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A LOCAL RELATIVE TRACE FORMULA FOR PGL(2)

PATRICK DELORME AND PASCALE HARINCK

Following a scheme inspired by recent results of B. Feigon, who obtained
what she called a local relative trace formula for PGL2 and a local Kuznetsov
trace formula for U(2), we describe the spectral side of a local relative
trace formula for G := PGL(2, E) relative to the symmetric subgroup H :=

PGL(2, F) where E/F is an unramified quadratic extension of local nonar-
chimedean fields of characteristic 0. The spectral side is given in terms
of regularized normalized periods and normalized C-functions of Harish-
Chandra. Using the geometric side of the local relative trace formula ob-
tained in a more general setting by the authors and S. Souaifi, we deduce
a local relative trace formula for G relative to H . We apply our result to
invert some orbital integrals.

1. Introduction

Let E/F be an unramified quadratic extension of local nonarchimedean fields
of characteristic 0. In this paper, we prove a local relative trace formula for
G := PGL(2, E) relative to the symmetric subgroup H := PGL(2, F) following a
scheme inspired by B. Feigon [2012].

As in [Arthur 1991], the way to establish a local relative trace formula is to
describe two asymptotic expansions of a truncated kernel associated to the regular
representation of G × G on L2(G), the first one in terms of weighted orbital
integrals (called the geometric expansion), and the second one in terms of irreducible
representations of G (called the spectral expansion). The truncated kernel we
consider is defined as follows. The regular representation R of G×G on L2(G)
is given by (R(g1, g2)ψ)(x)= ψ(g−1

2 xg1). For f = f1⊗ f2, where f1 and f2 are
two smooth compactly supported functions on G, the corresponding operator R( f )
is an integral operator on L2(G) with smooth kernel

K f (x, y)=
∫

G
f1(gy) f2(xg) dg =

∫
G

f1(x−1gy) f2(g) dg.
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We define the truncated kernel K n( f ) by

K n( f ) :=
∫

H×H
K f (x, y)u(x, n)u(y, n) dx dy,

where the truncated function u( · , n) is the characteristic function of a large compact
subset in H depending on a positive integer n as in [Arthur 1991] or [Delorme et al.
2015].

In the later reference, we studied such a truncated kernel in the more general
setting where H is the group of F-points of a reductive algebraic group H defined
and split over F and G is the group of F-points of the restriction of scalars G :=
ResE/F H from E to F . We obtained an asymptotic geometric expansion of this
truncated kernel in terms of weighted orbital integrals.

It is considerably more difficult to obtain a spectral asymptotic expansion of
the truncated kernel and the main part of this paper is devoted to giving it for
H = PGL(2).

First, we express the kernel K f in terms of normalized Eisenstein integrals using
the Plancherel formula for G (see Section 3). Then the truncated kernel can be writ-
ten as a finite linear combination, depending on unitary irreducible representations
of G, of terms involving scalar product of truncated periods (see Corollary 4.2).
The difficulty appears in the terms depending on principal series of G.

Let M and P be the images in G of the group of diagonal and upper triangular
matrices of GL(2, E), respectively, and let P be the parabolic subgroup opposite
to P . As M is isomorphic to E×, we identify characters on M and on E×. The group
of unramified characters of M is isomorphic to C∗ by a map z→ χz . Let δ be a
unitary character of E×, which is trivial on a fixed uniformizer of F×. For z ∈C∗, we
set δz := δ⊗χz . We denote by (i G

P δz, i G
P Cδz ) the normalized induced representation

and by (i G
P δ̌z, i G

P Čδz ) its contragredient. Then, the normalized truncated period is
defined by

Pn
δz
(S) :=

∫
H

E0(P, δz, S)(h)u(h, n) dh, S ∈ i G
P Cδz ⊗ i G

P
Čδz ,

where E0(P,δz, · ) is the normalized Eisenstein integral associated to i G
P δz (see (3-6)).

The contribution of i G
P δz in K n( f ) is a finite linear combination of integrals

I n
δ (S, S′) :=

∫
O

Pn
δz
(S)Pn

δz
(S′) dz

z
, S, S′ ∈ i G

P Cδz ⊗ i G
P

Čδz ,

where O is the torus of complex numbers of modulus equal to 1.
To establish the asymptotic expansion of this integral, we recall the notion of

normalized regularized period introduced by Feigon (see Section 4). This period,
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denoted by

Pδz (S) :=
∫
∗

H
E0(P, δz, S)(h) dh

is meromorphic in a neighborhood V of O with at most a simple pole at z = 1 and
defines an H ×H invariant linear form on i G

P Cδz ⊗ i G
P

Čδz . Moreover, the difference
Pδz (S)− Pn

δz
(S) is a rational function in z on V with at most a simple pole at z = 1

which depends on the normalized C-functions of Harish-Chandra. As normalized
Eisenstein integrals and normalized C-functions are holomorphic in a neighborhood
of O, we can deduce an asymptotic behavior of the integrals I n

δ (S, S′) in terms of
normalized regularized periods and normalized C-functions (see Proposition 7.1).

Our first result (see Theorem 7.3) asserts that K n( f ) is asymptotic to a polynomial
function in n of degree 1 whose coefficients are described in terms of generalized
matrix coefficients mξ,ξ ′ associated to unitary irreducible representations (π, Vπ )
of G where ξ and ξ ′ are linear forms on Vπ . When (π, Vπ ) is a normalized induced
representation, these linear forms are defined from the regularized normalized
periods, its residues, and the normalized C-functions of Harish-Chandra.

We make precise the geometric asymptotic expansion of K n( f ) obtained in
[Delorme et al. 2015] for H := PGL(2). Therefore, comparing the two asymptotic
expansions of K n( f ), we deduce our relative local trace formula and a relation
between orbital integrals on elliptic regular points in H\G and some generalized
matrix coefficients of induced representations (Theorem 8.1).

As corollaries of these results, we give an inversion formula for orbital integrals
on regular elliptic points of H\G and for orbital integrals of a matrix coefficient
associated to a cuspidal representation of G.

2. Notation

Let F be a nonarchimedean local field of characteristic 0 and odd residual char-
acteristic q. Let E be an unramified quadratic extension of F . Let OF and OE

denote the rings of integers in F and E . We fix a uniformizer ω in the maximal
ideal of OF . Thus ω is also a uniformizer of E . We denote by v( · ) the valuation
of F , extended to E . Let | · |F and | · |E denote the normalized valuations on F and
E . Thus for a ∈ F×, one has |a|F = |a|2E .

Let NE/F be the norm map from E× to F×. We denote by E1 the set of elements
in E× whose norm is equal to 1.

Let H :=PGL(2) defined over F and let G :=ResE/F (H×F E) be the restriction
of scalars of H from E to F . We set H := H(F)= PGL(2, F) and G := G(F)=
PGL(2, E). Let K := G(OF )= PGL(2,OE).

We denote by C∞(G) the space of smooth functions on G and by C∞c (G) the
subspace of compactly supported functions in C∞(G). If V is a vector space of
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valued functions on G which is invariant by right and left translation, we will denote
by ρ and λ, respectively, the right and left regular representation of G in V .

If V is a vector space, V ′ will denote its dual. If V is real, VC will denote its
complexification.

Let p be the canonical projection of GL(2, E) onto G. We denote by M and N
the image by p of the subgroups of diagonal matrices and upper triangular unipotent
matrices of GL(2, E), respectively. We set P := M N and we denote by P the
parabolic subgroup opposite to P. Let δP be the modular function of P. We denote
by 1 and w the representatives in K of the Weyl group W G of M in G.

For J = K ,M or P, we set JH := J ∩ H .
For a, b in E×, we denote by diagG(a, b) the image by p of the diagonal matrix(a

0
0
b

)
∈ GL(2, E). The natural map (a, b) 7→ diagG(a, b) induces an isomorphism

from E××E×/ diag(E×)' E× to M where diag(E×) is the diagonal of E××E×.
Hence, each character χ of E× defines a character of M given by

(2-1) diagG(a, b) 7→ χ(ab−1),

which we will denote by the same letter. We define the map hM : M→ R by

(2-2) q−hM (m) = |ab−1
|E , for m = diagG(a, b).

