projdim .k = rgldim(H) = Igldim(H) = Hdim(H).

Proof. That projdimk, = rgldim(H) and projdim .k = Igldim(H) follows from
[Lorenz and Lorenz 1995, Section 2.4]. We know from [Cartan and Eilenberg 1956,
IX.7.6] that rgldim(H) and Igldim(H) are bounded by Hdim(H). Let M be any
H-bimodule. By Lemma 2.4 in [Brown and Zhang 2008], there are isomorphisms
Extl,. (H, M) ZExt}, (K, L(M)) fori > 0. This shows that Hdim(H) < Igldim(H).
Similarly, for i > 0, the isomorphisms Ext},. (H, M) = Ext), (K;, R(M)) hold. So
Hdim(H) < rgldim(H). Therefore, we have rgldim(H) = Igldim(H) = Hdim(H).
In conclusion, we obtain that

projdim k, = projdim .k = rgldim(H) = Igldim(H) = Hdim(H). (Il
Next we want to show that to see whether a Hopf algebra H is homologically
smooth it is enough to investigate the projective resolution of the trivial module.
Proposition A.2. Let H be a Hopf algebra. The following are equivalent:
(i) The algebra H is homologically smooth.

(ii) The left trivial module K admits a bounded projective resolution with each
term finitely generated.

(iii) The right trivial module K. admits a bounded projective resolution with each
term finitely generated.

Proof. We only need to show that (i) and (ii) are equivalent. (i)<=(iii) can be
proved symmetrically.
(i)=(ii) Suppose that H is homologically smooth. That is, H has a resolution

O—-P,—-P,1—>---—>P—>P—>H—>O0
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such that each term is a finitely generated projective H°-module. Following from
Lemma 2.4 in [Berger and Taillefer 2007],

0— P, Qp:k—=> P, 1Qp:k— - > PQyg kK= PhQy :k— k=0

is a projective resolution of (K. Clearly, it is a bounded projective resolution with
each term finitely generated as left H-module.
(i1)=(i) View H¢ as an H°-H-bimodule via

a®@b—->xQ@y=ax®yb, (x®Yy) <« a=xa;QS@a)y

foranya ® b, x ® y € H° and a € H. Let H @ H, be the free right H-module
defined by multiplication to the second factor H. The morphism

H°—> H®H, xQy xyQx
is an isomorphism of right H-modules with inverse
H®H,— H’, x®y+ y1®S(n)x.

That is, H* = H ® H, as right H-modules. So the functor H* ® y —: Mod H —
Mod H°¢ is exact. This functor clearly sends projective H-modules to projective
H¢-modules. Moreover, H* ® ;K = H as left H°-modules. The isomorphism
H¢® .k — H is defined by x ® y — xy. Therefore, if the left trivial module .k
admits a bounded projective resolution @, with each term finitely generated, then
H°®py Q. is a bounded projective resolution of H over H¢ with each term finitely
generated. That is, H is homologically smooth. ([

Acknowledgement

The authors sincerely thank the referee for his/her valuable comments and sugges-
tions that helped them to improve the paper quite a lot. Wang and Yu are grateful to
the Department of Mathematics of Zhejiang Normal University for the hospitality
they received during a visit in summer 2016. Wang is supported by AMS-Simons
travel grant. Yu is supported by grants from NSFC (No. 11301126, No. 11571316,
No. 11671351).

