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THOMAE’S FUNCTION ON A LIE GROUP

MARK REEDER

Let g be a simple complex Lie algebra of finite dimension. This paper gives
an inequality relating the order of an automorphism of g to the dimension of
its fixed-point subalgebra and characterizes those automorphisms of g for
which equality occurs. This amounts to an inequality/equality for Thomae’s
function on the automorphism group of g. The result has applications to
characters of zero-weight spaces, graded Lie algebras, and inequalities for
adjoint Swan conductors.
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1. Introduction

Thomae’s function τ :R→R is discontinuous precisely on the rational numbers. It
is traditionally defined as τ(x)= 1

m if x = n
m is rational in lowest terms with m > 0,

and τ(x)= 0 if x is irrational. So τ(n)= 1 for every integer n, and on each open
interval (n, n+ 1) the maximum value of τ is 1

2 , taken just at the midpoint of the
interval. More succinctly, τ(x) is the reciprocal of the order of x in the group R/Z,
with the convention that 1

∞
= 0.

Every group G has an analogous function τG : G→ R, whose value at g ∈ G is
equal to the reciprocal of the order of g.

Consider the group G = SO3 of rotations about a fixed point O in three-
dimensional Euclidean space. Here, τG(g)= 1

m if g rotates by a rational multiple n
m

(in lowest terms) of a full circle, and τG(g) = 0 otherwise. So τG(g) = 1 if g is
the identity rotation, and elsewhere τG has maximum value 1

2 taken just on the
conjugacy class of half-turns. Since every element of G is conjugate to a rotation
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about a fixed axis through O , this example is essentially the same as Thomae’s
original one, but now we observe that 1

2 =
1
h , where h is the Coxeter number of G.

Suppose G is either a compact Lie group or a complex algebraic group. For such
groups the function τG is discontinuous precisely on the set of torsion elements
in G. The proof is the same as for τ = τR/Z, using the facts: (1) torsion elements
can be approximated by elements of infinite order, (2) for every ϵ > 0, there are
only finitely many conjugacy classes in G whose elements have order ≤ 1

ϵ
, and (3)

the conjugacy class of any torsion element is closed in G.
If G is connected and simple as an abstract group, then on the regular elements

of G we have τG(g) ≤ 1
h , where h is the Coxeter number of G. Equality holds

on just the conjugacy class of principal elements. These are the analogues of the
half-turns in SO3 and were studied be Kostant [1959].

The aim of this paper is to extend this inequality/equality for Thomae’s function
to singular elements in the group G=Aut(g) of automorphisms of a simple complex
Lie algebra g of finite dimension. We also indicate some applications of the result.

We will measure the singularity of an element θ ∈ G by the dimension of the
fixed-point subalgebra gθ . We will give an upper bound for τG(θ) in terms of
dim gθ , along with precise conditions for equality.

To explain these conditions, we need some preparation. We say that an element
θ ∈ G is ell-reg if θ normalizes a Cartan subalgebra t⊂ g such that (i) tθ = 0 and
(ii) the cyclic group generated by θ permutes the roots of t in g freely.

The set of ell-reg automorphisms in G is partitioned into finitely many conjugacy
classes. Each ell-reg automorphism has finite order. In fact, for each integer m > 1,
there is at most one ell-reg conjugacy class whose elements have order m. The clas-
sification of ell-reg automorphisms was given in [Reeder et al. 2012] and is recalled
in the Appendix. A uniform set of representatives for each ell-reg class is given
in [Reeder et al. 2012, Proposition 12], see Section 2.1 below for the inner case.1

For ell-reg automorphisms it is known that the automorphism of t given by θ |t,
as in (i) and (ii), has the same order as θ . It follows that if θ ∈ G is ell-reg, then

(1) τG(θ)=
dim gθ

dim(g/t)
,

where t is any Cartan subalgebra of g.
Fix a connected component 0 of G, and let e ∈ {1, 2, 3} be the order of 0 in the

group Out(g) of connected components of G. If θ ∈ 0, the rank of gθ depends only
on e; we write

ne = rank(gθ ).

1Ell-reg automorphisms are called Z-regular in [Reeder et al. 2012], in deference to [Springer
1974]. Except for the classes P0 described below, ell-reg automorphisms of g are not regular elements
of G. The point of “ell-reg”, besides brevity, is to avoid conflict between these two meanings of the
word “regular”.
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In 0 there is a unique conjugacy class P0 of elements θ of minimal order for
which gθ is a Cartan subalgebra of gθ . This order, denoted he, is the twisted Coxeter
number of the coset 0 [Reeder 2010]. The elements of P0 are ell-reg, and it is
known that

(2) 1
he
=

ne

dim(g/t)
.