We define similarly hMH on MH by q−hMH (diagG(a,b))= |ab−1
|F for a, b∈ F×. Then

for m ∈ MH , one has δP(m)= δPH (m)
2
= q−2hMH (m).

We normalize the Haar measure dx on F so that vol(OF ) = 1. We define the
measure d×x on F× by

d×x =
1

1− q−1

1
|x |F

dx .

Thus, we have vol(O×F )= 1. We let M and MH have the measure induced by d×x .
We normalize the Haar measure on K so that vol(K ) = 1. Let dn be the Haar
measure on N such that ∫

N
δP(m P(n)) dn = 1.

Let dg be the Haar measure on G such that∫
G

f (g)dg =
∫

M

∫
N

∫
K

f (mnk) dk dn dm.

We define dh on H similarly.
The Cartan decomposition of H is given by

(2-3) H = K H M+H K H , where M+H := {diagG(a, b); a, b ∈ F×, |ab−1
|F ≤ 1},
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and for any integrable function f on H , we have the standard integration formula

(2-4)
∫

H
f (x) dx =

∫
K H

∫
K H

∫
MH

DPH (m) f (k1mk2) dm dk2 dk1,

where

DPH (m)=
{
δPH (m)

−1(1+ q−1) if m ∈ M+H ,
0 otherwise.

For h ∈ H , we denote by M(h) an element of M+H such that h ∈ K HM(h)K H .
The element hMH (M(h)) is independent of this choice. We thank E. Lapid, who
suggested the proof of the following lemma.

Lemma 2.1. Let � be a compact subset of H. There is an N0 > 0 satisfying the
following property: for any h ∈�, there exists Xh ∈ R such that, for all m ∈ M+H
satisfying hMH (m)≥ N0, one has

hMH (M(mh))= hMH (m)+ Xh .

Proof. For a matrix x = (xi, j )i, j of GL(2, F), we set

F(x) := log max
i, j

(
|xi, j |

2
F

|det x |F

)
.

The function F is clearly invariant under the action of the center of GL(2, F),
hence it defines a function on H which we denote by the same letter.

Since | · |F is ultrametric, for k ∈ K H and h ∈ H , we have F(kh)≤ F(h), hence
F(k−1kh) ≤ F(kh). Using the same argument on the right, we deduce that F is
right and left invariant by K H .

If m = diagG(ω
n1, ωn2) with n1− n2 ≥ 0 then

F(m)= log max
(

q−2n1

q−n1−n2
,

q−2n2

q−n1−n2

)
= (n1− n2) log q = hMH (m) log q.

Thus, we deduce that F(h)= hMH (M(h)) log q , for h ∈ H .
If h =

(a
c

b
d

)
and m = diagG(ω

n1, ωn2), then

F(mh)= log max(|a|2Fqn2−n1, |b|2Fqn2−n1, |c|2Fqn1−n2, |d|2Fqn1−n2)−log |ad−bc|F .

Therefore, we can choose N0 > 0 such that, for any h ∈ � and m ∈ M+H with
hM(m) > N0, we have

F(mh)= log max(|c|2Fqn1−n2, |d|2Fqn1−n2)− log |ad − bc|F

= (n1− n2) log q + log max(|c|2F , |d|
2
F )− log |ad − bc|F .

Hence, we obtain the lemma. �
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3. Normalized Eisenstein integrals and Plancherel formula

We denote by M̂2 the set of unitary characters of E× which are trivial on ω.
Let X (M) be the complex torus of unramified characters of M and X (M)u be

the compact subtorus of unitary unramified characters of M . For z ∈ C∗, we denote
by χz the unramified character of E× defined by χz(ω)= z. By definition of hM ,
we have χz(m) = zhM (m)/2. Each element of X (M) is of the form χz for some
z ∈ C∗ and X (M)u identifies with the group O of complex numbers of modulus
equal to 1. For δ ∈ M̂2 and z ∈ C∗, we set δz := δ⊗χz . We will denote by Cδz the
space of δz .

Let Q = MU be equal to P or to P . Let δ ∈ M̂2 and z ∈ C∗. We denote by
i G

Qδz the right representation of G in the space i G
Q Cδz of maps v from G to C, right

invariant by a compact open subgroup of G such that v(mug)= δQ(m)1/2δz(m)v(g)
for all m ∈ M, u ∈U and g ∈ G.

We denote by (i G
Qδz, i K

K∩QC) the compact realization of (i G
Qδz, i G

Q Cδz ) obtained
by restriction of functions. If v ∈ i K

Q∩K C, we denote by vz the element of i G
Q Cδz

whose restriction to K is equal to v.
We define a scalar product on i K

Q∩K C by

(3-1) (v, v′)=

∫
K
v(k)v′(k) dk, v,v′ ∈ i K

Q∩K C.

If z ∈O (hence δz is unitary), the representation i G
Q(δz) is unitary. Therefore, by

“transport de structure”, i G
Q (δz) is also unitary.

Let (δ̌z, Čδz ) be the contragredient representation of (δz,Cδz ). We can and
will identify (i G

Q δ̌z,i G
Q Čδz)with the contragredient representation of (i G

Qδz,i G
Q Cδz) and

i G
Q Cδz ⊗ i G

Q Čδz with a subspace of EndG(i G
Q Cδz ) [Waldspurger 2003, I.3].

Using the isomorphism between i G
Q Cδz and i K

Q∩K C, we can define the notion of
rational or polynomial map from X (M) to a space depending on i G

Q Cδz as in [ibid.,
IV.1 and VI.1].

We denote by A(Q, Q, δz) : i G
Q Cδz → i G

Q
Cδz the standard intertwining opera-

tor. By [ibid., IV.1 and Proposition IV.2.2], the map z ∈ C∗ 7→ A(Q, Q, δz) ∈

HomG(i G
Q Cδz , i G

Q
Cδz ) is a rational function on C∗. Moreover, there exists a rational

complex valued function j (δz) depending only on M such that A(Q, Q, δz) ◦

A(Q, Q, δz) is the dilation of scale j (δz). We set

(3-2) µ(δz) := j (δz)
−1.

By [ibid., Lemme V.2.1], the map z 7→ µ(δz) is rational on C∗ and regular on O.
The Eisenstein integral E(Q, δz) is the map from i G

Q Cδz ⊗ i G
Q Čδz to C∞(G)

defined by

(3-3) E(Q, δz, v⊗ v̌)(g)= 〈(i G
Qδz)(g)v, v̌〉, v ∈ i G

Q Cδz , v̌ ∈ i G
Q Čδz .
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If ψ ∈ i G
Q Cδz ⊗ i G

Q Čδz is identified with an endomorphism of i G
Q Cδz , we have

(3-4) E(Q, δz, ψ)(g)= tr(i G
Qδz(g)ψ).

We introduce the operator CP,P(1, δz) := Id⊗A(P, P, δ̌z) from i G
P Cδz ⊗ i G

P Čδz to
i G

P Cδz ⊗ i G
P

Čδz . By [Waldspurger 2003, Lemme V.2.2]

(3-5) the operator µ(δz)
1/2CP,P(1, δz) is unitary and regular on O.

We define the normalized Eisenstein integral E0(P, δz) : i G
P Cδz⊗i G

P
Čδz→C∞(G) by

(3-6) E0(P, δz, 9)= E(P, δz,CP|P(1, δz)
−19).

By [Silberger 1979, §5.3.5]

(3-7) E0(P, δz, 9) is regular on O.

For f ∈ C∞c (G), we denote by f̌ the function defined by f̌ (g) := f (g−1). Then,
the operator i G

P δz( f̌ ) belongs to i G
P Cδz ⊗ i G

P Čδz ⊂ EndG(i G
P Cδz ). We define the

Fourier transform F(P, δz, f ) ∈ i G
P Cδz ⊗ i G

P Čδz of f by

F(P, δz, f )= i G
P δz( f̌ ).

The G-invariant scalar product on i G
P Cδz defined in (3-1) induces a G-invariant

scalar product on i G
P Cδz ⊗ i G

P Čδz given by

(v1⊗ v̌1, v2⊗ v̌2)= (v1, v2)(v̌1, v̌2).

