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RIPS CONSTRUCTION WITHOUT UNIQUE PRODUCT

GOULNARA ARZHANTSEVA AND MARKUS STEENBOCK

Given a finitely presented group Q, we produce a short exact sequence
1 → N ↪→ G ↠ Q → 1 such that G is a torsion-free hyperbolic group without
the unique product property and N is without the unique product property
and has Kazhdan’s Property (T). Varying Q yields a wide diversity of con-
crete examples of hyperbolic groups without the unique product property.
We also note, as an application of Ol’shanskiı̆’s construction of torsion-free
Tarski monsters, the existence of torsion-free Tarski monster groups without
the unique product property.

1. Introduction

A group G has the unique product property, or is said to be a unique product
group, whenever for all pairs of nonempty finite subsets A and B of G the set
of products AB has an element g ∈ G with a unique representation of the form
g = ab with a ∈ A and b ∈ B. Unique product groups are torsion-free. They
satisfy the Kaplansky zero-divisor conjecture [1957; 1970], which states that the
group ring of a torsion-free group over an integral domain has no zero-divisors.
Rips and Segev [1987] gave the first examples of torsion-free groups without the
unique product property. In [Steenbock 2015], the second author proved that the
(generalized) Rips–Segev groups are hyperbolic, and gave an uncountable family
of nonunique product groups. Other examples of torsion-free groups without the
unique product property are in [Promislow 1988; Carter 2014; Soelberg 2018].

Our goal is to provide new concrete examples of nonunique product groups with
diverse algebraic and geometric properties. In fact, we produce a variety of strongly
nonamenable examples.

Theorem 1.1. Let Q be a finitely generated group. Then there exists a short exact
sequence 1 → N ↪→ G ↠ Q → 1 such that

• G is a torsion-free group without the unique product property which is a direct
limit of hyperbolic groups,
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• N is a finitely generated subgroup of G with Kazhdan’s Property (T) and
without the unique product property.

If , in addition, Q is finitely presented, then G is hyperbolic.

Theorem 1.1 extends the result on Rips short exact sequence with Kazhdan’s
Property (T) kernel from [Ollivier and Wise 2007]. An alternative construction is
in [Belegradek and Osin 2008].

Varying Q in Theorem 1.1 yields many new groups without the unique product
property that have various algebraic and algorithmic properties, see Section 4. The
examples obtained using Theorem 1.1 contrast the torsion-free groups without
the unique product property from [Promislow 1988; Carter 2014; Soelberg 2018],
which are infinite groups with the Haagerup property (= a-T-menable groups, in
Gromov’s terminology, see [Cherix et al. 2001]), and, hence, groups which do not
have Kazhdan’s Property (T). Indeed, the group in [Promislow 1988] is solvable,
hence, a-T-menable; groups in [Carter 2014] are a-T-menable as they have Zk

× Fm

as a finite index subgroup; the group in [Soelberg 2018] is a-T-menable as it has a
central extension of Z by Z2 as a finite index subgroup, see [Soelberg 2018, p. 24].

2. Small cancellation theory over hyperbolic groups

A useful way to get novel nonunique product groups is to take quotients of free
products of hyperbolic nonunique product groups with other suitably chosen groups.
We will apply the following result:

Theorem 2.1 [Ol’shanskiı̆ 1993, Theorem 2]. Let G = H1 ∗ H2 be the free product
of two nonelementary torsion-free hyperbolic groups and M ⊆ H1 be a finite subset.
Then G has a nonelementary torsion-free hyperbolic quotient G such that the
canonical projection G ↠ G is injective on M and restricts to a surjection H2 ↠ G.

Theorem 2.1, together with [Steenbock 2015, Theorem 2], yields first examples
of Kazhdan’s Property (T) groups without the unique product property.

Corollary 2.2. There are torsion-free hyperbolic groups with Kazhdan’s Prop-
erty (T) and without the unique product property.

Proof. Take for H1 a torsion-free hyperbolic group without the unique product
property such that the unique product property fails for the sets A and B, see
[Steenbock 2015]. Take for H2 a hyperbolic group with Property (T) (e.g., a
discrete subgroup of finite covolume in Sp(n, 1)) and for M a finite subset of H1

containing A, B, and AB. By Theorem 2.1, there exists a torsion-free hyperbolic
quotient G of H1 ∗ H2 with Property (T) such that M injects into this quotient. It
follows that G is without the unique product property. □
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Remark 2.3. The group H1 can be generated by two letters, say, a1 and a2, and it
can be defined using a finite set of relators that we denote by RS. A procedure to
obtain such a set of relators follows from [Rips and Segev 1987; Steenbock 2015].
Thus, H1 can be given by an explicit presentation H1 = ⟨a1, a2 | RS⟩.