References

[Andruskiewitsch and Schneider 2002] N. Andruskiewitsch and H.-J. Schneider, “Finite quantum
groups over abelian groups of prime exponent”, Ann. Sci. Ecole Norm. Sup. (4) 35:1 (2002), 1-26.
MR Zbl

[Andruskiewitsch and Schneider 2004] N. Andruskiewitsch and H.-J. Schneider, “A characterization
of quantum groups”, J. Reine Angew. Math. 577 (2004), 81-104. MR Zbl

[Artin and Schelter 1987] M. Artin and W. F. Schelter, “Graded algebras of global dimension 3”, Adv.
in Math. 66:2 (1987), 171-216. MR Zbl


http://dx.doi.org/10.1016/S0012-9593(01)01082-5
http://dx.doi.org/10.1016/S0012-9593(01)01082-5
http://msp.org/idx/mr/1886004
http://msp.org/idx/zbl/1007.16028
http://dx.doi.org/10.1515/crll.2004.2004.577.81
http://dx.doi.org/10.1515/crll.2004.2004.577.81
http://msp.org/idx/mr/2108213
http://msp.org/idx/zbl/1084.16027
http://dx.doi.org/10.1016/0001-8708(87)90034-X
http://msp.org/idx/mr/917738
http://msp.org/idx/zbl/0633.16001

CALABI-YAU PROPERTY UNDER MONOIDAL MORITA-TAKEUCHI EQUIVALENCE 509

[Berger and Taillefer 2007] R. Berger and R. Taillefer, “Poincaré-Birkhoff—Witt deformations of
Calabi—Yau algebras”, J. Noncommut. Geom. 1:2 (2007), 241-270. MR Zbl

[Bichon 2003] J. Bichon, “The representation category of the quantum group of a non-degenerate
bilinear form”, Comm. Algebra 31:10 (2003), 4831-4851. MR Zbl

[Bichon 2013] J. Bichon, “Hochschild homology of Hopf algebras and free Yetter—Drinfeld resolu-
tions of the counit”, Compos. Math. 149:4 (2013), 658-678. MR Zbl

[Bichon 2014] J. Bichon, “Hopf-Galois objects and cogroupoids”, Rev. Un. Mat. Argentina 55:2
(2014), 11-69. MR Zbl

[Bichon 2016] J. Bichon, “Gerstenhaber—Schack and Hochschild cohomologies of Hopf algebras”,
Doc. Math. 21 (2016), 955-986. MR Zbl

[Bieri and Eckmann 1973] R. Bieri and B. Eckmann, “Groups with homological duality generalizing
Poincaré duality”, Invent. Math. 20 (1973), 103—-124. MR Zbl

[Brown and Goodearl 1997] K. A. Brown and K. R. Goodearl, “Homological aspects of Noetherian PI
Hopf algebras and irreducible modules and maximal dimension”, J. Algebra 198:1 (1997), 240-265.
MR Zbl

[Brown and Zhang 2008] K. A. Brown and J. J. Zhang, “Dualising complexes and twisted Hochschild
(co)homology for Noetherian Hopf algebras”, J. Algebra 320:5 (2008), 1814-1850. MR Zbl

[Cartan and Eilenberg 1956] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press,
1956. MR Zbl

[Chirvasitu et al. 2016] A. Chirvasitu, C. Walton, and X. Wang, “On quantum groups associated to a
pair of preregular forms”, preprint, 2016. arXiv

[Doi 1993] Y. Doi, “Braided bialgebras and quadratic bialgebras”, Comm. Algebra 21:5 (1993),
1731-1749. MR Zbl

[Dubois-Violette and Launer 1990] M. Dubois-Violette and G. Launer, “The quantum group of a
nondegenerate bilinear form”, Phys. Lett. B 245:2 (1990), 175-177. MR Zbl

[Ginzburg 2007] V. Ginzburg, “Calabi—Yau algebras”, preprint, 2007. arXiv

[Goodearl and Zhang 2007] K. R. Goodearl and J. J. Zhang, “Homological properties of quantized
coordinate rings of semisimple groups”, Proc. Lond. Math. Soc. (3) 94:3 (2007), 647-671. MR Zbl

[Lorenz and Lorenz 1995] M. E. Lorenz and M. Lorenz, “On crossed products of Hopf algebras”,
Proc. Amer. Math. Soc. 123:1 (1995), 33-38. MR Zbl