Notice that by the inclusion i G
P Cδz ⊗ i G

P Čδz ⊂ End(i G
P Cδz ), this scalar product

coincides with the Hilbert–Schmidt scalar product on the space of Hilbert–Schmidt
operators on i G

P Cδz defined by

(3-8) (S, S′)= tr(SS′∗),

where tr(SS′∗)=
∑

o.n.b.〈SS′∗ui , ui 〉 and this sum converges absolutely and does
not depend on the basis. Then, the Fourier transform is the unique element of
i G

P Cδz ⊗ i G
P Čδz such that

(3-9) (E(P, δz, 9), f )G = (9,F(P, δz, f )).

Moreover, we have [Waldspurger 2003, Lemme VII.1.1]

(3-10) E(P, δz,F(P, δz, f ))(g)= tr[(i G
P δz)(λ(g) f̌ )].

We define the normalized Fourier transform F0(P, δz, f ) of f ∈ C∞c (G) as the
unique element of i G

P Cδz ⊗ i G
P

Čδz such that

(9,F0(P, δz, f ))= (E0(P, δz, 9), f )G, 9 ∈ i G
P Cδz ⊗ i G

P
Čδz .
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It follows easily from (3-9) and (3-5) that

F0(P, δz, f )= µ(δz)CP|P(1, δz)F(P, δz, f ),

thus we deduce that

(3-11) E0(P, δz,F0(P, δz, f ))= µ(δz)E(P, δz,F(P, δz, f )).

Therefore, we can describe the spectral decomposition of the regular representation
R := ρ⊗λ of G×G on L2(G) of [Waldspurger 2003, Théorème VIII.1.1] in terms
of normalized Eisenstein integrals as follows. Let E2(G) be the set of classes of
irreducible admissible representations of G whose matrix coefficients are square-
integrable. We will denote by d(τ ) the formal degree of τ ∈ E2(G). Then we have
(3-12)

f (g)=
∑

τ∈E2(G)

d(τ ) tr(τ (λ(g) f̌ ))+ 1
4iπ

∑
δ∈M̂2

∫
O

E0(P, δz,F0(P, δz, f ))(g) dz
z
.

4. The truncated kernel

Let f ∈ C∞c (G ×G) be of the form f (y1, y2) = f1(y1) f2(y2) with f j ∈ C∞c (G).
Then the operator R( f ) (where R :=ρ⊗λ) is an integral operator with smooth kernel

K f (x, y)=
∫

G
f1(gy) f2(xg) dg =

∫
G

f1(x−1gy) f2(g) dg.

Notice that the kernel studied in [Arthur 1991; Feigon 2012; Delorme et al.
2015] corresponds to the kernel of the representation λ× ρ which coincides with
K f2⊗ f1(x, y)= K f1⊗ f2(x

−1, y−1).
The aim of this part is to give a spectral expansion of the truncated kernel obtained

by integrating K f against a truncated function on H × H as in [Arthur 1991].

Lemma 4.1. For (τ, Vτ ) ∈ E2(G), we fix an orthonormal basis Bτ of the space
of Hilbert–Schmidt operators on Vτ . For δ ∈ M̂2 and z ∈ O, we fix an ortho-
normal basis BP,P(C) of i K

P∩K C⊗ i K
P∩K

Č. Using the isomorphism S 7→ Sz between
i K

P∩K C⊗ i K
P∩K

Č and i G
P Cδz ⊗ i G

P
Čδz , we have

K f (x, y)=
∑

τ∈E2(G)

∑
S∈Bτ

d(τ ) tr(τ (x)τ ( f1)Sτ( f̌2))tr(τ (y)S)

+
1

4iπ

∑
δ∈M̂2

∑
S∈BP,P (C)

∫
O

E0(P, δz,5δz ( f )Sz)(x)E0(P, δz, Sz)(y)
dz
z
,

where 5δz ( f )Sz := (i G
P δz ⊗ i G

P
δ̌z)( f )Sz = (iPδz)( f1)Sz(iPδz)( f̌2) and the sums

over S are all finite.
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Proof. For x ∈ G, we set

h(v) :=
∫

G
f1(uvx) f2(xu) du,

so that

(4-1) K f (x, y)= [ρ(yx−1)h](e).

If π is a representation of G, one has

π(ρ(yx−1)h)=
∫

G×G
f1(ugy) f2(xu)π(g) du dg

=

∫
G×G

f1(u1) f2(xu)π(u−1u1 y−1) du du1

=

∫
G×G

f1(u1) f2(u2)π(u−1
2 xu1 y−1) du1 du2

= π( f̌2)π(x)π( f1)π(y−1).

Therefore, using the Hilbert–Schmidt scalar product (3-8), one obtains for τ ∈E2(G),

(4-2) tr τ(ρ(yx−1)h)= tr τ( f̌2)τ (x)τ ( f1)τ (y)∗ = (τ ( f̌2)τ (x)τ ( f1), τ (y))

=

∑
S∈Bτ

(τ ( f̌2)τ (x)τ ( f1), S∗)(τ (y), S∗)

=

∑
S∈Bτ

tr(τ (x)τ ( f1)Sτ( f̌2))tr(τ (y)S),

where the sum over S in Bτ is finite.
We consider now π := i G

P δz with δ∈ M̂2 and z∈O. By (3-10) and (3-11), we have

(4-3) E0(P, δz,F0(P, δz, [ρ(yx−1)h]ˇ)(e)= µ(δz) trπ(ρ(yx−1)h).

Let BP,P(Cδz ) be an orthonormal basis of i G
P Cδz⊗ i G

P Čδz . Since f1, f2 ∈C∞c (G),
the operators π( f1) and π( f̌2) are of finite rank. Therefore, we deduce as above that

trπ(ρ(yx−1)h)= tr(π( f̌2)π(x)π( f1)π(y)−1)

=

∑
S∈BP,P (Cδz )

tr(π(x)π( f1)Sπ( f̌2))tr(π(y)S),

where the sum over S in BP,P(Cδz ) is finite.
In what follows, the sums over elements of an orthonormal basis will be always

finite. Hence, by (3-4), we deduce that

(4-4) trπ(ρ(yx−1)h)=
∑

S∈BP,P (Cδz )

E(P, δz, π( f1)Sπ( f̌2))(x)E(P, δz, S)(y).
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Recall that we fixed an orthonormal basis BP,P(C) of the space i K
P∩K C⊗ i K

P∩K
Č

which is isomorphic to i G
P Cδz ⊗ i G

P
Čδz by the map S 7→ Sz . By (3-5), the family

S̃(δz) := µ(δz)
−1/2CP,P(1, δz)

−1Sz for S ∈ BP,P(C) is an orthonormal basis of
i G

P Cδz ⊗ i G
P Čδz .

Moreover, using the inclusion i G
P Cδz ⊗ i G

P
Čδz ⊂ HomG(i G

P
Cδz , i G

P Cδz ), and the
adjunction property of the intertwining operator [Waldspurger 2003, IV.1.(11)],
we have CP,P(1, δz)

−1S = S ◦ A(P, P, δz)
−1, for all S ∈ i G

P Cδz ⊗ i G
P

Čδz . Since
A(P, P, δz)

−1
◦ i G

P (δz)= i G
P
(δz) ◦ A(P, P, δz)

−1, writing (4-4) for the basis S̃(δz),
we obtain

trπ(ρ(yx−1)h)

= µ(δz)
−1

∑
S∈BP,P (C)

E(P, δz, π( f1)CP,P(1, δz)
−1(Sz)π( f̌2))(x)

× E(P, δz,CP,P(1, δz)−1Sz)(y)

= µ(δz)
−1

∑
S∈BP,P (C)

E(P, δz,CP,P(1, δz)
−1
[(i G

P δz)( f1)Sz(i G
P
δz)( f̌2)])(x)

× E(P, δz,CP,P(1, δz)−1Sz)(y)

= µ(δz)
−1

∑
S∈BP,P (C)

E0(P, δz, (i G
P δz)( f1)Sz(i G

P
δz)( f̌2))(x)E0(P, δz, Sz)(y).

We set 5δz := i G
P δz ⊗ i G

P
δ̌z . Then we have

(4-5) 5δz ( f )Sz = (i G
P δz)( f1)Sz(i G

P
δz)( f̌2).

By (4-3), we obtain

E0(P, δz,F0(P, δz, [ρ(yx−1)h]ˇ))(e)

=

∑
S∈BP,P (C)

E0(P, δz,5δz ( f )Sz)(x)E0(P, δz, Sz)(y).