It follows that if θ ∈ 0 has order m ≥ he, then

(3) τG(θ)=
1
m
≤

dim gθ

dim(g/t)
,

with equality only if θ ∈ P0, where τG is Thomae’s function for the group
G = Aut(g). In this paper, we extend (3) to all θ ∈ Aut(g) as follows:

Theorem 1. Let g be a simple complex Lie algebra of finite dimension, and let τG

be Thomae’s function for the group G = Aut(g). Then for all θ ∈ G, we have

(4) τG(θ)≤
dim gθ

dim(g/t)
.

Equality holds in (4) if and only if θ is ell-reg.

From (2), we have equality in (4) if θ ∈ P0. Also (4) holds trivially, and is a
strict inequality, if the order of θ is larger than he, by (3). Equality in (4) holds for
ell-reg elements, by (1). Therefore, the content of Theorem 1 is (i) the inequality (4)
for all θ ∈ G whose order m lies in the range 1 < m < he, and (ii) the assertion that
only ell-reg automorphisms attain equality.

The proof of Theorem 1 consists of computations with Kac diagrams. It is given
in Section 3.

It is a pleasure to thank the referee for carefully reading earlier versions of this
paper and providing many helpful comments.

2. Applications

First we give some applications of Theorem 1 and connections to other results.

2.1. Characters of zero-weight spaces. The original motivation for Theorem 1 was
to compute characters of zero weight spaces in [Reeder 2022].2

Let G be a connected and simply connected complex Lie group. Fix a maximal
torus T in G, with Lie algebra t , normalizer N , and Weyl group W = N/T . In every
finite-dimensional irreducible representation V of G, the zero-weight space V T is a
representation of W . The problem is to compute the W -character afforded by V T ,
as a function of the highest weight of V .

2The first version of this paper was an appendix to an earlier version of [Reeder 2022].
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For example, Kostant [1976] used his results on principal elements to calculate
the trace tr(cox ,V T ) of a Coxeter element cox∈W . He showed that tr(cox ,V T ) is 0
or ±1 and gave an explicit formula for this trace in terms of the highest weight of V .

In [Prasad 2016], Kostant’s proof was reformulated in terms of the dual group
Ĝ of G. Since G is simply connected, Ĝ is the group of inner automorphisms
of the Lie algebra ĝ whose root system is dual to that of g. In [Reeder 2022],
Theorem 1 is applied to both Ad(G) and Ĝ to compute traces of other Weyl group
elements on V T . A brief description of this result, indicating the role of Theorem 1,
is as follows:

We call an element w ∈W ell-reg if (i) tw = 0 and (ii) the group ⟨w⟩ generated
by w acts freely on the roots of t in g. It is easy to see that w satisfies condition (i) if
and only if all lifts of w in N are T -conjugate. By [Reeder et al. 2012, Proposition 1],
condition (ii) is equivalent to Springer’s notion of regularity of Weyl group elements
in [Springer 1974]. Springer [1974, Theorem 4.2] showed that if two regular
elements of W have the same order, then they are conjugate. Finally, if w is ell-
reg, it follows from [Reeder et al. 2012, Proposition 12] that if n is a lift of w

to N , then w and Ad(n) have the same order. From these facts it follows that
the set Em(N )= {n ∈ N : nT is ell-reg in W of order m}, if nonempty, is a single
conjugacy class in N whose elements have order m in Ad(N ). Hence, there is
an order-preserving bijection between the set of W -conjugacy classes of ell-reg
elements in W and the set of G-conjugacy classes of ell-reg elements in Ad(G).
The classification of these classes (in W and Ad(G)) is given in the Appendix.

Let P and Q be the weight- and root-lattices of T . Let R+ ⊂ Q be a system of
positive roots for T in G, and let ρ ∈ P be the half-sum of the roots in R+. We
may regard P as the group of one-parameter subgroups of a dual maximal torus T̂
of Ĝ. Assuming Em(N ) is nonempty, we set ζm = e2π i/m . From [Reeder et al. 2012,
Proposition 12], we have that ρ(ζm) has order m and is ell-reg in Ĝ ⊂ Aut(ĝ).