[Luetal. 2007] D.-M. Lu, Q.-S. Wu, and J. J. Zhang, “Homological integral of Hopf algebras”, Trans.
Amer. Math. Soc. 359:10 (2007), 4945-4975. MR Zbl

[Lusztig 1993] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhéuser,
Boston, 1993. MR Zbl

[Manin 1988] Y. I. Manin, “Quantum groups and noncommutative geometry”, lecture notes, Centre
de Recherches Mathématiques, Université de Montréal, 1988. MR

[Mrozinski 2014] C. Mrozinski, “Quantum groups of GL(2) representation type”, J. Noncommut.
Geom. 8:1 (2014), 107-140. MR Zbl

[Raedschelders and Van den Bergh 2015] T. Raedschelders and M. Van den Bergh, “The representa-
tion theory of noncommutative O(GL,)”, preprint, 2015. arXiv

[Raedschelders and Van den Bergh 2017] T. Raedschelders and M. Van den Bergh, “The Manin
Hopf algebra of a Koszul Artin—Schelter regular algebra is quasi-hereditary”, Adv. Math. 305 (2017),
601-660. MR Zbl

[Reyes et al. 2014] M. Reyes, D. Rogalski, and J. J. Zhang, “Skew Calabi—Yau algebras and homo-
logical identities”, Adv. Math. 264 (2014), 308-354. MR Zbl


http://dx.doi.org/10.4171/JNCG/6
http://dx.doi.org/10.4171/JNCG/6
http://msp.org/idx/mr/2308306
http://msp.org/idx/zbl/1161.16022
http://dx.doi.org/10.1081/AGB-120023135
http://dx.doi.org/10.1081/AGB-120023135
http://msp.org/idx/mr/1998031
http://msp.org/idx/zbl/1034.16042
http://dx.doi.org/10.1112/S0010437X12000656
http://dx.doi.org/10.1112/S0010437X12000656
http://msp.org/idx/mr/3049699
http://msp.org/idx/zbl/06165761
http://inmabb.criba.edu.ar/revuma/pdf/v55n2/v55n2a02.pdf
http://msp.org/idx/mr/3285340
http://msp.org/idx/zbl/1322.16021
https://www.math.uni-bielefeld.de/documenta/vol-21/26.pdf
http://msp.org/idx/mr/3548138
http://msp.org/idx/zbl/06638970
http://dx.doi.org/10.1007/BF01404060
http://dx.doi.org/10.1007/BF01404060
http://msp.org/idx/mr/0340449
http://msp.org/idx/zbl/0274.20066
http://dx.doi.org/10.1006/jabr.1997.7109
http://dx.doi.org/10.1006/jabr.1997.7109
http://msp.org/idx/mr/1482982
http://msp.org/idx/zbl/0892.16022
http://dx.doi.org/10.1016/j.jalgebra.2007.03.050
http://dx.doi.org/10.1016/j.jalgebra.2007.03.050
http://msp.org/idx/mr/2437632
http://msp.org/idx/zbl/1159.16009
http://msp.org/idx/mr/0077480
http://msp.org/idx/zbl/0075.24305
http://msp.org/idx/arx/1605.06428
http://dx.doi.org/10.1080/00927879308824649
http://msp.org/idx/mr/1213985
http://msp.org/idx/zbl/0779.16015
http://dx.doi.org/10.1016/0370-2693(90)90129-T
http://dx.doi.org/10.1016/0370-2693(90)90129-T
http://msp.org/idx/mr/1068703
http://msp.org/idx/zbl/1119.16307
http://msp.org/idx/arx/math/0612139
http://dx.doi.org/10.1112/plms/pdl022
http://dx.doi.org/10.1112/plms/pdl022
http://msp.org/idx/mr/2325315
http://msp.org/idx/zbl/1120.16039
http://dx.doi.org/10.2307/2160606
http://msp.org/idx/mr/1227522
http://msp.org/idx/zbl/0826.16037
http://dx.doi.org/10.1090/S0002-9947-07-04159-1
http://msp.org/idx/mr/2320655
http://msp.org/idx/zbl/1145.16022
http://msp.org/idx/mr/1227098
http://msp.org/idx/zbl/0788.17010
http://msp.org/idx/mr/1016381
http://dx.doi.org/10.4171/JNCG/150
http://msp.org/idx/mr/3275027
http://msp.org/idx/zbl/1292.16027
http://msp.org/idx/arx/1509.03869
http://dx.doi.org/10.1016/j.aim.2016.09.017
http://dx.doi.org/10.1016/j.aim.2016.09.017
http://msp.org/idx/mr/3570144
http://msp.org/idx/zbl/06652650
http://dx.doi.org/10.1016/j.aim.2014.07.010
http://dx.doi.org/10.1016/j.aim.2014.07.010
http://msp.org/idx/mr/3250287
http://msp.org/idx/zbl/1336.16011