The lemma follows from (3-12), (4-1), (4-2) and the above result. �

To integrate the kernel K f on H×H , we introduce truncation as in [Arthur 1991].
Let n be a positive integer. Let u( · , n) be the truncated function defined on H by

u(h, n)=
{

1 if h = k1mk2 with k1,k2 ∈ K H ,m ∈ H such that 0≤ |hMH(m)| ≤ n,
0 otherwise.

We define the truncated kernel by

(4-6) K n( f ) :=
∫

H×H
K f (x, y)u(x, n)u(y, n) dx dy.
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Since K f (x−1, y−1) coincides with the kernel studied in [Delorme et al. 2015, 2.2]
and u(x, n)= u(x−1, n), this definition of the truncated kernel coincides with the
one in that reference.

We define truncated periods by

(4-7) Pn
τ (S) :=

∫
H

tr(τ (y)S)u(y, n) dy, (τ, Vτ ) ∈ E2(G), S ∈ Endfin.rk(Vτ ),

where Endfin.rk(Vτ ) is the space of finite rank operators in End(Vτ ), and

(4-8) Pn
δz
(S) :=

∫
H

E0(P, δz, Sz)(y)u(y, n) dy,

δ ∈ M̂2, z ∈O, S ∈ i K
P∩K C⊗ i K

P∩K Č.

Corollary 4.2. With the notation of Lemma 4.1, one has

K n( f )=
∑

τ∈E2(G)

∑
S∈Bτ

d(τ )Pn
τ (τ ⊗ τ̌ ( f )S)Pn

τ (S)

+
1

4iπ

∑
δ∈M̂2

∑
S∈BP,P (E)

∫
O

Pn
δz
(5δz ( f )S)Pn

δz
(S) dz

z
,

where the sums over S are all finite and 5δz := i G
Pδz ⊗ i G

P
δ̌z .

Proof. For τ ∈ E2(G) and S ∈ Bτ , one has

τ( f1)Sτ( f̌2)= τ ⊗ τ̌ ( f )S.

Therefore, since the functions we integrate are compactly supported, the assertion
follows from Lemma 4.1. �

5. Regularized normalized periods

To determine the asymptotic expansion of the truncated kernel, we recall the notion
of regularized period introduced in [Feigon 2012]. It is defined by meromorphic
continuation.

Let z0 ∈ C∗. Then, for z ∈ C∗ such that |zz0|< 1, the integral∫
M+H

χz0(m)χz(m)(1− u(m, n0)) dm =
∑
n>n0

(zz0)
n
=
(zz0)

n0+1

1− zz0

is well defined and has a meromorphic continuation at z = 1. Moreover this
meromorphic continuation is holomorphic on V −{1} with a simple pole at z0 = 1.

Let δ ∈ M̂2. We consider now an holomorphic function z 7→ ϕz ∈C∞(G) defined
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in a neighborhood V of O in C∗ such that

(5-1) there exist an integer n0>0 and holomorphic functions V→C∞(KH×KH),

z 7→ φi
z , i = 1, 2, such that

δP(m)−1/2ϕz(k1mk2)= δz(m)φ1
z (k1, k2)+ δz−1(m)φ2

z (k1, k2),

for k1, k2 ∈ K H , and m ∈ M+H satisfying hMH (m) > n0,

Recall that M(h) for h ∈ H is an element in M+H such that h ∈ K HM(h)K H . By
the integral formula (2-4), we deduce that for |z|<min(|z0|, |z0|

−1), the integral∫
H
ϕz0(h)χz(M(h))(1− u(h, n0)) dh

= (1+ q−1)

(∫
K H×K H

φ1
z0
(k1, k2) dk1 dk2

)∫
M+H

δ(m)χz0z(m)(1− u(m, n0)) dm

+ (1+ q−1)

(∫
K H×K H

φ2
z0
(k1, k2) dk1 dk2

)∫
M+H

δ(m)χz−1
0 z(m)(1− u(m, n0)) dm

is also well defined and has a meromorphic continuation at z = 1. Moreover this
meromorphic continuation is holomorphic on V −{1} with at most a simple pole at
z0 = 1. As u( · , n0) is compactly supported, we deduce that the integral∫

H
ϕz0(h)χz(M(h)) dh

=

∫
H
ϕz0(h)χz(M(h))u(h, n0) dh+

∫
H
ϕz0(h)χz(M(h))(1− u(h, n0)) dh

has a meromorphic continuation at z = 1 which we denote by∫
∗

H
ϕz0(h) dh.

The above discussion implies that
∫
∗

H ϕz0(h) dh is holomorphic on V −{1} with at
most a simple pole at z0 = 1.

The next result is established in [Feigon 2012, Proposition 4.6], but we think
that the proof is not complete. We thank E. Lapid who suggested the proof below.

Proposition 5.1 (H-invariance). For x ∈ H , we have∫
∗

H
ϕz0(hx) dh =

∫
∗

H
ϕz0(h) dh.

Proof. We fix x ∈ H . For z, z′ in C∗, we set

F(ϕz0, z, z′)(h) := ϕz0(h)χz(M(h))χz′(M(hx−1)).
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By (5-1), for k1, k2 ∈ K H , and m ∈ M+H with hMH (m) > n0, we have

δP(m)−1/2 F(ϕz0,z,z
′)(k1mk2)= φ

1
z0
(k1,k2)δ(m)(z0z)hMH (m)z′hMH (M(k1mk2x−1))

+φ2
z0
(k1,k2)δ(m)(z−1

0 z)hMH (m)z′hMH (M(k1mk2x−1)).

We can choose n0 such that Lemma 2.1 is satisfied. Thus, for any k2 ∈ K H , there
exists Xk2x−1 ∈ R such that, for any m ∈ M+H satisfying 1− u(m, n0) 6= 0, we have
hMH (M(k1mk2x−1))= hMH (m)+ Xk2x−1 . We deduce that

δP(m)−1/2 F(ϕz0, z, z′)(k1mk2)(1− u(m, n0))

= φ1
z0
(k1, k2)δ(m)(z0zz′)hMH (m)z′Xk2x−1

+φ2
z0
(k1, k2)δ(m)(z−1

0 zz′)hMH (m)z′Xk2x−1 .

Therefore, by Hartogs’ theorem and the same argument as above, the function

(z0, z, z′) 7→
∫

H
ϕz0(h)χz(M(h))χz′(M(hx−1)) dh

is well defined for |z0zz′|< 1, and has a meromorphic continuation on V × (C∗)2.
We denote by I (ϕz0, z, z′) this meromorphic continuation. Moreover, for z0 6= 1,
the function (z, z′) 7→ I (ϕz0, z, z′) is holomorphic in a neighborhood of (1, 1). For
|z0z|< 1, we have I (ϕz0, z, 1)=

∫
H ϕz0(h)χz(M(h)) dh. Hence we deduce that

I (ϕz0, 1, 1)=
∫
∗

H
ϕz0(h) dh.

On the other hand, we have I (ϕz0, 1, z′)=
∫

H ϕz0(hx)χz′(M(h)) dh for |z0z′|< 1,
therefore, we obtain

I (ϕz0, 1, 1)=
∫
∗

H
ϕz0(hx) dh.

This finishes the proof of the proposition. �

We will apply this to normalized Eisenstein integrals. Let δ ∈ M̂2 and z ∈ C∗.
Recall that we have defined the operator CP,P(1, δz) by

CP,P(1, δz) := Id⊗A(P, P, δ̌z) ∈ HomG(i G
P Cδz ⊗ i G

P Čδz , i G
P Cδz ⊗ i G

P
Čδz ).

We set

CP,P(w, δz) := A(P, P, wδz)λ(w)⊗ λ(w)

∈ HomG(i G
P Cδz ⊗ i G

P Čδz , i G
P Cwδz ⊗ i G

P
Čwδz ),

where λ(w) is the left translation by w which induces an isomorphism from i G
P Cδz

to i G
P

Cwδz . For s ∈W G, we define

(5-2) C0
P,P(s, δz) := CP,P(s, δz) ◦CP,P(1, δz)

−1

∈ HomG(i G
P Cδz ⊗ i G

P
Čδz , i G

P Csδz ⊗ i G
P

Čsδz ).
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In particular, C0
P,P(1, δz) is the identity map of i G

P Cδz ⊗ i G
P

Čδz . By arguments
analogous to those of [Waldspurger 2003, Lemme V.3.1], we obtain

(5-3) for s ∈W G the rational operator C0
P|P(s, δz) is regular on O.

