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FROM COVERING MAPS

ROBERT TANG

Let P : 6 → S be a finite degree covering map between surfaces. Rafi
and Schleimer showed that there is an induced quasi-isometric embedding
5 : C(S)→ C(6) between the associated curve complexes. We define an
operation on curves in C(6) using minimal intersection number conditions
and prove that it approximates a nearest point projection to 5(C(S)). We
also approximate hulls of finite sets of vertices in the curve complex, to-
gether with their corresponding nearest point projections, using intersec-
tion numbers.

1. Overview

Let S be a closed, orientable, connected surface of genus g ≥ 0 with m ≥ 0 marked
points whose complexity ξ(S) := 3g− 3+m is at least 2. The curve complex of S,
denoted C(S), is the simplicial complex whose vertices are free isotopy classes of
simple closed curves on S and whose simplices are spanned by multicurves. The
curve complex has seen much activity in recent years due to its connections to map-
ping class groups, Teichmüller theory, and the geometry of hyperbolic 3-manifolds.

Given a finite degree covering map P :6→ S and a simple closed curve a ∈ C(S),
the preimage P−1(a) is a disjoint union of simple closed curves on 6. Rafi and
Schleimer, using techniques from Teichmüller theory, proved that the (one-to-many)
lifting operation 5 : C(S)→ C(6) defined by setting 5(a) = P−1(a) is a quasi-
isometric embedding. In [Tang 2012], we give a new proof using results from
hyperbolic 3-manifold geometry.

Theorem 1.1 [Rafi and Schleimer 2009]. Let P : 6→ S be a finite degree cov-
ering map. Then the map 5 : C(S)→ C(6) defined above is a

V
-quasi-isometric

embedding, where
V

depends only on ξ(6) and deg P.

The primary aim of this paper is to give a combinatorial approximation of
the nearest point projection map to the image of 5. We define an operation
π : C(6)→5(C(S))⊆ C(6) as follows: Given a curve α ∈ C(6), let π(α)=5(b)
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where b is a curve which has minimal intersection number with P(α) among all
curves in C(S).

Theorem 6.1. Let P :6→ S be a finite degree covering map and suppose α∈C(6)
is a curve. Then π(α) is a uniformly bounded distance from any nearest point
projection of α to 5(C(S)) in C(6), where the bounds depend only on ξ(6) and
the degree of P.

Proposition 6.2. Assume further that P is regular, with deck group G. Then π(α)
is a uniformly bounded distance from any circumcenter for the G-orbit of α in C(6).
Moreover, the bounds depend only on ξ(6) and the degree of P.

The main tools we develop in order to prove our main results are descriptions
of hulls in the curve complex using intersection number conditions, which may be
of independent interest. These generalize Bowditch’s [2006b] approximation of
quasigeodesics in C(S) using intersection numbers, and Masur and Minsky’s [1999]
notion of balance time for a curve on a Teichmüller geodesic. Our results rely on
the geometry of singular Euclidean surfaces used to estimate weighted intersection
numbers. We state simplified versions of the relevant propositions below — see
Section 5 for more precise formulations.

Let α= (α1, . . . , αn) be an n-tuple of distinct curves in C(S), where n≥ 2. Given
a nonzero vector t= (t1, . . . , tn) of nonnegative reals, let γt ∈ C(S) be a curve which
minimizes the weighted intersection number

∑
i ti i(αi , · ). Define the hyperbolic

hull Hull(α) to be the union of all geodesic segments in C(S) connecting a pair of
points in α (viewed as a vertex set in C(S)).

Proposition 5.2. The sets Hull(α) and
⋃

t γt agree up to a uniformly bounded
Hausdorff distance in C(S), where the union is taken over all nonzero t ∈ Rn

≥0.
Moreover, the bound depends only on ξ(S) and n.

Proposition 5.5. Suppose β ∈ C(S) is a curve satisfying i(αi , β) 6= 0 for all i . Let
the balance vector tβ = (t1, . . . , tn) of β with respect to α be given by ti = i(αi , β)

−1

for each i . Then γtβ is a uniformly bounded distance from any nearest point
projection of β to Hull(α) in C(S), where the bound depends only on ξ(S) and n.

Organization. We review the curve complex in Section 2, and some coarse geo-
metric notions in Section 3, placing a particular emphasis on δ-hyperbolic spaces.

In Section 4, we introduce a generalization of Bowditch’s [2006b] construction
of singular Euclidean structures on surfaces on which the geodesic lengths of curves
estimate suitable weighted intersection numbers. We verify in Section 7 that these
surfaces satisfy a quadratic isoperimetric inequality and then apply a theorem of
Bowditch to establish the existence of wide annuli.

In Section 5, we introduce two notions of hulls for finite sets in C(S): one arising
geometrically in C(S); the other defined using intersection number conditions. We
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give proofs of Propositions 5.2 and 5.5 assuming bounded diameter properties for
sets of curves satisfying certain bounded weighted intersection number conditions
(Lemma 5.1) — a key fact whose proof we defer to Section 8. In Section 6, we
utilize the results from Sections 3 and 5 to give proofs of the main theorems.

2. The curve complex

Let S = (S, �) denote a closed, orientable, connected surface of genus g ≥ 0
together with a set � of m ≥ 0 marked points. A curve on S is a continuous map
a : S1

→ S−�. We will also write a for its image on S. A curve a is simple if
it is an embedded copy of S1. We call a curve trivial or peripheral if it is freely
homotopic to a curve bounding a disc or a disc with exactly one marked point,
respectively. A simple closed curve which is nontrivial and nonperipheral is called
essential. A multicurve on S is a finite collection of nonparallel essential simple
closed curves which can be realized disjointly simultaneously.

Let C0(S) denote the set of free homotopy classes of essential simple closed
curves on S. Unless explicitly stated otherwise, we will blur the distinction between
curves and their free homotopy classes. In this paper, we assume that S has
complexity ξ(S) := 3g− 3+m at least 2; modifications to the following definition
are required for low-complexity cases but we shall not deal with them here. For an
introduction to the curve complex, see [Schleimer 2005].

Definition 2.1. The curve complex of S, denoted C(S), is a simplicial complex
whose vertex set is C0(S) and whose simplices are spanned by multicurves. In
particular, two distinct simple closed curves are connected by an edge in C(S) if
and only if they have disjoint representatives on S.

For our purposes, it suffices to study the 1-skeleton C1(S) of the curve complex,
known as the curve graph. Indeed C1(S) equipped with the induced path metric,
denoted dS , is naturally quasi-isometric to C(S) with the standard simplicial metric.
To simplify notation, we shall write C(S) in place of C1(S) and α ∈ C(S) to denote
a curve (or multicurve).

A finite collection of curves fills S if their complement is a disjoint union of discs
each with at most one marked point. Note that a pair α, β ∈ C(S) fill S if and only
if dS(α, β) ≥ 3. Given free homotopy classes of curves α and β, not necessarily
simple, define their (geometric) intersection number i(α, β) to be the minimal value
of |a ∩ b| over all representatives a ∈ α and b ∈ β in general position on S.

Lemma 2.2 [Hempel 2001], [Schleimer 2005]. Suppose α and β are curves in
C(S). Then

dS(α, β)≤ 2 log2 i(α, β)+ 2

whenever i(α, β) 6= 0.
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As an immediate corollary, we see that C(S) is connected (this was originally
observed by Harvey [1981]). The curve graph is also locally infinite and has
infinite diameter [Kobayashi 1988]. Masur and Minsky [1999] proved the following
celebrated theorem regarding the large scale geometry of the curve graph:

Theorem 2.3. Given any surface S with ξ(S) ≥ 2, there exists δ > 0 so that the
curve graph C(S) is δ-hyperbolic.

Bowditch [2006b] gives a combinatorial proof of hyperbolicity using intersection
numbers. We will be extending many of the results established in his paper in
Sections 4 and 5.

Theorem 2.4 [Bowditch 2014], [Aougab 2013], [Clay et al. 2014], [Hensel et al.
2015]. The constant δ > 0 in Theorem 2.3 can be chosen independently of S.