510 XINGTING WANG, XIAOLAN YU AND YINHUO ZHANG

[Schauenburg 1996] P. Schauenburg, “Hopf bi-Galois extensions”, Comm. Algebra 24:12 (1996),
3797-3825. MR Zbl

[Shnider and Sternberg 1993] S. Shnider and S. Sternberg, Quantum groups: from coalgebras to
Drinfel’d algebras, International Press, Cambridge, MA, 1993. MR Zbl

[Sweedler 1969] M. E. Sweedler, “Integrals for Hopf algebras”, Ann. of Math. (2) 89 (1969), 323-335.
MR Zbl

[Van den Bergh 1997] M. Van den Bergh, “Existence theorems for dualizing complexes over non-
commutative graded and filtered rings”, J. Algebra 195:2 (1997), 662—-679. MR Zbl

[Walton and Wang 2016] C. Walton and X. Wang, “On quantum groups associated to non-Noetherian
regular algebras of dimension 27, Math. Z. 284:1-2 (2016), 543-574. MR Zbl

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics 38, Cambridge Univ. Press, 1994. MR Zbl

[Yu2016] X. Yu, “Hopf-Galois objects of Calabi—Yau Hopf algebras”, J. Algebra Appl. 15:10 (2016),
art. id. 1650194. MR Zbl

[Yu and Zhang 2013] X. Yu and Y. Zhang, “Calabi—Yau pointed Hopf algebras of finite Cartan type”,
J. Noncommut. Geom. 7:4 (2013), 1105-1144. MR Zbl

[Yuetal. 2016] X. Yu, F. Van Oystaeyen, and Y. Zhang, “Cleft extensions of Koszul twisted Calabi—
Yau algebras”, Israel J. Math. 214:2 (2016), 785-829. MR Zbl

[Zhang 1998] J.J. Zhang, “Non-Noetherian regular rings of dimension 2”, Proc. Amer. Math. Soc.
126:6 (1998), 1645-1653. MR Zbl

Received October 12, 2016. Revised February 17, 2017.