Let S ∈ i K
P∩K C⊗i K

P∩K
Č. By (3-7), the normalized Eisenstein integral E0(P, δz, Sz)

is holomorphic in a neighborhood V of O. We may and will assume that V is
invariant by the map z 7→ z−1. By [Heiermann 2001, Theorem 1.3.1] applied to
λ(k−1

1 )ρ(k2)E0(P, δz, Sz), k1, k2 ∈ K H , there exists a positive integer n0 such that,
for k1, k2 ∈ K H , and m ∈ M+H satisfying hMH (m) > n0, we have

δP(m)−1/2 E0(P, δz, Sz)(k1mk2)

= δ(m)
(
χz(m) tr([C0

P,P(1, δz)Sz](k1, k2))+χz−1(m) tr([C0
P,P(w, δz)Sz](k1, k2))

)
.

Therefore, the normalized Eisenstein integral satisfies (5-1). Hence, we can define
the normalized regularized period by

(5-4) Pδz (S) :=
∫
∗

H
E0(P, δz, Sz)(h) dh, S ∈ i K

P∩K C⊗ i K
P∩K Č.

The above discussion implies that Pδz (S) is a meromorphic function on the neigh-
borhood V of O which is holomorphic on V −{1}.

For s ∈W G and S ∈ i K
P∩K C⊗ i K

P∩K
Č, we set

(5-5) C(s, δz)(S) := (1+ q−1)

∫
K H×K H

tr([C0
P,P(s, δz)Sz](k1, k2)) dk1 dk2.

By the same argument as in [Feigon 2012, Proposition 4.7], we have the following
relations between the truncated period and the normalized regularized period.

(5-6) If δ|F× 6= 1 then, for n large enough, we have Pδz (S)= Pn
δz
(S).

(5-7) If δ|F× = 1 then, for n large enough, we have

Pδz (S)= Pn
δz
(S)+

zn+1

1− z
C(1, δz)(S)+

z−(n+1)

1− z−1 C(w, δz)(S).

The following lemma is analogous to [Feigon 2012, Lemma 4.8].

Lemma 5.2. Let z ∈ C∗ and S ∈ i K
P∩K C⊗ i K

P∩K
Č:

(1) If δ|F× 6= 1 and δ|E1 6= 1 then, for n large enough, we have

Pδz (S)= Pn
δz
(S)= 0.

(2) If δ|F× 6= 1 and δ|E1 = 1 then, for n large enough, we have

Pδz (S)= Pn
δz
(S).
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(3) If δ|F× = 1 and δ|E1 6= 1 then Pδz (S)= 0 whenever it is defined and

C(1, δ1)(S)= C(w, δ1)(S).

(4) If δ|F× = 1 and δ|E1 = 1 then δ2
= 1. We have C(1, δ1)(S) = −C(w, δ1)(S)

and the regularized normalized period Pδz (S) is meromorphic with a unique
pole at z = 1 which is simple.

Proof. Case (2) follows from (5-6). By [Jacquet et al. 1999, Proposition 22], if
δ|E1 6= 1 and z 6= 1 then the representation i G

P δz admits no nontrivial H-invariant
linear form. Thus in that case, Proposition 5.1 implies Pδz (S)= 0 whenever it is
defined. We deduce Case (1) from (5-6) and in Case (3), it follows from (5-7) that

Pn
δz
(S)=−

(
zn+1

1− z
C(1, δz)(S)+

z−(n+1)

1− z−1 C(w, δz)(S)
)
.

Since Pn
δz
(S) and C(s, δz)(S) for s ∈W G are holomorphic functions at z = 1, and

(5-8)
Res

(
zn+1

1− z
C(1, δz)(S), z = 1

)
=−C(1, δ1)(S),

Res
(

z−(n+1)

1− z−1 C(w, δz)(S), z = 1
)
= C(w, δ1)(S),

we deduce the result in the Case (3).
In Case (4), we obtain easily δ2

= 1. By [Waldspurger 2003, Corollaire IV.1.2],
the intertwining operator A(P, P, δz) has a simple pole at z = 1. Thus the function
µ(δz) has a zero of order 2 at z = 1. In that case, by [Silberger 1979, proof of Theo-
rem 5.4.2.1], the operators CP|P(s, δz) for s ∈W G have a simple pole at z = 1 and

Res(CP|P(1, δz), z = 1)=−Res(CP|P(w, δz), z = 1).

Therefore, if we set Tz := (z− 1)CP|P(1, δz) and Uz := (z− 1)CP|P(w, δz), then
Uz and T−1

z are holomorphic near z = 1 and T1 = −U1 as δ2
= 1. By definition

(see (5-2)), we have C0
P|P(w, δz)=UzT−1

z . Hence, one deduces that C0
P|P(w, δ1)=

− Id=−C0
P|P(1, δ1), where Id is the identity map of i G

P Cδ1 ⊗ i G
P

Čδ1 . We deduce
the first assertion in Case (4) from the definition of C(s, δz)(S) (see (5-5)).

Since Pn
δz
(S) and C(s, δz)(S) for s ∈ W G are holomorphic functions at z = 1,

the last assertion follows from (5-7), (5-8) and the above result. This finishes the
proof of the lemma. �

6. A preliminary lemma

In this section, we prove a preliminary lemma which will allow us to get the
asymptotic expansion of the truncated kernel in terms of regularized normalized
periods.
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Let V be a neighborhood of O in C∗. We assume that V is invariant by the map
z 7→ z−1. Let f be a meromorphic function on V . We assume that f has at most a
pole at z = 1 in V .

If r 6= 1 is such that f is defined on the set of complex numbers of modulus r , the
integral

∫
|z|=r f (z) dz depends only on the position of r with respect to 1. We set∫

O−
f (z) dz :=

∫
|z|=r

f (z) dz for r < 1,(6-1) ∫
O+

f (z) dz :=
∫
|z|=r

f (z)dz for r > 1.(6-2)

Notice that

(6-3)
∫
O+

f (z) dz−
∫
O−

f (z) dz = 2iπ Res( f (z), z = 1).

It follows easily from the definitions that

(6-4)

lim
n→+∞

∫
O−

zn f (z) dz = 0,

lim
n→+∞

∫
O+

z−n f (z) dz = 0.

We have assumed that V is invariant by the map z→ z−1. Then, the function
f̃ (z) := f (z−1) is also a meromorphic function on V with at most a pole at z = 1
and it satisfies f̃ (z)= f (z) for z ∈O.

Let c(s, z) and c′(s, z), for s ∈ W G be holomorphic functions on V such that
c(s, 1) 6= 0 and c′(s, 1) 6= 0. Let p and p′ be two meromorphic functions on V with
at most a pole at z = 1. We set

(6-5)
pn(z) := p(z)−

[
zn+1

1− z
c(1, z)+

z−(n+1)

1− z−1 c(w, z)
]
,

p′n(z) := p′(z)−
[

zn+1

1−z
c′(1, z)+

z−(n+1)

1−z−1 c′(w, z)
]
.

Lemma 6.1. We assume that pn and p′n are holomorphic on V and that either p
and p′ are vanishing functions or c(1, 1) = −c(w, 1) and c′(1, 1) = −c′(w, 1).
Then, the integral ∫

O
pn(z)p′n(z)

dz
z

is asymptotic as n approaches +∞ to the sum of

(6-6)
∫
O−

(
p(z) p̃′(z)+

c(1, z)c̃′(1, z)
(1− z)(1− z−1)

+
c(w, z)c̃′(w, z)
(1− z)(1− z−1)

)
dz
z
,
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(6-7) −2iπ
[

d
dz
(c(w, z)c̃′(1, z))

]
z=1

+ 2iπ
[

d
dz
(
c(w, z)(z− 1) p̃′(z)+ c̃′(1, z)(z− 1)p(z)

)]
z=1
,

and

(6-8) 2iπ(2n+ 1)c(w, 1)c̃′(1, 1)

− 2iπ(n+ 1)
(
c(w, 1)Res( p̃′, z = 1)+ c̃′(1, 1)Res(p, z = 1)

)
.