Hensel, Przytycki and Webb in particular show that all geodesic triangles in C(S)
possess 17-centers.

3. Coarse geometry

We now recall some basic notions concerning Gromov hyperbolic spaces. Most of
the statements and results are either well known in the literature or are relatively
straightforward to deduce. We refer the reader to [Bridson and Haefliger 1999],
[Gromov 1987], [Alonso et al. 1991], and [Bowditch 2006a] for more background,
and to [Tang 2013] for most of the proofs.

3A. Notation. Let (X , d) be a metric space. Given any subset A ⊆ X and a point
x ∈ X , we define d(x, A) := inf{d(x, a) | a ∈ A}. For r ≥ 0, let

Nr(A)= {x ∈ X | d(x, A)≤ r}

denote the r-neighborhood of A in X . For subsets A, B ⊆ X and r ≥ 0, write

A ⊆r B⇐⇒ A ⊆Nr(B)

and
A ≈r B⇐⇒ A ⊆r B and B ⊆r A.

Define the Hausdorff distance between A and B to be

HausDist(A, B)= inf{r ≥ 0 | A ≈r B}.

To simplify notation, we will often write a ∈ X in place of a singleton set {a} ⊆ X .
If a and b are real numbers then write

a ≈r b⇐⇒ |a− b| ≤ r.
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The diameter of A ⊆ X is defined to be

diam(A) := sup{d(x, y) | x, y ∈ A}.

We will also abbreviate d(x, y) to xy if there is no chance of confusion.

3B. Geodesics, quasiconvexity and quasi-isometries. Let I ⊆ R be an interval.
A geodesic is a map γ : I → X so that d(γ (t), γ (s)) = |t − s| for all t, s ∈ I.
A geodesic segment connecting points x and y in X is the image of a geodesic
γ : [0, d(x, y)] → X such that γ (0) = x and γ (d(x, y)) = y. A metric space X
is called a geodesic space if every pair of points can be connected by a geodesic
segment. A subset U ⊆ X is Q-quasiconvex if every geodesic segment connecting
any pair of points in U lies in NQ(U ). We say a subset is quasiconvex if it is
Q-quasiconvex for some Q≥ 0.

A (one-to-many) map f : X → Y between metric spaces is a
V

-quasi-isometric
embedding if for all x1, x2 ∈ X and y1 ∈ f (x1), y2 ∈ f (x2) we have

dY(y1, y2)≤
V

dX (x1, x2)+
V

and dX (x1, x2)≤
V

dY(y1, y2)+
V
.

In addition, if NV( f (X ))= Y then f is called a
V

-quasi-isometry and we say that
X and Y are

V
-quasi-isometric. If X and Y are

V
-quasi-isometric for some

V
≥ 1

then we may simply say that they are quasi-isometric.

3C. Gromov hyperbolic spaces. Throughout this paper, we shall use the thin tri-
angles definition of δ-hyperbolicity which we now describe.

Let (X , d) be a geodesic space. Let T = [x, y] ∪ [y, z] ∪ [z, x] be a geodesic
triangle in X with corners at x, y, z ∈ X . There exist unique internal points
ox ∈ [y, z], oy ∈ [x, z], and oz ∈ [x, y] such that xoy = xoz , yox = yoz , and
zox = zoy . The internal points cut T into three pairs of geodesic segments; each
pair consists of two segments of equal length emanating from the same corner of T.
We say that T is δ-thin if each pair of segments δ-fellow travel: for all u ∈ [x, oy]

and v ∈ [x, oz] satisfying xu = xv, we have uv ≤ δ (and similarly for the other two
pairs). We say X is δ-hyperbolic if every geodesic triangle in X is δ-thin.

We will also use some equivalent notions of Gromov hyperbolicity:

Lemma 3.1 (four point condition, [Bridson and Haefliger 1999] Proposition 1.22).
Let X be a geodesic space. If X is δ-hyperbolic then

xy+ zw ≤max{xz+ yw, xw+ yz}+ 2δ

for all x, y, z, w ∈ X . Conversely, if this inequality holds for all points x, y, z and
w in X , then X is δ′-hyperbolic for some δ′ ≥ 0 depending only on δ.

Suppose k≥ 0. A k-center for a geodesic triangle T ⊆ X is a point in X which
lies within a distance k of each side of T.
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Lemma 3.2 [Bowditch 2006a, Proposition 6.13]. Any geodesic triangle in a δ-
hyperbolic space possesses a δ-center, namely, any of its internal points. Conversely,
if X is a geodesic space for which there is some k≥ 0 such that all geodesic triangles
in X possess k-centers then X is δ-hyperbolic for some δ ≥ 0 depending only on k.

3D. Nearest point projections to quasiconvex sets. Let X be a δ-hyperbolic space,
and U ⊆ X be a closed, nonempty Q-quasiconvex subset. The set of nearest point
projections of a point x ∈ X to U in X is

projU (x) := {p ∈U | xp = d(x,U )}.

Since U is closed, projU (x) is nonempty.

Lemma 3.3. For all x ∈ X , we have diam(projU (x))≤ 2δ+ 2Q.

Lemma 3.4. Given x ∈ X , let p ∈ projU (x) be any nearest point projection. Then
for all u ∈U, [x, u] ≈2δ+Q [x, p] ∪ [p, u] and xu ≈2δ+2Q xp+ pu.

For r ≥ 0, call q ∈U an r-entry point of x to U if for every u ∈U, all geodesics
from x to u intersect Nr(q). Let entryU (x, r) denote the set of such points.

Lemma 3.5. Let r ≥ 0. Then for all x ∈ X , we have entryU (x, r) ⊆2r projU (x).
Furthermore, if r ≥ 2δ+Q then entryU (x, r)≈2r projU (x).

We shall also need the fact that nearest point projections to quasiconvex sets are
well behaved under quasi-isometric embeddings.

Lemma 3.6. Let f :X→X ′ be a
V

-quasi-isometric embedding of geodesic spaces,
where X ′ is δ′-hyperbolic. Let C be a Q-quasiconvex subset of X and let C ′= f (C).
Given a point x ∈ X , let x ′ be a point in f (x). Let p and q ′ be nearest point
projections of x to C and x ′ to C ′ respectively. Let q ∈ X be a point satisfying
q ′ ∈ f (q). Then p ≈K q , where K depends only on δ′,

V
and Q.

Proof. First, note that X is δ-hyperbolic and C ′ is Q′-quasiconvex in X ′ for some
constants δ = δ(

V
, δ′) and Q′ = Q′(Q,

V
, δ). Let c ∈ X be a k-center for x , p and

q, where k = δ. Any point c′ ∈ f (c) is then a k′-center for x ′, p′ and q ′, where
k′= k′(k,

V
) and p′ ∈ f (p). One can check that xp≈2k xc+cp. By quasiconvexity

of C, there is some point y ∈ C satisfying cy ≤ k+Q. Since p is a nearest point
projection of x to C, we obtain

xc+ cp− 2k≤ xp ≤ xy ≤ xc+ cy ≤ xc+ k+Q,

which implies cp ≤ Q+ 3k. Similarly, we can deduce c′q ′ ≤ Q′+ 3k′. Since f is a
V

-quasi-isometric embedding, it follows that cq ≤
V
× c′q ′+

V
and hence

pq ≤ pc+ cq ≤ K,

where K= Q+ 3k+
V
(Q′+ 3k′)+

V
. �
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3E. Hyperbolic hulls. Let X be a δ-hyperbolic space and suppose U ⊆ X is
nonempty. The hyperbolic hull of U, denoted Hull(U ), is the union of all geodesic
segments in X connecting a pair of points in U.

Example 3.7. Let U be a finite subset of Hn, where n ≥ 1. Then Hull(U ) is a
uniformly bounded Hausdorff distance away from the convex hull of U in Hn.

Lemma 3.8. The hyperbolic hull Hull(U ) is 2δ-quasiconvex. Furthermore, if
C ⊆ X is a Q-quasiconvex set which contains U then Hull(U )⊆Q C.