XINGTING WANG

DEPARTMENT OF MATHEMATICS
TEMPLE UNIVERSITY
PHILADELPHIA, PA 19122
UNITED STATES

xingting @temple.edu

XIAOLAN YU

DEPARTMENT OF MATHEMATICS
HANGZHOU NORMAL UNIVERSITY
310036 HANGZHOU

CHINA

xlyu@hznu.edu.cn

YINHUO ZHANG

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF HASSELT

UNIVERSITAIRE CAMPUS

3590 DIEPEENBEEK

BELGIUM

yinhuo.zhang @uhasselt.be


http://dx.doi.org/10.1080/00927879608825788
http://msp.org/idx/mr/1408508
http://msp.org/idx/zbl/0878.16020
http://msp.org/idx/mr/1287162
http://msp.org/idx/zbl/0845.17015
http://dx.doi.org/10.2307/1970672
http://msp.org/idx/mr/0242840
http://msp.org/idx/zbl/0174.06903
http://dx.doi.org/10.1006/jabr.1997.7052
http://dx.doi.org/10.1006/jabr.1997.7052
http://msp.org/idx/mr/1469646
http://msp.org/idx/zbl/0894.16020
http://dx.doi.org/10.1007/s00209-016-1666-1
http://dx.doi.org/10.1007/s00209-016-1666-1
http://msp.org/idx/mr/3545505
http://msp.org/idx/zbl/06642715
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://msp.org/idx/zbl/0797.18001
http://dx.doi.org/10.1142/S0219498816501942
http://msp.org/idx/mr/3575984
http://msp.org/idx/zbl/06667909
http://dx.doi.org/10.4171/JNCG/144
http://msp.org/idx/mr/3148617
http://msp.org/idx/zbl/1296.16032
http://dx.doi.org/10.1007/s11856-016-1362-1
http://dx.doi.org/10.1007/s11856-016-1362-1
http://msp.org/idx/mr/3544702
http://msp.org/idx/zbl/06627513
http://dx.doi.org/10.1090/S0002-9939-98-04480-3
http://msp.org/idx/mr/1459158
http://msp.org/idx/zbl/0902.16036
mailto:xingting@temple.edu
mailto:xlyu@hznu.edu.cn
mailto:yinhuo.zhang@uhasselt.be

CONTENTS

Volume 290, no. 1 and no. 2

Michal Adamaszek and Henry Adams: The Vietoris—Rips complexes of a circle 1

Silvia Anjos and Rémi Leclercq: Noncontractible Hamiltonian loops in the kernel of
Seidel’s representation 257

Xiaodong Cao, Bowei Liu, Ian Pendleton and Abigail Ward: Differential Harnack

estimates for Fisher’s equation 273
Xiao-Li Chao with Xiao-Liu Wang and Hui-Ling Li 467
Chunxia Cheng, Zhongxue Lii and Yingshu Lii: A direct method of moving planes

for the system of the fractional Laplacian 301
El6i Medina Galego and André Luis Porto da Silva: A vector-valued Banach—Stone

theorem with distortion /2 321
Fan Gao: Distinguished theta representations for certain covering groups 333
Allen Gehret: A tale of two Liouville closures 41
Joseph Grant and Robert J. Marsh: Braid groups and quiver mutation 77
Bobo Hua, Shiping Liu and Chao Xia: Liouville theorems for f-harmonic maps into

Hadamard spaces 381
Shin Koizumi: A Paley—Wiener theorem for the spectral projection of symmetric

graphs 117
Rémi Leclercq with Silvia Anjos 257

Lee Tim Weng and Takao Watanabe: Fundamental domains of arithmetic quotients
of reductive groups over number fields 139

Thomas Leistner and Andree Lischewski: The ambient obstruction tensor and

conformal holonomy 403
Hui-Ling Li with Xiao-Liu Wang and Xiao-Li Chao 467
Andree Lischewski with Thomas Leistner 403
Bowei Liu with Xiaodong Cao, Ian Pendleton and Abigail Ward 273
Shiping Liu with Bobo Hua and Chao Xia 381
Yingshu Lii with Chunxia Cheng and Zhongxue Lii 301

Zhongxue Lii with Chunxia Cheng and Yingshu Lii 301



512

Robert J. Marsh with Joseph Grant
Ian Pendleton with Xiaodong Cao, Bowei Liu and Abigail Ward

Guangbin Ren and Xieping Wang: Growth and distortion theorems for slice
monogenic functions

André Luis Porto da Silva with El6i Medina Galego

Shuichiro Takeda: Remarks on metaplectic tensor products for covers of GL,

Bernardo Uribe: On the classification of pointed fusion categories up to weak Morita

equivalence

Xiao-Liu Wang, Hui-Ling Li and Xiao-Li Chao: Length-preserving evolution of
immersed closed curves and the isoperimetric inequality