Let H2 = ⟨Y | RT ⟩, where RT is a fixed finite set of relators. An explicit
presentation of an infinite torsion hyperbolic group with Property (T) with 16 relators
is given, for example, in [Caprace 2018]. To get a required torsion-free H2, one
can then take a subgroup of sufficiently large index in this Property (T) group. A
finite presentation of such H2 can be obtained from the group presentation given in
[Caprace 2018], using Schreier’s method.

Let g and h be hyperbolic elements of H2 that do not generate an elementary
subgroup. Let q , s, and t denote natural numbers. Let

Rq,s,t := {a−1
1 gqhs gqh2s

· · · gqhts, a−1
2 gqh(t+1)s gqh(t+2)s

· · · gsh2ts
}.

Following [Ol’shanskiı̆ 1993], there are s0 > 0, t0 > 0, and q0 > 0 such that

G := ⟨a1, a2, Y | RS ⊔RT ⊔Rq0,s0,t0⟩

defines a group, as required by Corollary 2.2. The numbers q0, s0, and t0 depend
only on A and B, the hyperbolicity constant and the size of the balls in the Cayley
graph of H2.

Moreover, we obtain torsion-free Tarski monster groups without the unique
product property. These are the first examples of torsion-free groups without the
unique product property, all of whose proper subgroups are unique product groups.

Corollary 2.4. There are torsion-free Kazhdan’s Property (T) groups G without the
unique product property such that all proper subgroups of G are cyclic. Moreover,
these groups have explicit recursive presentations.

Proof. Let G be a noncyclic torsion-free hyperbolic group, and let M be a finite
subset of G. It follows from [Ol’shanskiı̆ 1993, Theorem 2] that there exists a
nonabelian torsion-free quotient G̃ such that all proper subgroups of G̃ are cyclic,
and such that G ↠ G̃ is injective on M [Ol’shanskiı̆ 1993, Corollary 1]. Moreover,
an explicit presentation of G yields an explicit recursive presentation of G̃. Applied
to a finite subset containing A, B, and AB in a torsion-free hyperbolic group G
without the unique product property for A and B from [Steenbock 2015], this
immediately yields Tarski monster groups without the unique product property, that
have explicit recursive presentations. □

3. Rips construction via small cancellation over hyperbolic groups

We now prove Theorem 1.1. The idea is to adapt [Belegradek and Osin 2008]
by using Theorem 2.1 as in Remark 2.3. Recall that H1 := ⟨a1, a2 | RS⟩ is our
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torsion-free hyperbolic group without the unique product property for sets A and B
(see [Steenbock 2015], we set a2 := b) and M is a finite subset of H1 containing
A, B, and AB. Recall that H2 := ⟨y1, . . . , yl | RT ⟩ is a torsion-free hyperbolic
group with Property (T).

Let Q := ⟨x1, . . . , xm | r1, . . . , rn, . . . ⟩ be a finitely generated group. We produce
the required G as a suitable quotient of the free product H1 ∗ H2 ∗ ⟨x1, . . . , xm⟩.

Let g, h ∈ H2 be hyperbolic elements that do not generate an elementary subgroup.
Let s, t, q, q1, . . . , qi , . . . denote natural numbers, let q̄ ={q, q1, . . . }, and let Rq̄,s,t

be the set of words:

(1) a−1
1 gqhs gqh2s

· · · gqhts and a−1
2 gqh(t+1)s gqh(t+2)s

· · · gqh2ts,

(2) x j a1x−1
j gqh(( j+1)t+1)s gqh(( j+1)t+2)s

· · · gqh( j+2)ts
∀ 1⩽ j ⩽m,

x j a2x−1
j gqh(( j+m+1)t+1)s gqh(( j+m+1)t+2)s

· · · gqh( j+m+2)ts
∀1⩽ j ⩽m,

x−1
j a1x j gqh(( j+2m+1)t+1)s gqh(( j+2m+1)t+2)s

· · · gqh( j+2m+2)ts
∀ 1⩽ j ⩽m,

x−1
j a2x j gqh(( j+3m+1)t+1)s gqh(( j+3m+1)t+2)s

· · · gqh( j+3m+2)ts
∀ 1⩽ j ⩽m,

(3) x j yk x−1
j gqh(( j+(k−1)m+4m+1)t+1)s gqh(( j+(k−1)m+4m+1)t+2)s

· · · gqh( j+(k−1)m+4m+2)ts
∀ 1 ⩽ j ⩽ m, ∀ 1 ⩽ k ⩽ l,

x−1
j yk x j gqh(( j+(k+l+3)m+1)t+1)s gqh(( j+(k+l+3)m+1)t+2)s

· · · gqh( j+(k+l+3)m+2)ts
∀ 1 ⩽ j ⩽ m, ∀ 1 ⩽ k ⩽ l,

(4) ri gqi hs gqi hs+1
· · · gqi hts

∀ i = 1, 2, . . . .

Following [Ol’shanskiı̆ 1993, Lemma 4.2], there exist s0 > 0, t0 > 0, and q̄0 such
that Rq̄0,s0,t0 satisfies the C1-condition of [Ol’shanskiı̆ 1993, Section 4] with respect
to H1 ∗ H2 ∗ ⟨x1, . . . , xm⟩. It follows from the proof of Theorem 2 of [Ol’shanskiı̆
1993] that the quotient

G := ⟨a1, a2, y1, . . . , yl, x1, . . . , xm | RS ⊔RT ⊔Rq̄0,s0,t0⟩

is a direct limit of torsion-free hyperbolic groups, that G is torsion-free, and that
M injects into G. In particular, G does not have the unique product property.

Let N be the subgroup generated by a1, a2, y1, . . . , yn . By the relators (2) and (3),
N is normal. By the relators (4), the map defined by sending the generators xi onto
themselves, and the a1, a2, yk onto 1 is a projection onto Q, the kernel of which is
the group N .

As M consists of words in a1 and a2, the set M injects into N as well, so that
N does not have the unique product property. By the relators (1), N is a quotient
of H2, hence N has Property (T).

This finishes the proof of Theorem 1.1 and gives presentations of the groups G.
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Remark 3.1. If Q is the trivial group, we recover Corollary 2.2 and the conclusion
of Remark 2.3.

4. More examples of torsion-free groups without unique product

We now vary the quotient group Q. All examples of groups G below are not
isomorphic to a free product. The following results are immediate generalizations
of [Rips 1982]:

Proposition 4.1. For each of the following, there exists a torsion-free hyperbolic
group G without the unique product property and such that:

(1) G has unsolvable generalized word problem;

(2) there are finitely generated subgroups P1 and P2 of G such that P1 ∩ P2 is not
finitely generated;

(3) there is a finitely generated, but not finitely presented, subgroup of G;

(4) for any r ⩾ 3, there is an infinite strictly increasing sequence of r-generated
subgroups of G.

More algorithmic properties in the context of Rips construction are investigated
in [Baumslag et al. 1994]. Applied to our situation they yield the following:

Proposition 4.2. There is no algorithm to determine each of the following:

(1) the rank of a torsion-free hyperbolic group without unique product;

(2) whether an arbitrary finitely generated subgroup of a torsion-free hyperbolic
group without unique product has finite index;

(3) whether an arbitrary finitely generated subgroup of a torsion-free hyperbolic
group without unique product is normal;

(4) whether an arbitrary finitely generated subgroup of a torsion-free hyperbolic
group without unique product is finitely presented;

(5) whether an arbitrary finitely generated subgroup S of a torsion-free hyperbolic
group without unique product has a finitely generated second integral homology
group H2(S, Z).

The proofs of (2)–(5) are by choosing a group Q with the required property,
which then allows to pullback the property to the group G, see [Baumslag et al.
1994, Theorem 4]. To prove (1), one produces a family of groups G with the
required properties as in the proof of [Baumslag et al. 1994, Theorem 2].

Remark 4.3. As pointed out by a referee, groups satisfying Proposition 4.1 or
assertion (1), (4), or (5) of Proposition 4.2 could also be produced by taking
free products of a hyperbolic group without the unique product property with a
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hyperbolic group with the respective properties, or more generally, by embedding
them as peripheral subgroups in a relatively hyperbolic group.