In fact, these properties characterize Hull(U ) up to finite Hausdorff distance.

Corollary 3.9. Let C ⊆ X be a Q-quasiconvex set containing U with the following
property: for any Q′-quasiconvex set C ′ ⊆ X also containing U, we have C ⊆r C ′

for some r = r(Q,Q′)≥ 0. Then HausDist(C,Hull(U ))≤max{Q, r(Q, 2δ)}.

3F. Circumcenters. Let U be a nonempty finite subset of a δ-hyperbolic space X .
The radius of U is

rad(U ) :=min{r ≥ 0 | there exists x ∈ X ,U ⊆Nr(x)}.

Call x ∈X a circumcenter of U if U ⊆Nr(x), where r= rad(U ), and write circ(U )
for the set of circumcenters of U.

Lemma 3.10. Suppose x ∈ X satisfies U ⊆Nr+ε(x), where r = rad(U ) and ε ≥ 0.
Then for any c ∈ circ(U ), we have cx ≤ 2δ+ 2ε and hence diam(circ(U ))≤ 2δ.

Lemma 3.11. Let x , y ∈U be points such that xy ≥ diam(U )−2ε, for some ε ≥ 0.
Let m be the midpoint of a geodesic segment [x, y]. Then c≈2δ+ε m, where c is any
circumcenter of U. Furthermore, we have diam(U )≤ 2 rad(U )≤ diam(U )+ 2δ.

We also give the following characterization of circumcenters of orbits under
finite group actions on δ-hyperbolic spaces:

Lemma 3.12. Assume G is a finite group acting by isometries on a δ-hyperbolic
space X . Fix a point x0 ∈ X and let c be a circumcenter for Gx0. Given a point
z ∈ X , let p be any of its nearest point projection to Hull(Gx0). Then

pc ≤ rad(Gz)+ 7δ
and hence

zc ≤ rad(Gz)+ d(z,Hull(Gx0))+ 7δ.

Proof. We first claim that p lies within a distance δ of a geodesic segment [u, v],
where u, v ∈ Gx0 are points such that uv ≥ diam(Gx0)− 2δ. Suppose p lies on
a geodesic segment [x, y] for some x and y in Gx0. There exist some x ′ and y′

in Gx0 such that xx ′ = yy′ = diam(Gx0). If x ′ = y′ then the claim follows from
hyperbolicity. Now assume x ′ 6= y′. By Lemma 3.1, we have

2 diam(Gx0)= xx ′+ yy′ ≥max{xy+ x ′y′, xy′+ x ′y} ≥ 2 diam(Gx0)− 2δ.



220 ROBERT TANG

If xy + x ′y′ ≥ 2 diam(Gx0)− 2δ, then xy ≥ diam(Gx0)− 2δ, which implies the
claim. If not, then xy′ ≥ diam(Gx0)− 2δ. The claim then follows by considering a
geodesic triangle with x , y and y′ as its vertices.

Now suppose q ∈ [u, v] is a point such that pq ≤ δ. Then

d(z, [u, v])≤ zq ≤ zp+ pq ≤ d(z,Hull(Gx0))+ δ ≤ d(z, [u, v])+ δ.

By considering a geodesic triangle with vertices u, v, and z, one can show that
q ≈3δ o, where o ∈ [u, v] is the internal point opposite z. Observe that

d(z, x0)= d(gz, gx0)≈2D d(z, gx0)

for all g ∈ G, where D := rad(Gz) ≥ 1
2 diam(Gz). Therefore zu ≈2D zv which

implies uo ≈2D ov. It follows that o ≈D m, where m is the midpoint of [u, v].
Finally, applying Lemma 3.11 gives p ≈δ q ≈3δ o≈D m ≈3δ c and we are done. �

3G. Almost fixed point sets. Let G be a finite group acting by isometries on a
δ-hyperbolic space X . Given R≥ 0, let

FixX (G,R) := {x ∈ X | diam(Gx)≤ R}

be the set of R-almost fixed points of G in X .

Lemma 3.13. The set FixX (G, 2δ) is nonempty. Moreover, if R≥ δ then

FixX (G, 2R)≈R+δ FixX (G, 2δ).

Proof. For any x ∈ X , it is straightforward to check that FixX (G, 2δ) contains
circ(Gx) 6=∅. Furthermore, if x ∈ FixX (G, 2R) then, by Lemma 3.11, we have

xc ≤ rad(Gx)≤ 1
2 diam(Gx)+ δ ≤ R+ δ,

and hence FixX (G, 2R)⊆R+δ FixX (G, 2δ). The reverse inclusion is immediate. �

Thus, to understand the geometry of FixX (G, 2R), for R≥ δ, it suffices to study
that of FixX (G, 2δ). One can also show that FixX (G, 2R) is quasiconvex for R≥ δ.

Lemma 3.14. Let R ≥ δ. For any point x ∈ X , let c be a circumcenter for its
G-orbit, and p be any nearest point projection to FixX (G, 2R). Then cp ≤ 2δ+ 4R.

Proof. For all g ∈ G, we have

d(gx, p)≤ d(gx, gp)+d(gp, p)≤ d(x, p)+2R≤ d(x, c)+2R≤ rad(Gx)+2R.

Applying Lemma 3.10 completes the proof. �

It is worth noting that when R < δ, Lemmas 3.13 and 3.14 need not hold: it
is possible for FixX (G, 2R) to lie very deeply inside FixX (G, 2δ), as shown by
the example below. Recall that the point (r, θ, t) ∈ [0,∞)×R×R in cylindrical
coordinates on R3 represents (r cos θ, r sin θ, t) ∈ R3 in Cartesian coordinates.
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Example 3.15 (Rocketship). A rocketship of length l > 0 with n ≥ 2 fins, denoted
R=R(n, l), is the union of the following sets defined using cylindrical coordinates:

• the nose N = {(t, θ, t) | 0 ≤ t ≤ 1, θ ∈ R}, a right circular cone of height 1
and base radius 1;

• the shaft S = {(1, θ, t) | 1 ≤ t ≤ l + 1, θ ∈ R}, a right circular cylinder of
height l and base radius 1; and

• the fins Fn = {(1, 2kπ/n, t) | t ≥ l + 1, k ∈ Z}, a disjoint union of n closed
rays.

We endow R with the induced path metric from R3 with the Euclidean metric. One
can show that R is quasi-isometric to a tree and hence δ-hyperbolic for some δ > 0;
this can be done by collapsing the radial component of the nose and shaft. Moreover,
δ ≥ π/2 for l sufficiently large. The group G = Z/nZ acts isometrically on R by
rotations about the t-axis through integral multiples of 2π/n. For any x ∈ Fn , the
circumcenters of Gx are points of the form (1, (4k+ 1)π/2n, l + 1), where k ∈ Z.
For R≥ 0 sufficiently small, FixR(G, 2R) is contained in N. Therefore, circ(Gx)
is at least a distance l away from FixR(G, 2R). Furthermore, FixR(G, 2δ) contains
both N and S, and so its Hausdorff distance from FixR(G, 2R) is at least l.

4. Singular Euclidean structures

We now generalize Bowditch’s [2006b] construction of singular Euclidean surfaces
which are used to estimate weighted intersection numbers. Suppose S = (S, �) is
a closed surface of genus g with a set of m marked points � such that ξ(S) ≥ 2.
Throughout this section, fix an n-tuple α = (α1, . . . , αn) of distinct multicurves in
C(S). A vector t= (t1, . . . , tn) 6= 0 of nonnegative real numbers shall be referred to
as a weight vector. Write t ·α for the formal sum

∑
i tiαi . For simplicity, assume

that α fills S and that all entries of t are positive. The appropriate modifications for
the nonfilling case shall be dealt with in Section 7A.

4A. Construction of S(t·α). Realize the multicurves αi on S so that they intersect
generally and pairwise minimally. The union of the αi is a connected 4-valent
graph ϒ on S. The closure of each component of S − ϒ is a polygon with at
most one marked point. The polygons together with ϒ give S the structure of a
2-dimensional cell complex. By taking the dual 2-cell structure, we obtain a tiling
of S by rectangles which are in bijection with the self-intersection points of α. We
will insist that any marked point of S coincides with a vertex of this tiling.