Xieping Wang with Guangbin Ren

Xingting Wang, Xiaolan Yu and Yinhuo Zhang: Calabi—Yau property under
monoidal Morita—Takeuchi equivalence

Yuan Wang: On relative rational chain connectedness of threefolds with anti-big
canonical divisors in positive characteristics

Abigail Ward with Xiaodong Cao, Bowei Liu and Ian Pendleton
Chao Xia with Bobo Hua and Shiping Liu
Xiaolan Yu with Xingting Wang and Yinhuo Zhang

Chong Zhang: An orthogonality relation for spherical characters of supercuspidal
representations

Yinhuo Zhang with Xingting Wang and Xiaolan Yu

77
273

169
321
199

437

467
169

481

231
273
381
481

247
481



Guidelines for Authors

Authors may submit articles at msp.org/pjm/about/journal/submissions.html and choose an
editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the
editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095-1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use IATEX, but papers in other varieties of TgX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
IATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTgX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific @math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.


http://msp.org/pjm/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu

b

A vector-valued Banach—Stone theorem with distortion ﬁ
ELOI MEDINA GALEGO and ANDRE LUIS PORTO DA SILVA

Distinguished theta representations for certain covering groups
FAN GAO

Liouville theorems for f-harmonic maps into Hadamard spaces
BoB0O HUA, SHIPING LIU and CHAO XIA

The ambient obstruction tensor and conformal holonomy
THOMAS LEISTNER and ANDREE LISCHEWSKI
On the classification of pointed fusion categories up to weak Morita
equivalence
BERNARDO URIBE
Length-preserving evolution of immersed closed curves and the
isoperimetric inequality
XIAO-L1U WANG, HUI-LING LI and X1A0-L1 CHAO
Calabi—Yau property under monoidal Morita—Takeuchi equivalence
XINGTING WANG, XIAOLAN YU and YINHUO ZHANG

321

333

381

403

437

467

481



	 vol. 290, no. 2, 2017
	Masthead and Copyright
	Sílvia Anjos and Rémi Leclercq
	1. Introduction
	2. Background and user manual for Sections 3 and 4
	3. Hirzebruch surfaces
	3.1. Even Hirzebruch surfaces
	3.2. Odd Hirzebruch surfaces

	4. 2-point blow-ups of Lg
	References

	Xiaodong Cao and Bowei Liu and Ian Pendleton and Abigail Ward
	1. Introduction
	2. On closed manifolds
	3. On complete noncompact manifolds
	4. Applications
	Acknowledgements
	References

	Chunxia Cheng and Zhongxue Lü and Yingshu Lü
	1. Introduction
	2. Various maximum principles
	Maximum principle for antisymmetric functions
	Narrow region principle
	Decay at infinity

	3. Method of moving planes and its applications
	The subcritical case
	The critical case

	References

	Elói Medina Galego and André Luis Porto da Silva
	1. Introduction
	2. Special sets associated to isomorphisms between C0(K, H) spaces
	3. On the subsets 
w (k, 
v ) of K containing irregular points
	4. The functions : K P(S) and : S P(K)
	5. The cardinality of (k) for every k K
	6. The isomorphisms between C0(K, H) spaces with distortion 2
	7. Open questions
	References

	Fan Gao
	1. Introduction and main results
	1A. Introduction
	1B. Main results

	2. Basic setup
	2A. Structural facts on 3mu-3mu G-1mu1mu
	2B. Theta representations O(G,X)
	2C. Unitary distinguished characters
	2D. Conventions and notations

	3. Bounds for dim Wh(O(G,X))
	3A. Whittaker functionals
	3B. Reduction of Wh(O(G,X))
	3C. The Shahidi local coefficient matrix
	3D. A lower bound for dim Wh(O(G,X))
	3E. An upper bound for dim Wh(O(G,X))