Proof. Since pn and p̃′n are holomorphic functions on V , we have∫
O

pn(z)p′n(z)
dz
z
=

∫
O−

pn(z) p̃′n(z)
dz
z

=

∫
O−

(
p(z)−

zn+1

1− z
c(1, z)−

z−(n+1)

1− z−1 c(w, z)
)

×
(

p̃′(z)−
z−(n+1)

1− z−1 c̃′(1, z)−
zn+1

1− z
c̃′(w, z)

)dz
z

=

∫
O−

(
p(z) p̃′(z)+

c(1, z)c̃′(1, z)
(1− z)(1− z−1)

+
c(w, z)c̃′(w, z)
(1− z)(1− z−1)

)
dz
z

+

∫
O−

z2(n+1) c(1, z)c̃′(w, z)
(1− z)2

dz
z

−

∫
O−

zn+1
(

c(1, z) p̃′(z)+ p(z)c̃′(w, z)
1− z

)
dz
z

+

∫
O−

z−2(n+1) c(w, z)c̃′(1, z)
(1− z−1)2

dz
z

−

∫
O−

z−(n+1)
(

c(w, z) p̃′(z)+ p(z)c̃′(1, z)
1− z−1

)
dz
z
.

By (6-4), the second and third terms of the right hand side converge to 0 as n
approaches +∞.

By (6-3), one has∫
O−

z−2(n+1) c(w, z)c̃′(1, z)
(1− z−1)2

dz
z

=

∫
O+

z−2(n+1) c(w, z)c̃′(1, z)
(1− z−1)2

dz
z
− 2iπ Res

(
z−2(n+1) c(w, z)c̃′(1, z)

z(1− z−1)2
, z = 1

)
.

Let

φ(z) := z−2(n+1) c(w, z)c̃′(1, z)
z(1− z−1)2

= z−(2n+1) c(w, z)c̃′(1, z)
(z− 1)2

.
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Since c(w, z) and c̃′(1, z) are holomorphic functions on V , the function φ has a
unique pole of order 2 at z = 1. Thus, we obtain

Res(φ, z = 1)=
[

d
dz
((z− 1)2φ(z))

]
z=1

=−(2n+ 1)c(w, 1)c̃′(1, 1)+
[

d
dz
(c(w, z)c̃′(1, z))

]
z=1
.

We deduce from (6-4) that

(6-9)
∫
O−

z−2(n+1) c(w, z)c̃′(1, z)
(1− z−1)2

dz
z

= 2iπ(2n+ 1)c(w, 1)c̃′(1, 1)− 2iπ
[

d
dz
(c(w, z)c̃′(1, z))

]
z=1
+ ε1(n),

where limn→+∞ ε1(n)= 0.
When p and p′ are vanishing functions, we obtain the result of the lemma.

Otherwise, by (6-5) and our assumptions, (c(w, z) p̃′(z)+ p(z)c̃′(1, z))/(1− z−1)

is a meromorphic function with a unique pole of order 2 at z = 1. Applying the
same argument as above, we obtain∫
O−

z−(n+1)
(

c(w, z) p̃′(z)+ p(z)c̃′(1, z)
1− z−1

)
dz
z

=

∫
O+

z−(n+1)
(

c(w, z) p̃′(z)+ p(z)c̃′(1, z)
1− z−1

)
dz
z

− 2iπ
[

d
dz
(
z−(n+1)(z− 1)(c(w, z) p̃′(z)+ p(z)c̃′(1, z))

)]
z=1

= 2iπ(n+ 1)
(
c(w, 1)Res( p̃′, z = 1)+Res(p, z = 1)c̃′(1, 1)

)
− 2iπ

[
d
dz
(
c(w, z)(z− 1) p̃′(z)+ (z− 1)p(z)c̃′(1, z)

)]
z=1
+ ε2(n),

where limn→+∞ ε2(n)= 0.
Therefore, we obtain the lemma by (6-9) and the above result. �

7. Spectral side of a local relative trace formula

We recall the spectral expression of the truncated kernel obtained in Corollary 4.2:

K n( f )=
∑

τ∈E2(G)

∑
S∈Bτ

d(τ )Pn
τ (τ ⊗ τ̌ ( f )S)Pn

τ (S)

+
1

4iπ

∑
δ∈M̂2

∑
S∈BP,P (E)

∫
O

Pn
δz
(5δz ( f )S)Pn

δz
(S) dz

z
,
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where the sums over S are all finite and 5δz := i G
Pδz ⊗ i G

P
δ̌z .

By [Feigon 2012, Lemma 4.10], if (τ, Vτ ) ∈ E2(G) and S ∈ End f in.rk(Vτ ), then

(7-1) lim
n→+∞

Pn
τ (S)=

∫
H

tr(τ (h)S) dh.

We consider now the second term of the above expression of K n( f ). Let δ ∈ M̂2

and S ∈ i K
P∩K C⊗i K

P∩K
Č. We keep the notation of the previous section. In particular,

for z ∈ C∗, we have C̃(s, δz)(S) = C(s, δz−1)(S) and P̃δz (S) = Pδz−1 (S). By the
definition of δz , we have δ1 = δ.

Proposition 7.1. Let S ∈ i K
P∩K C⊗ i K

P∩K
Č. We set S′z :=5δz ( f )S:

(1) If δ|F× 6= 1 and δ|E1 6= 1 then, for n ∈ N large enough, one has∫
O

Pn
δz
(S′z)P

n
δz
(S) dz

z
= 0.

(2) If δ|F× 6= 1 and δ|E1 = 1 then

lim
n→+∞

∫
O

Pn
δz
(S′z)P

n
δz
(S) dz

z
=

∫
O

Pδz (S
′

z)Pδz (S)
dz
z
.

(3) Assume that δ|F× = 1 and δ|E1 6= 1. Then∫
O

Pn
δz
(S′z)P

n
δz
(S) dz

z

is asymptotic when n approaches +∞ to

2iπ(2n+ 1)C(1, δ)(S′1)C(1, δ)(S)

+

∫
O−

(
C(1, δz)(S′z)C̃(1, δz)(S)

(1− z)(1− z−1)
+

C(w, δz)(S′z)C̃(w, δz)(S)
(1− z)(1− z−1)

)
dz
z

− 2iπ d
dz
[C(w, δz)(S′z)C̃(1, δz)(S)]z=1.

(4) Assume that δ|F× = 1 and δ|E1 = 1. Then∫
O

Pn
δz
(S′z)P

n
δz
(S) dz

z

is asymptotic when n approaches +∞ to

2iπ(2n+ 3)C(1, δ)(S′1)C(1, δ)(S)

+

∫
O−

(
Pδz (S

′

z)Pδz (S)+
C(1, δz)(S′z)C̃(1, δz)(S)

(1− z)(1− z−1)
+

C(w, δz)(S′z)C̃(w, δz)(S)
(1− z)(1− z−1)

)
dz
z

− 2iπ d
dz
[C(w, δz)(S′z)C̃(1, δz)(S)]z=1

+ 2iπ
[

d
dz
(
(z− 1)Pδz (S

′

z)C̃(1, δz)(S)+C(w, δz)(S′z)(z− 1)P̃δz (S)
)]

z=1
.
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Proof. The two first assertions are immediate consequences of Lemma 5.2. To
prove (3) and (4), we set

pn(z) := Pn
δz
(S′z( f )), p′n(z) := Pn

δz
(S), p(z) := Pδz (S

′

z( f )), p′(z) := Pδz (S)

and c(s, z) := C(s, δz)(S′z( f )), c′(s, z) := C(s, δz)(S), for s ∈W G .

By (5-7) and Lemma 5.2 these functions satisfy (6-5) and we can apply Lemma 6.1.
The result in case (3) follows immediately since p(z)= p′(z)= 0 by Lemma 5.2.

In case (4), we have c(1, 1)=−c(w, 1) and c′(1, 1)=−c′(w, 1) by Lemma 5.2.
Moreover, the relations (6-5) give

Res(p, z = 1)=−c(1, 1)+ c(w, 1) and Res( p̃′, z = 1)= c′(1, 1)− c′(w, 1).

Hence, we obtain

2iπ(2n+1)c(w,1)c̃′(1,1)−2iπ(n+1)
(
c(w,1)Res( p̃′,z=1)+c̃′(1,1)Res(p,z=1)

)
.