Each rectangle R corresponding to an intersection of αi with αj is isometrically
identified with a Euclidean rectangle of side lengths ti and t j so that αi is transverse
to the two sides of length ti . Each vertex in this tiling meeting k 6= 4 corners of
rectangles becomes a singular point with cone angle kπ/2. This gives a singular
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Euclidean metric on S. We may arrange for each αi to be locally geodesic by
requiring αi ∩ R to be a straight line connecting the midpoints of opposite sides
of R, for every rectangle R meeting αi . Thus, each component of αi is the core curve
of an annulus of width ti formed by taking the union of all rectangles R it meets.

The singular Euclidean surface defined above shall be denoted S(t · α). We
remark that the metric depends on the realization of α on S up to isotopy, however,
any such choice will work equally well for our purposes.

We will allow representatives of a curve γ ∈ C(S) to meet marked points to speak
of (locally) geodesic representatives. Say c is a representative of γ if there exists
an embedded curve c′ representing γ and a homotopy F : S1

× [0, 1] → S such
that F(θ, 0)= c′(θ), F(θ, 1)= c(θ) and F(S1

×{t})⊆ S−� for all 0≤ t < 1. A
locally geodesic representative c of γ on S(t ·α) may not necessarily be embedded.
In these cases, there is a decomposition of the circle S1

= ∪Ik into a finite union of
closed intervals with disjoint interiors so that c : S1

→ S(t ·α) sends each Ik to a
straight line segment with endpoints at singular points or marked points.

By a geodesic representative of γ , we mean a curve representing γ attaining the
minimal length among all representatives of γ . Geodesic representatives exist: there
is a lower bound on the injectivity radius and distance between singular points on
S(t ·α), and therefore there are only finitely many locally geodesic representatives
of γ with length less than any given constant. We will use l(γ ) to denote the length
of a geodesic representative of γ on S(t ·α).

For notational convenience, define a function on weight vectors by setting

‖t‖α :=
√

i(t ·α),
where

i(t ·α)=
∑
j<k

t j tki(αj , αk)

is the self-intersection number of t · α. This serves as a rescaling factor for the
singular Euclidean surface S(t ·α). We will extend intersection number linearly:

i(t ·α, γ ) :=
∑

i

ti i(αi , γ ).

Proposition 4.1. The singular Euclidean surface S(t ·α) has the following proper-
ties:

(1) S(t ·α) has area ‖t‖2α =
∑

j<k t j tki(αj , αk).

(2) For all curves γ ∈ C(S), we have

l(γ )≤ i(t ·α, γ )≤
√

2l(γ ).

(3) There exists an essential annulus on S(t ·α) whose width is at least W0‖t‖α,
where W0 > 0 is a constant depending only on ξ(S).
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Here, the width of an annulus is the length of a shortest arc connecting its two
boundary components. The first claim is immediate from the construction. The
second claim shall be proven in Section 4B below; and the third in Section 7. It is
worth mentioning that the third claim holds for a larger class of metrics satisfying a
suitable isoperimetric inequality. The metric on S(t ·α) can be approximated by a
nonsingular Riemannian metric but we shall not need to do so.

4B. A grid structure on S(t · α). A quarter-translation surface is a topological
surface S with a finite set of singularities ς , together with an atlas of charts from
S− ς to R2 whose transition maps are translations of R2 possibly composed with
rotations through integral multiples of π/2. The singular points have cone angles
which are integral multiples of π/2 and at least π .

Given a quarter-translation surface S, we may pull back the standard Euclidean
metric on R2 to give a singular Euclidean metric on S. Geodesics which do not
meet any singular points or marked points with respect to this metric can only
self-intersect orthogonally. We can also define an L1-metric on S by pulling back
the metric given infinitesimally by |dx |+|dy| on R2. We will work with the singular
Euclidean metric unless otherwise specified. The following is immediate:

Lemma 4.2. Let l2(η) and l1(η) denote, respectively, the Euclidean and L1-lengths
of a path η on S. Then l2(η)≤ l1(η)≤

√
2l2(η).

We may pull back the horizontal and vertical directions on R2 to give a preferred
(unordered) pair of orthogonal directions on S defined away from the singular points.
These shall be referred to as the grid directions. Geodesics which run parallel to a
grid direction will be called grid arcs. Every nonsingular point on S has an open
rectangular neighborhood, with sides parallel to the grid directions, on which the
grid leaves restrict to give a pair of transverse foliations. Such a rectangle will be
called an open grid rectangle.

It is straightforward to check that S(t ·α) is a quarter-translation surface. We will
assume that the grid directions on S(t ·α) run parallel to the sides of the rectangles
used in its construction.

Lemma 4.3. Given a curve γ ∈ C(S), let c be any of its geodesic representatives
on S(t ·α) with respect to the Euclidean metric. Then l1(c)= i(t ·α, γ ).

Proof. If c is embedded then we can isotope it to another geodesic representative
meeting at least one singularity. Thus we can assume that S1 decomposes as a finite
union of intervals ∪Ik with disjoint interiors such that c : S1

→ S(t · α) embeds
each Ik as a straight line segment connecting singularities or marked points.

We can homotope c to a closed path c′ : S1
→ S(t · α) so that each c′(Ik) is

an edge-path in the 1-skeleton of S(t · α) with the same endpoints as c(Ik). The
homotopy can be performed in a way which preserves the l1-length of the path and



224 ROBERT TANG

without creating new intersection points with any of the αi . One can check that c
intersects each αi minimally and thus the same is also true of c′. Finally, we deduce
l1(c′(S1)) = i(t · α, γ ) by observing that every edge in the 1-skeleton of S(t · α)
transverse to αi has length ti . �

The second claim of Proposition 4.1 follows from the previous two lemmas.

5. Hulls in the curve complex

Let S = (S, �) be a connected compact surface S without boundary with a finite
set of marked points � satisfying ξ(S) ≥ 2. Throughout this section, we will fix
an n-tuple α = (α1, . . . , αn) of distinct multicurves in C(S), where n ≥ 2. We will
assume that no pair αi and αj has a common component. We shall establish a
coarse equality between two subsets of C(S) determined by α— its hyperbolic hull
Hull(α), defined purely in terms of the geometry of C(S); and Short(α, L) which is
defined using only intersection numbers. We also give a combinatorial method of
approximating nearest point projections to Hull(α).

5A. Short curve sets. Let α = (α1, . . . , αn) be an n-tuple of distinct multicurves
in C0(S), and t= (t1, . . . , tn) be a weight vector. Given L≥ 0, define

short(t ·α, L) := {γ ∈ C(S) | i(t ·α, γ )≤ L‖t‖α}.

If ‖t‖α = 0 then this set is contained in the 1-neighborhood of α. Note that
short(t ·α, L) remains invariant under multiplying t by a positive scalar. When α
fills S, the geodesic length of a curve γ on S(t · α) approximates its intersection
number with t ·α (Proposition 4.1). (The same is also true in the nonfilling case —
see Section 7A). Thus, we can view short(t · α, L) as the set of bounded length
curves on S(t ·α) rescaled to have unit area.

Lemma 5.1. There exists a constant L0 > 0 depending only on ξ(S) such that, for
any L≥ L0, the set short(t ·α, L) is nonempty. Moreover,

diamC(S)(short(t ·α, L))≤ 4 log2 L+ k0,

where k0 is a constant depending only on ξ(S).

Consequently, up to bounded error, we can view short(t·α, L) as a single curve in
C(S)which has minimal intersection number with t·α. The proof of this result will be
given in Section 8, and largely follows the proof of Lemma 4.1 in [Bowditch 2006b].

5B. A hull via intersection numbers. For L≥ 0, define the L-short curve hull of
α to be

Short(α, L) :=
⋃

t

short(t ·α, L),
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where the union is taken over all weight vectors t ∈ Rn
≥0 (or, equivalently, by

choosing one representative from each projective class). Write Hull(α)⊆ C(S) for
the hyperbolic hull of α considered as a set of vertices in C(S).