	4. The A_r,r>=1 case
	4A. Case I: SL(n)_{r+1},n<=r
	4B. Case II: SL(n)_{r+1},n=r+1
	4B1. The reduction step
	4B2. Interlude: Weil-index
	4B3. An explicit criterion

	4C. Case III: SL(n)_{r+1},n=r+2
	4D. Case IV: SL(n)_{r+1},n>=r+3

	5. The C_r,r>=2 case
	5A. The case where n is odd
	5B. The case where n is even
	5B1. The case where m>=2r+2
	5B2. The case where m<=2r-2
	5B3. The case where m=2r-1
	5B4. The case where m=2r
	5B5. The case where m= 2r+1


	6. The B_r,r>=2 case
	6A. The case where n is odd
	6B. The case where n is even
	6B1. The case where m and r are odd
	6B2. The case where m is odd and r>=2 is even
	6B3. The case where m is even and r>=3 is odd
	6B4. The case where m is even and r>=2 is even


	7. The G2 case
	References

	Bobo Hua and Shiping Liu and Chao Xia
	1. Introduction
	2. f-harmonic functions
	3. f-harmonic maps into Cartan–Hadamard manifolds
	4. f-harmonic maps into Hadamard spaces
	5. Liouville-type theorems
	Acknowledgements
	References

	Thomas Leistner and Andree Lischewski
	1. Introduction
	2. Conformal structures, tractors and ambient metrics
	2A. Conventions
	2B. Conformal tractor calculus
	2C. Holonomy reductions of conformal structures
	2C.1. Geometries with reducible holonomy representation
	2C.2. Geometries defined via normal conformal Killing forms
	2C.3. Conformal holonomy and twistor spinors
	2C.4. Exceptional cases

	2D. Conformal ambient metrics

	3. The ambient obstruction tensor and conformal holonomy
	4. The conformal holonomy distribution
	4A. The conformal holonomy distribution
	4B. Relation to the curved orbit decomposition
	4C. Open sets adapted to the holonomy distribution
	4D. Rank and integrability of the holonomy distribution

	5. Applications to the obstruction tensor
	5A. The obstruction tensor and holonomy reductions
	5B. The obstruction tensor for Bryant conformal structures

	References

	Bernardo Uribe
	Introduction
	1. Preliminaries
	1A. Abelian group extensions
	1B. Cohomology of groups and the LHS spectral sequence
	1B1. Double complex

	1C. Tensor categories
	1D. The fusion category Vect(G, )
	1E. Module categories
	1F. Indecomposable module categories over V(G, )
	1G. Dual category
	1H. Center of a tensor category
	1I. Weak Morita equivalence of tensor categories

	2. The dual of V(G, ) with respect to M(A G, )
	2A. Conditions for CM* to be pointed
	2B. The Grothendieck ring of the pointed category CM*
	2C. A skeleton of the pointed category CM*

	3. Weak Morita equivalence classes of group-theoretical tensor categories
	3A. Description of ,  and 
	3B. Description of  and 
	3C. Classification theorem

	4. Examples
	4A. Pointed fusion categories of global dimension 4
	4B. Nontrivial action of Z/2 on Z/4
	4C. Extension of Z/2 Z/2 by Z/2

	References

	Xiao-Liu Wang and Hui-Ling Li and Xiao-Li Chao
	1. Introduction
	2. Lemmas
	3. Proofs of Theorems 1 and 2
	4. Proof of 3
	Acknowledgments
	References

	Xingting Wang and Xiaolan Yu and Yinhuo Zhang
	Introduction
	1. Preliminaries
	1.1. Cogroupoid
	1.2. Calabi–Yau algebras

	2. Calabi–Yau property
	2.1. Artin–Schelter Gorenstein Hopf algebras
	2.2. Yetter–Drinfeld modules
	2.3. Homological properties of cogroupoids
	2.4. Main results

	3. Examples
	3.1. Example 1
	3.2. Example 2

	Appendix
	Acknowledgement
	References

	Index
	Guidelines for Authors
	Table of Contents