=2iπ(2n+ 3)c(1,1)c̃′(1,1),

and the result in that case follows from Lemma 6.1. �

To describe the spectral side of our local relative trace formula, we introduce
generalized matrix coefficients.

Let (π, V ) be a smooth unitary representation of G. We denote by (π ′, V ′) its
dual representation. Let ξ and ξ ′ be two linear forms on V . For f ∈C∞c (G), the lin-
ear form π ′( f̌ )ξ belongs to the smooth dual V̌ of V [Renard 2010, Théorème III.3.4
and I.1.2]. The scalar product on V induces an isomorphism j : v 7→ ( · , v) from
the conjugate complex vector space V of V and V̌ , which intertwines the complex
conjugate of π and π̌ as π is unitary. One has

v̌(v)= (v, j−1(v̌)), v ∈ V, v̌ ∈ V̌ .

Therefore, for v ∈ V , we have

(π ′( f̌ )ξ)(v)= ξ(π( f )v)= (v, j−1(π ′( f̌ )ξ)).

As π( f ) is an operator of finite rank, we have for any orthonormal basis B of V

(7-2) j−1(π ′( f̌ )ξ)=
∑
v∈B

(π ′( f̌ )ξ)(v) · v,

where the sum over v is finite, and (λ, v) 7→ λ · v is the action of C on V .
Let ξ ′ be the linear form on V defined by ξ ′(u)= ξ ′(u). We define the generalized

matrix coefficient mξ,ξ ′ by

mξ,ξ ′( f )= ξ ′( j−1(π ′( f̌ )ξ)).
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Then, by (7-2), we obtain

(7-3) mξ,ξ ′( f )=
∑
v∈B

ξ(π( f )v)ξ ′(v).

Hence, this sum is independent of the choice of the basis B.
Let z ∈ C∗. We set (5z, Vz) := (i G

P δz ⊗ i G
P
ˇδδz , i G

P Cδz ⊗ i G
P

Čδz ). We denote by
(5z, V ) its compact realization. We define meromorphic linear forms on Vz using
the isomorphism Vz ' V .

Lemma 7.2. Let ξz and ξ ′z be two linear forms on V which are meromorphic in
z on a neighborhood V of O. Let B be an orthonormal basis of V . Then, for
f ∈ C∞c (G×G), the sum ∑

S∈B

ξz(5z( f )S)ξz−1(S)

is a finite sum over S which is independent of the choice of the basis B.

Proof. For z ∈O, the representation 5z is unitary. Hence (7-3) gives the lemma in
that case. Since the linear forms ξz and ξ ′z are meromorphic on V , we deduce the
result of the lemma for any z in V by meromorphic continuation. �

With notation of the lemma, we define, for z ∈ V , the generalized matrix coeffi-
cient mξz,ξ

′

z−1
associated to (ξz, ξ

′
z) by

mξz,ξ
′

z−1
( f ) :=

∑
S∈B

ξz(5z( f )S)ξz−1(S).

Therefore, using Proposition 7.1, we can deduce the asymptotic behavior of the
truncated kernel in terms of generalized matrix coefficients.

Theorem 7.3. As n approaches +∞, the truncated kernel K n( f ) is asymptotic to

n
∑
δ∈M̂2
δ
|F×=1

mC(1,δ),C(1,δ)( f )+
∑

τ∈E2(G)

d(τ )m Pτ ,Pτ ( f )+ 1
4iπ

∑
δ∈M̂2
δ
|F× 6=1
δ
|E1=1

∫
O

m Pδz ,Pδz ( f ) dz
z

+
1

4iπ

∑
δ∈M̂2
δ
|F×=1
δ
|E1 6=1

(
Rδ( f )+

∫
O−

mC(1,δz),C(1,δz−1 )( f )+mC(w,δz),C(w,δz−1 )( f )

(1− z)(1− z−1)

dz
z

)

+
1

4iπ

∑
δ∈M̂2

δ
|F×=δ|E1=1

(
R̃δ( f )+

∫
O−

mC(1,δz),C(1,δz−1 )( f )+mC(w,δz),C(w,δz−1 )( f )

(1− z)(1− z−1)

dz
z

+

∫
O−

m Pδz ,Pδz−1
( f ) dz

z

)
.
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where

Rδ( f ):= 2iπ
(

mC(1,δ),C(1,δ)( f )−
[

d
dz

mC(w,δz),C(1,δz−1 )( f )
]

z=1

)
,

R̃δ( f ) = 2iπ
(

3mC(1,δ),C(1,δ)( f )−
[

d
dz

mC(w,δz),C(1,δz−1 )( f )
]

z=1

+

[
d
dz
(z− 1)

(
m Pδz ,C(1,δz−1 )( f )+mC(w,δz),Pδ

z−1
( f )

)]
z=1

)
,

Pτ (S) =
∫

H
tr(τ (h)S) dh, S ∈ End f in.rk(Vτ ),

Pδz (S) =
∫
∗

H
E0(P, δz, Sz)(h) dh, S ∈ i K

P∩K C⊗ i K
P∩K Č

C(s, δz)(S):= (1+ q−1)

∫
K H×K H

tr([C0
P,P(s, δz)Sz](k1, k2)) dk1 dk2, s ∈W G .

8. A local relative trace formula for PGL(2)

We make precise the geometric expansion of the truncated kernel obtained in
[Delorme et al. 2015, Theorem 2.3] for H := PGL(2). This geometric expansion
depends on orbital integrals of f1 and f2, and on a weight function vL where L = H
or M . To recall the definition of these objects, we need to introduce some notation.

If J is an algebraic group defined over F , we denote by J its group of points
over F and we identify J with the group of points of J over an algebraic closure
of F . Let J H be an algebraic subgroup of H defined over F . We denote by
J := ResE/F (J H ×F E) the restriction of scalars of J H from E to F . Then, the
group J := J (F) is isomorphic to J H (E).

The nontrivial element of the Galois group of E/F induces an involution σ of
G defined over F .

We denote by P the connected component of 1 in the set of x in G such that
σ(x)= x−1. A torus A of G is called a σ-torus if A is a torus defined over F con-
tained in P . Let SH be a maximal torus of H . We denote by Sσ the connected com-
ponent of S∩P . Then Sσ is a maximal σ-torus defined over F and the map SH 7→ Sσ
is a bijective correspondence between H-conjugacy classes of maximal tori of H
and H-conjugacy classes of maximal σ-tori of G (see [Delorme et al. 2015, 1.2]).

Each maximal torus of H is either anisotropic or H-conjugate to M . We fix TH a
set of representatives for the H-conjugacy classes of maximal anisotropic torus in H .

By [ibid., 1.28], for each maximal torus SH of H , we can fix a finite set of
representatives κS = {xm} of the (H, Sσ )-double cosets in H Sσ ∩ G such that
each element xm may be written xm = hma−1

m where hm ∈ H centralizes the split
component AS of SH and am ∈ Sσ .
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The orbital integral of a compactly supported smooth function is defined on the
set Gσ - reg of σ-regular points of G, that is the set of point x in G such that H x H
is Zariski closed and of maximal dimension. The set Gσ - reg can be described in
terms of maximal σ-tori as follows. If SH is a maximal torus of H , we denote by s

the Lie algebra of S and we set s := s(F). We set

1σ (g)= det(1−Ad(g−1σ(g))g/s), g ∈ G.

By [Delorme et al. 2015, 1.30], if x ∈ Gσ - reg then there exists a maximal torus SH

of H such that 1σ (x) 6= 0. Moreover, there are two elements xm ∈ κS and γ ∈ Sσ
such that x = xmγ .

We define the orbital integral M( f ) of a function f ∈ C∞c (G) on Gσ - reg as
follows. Let SH be a maximal torus of H . For xm ∈κS and γ ∈ Sσ with1σ (xmγ ) 6=0,
we set

(8-1) M( f )(xmγ ) := |1σ (xmγ )|
1/4
F

∫
diag(AS)\(H×H)

f (h−1xmγ l) d(h, l),

where diag(AS) is the diagonal of AS × AS .
We now give an explicit expression of the truncated function vL( · , n) defined

in [ibid., 2.12], where n is a positive integer and L is equal to H or M . Let n be
a positive integer. It follows immediately from the definition [ibid., 2.12] that we
have

(8-2) vH (x1, y1, x2, y2, n)= 1, x1, y1, x2, y2 ∈ H.