Proposition 5.2. Let L≥ L0. Then for any n-tuple of multicurves α in C(S),

Short(α, L)≈k1 Hull(α),

where k1 depends only on ξ(S), n and L.

This is essentially an extension of Bowditch’s coarse description of geodesics in
C(S) using intersection numbers, which we now reformulate:

Lemma 5.3 [Bowditch 2006b, Proposition 6.2]. Let α′ = (α1, α2) be a pair of
multicurves in C(S). Let [α1, α2] denote any geodesic segment connecting α1 and
α2 in C(S). Then for all L≥ L0, we have

Short(α′, L)≈k′1
[α1, α2],

where k′1 ≥ 0 depends only ξ(S) and L.

Proof of Proposition 5.2. Applying Lemma 5.3 to all pairs of multicurves (αi , αj )

in α = (α1, . . . , αn), we obtain the inclusion:

Hull(α)⊆k′1
Short(α, L).

Let t= (t1, . . . , tn) be a weight vector and assume, without loss of generality, that
the quantity t j tki(αj , αk) is maximized when { j, k} = {1, 2}. Let α′ = (α1, α2) and
t′ = (t1, t2). Since there are n(n− 1)/2 distinct unordered pairs of indices { j, k}, it
follows that

‖t‖2α =
∑
j<k

t j tki(αj , αk)≤
n(n− 1)

2
t1t2i(α1, α2)=

n(n− 1)
2
‖t′‖2α′ .

Now let γ be a curve in short(t ·α, L). Then

i(t′ ·α′, γ )≤ i(t ·α, γ )≤ L‖t‖α ≤ L

√
n(n− 1)

2
‖t′‖2α′ ≤

nL
√

2
‖t′‖α′,

which implies

short(t ·α, L)⊆ short
(

t′ ·α′, nL
√

2

)
.

Invoking Lemma 5.3, we have

short
(

t′ ·α′, nL
√

2

)
⊆r [α1, α2] ⊆ Hull(α),

where r ≥ 0 is some constant depending on n, L and ξ(S). �
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We can describe the above proof in terms of the geometry of S(t ·α). Assume
S(t ·α) has unit area. One can obtain S(t′ ·α′) by homotoping the annuli consisting
of rectangles traversed by αi to the core curve αi for each i 6= 1, 2. The maximality
assumption on α1 and α2 ensures that the total area of the remaining rectangles is at
least 2/(n(n− 1)). Scale S(t′ ·α′) by a factor of at most n/

√
2 to give it unit area.

This process scales the length of a curve γ on S(t ·α) by a factor of at most n/
√

2.

5C. Nearest point projections to hulls. In this section, we approximate nearest
point projections to short curve hulls using only intersection number conditions.

Definition 5.4. Let β ∈ C(S) be a multicurve. A weight vector t = (t1, . . . , tn)
satisfying

t j i(αj , β)= tki(αk, β)

for all j, k is called a balance vector for β with respect to α.

If β intersects all αi then setting ti = i(αi , β)
−1 yields the unique balance vector

up to positive scale. If not, we can set ti = 1 whenever i(αi , β) = 0 and ti = 0
otherwise to produce a balance vector. Let tβ denote any balance vector for β. We
also remark that the above definition is analogous to the notion of balance time for
quadratic differentials as described by Masur and Minsky [1999].

The proof of the following will be given at the end of this section.

Proposition 5.5. Assume L≥ L0. Given a multicurve β ∈ C(S), let γ be any nearest
point projection of β to Hull(α). Then

γ ≈k2 short(tβ ·α, L),

where k2 ≥ 0 depends only on ξ(S), n and L.

As was the case with Proposition 5.2, this is an extension of a result of Bowditch.
His result was originally phrased in terms of centers for geodesic triangles; however,
our statement agrees with it up to uniformly bounded error.

Lemma 5.6 [Bowditch 2006b, Proposition 3.1 and Section 4]. Let α1, α2 and β be
multicurves in C(S). Let t′β be a balance vector for β with respect to α′ = (α1, α2).
Let γ be a nearest point projection of β to [α1, α2]. Then

γ ≈k′2
short(t′β ·α

′, L),

where k′2 depends only on ξ(S) and L.

If β is disjoint from some αi then Proposition 5.5 follows immediately from
Lemma 2.2. We will henceforth assume this is not the case. We reduce the problem
of finding a nearest point projection to a hyperbolic hull to that of projecting to a
suitable geodesic.
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Lemma 5.7. Let U be a subset of a δ-hyperbolic space X . Fix a point w ∈ X .
Assume there exist x, y ∈U and R≥ 0 such that

dX ([x, y], [z, w])≤ R

for all z ∈U. Let p and q be nearest point projections of w to Hull(U ) and [x, y]
respectively. Then

p ≈R′ q,

where R′ depends only on R and δ.

Proof. By Lemma 3.5, it suffices to show that for all u ∈ Hull(U ), any geodesic
[w, u] must pass within a bounded distance of q. If u lies on a geodesic segment
[z, z′] for some z, z′ ∈U then [w, u] must lie inside the 2δ-neighborhood of [w, z]
or [w, z′]. Hence, we only need to bound d(q, [w, z]) for all z ∈U in terms of δ
and R. Recall that geodesic segments are δ-quasiconvex. Choose points v ∈ [x, y]
and v′ ∈ [z, w] so that vv′ = dX ([x, y], [z, w])≤ R. Then

q ⊆3δ [w, v] ⊆R+δ [w, v
′
] ⊆ [w, z],

where we have applied Lemma 3.4 for the first comparison. �

In order to exploit the above result, we recall yet another lemma of Bowditch:

Lemma 5.8 [Bowditch 2006b, Proposition 6.3]. Suppose α1, α2, α3, α4 ∈ C(S) are
multicurves which satisfy

i(α1, α4)i(α2, α3)≤ ri(α1, α2)i(α3, α4)

for some r > 0. Then
dS([α1, α2], [α3, α4])≤ R,

where R≥ 0 depends only on r and ξ(S).

Proof of Proposition 5.5. Let tβ be a balance vector for β with respect to α. To
simplify notation, assume t j tki(αj , αk) is maximized when { j, k} = {1, 2}. Then

t2t j i(α2, αj )≤ t1t2i(α1, α2)

for any j = 1, . . . , n. As β is assumed to intersect all the αi , we have ti = i(αi , β)
−1

(after rescaling) and so

i(α1, β)i(α2, αj )≤ i(α1, α2)i(αj , β).

Invoking Lemma 5.8 gives

dS([α1, α2], [αj , β])≤ R.
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Let γ12 and γ be nearest point projections of β to [α1, α2] and Hull(α) respectively.
Applying Lemma 5.7 with U = α, x = α1, y = α2, and w = β gives

dS(γ12, γ )≤ R′,

where R′ depends only on ξ(S).
Now suppose γ ′ is a curve in short(tβ ·α, L). Using the same reasoning as for

the proof of Proposition 5.2, we see that

γ ′ ∈ short(tβ ·α, L)⊆ short
(

t′β ·α
′,

nL
√

2

)
,

where α′ = (α1, α2) and t′β = (t1, t2). By Lemma 5.6, we deduce that

dS(γ
′, γ12)≤ k′2

for some k′2 depending only on n, L and ξ(S). The preceding inequalities give

dS(γ
′, γ )≤ R′+ k′2,

which concludes the proof of the proposition. �

6. Covering maps

6A. Operations on curves arising from covering maps. We first recall some defi-
nitions and notation. Let P :6→ S be a finite degree covering map of surfaces.
The preimage P−1(a) of a simple closed curve a on S under P is a multicurve
on 6. This induces a one-to-many lifting map 5 : C(S)→ C(6) between curve
complexes by setting 5(a) := P−1(a). Recall the following theorem of Rafi and
Schleimer:

Theorem 1.1 [Rafi and Schleimer 2009]. Let P : 6→ S be a finite degree cov-
ering map. Then the map 5 : C(S)→ C(6) defined above is a

V
-quasi-isometric

embedding, where
V

depends only on ξ(6) and deg P.