5. Further remarks

We first proved Theorem 1.1 by a completely different method of graphical small
cancellation theory over free products. The interested reader can find this proof in
the arXiv version of this article, [Arzhantseva and Steenbock 2014]. It provides a
variant of Theorem 1.1, where the group G has, moreover, a graphical presentation
that satisfies the graphical Gr′

∗

( 1
6

)
-small cancellation condition over the free product.

This initial approach is independent of prior results from [Ol’shanskiı̆ 1993;
Belegradek and Osin 2008]. It combines, under this novel free product view-
point, the Rips construction [1982], the construction by Rips and Segev [1987]
of groups without the unique product property, and Gromov’s construction [2003,
Section 1.2.A and item (3) in Section 4.8] of graphical small cancellation groups
with Property (T), based on his spectral characterization of this property [Silberman
2003; Ollivier and Wise 2007].

We observe, in particular, that Gromov’s probabilistic construction of graph la-
belings defining groups with Property (T) is flexible under taking edge subdivisions.

Theorem 5.1 [Arzhantseva and Steenbock 2014, Theorem 4]. For all m > 64,
there exists a finite connected graph T labeled by {a1, . . . , am} such that the
labeling satisfies the Gr′

∗

( 1
6

)
-small cancellation condition over the free product

⟨a1⟩ ∗ · · · ∗ ⟨am⟩, the labeling satisfies the Gr′
( 1

6

)
-small cancellation condition with

respect to the word length metric, and the group with a1, . . . , am as generators and
the labels of the cycles of T as relators has Kazhdan’s Property (T).

One can take T of arbitrarily large girth. Following the strategy of Ollivier and
Wise [2007], the graph T is produced by assigning to every edge of an expander
graph a letter and an orientation independently uniformly at random.

The intuition behind Theorem 5.1 is that the free product length in ⟨a1⟩∗· · ·∗⟨am⟩

approximates the word length on the free group on a1, . . . , am as m → ∞. Indeed,
the minimal cycle length in the free product length bounds the length of the minimal
cycles in the word length from below. Pieces are words of finite length chosen
uniformly at random. Let us evaluate the probability that the word length and the
free product length of such a random word in letters a±1

1 , . . . , a±1
m coincide. Such a

word is of word length equal to n if it is a P1
i1

a P2
i2

. . . a Pj
i j

with all coefficients Pi ̸= 0,
ai j ̸= ai j+1 , and

∑ j
i=1|Pi | = n. Its free product length is equal to n if, in addition,

all exponents Pi = ±1. The probability that all Pi = ±1 in such a word is given by
((2m − 2)/2m)n−1, which tends to 1 as m → ∞.

For further details on the genericity aspects underlying Theorem 1.1 see [Arzhant-
seva and Steenbock 2014].



RIPS CONSTRUCTION WITHOUT UNIQUE PRODUCT 7

6. Open problems

Our constructions are motivated by two open problems.

Open problem 6.1. Do the Rips–Segev groups without the unique product property
satisfy the Kaplansky zero-divisor conjecture?

Combining [Schreve 2014; Linnell et al. 2012; Agol 2013], we observe that the
Kaplansky zero-divisor conjecture holds for all torsion-free CAT(0)-cubical1 hyper-
bolic groups, over the field of complex numbers. The groups from Corollary 2.2
are not CAT(0)-cubical as they are infinite Property (T) groups. Thus, the CAT(0)-
cubulation cannot solve the conjecture for all hyperbolic groups without the unique
product property.

It is unknown whether or not any of the hyperbolic groups without the unique
product from [Rips and Segev 1987; Steenbock 2015; Gruber et al. 2015] is CAT(0)-
cubical [Martin and Steenbock 2017] or, more generally, a-T-menable.

Open problem 6.2. Is every hyperbolic group residually finite?

We mention this question as every residually finite hyperbolic group has a finite
index subgroup with the unique product property by a result of Delzant [1997].
If Q is finite, then N in our construction is normal of finite index and without the
unique product property. Then the following questions arise naturally:

• Does there exist a hyperbolic group all of whose normal finite index subgroups
are without the unique product property?

• Does there exist a hyperbolic group all of whose subgroups of index at most k,
for a given k ⩾ 2, are without the unique product property?

After we first announced our results in 2014, our last question has been answered
in the affirmative [Gruber et al. 2015].
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