We will describe vM using [ibid., 2.6]. Since H = PH K H , each x ∈ H can be written
x = m PH (x)n PH (x)kPH (x) with m PH (x) ∈ MH , n PH (x) ∈ NH and kPH (x) ∈ K H .
We take similar notation if we consider P instead of P . For Q = P or P , we set

hQ H (x) := hMH (m Q H (x)).

With our definition of hMH (2-2), the map MH → R given in [ibid., 1.2] coincides
with −(log q)hMH .

For x1, y1, x2 and y2 in H , we set

zP(x1, y1, x2, y2) := inf(h P H
(x1)− h PH (y1), h P H

(x2)− h PH (y2)), and

zP(x1, y1, x2, y2) := − inf(h P H
(y1)− h PH (x1), h P H

(y2)− h PH (x2)).

We omit x1, y1, x2 and y2 in this notation if there is no confusion. Hence the elements
Z0

P and Z0
P

of [ibid., 2.55] coincide with (log q)zP and (log q)zP respectively.
Therefore, the relation [ibid., 2.63] gives
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vM(x1, y1, x2, y2, n)= lim
λ→0

(
qλ(n+zP )

1− q−2λ (1+ q−λ)+
qλ(−n+zP )

1− q2λ (1+ qλ)
)

= lim
λ→0

(
qλ(n+zP )

1− q−λ
+

q−λ(n−zP )

1− qλ

)
= lim
λ→0

qλ(n+zP )− q−λ(n−zP+1)

1− q−λ

= 2n+ 1+ zP − zP .

We set

v0
M(x1, y1, x2, y2) := zP − zP

= inf(h P H
(x1)− h PH (y1), h P H

(x2)− h PH (y2))

+ inf(h P H
(y1)− h PH (x1), h P H

(y2)− h PH (x2)).

Therefore, [ibid., Theorem 2.3] gives that as n approaches+∞, the truncated kernel
K n( f ) is asymptotic to

(8-3) 2n
∑

xm∈κM

c0
M,xm

∫
Mσ

M( f1)(xmγ )M( f2)(xmγ ) dγ

+

∑
SH∈TH∪{MH }

∑
xm∈κS

c0
S,xm

∫
Sσ

M( f1)(xmγ )M( f2)(xmγ ) dγ

+

∑
xm∈κM

c0
M,xm

∫
Mσ

WM( f )(xmγ ) dγ,

where the constants c0
M,xm

are defined in [Rader and Rallis 1996, Theorem 3.4] and
WM( f ) is the weighted integral orbital given by

1σ (xmγ )
−1/2WM( f )(xmγ )

=

∫∫
(diag(MH )\H×H)2

f1(x−1
1 xmγ x2) f2(y−1

1 xmγ y2)v
0
M(x1, y1, x2, y2) d(x1, x2) d(y1, y2).

Therefore, comparing asymptotic expansions of K n( f ) in Theorem 7.3 and (8-3),
we obtain:

Theorem 8.1. For f1 and f2 in C∞c (G) we have:

(1) 2
∑

xm∈κM

c0
M,xm

∫
Mσ

M( f1)(xmγ )M( f2)(xmγ ) dγ =
∑
δ∈M̂2
δ
|F×=1

mC(1,δ),C(1,δ)( f ).
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(2) (Local relative trace formula) The expression∑
SH∈TH∪{MH }

∑
xm∈κS

c0
S,xm

∫
Sσ

M( f1)(xmγ )M( f2)(xmγ ) dγ

+

∑
xm∈κM

c0
M,xm

∫
Mσ

WM( f )(xmγ ) dγ

equals∑
τ∈E2(G)

d(τ )m Pτ ,Pτ ( f )+ 1
4iπ

∑
δ∈M̂2
δ
|F× 6=1
δ
|E1=1

∫
O

m Pδz ,Pδz ( f ) dz
z

+
1

4iπ

∑
δ∈M̂2
δ
|F×=1
δ
|E1 6=1

(
Rδ( f )+

∫
O−

mC(1,δz),C(1,δz−1 )( f )+mC(w,δz),C(w,δz−1 )( f )

(1− z)(1− z−1)

dz
z

)

+
1

4iπ

∑
δ∈M̂2

δ
|F×=δ|E1=1

(
R̃δ( f )+

∫
O−

mC(1,δz),C(1,δz−1 )( f )+mC(w,δz),C(w,δz−1 )( f )

(1− z)(1− z−1)

dz
z

+

∫
O−

m Pδz ,Pδz−1
( f ) dz

z

)
,

where

Rδ( f ): = 2iπ
(

mC(1,δ),C(1,δ)( f )−
[

d
dz

mC(w,δz),C(1,δz−1 )( f )
]

z=1

)
,

R̃δ( f ) = 2iπ
(

3mC(1,δ),C(1,δ)( f )−
[

d
dz

mC(w,δz),C(1,δz−1 )( f )
]

z=1

+

[
d
dz
(z− 1)

(
m Pδz ,C(1,δz−1 )( f )+mC(w,δz),Pδ

z−1
( f )

)]
z=1

)
,

Pτ (S) =
∫

H
tr(τ (h)S) dh, for S ∈ End(Vτ ),

Pδz (S) =
∫
∗

H
E0(P, δz, Sz)(h) dh, for S ∈ i K

P∩K C⊗ i K
P∩K Č,

C(s, δz)(S): = (1+ q−1)

∫
K H×K H

tr([C0
P,P(s, δz)Sz](k1, k2)) dk1 dk2, for s ∈W G .

As an application of this theorem, we will invert orbital integrals on the anisotropic
σ-torus Mσ of G.

Let δ ∈ M̂2. As the operator C0
P,P(1, δ) is the identity operator of i G

P Cδz⊗ i G
P

Čδz ,
one has
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C(1, δ)(v⊗w̌)= (1+q−1)

∫
K H×K H

v(k1)w̌(k2) dk1 dk2, v⊗w̌∈ i K
P∩K C⊗i K

P∩K Č.

Hence, we have C(1, δ) = (1+ q−1)ξδ ⊗ ξδ̌ where ξδ and ξδ̌ are the H-invariant
linear forms on i K

P∩K C and i K
P∩K

Č respectively given by the integration over K H .
Therefore, one deduces that

mC(1,δ),C(1,δ)( f1⊗ f2)= mξδ,ξδ ( f1)mξ
δ̌
,ξ
δ̌
( f2).

Moreover, by [Aizenbud et al. 2015, Corollary 5.6.3], the distribution f 7→mξ
δ̌
,ξ
δ̌
( f )

is smooth in a neighborhood of any σ-regular point of G.

Corollary 8.2. Let f ∈ C∞c (G). Let xm ∈ κM and γ ∈ Mσ such that xmγ is
σ-regular. Then we have

c0
M,xm
|1σ (xmγ )|

1/4M( f )(xmγ )=
∑

δ∈M̂2,δ|F×=1

mξδ,ξδ ( f )mξ
δ̌
,ξ
δ̌
(xmγ ).

Proof. Let (Jn)n be a sequence of compact open subgroups whose intersection is
equal to the neutral element of G. Then the characteristic function gn of Jnxmγ Jn

approaches the Dirac measure at xmγ . Therefore, taking f1 := f and f2 := gn in
Theorem 8.1(1), we obtain the result. �

Remark. Let (τ, Vτ ) be a supercuspidal representation of G and f be a matrix
coefficient of τ . Then we deduce from the corollary that the orbital integral of f
on σ-regular points of Mσ is equal to 0.

We assume that (τ, Vτ ) is H -distinguished. By [Flicker 1991, Proposition 11]
we have dim V ′Hτ = 1. Let ξ be a nonzero H-invariant linear form on Vτ . Let SH

be an anisotropic torus of H and xm ∈ κS . Then, applying our local relative trace
formula to f1 := f and f2 approaching the Dirac measure at a σ-regular point xmγ

with γ ∈ Sσ , we obtain

|1σ (xmγ )|
1/4M( f )(xmγ )= cmξ,ξ ( f )mξ,ξ (xmγ ),

where c is some nonzero constant.
J. Hakim [1991, Proposition 8.1 and Lemma 8.1] obtained these results by other

methods.
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