It immediately follows that5(C(S)) is quasiconvex in C(6). This naturally leads
to the question of understanding nearest point projections to 5(C(S)). Define an
operation π : C(6)→5(C(S)) as follows: given a curve α ∈ C(6), let b∈ C(S) be a
curve which has minimal intersection number with P(α) on S and set π(α)=5(b).

Theorem 6.1. Let P : 6→ S be a finite degree covering map, and let 5 and π
be as above. Given a curve α ∈ C(6), let γ be a nearest point projection of α to
5(C(S)) in C(6). Then π(α)≈k3 γ , where k3 depends only on deg P and ξ(6).

Consequently, the operation α 7→ π(α) is coarsely well defined. The above will
be proven in Section 6B, and the following in Section 6C.
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Proposition 6.2. Suppose further that P is regular, and let G be its group of deck
transformations. Let γ ′ be a circumcenter of the G-orbit of a curve α in C(6). Then
π(α)≈k4 γ

′, where k4 is some constant depending only on deg P and ξ(6).

Recall that the deck transformation group Deck(P) of a covering map P :6→ S
is the group of all homeomorphisms f ∈Homeo(6) satisfying P ◦ f = P. In order
for the above statement to make sense, we must check that Deck(P) can be identified
with its image in the mapping class group Mod(6)= Homeo(6)/Homeo0(6).

Lemma 6.3. Suppose S has negative Euler characteristic, and let P :6→ S be a
finite degree covering map. Then the natural map Deck(P)→Mod(6) is injective.

Proof. We will only give a sketch proof. Endow int(S) with a hyperbolic metric and
pull it back to int(6) via P. The group Deck(P) then acts on int(6) by isometries.
The result follows since any isometry of a hyperbolic surface isotopic to the identity
must in fact coincide with the identity. �

Note, however, that this lemma does not hold for covers of the torus or annulus.

6B. Nearest point projections.

6B.1. Regular covers. We shall first deal with the case where P : 6 → S is a
regular cover. Let G = Deck(P). Given a curve α ∈ C(6), observe that the set
of lifts of P(α) to 6 via P is exactly Gα. Let α = (α1, . . . , αn) be an n-tuple of
curves whose entries are the lifts of P(α) in any order. Note that n ≥ 1 is some
divisor of deg P. Let 1 denote the vector of length n with all entries equal to 1.

Lemma 6.4. Let α and α be as above. Then π(α) ∈ short(1 ·α, L0|G|) where L0 is
a constant depending only on ξ(6).

Proof. Let b be a closed curve on S. Each point of b∩ P(α) on S lifts to exactly
|G| = deg P points of P−1(b)∩Gα on 6 via P, hence

i(P−1(b),α)= |G|i(b, P(α)).

By Lemma 5.1, there exists a curve γ ∈ C(6) such that

i(γ, α)≤ L0‖1‖α

for some constant L0 = L0(ξ(6)). Now assume b has minimal intersection with
P(α) out of all curves on S. It follows that

i(P−1(b),α)= |G|i(b, P(α))≤ |G|i(P(γ ), P(α))= i(Gγ,α)≤ |G|i(γ,α).

Finally, by combining the preceding inequalities, we see that

i(π(α),α)= i(P−1(b),α)≤ |G|i(γ,α)≤ |G|L0‖1‖α.

Thus π(α) ∈ short(1 ·α, L) for L= L0|G|. �
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Lemma 6.5. Given γ ∈ 5(C(S)), let β be any of its nearest point projections to
Hull(α). Then d6(π(α), β)≤ k5, where k5 depends only on deg P and ξ(6).

Proof. We may replace γ with the multicurve Gγ since their nearest point projec-
tions to Hull(α) are a uniformly bounded distance apart. Since G acts transitively
on Gα, it follows that i(Gγ, αi )= i(Gγ, αj ) for all i , j. Thus, 1 serves as a balance
vector for Gγ with respect to α. By Proposition 5.5, we deduce that

β ≈k2 short(1 ·α, L),

where k2 depends only on ξ(6), n and L ≥ L0. Applying the previous lemma
completes the proof. �

Proof of Theorem 6.1 for regular covers. Let α and α be as above. Let γ be any
curve in 5(C(S)). Since Hull(α) is quasiconvex, Lemmas 3.4 and 6.5 imply that
any geodesic connecting α to γ in C(6) must pass within a distance r of π(α),
where r depends only on deg P and ξ(6). Therefore π(α) is an r-entry point
of α to 5(C(S)). Since 5(C(S)) is also quasiconvex, Lemma 3.5 implies π(α)
is a uniformly bounded distance away from any nearest point projection of α to
5(C(S)). �

6B.2. The general case. The main obstacle in proving Theorem 6.1 for a nonregular
cover P :6→ S is the following: given a simple closed curve α ∈ C(6) there may
be some lifts of P(α) to 6 which are not simple. To address this issue, we pass to
a suitable finite cover of 6 using a standard group theoretic argument.

Lemma 6.6. Let P :6→ S be a covering map of finite degree. Then there exists a
cover Q : 6̂→6 such that F := P ◦ Q is regular and deg F ≤ (deg P)! .

Proof. Let H be the finite index subgroup of 0 = π1(S) corresponding to the
covering map P, and let H0 be the intersection of all 0-conjugates of H. It is
straightforward to check that H0 is exactly the kernel of the action of 0 on the set
of left cosets of H by left multiplication. The desired result then follows. �

The covering map F defined above is universal in the sense that any regular
cover of S which factors through P must also factor through F.

Lemma 6.7. Let P : 6→ S and F : 6̂→ S be as above. If α is a simple closed
curve on 6 then all lifts of P(α) to 6̂ via F are simple.

Proof. Any lift of α to 6̂ via Q is also a simple lift of P(α) via F. Since F is
regular, it follows that all other lifts of P(α) to 6̂ are simple. �

Let 8 : C(S)→ C(6̂) and 9 : C(6)→ C(6̂) be the lifting maps induced by the
covering maps F and Q respectively. Let φ : C(6̂)→8(C(S)) be the projection
map associated to F as described in Section 6A. We may assume φ ◦9 =9 ◦π .
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Proof of Theorem 6.1. Given α ∈ C(6), let α̂ be any of its lifts to 6̂ via Q. Note
that φ(α̂)=9(π(α)). Let γ̂ be a nearest point projection of α̂ to 8(C(S)) in C(6̂)
and let γ = Q(γ̂ ) ∈5(C(S)). Since F is regular, we can apply Theorem 6.1 for
regular covers to deduce that

d6̂(φ(α̂), γ̂ )≤ k̂3,

where k̂3 depends only on deg F and ξ(6̂) which can in turn be bounded in terms
of deg P and ξ(6). By Theorem 1.1, 9 is a

V
-quasi-isometric embedding, where

V
=

V
(deg F, ξ(6̂)), and so

d6(π(α), γ )≤
V
k̂3+

V
.

By Lemma 3.6, γ is a uniformly bounded distance away from any nearest point
projection of α to 5(C(S)) in C(6) and we are done. �

6C. Circumcenters for regular covers. Let P :6→ S be a regular cover, and G
its deck group. Given α ∈ C(6), we show π(α) approximates circ(Gα) in C(6).

Proof of Proposition 6.2. Since π(α) is a G-invariant multicurve, we deduce that
rad(Gπ(α))≤ 1. Proposition 5.2 and Lemma 6.4 together give

d6(π(α),Hull(Gα))≤ k′4,

where k′4 depends only on ξ(6) and deg P. Finally, combining the above with
Lemma 3.12 yields d6(π(α), circ(Gα))≤ k′4+ 7δ+ 1 as desired. �

Observe that the vertices in FixC(6)(G, 1) coincide exactly with those of5(C(S)).
An immediate corollary of Theorem 6.1 and Proposition 6.2 is the following:

Corollary 6.8. Any circumcenter for the G-orbit of a curve α ∈ C(S) is within a
uniformly bounded distance of any nearest point projection of α to 5(C(S)).

Therefore Lemma 3.14 still holds for FixC(6)(G, 1), albeit with weaker control
over the constants. As Example 3.15 demonstrates, this cannot be proven using
purely synthetic methods assuming only δ-hyperbolicity of C(6). In conclusion:
“There are no rocketships in the curve complex.”

7. An isoperimetric inequality on S(t ·α)

7A. Constructing S(t ·α) for nonfilling curves. We now generalize the construc-
tion of S(t · α) to encompass nonfilling curves. Assume α = (α1, . . . , αn) is an
n-tuple of distinct multicurves and t= (t1, . . . , tn) 6= 0 is a weight vector satisfying
‖t‖α 6= 0. Realize α minimally on S to form a 4-valent graph ϒ on S.

Let 6 ⊆ S be the (possibly disconnected) subsurface filled by ϒ . This can be
obtained by taking a closed regular neighborhood of ϒ on S and then attaching
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all complementary regions which are discs with at most one marked point. If α
fills S then 6 = S. In general, 6 will be a disjoint union of surfaces 61 ∪ . . .∪6s .
Observe that s ≤ ξ(S) since we can find a multicurve on S so that exactly one
component is contained in each 6k (by choosing a suitable subset of all curves
appearing in α, for example). Some of these components may be annuli — this
occurs precisely when a multicurve αi has a component disjoint from all other αj .
All other components will have genus at least one, or are spheres where the sum of
the number of marked points and boundary components is at least four.

We now define a 2-dimensional complex S(t ·α) as a quotient of S. Suppose 6k

is an annular component of 6 whose core curve is a component of αi . Identify 6k

with S1
× [0, ti ], then collapse the first coordinate to give a closed interval Ik of

length ti . Next, collapse every complementary component of 6 in S to a marked
point. These marked points will be called essential. We then apply the construction
from Section 4A to the image of each nonannular component of 6 in the quotient
space. The resulting space is a finite collection of singular Euclidean surfaces and
closed intervals identified along appropriate essential marked points. Note that this
construction agrees with the one given in Section 4A for the case of filling curves.
For brevity, call the image of a component of 6 a component of S(t ·α).

Let c be a representative of a curve γ ∈ C(S) on S. Its image c on S(t ·α) will
be a closed curve or a union of paths connecting essential marked points. Define
l(γ ) to be the minimal length of c over all representatives c of γ .

Proposition 7.1. Suppose α and t satisfy ‖t‖α > 0. Then the first two claims of
Proposition 4.1 hold for S(t ·α).

The proof of the above proceeds in the same manner as for the case of filling
curves. It remains to prove an analogue of the third claim.

7B. An isoperimetric inequality. Let S = (S, �) be a closed singular Riemannian
surface S with a finite set of marked points �. Let 1 be a closed disc and suppose
ι :1→ S is a piecewise smooth immersion which restricts to an embedding on its
interior. Let D denote the image ι(int(1)).

Definition 7.2. An open disc D arising in the above manner is called a trivial region
on S if it contains at most one marked point. The boundary ∂D is an embedded
Eulerian graph on S whose edges are piecewise smooth arcs. Define length(∂D) to
be the sum of the lengths of these arcs using the metric on S.

Bowditch defines trivial regions as open discs on S containing at most one
marked point without any conditions concerning piecewise smooth embeddings.
Nevertheless, his proof of the following proposition still holds with our definition:

Proposition 7.3 [Bowditch 2006b]. Suppose f : [0,∞)→ [0,∞) is a homeomor-
phism. Let ρ be a singular Riemannian metric on an orientable closed surface S
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with unit area. Let � be a finite set of marked points on S. We will assume |�| ≥ 5
whenever S is a 2-sphere. If area(D)≤ f (length(∂D)) for any trivial region D then
there is an essential annulus A ⊆ S−� such that width(A)≥W0, where W0 > 0
depends only on ξ(S) and f .

This section will be devoted to proving the following lemma which, together
with the above proposition, implies the third claim of Proposition 4.1:

Lemma 7.4. Suppose D is a trivial region on S(t ·α). Then

area(D)≤ 4 length(∂D)2.

Before launching into the details of the proof, we briefly outline our argument.
First, we reduce the problem to that of studying embedded closed discs on S(t ·α)
whose boundary is a finite union of grid arcs. We then show that such a disc D
can be tiled by grid rectangles. This tiling is dual to a collection of arcs on D,
where each arc is parallel to a component of some αi ∩ D. We call the union of
all rectangles meeting a given arc a band. The key step is to observe that any two
arcs in the collection intersect at most twice. Thus, the intersection of two distinct
bands is the union of at most two rectangles arising from the tiling. Conversely,
any rectangle from the tiling is contained in the intersection of two such bands. We
can then bound the area of the rectangles in terms of the length of ∂D.

7B.1. Technical adjustments. Let us first make a couple of observations to simplify
the problem.

Lemma 7.5. Any trivial region D on S(t ·α) can be perturbed to a trivial region
D′ whose boundary is a finite union of grid leaves. Moreover, D′ can be chosen so
that area(D′)≥ area(D) and length(∂D′)≤

√
2 length(∂D).

We will henceforth assume that the boundary of any trivial region on S(t ·α) is
a finite union of grid leaves.

Let ι :1→ S(t ·α) be a piecewise smooth immersion whose restriction to int(1)
is an embedding with image D. Observe that ι : ∂1= S1

→ ∂D is an immersion
of a circle which runs over each edge of ∂D at most twice. We will metrize 1 by
pulling back the metric on S(t ·α) via ι.

Lemma 7.6. Suppose D and 1 are as given above. Then area(1)= area(D) and
length(∂D)≤ length(∂1)≤ 2 length(∂D).

7B.2. Tiling1 by rectangles. The disc 1 inherits grid directions from S(t ·α) via ι
away from the preimage of the singular points. The boundary decomposes as a finite
union ∂1 = ∪Ik of closed grid arcs with disjoint interiors. We may assume that
this decomposition is minimal, that is, it cannot be obtained from any other such
decomposition by subdividing arcs. An endpoint of any grid arc Ik will be called a
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corner point of ∂1. A corner point which does not coincide with a singularity or a
marked point must be an orthogonal intersection point of two grid arcs.

It is worth noting that ∂1 must contain at least two corner points and at least
three if D contains no marked points. To see this, recall that the grid leaves on
S(t ·α) are parallel to some αi . Any of the forbidden cases will imply that some αi

is trivial, peripheral, self-intersects or does not intersect some αj minimally.
Let us refer to marked points, corner points and singularities collectively as bad

points. Let Z ⊂ 1 be the union of ∂1 with all grid arcs in 1 which have a bad
point for at least one of their endpoints. Since there are finitely many bad points
in 1, it follows that Z is a finite embedded graph on 1. A vertex v ∈ int1∩ Z has
valence k if and only if the cone angle at v is kπ/2. If v is a vertex which lies on
∂1 then it has valence k+ 1 if and only if the cone angle at v inside 1 is kπ/2. It
follows that every vertex v of Z has valence at least 2, and at least 3 if v is not a
marked point.

Lemma 7.7. There exists a tiling of 1 by finitely many grid rectangles with Z as
its 1-skeleton.

Proof. First note that there are finitely many connected components of 1− Z
since Z is a finite graph. Let R be such a component and let R be its completion
with respect to its induced path metric. Observe that R is a closed planar region
admitting a Euclidean metric with piecewise geodesic boundary, where the interior
angle between adjacent edges of ∂R is π/2. By the Gauss–Bonnet formula, the
sum of its interior angles must equal 2πχ(R). Since the frontier of R in 1 meets
at least one vertex of Z , the angle sum must be strictly positive. As R is planar, it
follows that χ(R)= 1 and therefore R is a Euclidean rectangle. Also note that Z
is connected, for otherwise there would exist some component of 1 − Z with
disconnected frontier.

The inclusion R ↪→1 can be extended continuously to a map R→1, sending
each edge of ∂R isometrically to an edge of Z meeting the frontier of R. Thus R
is a grid rectangle since the edges of Z , by construction, are parallel to the grid
directions. Finally, the closures of distinct rectangles R and R′ can only intersect
in a union of vertices and edges of Z . �

7B.3. Controlling the area. Let A be the set of maximal grid arcs in 1 which
intersect Z only at midpoints of edges of Z . This is a collection of arcs dual to the
rectangular tiling of 1 as described in Lemma 7.7. For any arc a ∈A, there is curve
α ∈ α such that a can be properly isotoped in 1 to a component of ι−1(α ∩ D)
without passing through any singular points or marked points. (There cannot be any
closed curves in 1 dual to the tiling as this would imply some αi is not essential.)
Let B = B(a) be the union of all rectangles in the tiling which meet a. We will
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call B a band and a a core arc of B. Define width(B) to be the length of any edge
of Z crossed by a. The set of bands in 1 is in bijection with A.

Lemma 7.8. The intersection of two distinct bands B and B ′ is the union of at most
two rectangles whose side lengths are width(B) by width(B ′). Conversely, each
rectangle in the tiling lies in the intersection of a unique pair of distinct bands.

Proof. Let a and a′ be core arcs of B and B ′ respectively. If a and a′ intersect at least
3 times then they must bound a bigon in 1 containing no marked points. We can
properly isotope a and a′ in 1 to components of ι−1(αi ∩ D) and ι−1(αj ∩ D), for
some αi and αj respectively, without passing through any singular points or marked
points. Since any right-angled bigon on 1 must contain at least one singularity, it
follows that αi and αj also bound a bigon in D, contradicting minimality.

For the converse, simply take the bands corresponding to the unique pair of arcs
which have an intersection point inside the given rectangle. �

We will refer to an edge of Z lying in ∂1 simply as an edge of ∂1.

Lemma 7.9. Let 1 be as above. Then

area(1)≤ 1
2 length(∂1)2.

Proof. By Lemma 7.8, 1 is a union of rectangles, each of which lies in the
intersection of a pair of distinct bands. Thus

area(1)= area
( ⋃

B 6=B ′
B ∩ B ′

)
=

∑
B 6=B ′

area(B ∩ B ′).

Since the intersection of two distinct bands is the union of at most two rectangles
whose side lengths are equal to the widths of the bands, we have

area(B ∩ B ′)≤ 2 width(B)×width(B ′),

and hence

area(1)≤ 2
∑
B 6=B ′

width(B)×width(B ′)≤ 2
(∑

B

width(B)
)2

.

Finally, the desired result follows from observing that

length(∂1)= 2
∑

B

width(B),

where the sum is taken over all bands B in 1. �

Combining this with Lemmas 7.5 and 7.6 completes the proof of Lemma 7.4.
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8. Proof of Lemma 5.1

Fix an n-tuple of distinct multicurves α = (α1, . . . , αn) and a weight vector
t= (t1, . . . , tn) 6= 0. We show that for all L≥ L0, where L0 is to be determined,

short(t ·α, L)= {γ ∈ C(S) | i(t ·α, γ )≤ L‖t‖α}

is nonempty and has uniformly bounded diameter in C(S). If ‖t‖α = 0 then
short(t ·α, L) contains the αi and is contained in the 1-neighborhood of α in C(S),
and we are done.

Assume ‖t‖α > 0, and let Y be a component of S(t ·α) with maximal area. Since
S(t ·α) has at most ξ(S) components, we have area(Y )≥ ‖t‖2α/ξ(S). Note that Y
cannot be an interval since ‖t‖α > 0. To simplify the exposition, we first prove
Lemma 5.1 when Y has genus at least 1, or at least 5 marked points — the case
where Y is a sphere with 4 marked points shall be dealt with in Section 8B.

8A. Case 1: Y has genus at least 1 or at least 5 marked points. By Proposition 7.3
and Lemma 7.4, there exists an essential annulus A on Y with

width(A)≥W0
√

area(Y )≥
W0‖t‖α
√
ξ(S)

,

where W0 =W0(ξ(Y )). Let γ ∈ C(S) be the core curve of A. Setting

W =W(ξ(S)) := min
1≤k≤ξ(S)

W0(k)
√
ξ(S)

,

we have width(A)≥W‖t‖α . Applying the Besicovitch Lemma [1952] (see Lemma
4.5 1

2 in [Gromov 1999] for a proof), we have

width(A)× length(A)≤ area(A),

where length(A) is the length of a shortest core curve on A. Since area(A) is at
most area(S(t ·α))= ‖t‖2α, it follows that l(γ )≤ length(A)≤ ‖t‖α/W.

Now let b be a geodesic representative of a curve β ∈ C(S) on S(t · α). Each
essential intersection of b with A contributes at least width(A) to length(b), and so

width(A)× i(γ, β)≤ length(b)= l(β).

Combining the above with Proposition 7.1, we deduce

i(t ·α, γ )≤
√

2l(γ )≤

√
2‖t‖α
W

and i(γ, β)≤
l(β)

width(A)
≤

i(t ·α, β)
W‖t‖α

.
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Set L0=
√

2/W. The curve γ satisfies i(t·α, γ )≤ L0‖t‖α , and so short(t·α, L) 6=∅
for all L≥ L0. Furthermore, if β ∈ short(t ·α, L) then

i(γ, β)≤
i(t ·α, β)
W‖t‖α

≤
L‖t‖α
W‖t‖α

=
L

W
.

Applying Lemma 2.2 and the triangle inequality gives

diam(short(t ·α, L))≤ 2
[
2 log2

(
L
W

)
+ 2

]
= 4 log2 L+ k0,

where k0 is a constant depending only on ξ(S). �

8B. Case 2: Y is a sphere with 4 marked points. For our purposes, it suffices to
find a wide annulus on a suitable double branched cover of Y. Identify Y with
the quotient of the torus T2

= R2/Z2 under a hyperelliptic involution h : T2
→ T2

given by h(x, y)= (−x,−y) modulo Z2, so that the marked points coincide with
the branch points. Metrize T2 by pulling back the singular Euclidean metric on Y.
This metric can also be obtained by taking the preimages of the αi contained in
Y to T2 and then applying the construction as described in Section 4A. It follows
that T2 enjoys the isoperimetric inequality stated in Lemma 7.4, and so applying
Proposition 7.3 gives the following:

Lemma 8.1. There exists an essential annulus on T2 of width at least W′‖t‖α/
√
ξ(S)

for some universal constant W′ > 0.

Remark 8.2. By following the proof of Proposition 7.3 in [Bowditch 2006b] for
the case of the torus, one can take W′ = 1

3
√

2
.

Observe that h(γ̃ ) is homotopic to γ̃ for any simple closed curve γ̃ on T2. Thus,
any simple closed on T2 descends to a simple closed curve on Y (up to homotopy).

Lemma 8.3. Let A be an essential annulus on T2 with core curve γ̃ . Let γ ∈ C(S)
be the image of γ̃ on Y under the quotient map H : T2

→ Y. Then

i(γ, β)≤
2i(t ·α, β)
width(A)

for all β ∈ C(S).

Proof. Recall that β∩Y is either a simple closed curve or a union of paths connecting
marked points of Y. The preimage H−1(β) is a finite union of (not necessarily
disjoint) essential curves on T2. By perturbing γ to an embedded curve which
misses the marked points of Y, we see that each point of γ ∩β lifts to exactly two
points on T2 under H, and so

i(γ, β)=
i(H−1(γ ), H−1(β))

2
≤ i(γ̃ , H−1(β)).
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By observing that each intersection of H−1(β) with A contributes at least width(A)
to its length, and applying Proposition 7.1, we deduce

width(A)× i(γ̃ , H−1(β))≤ l(H−1(β))= 2l(β ∩ Y )≤ 2l(β)≤ 2i(t ·α, β).

The result follows. �

We may use the previous lemmas and argue as in Case 1 to bound the diameter
of short(t ·α, L). Finally, short(t ·α, L) is nonempty since α does not fill S.
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