Now let λ ∈ P be the highest weight of V (with respect to R+), and let θλ ∈ T̂
be the value at ζm of the one-parameter subgroup λ+ ρ. Let n ∈ Em(N ), and let
w= nT ∈W . Applying Theorem 1 to both Ad(n)∈Ad(G) and θλ ∈ Ĝ, one obtains
an inequality of centralizers

(5) dim CG(n)≤ dim CĜ(θλ),

with equality if and only if (λ + ρ) + m Q is conjugate to ρ + m Q under the
natural W -action on P/m Q, see [Reeder 2022, Section 3.1] for the proof. From
the inequality (5) and the theory of W -harmonic polynomials, one can show that
tr(w, V T )= 0 unless there exists v ∈W such that v(λ+ρ)∈ ρ+m Q, in which case

tr(w, V T )= sgn(v)
∏

α̌∈Ř+m

⟨v(λ+ ρ), α̌⟩

⟨ρ, α̌⟩
,
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where the product is over the positive coroots α̌ of G for which ⟨ρ, α̌⟩ ∈ mZ, see
[Reeder 2022, Theorem 3.4]. If m = h is the Coxeter number then Ř+m is empty,
the product is 1, and we recover Kostant’s result for tr(cox , V T ). If m < h, then
R+m is nonempty.

2.2. Graded Lie algebras. Let θ ∈ Aut(g) have order m, and let ζ = e2π i/m .
Then θ determines a Z/mZ grading

(6) g=
⊕

k∈Z/mZ

gk ,

where gk = {x ∈ g : θ(x)= ζ k x}. Note that g0 = gθ .
From [Reeder et al. 2012, Corollary 14], it is known that the following are

equivalent:

(i) There exists a semisimple element x ∈ g1 for which ad(x) : g0→ g1 is injective.

(ii) θ is ell-reg.

Therefore, we can also use (i) as the condition for equality in Theorem 1.
Theorem 1 makes no a priori assumptions on the kinds of elements contained

in g1. But let us now assume that g1 contains nonzero semisimple elements. Such
gradings are said to have positive rank. Their classification is contained in [Vinberg
1976; Levy 2009; Reeder et al. 2012].

In the case of positive rank gradings, Theorem 1 complements results of Panyu-
shev. Assume x ∈g1 is semisimple. According to [Panyushev 2005, Proposition 2.1],
we have

(7) dim[g0, x] =
dim[g, x]

m
.

Since dim[g0, x] ≤ dim g0 with equality exactly when (i) holds for x , and since
dim[g, x] ≤ dim(g/t) with equality exactly when x is a regular element of g,
Theorem 1 combines with (7) to interpose dim(g/t)/m in dim[g0, x] ≤ dim g0.
That is, we have:

Corollary 2. Assume x ∈ g1 is semisimple. Then we have two inequalities

dim[g0, x]
(1)
≤

dim(g/t)

m

(2)
≤ dim g0.

Here, inequality (1) is equality if and only if x is regular (semisimple), and inequal-
ity (2) is equality if and only if θ is ell-reg.

Under the additional assumption that g1 contains a regular semisimple element,
Panyushev [2005, Theorem 4.2] also showed that

dim g0 =
dim[g/t]

m
+ k0,
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where k0 ≥ 0 is an integer depending only on the orders m and e of θ in Aut(g) and
Out(g). For example, if e = 1, then k0 is the number of exponents of g divisible
by m. This is a sharper form of Corollary 2 in the case that g1 contains a regular
semisimple element.

2.3. Adjoint Swan conductors. In the setting of Section 2.1, sending a representa-
tion V to its highest weight λ is a simple case of the much broader and still mostly
conjectural local Langlands correspondence (LLC). In Section 2.1, we saw that the
inequalities/equalities of Theorem 1 appear on the dual side of this LLC.

They also appear on the dual side of the LLC for reductive p-adic groups, now
as measures of ramification.

We use notation parallel to that of Section 2.1. Let k be a p-adic field, and let G
be the group of k-rational points in a connected and simply connected almost simple
k-group G.

Let ĝ be a simple complex Lie algebra whose root system is dual to that of G.
The LLC predicts the existence of a partition

Irr2(G)=
⊔
ϕ

5ϕ

of the set Irr2(G) of irreducible discrete series representations of G (up to equiva-
lence) into finite sets 5ϕ , where ϕ ranges over certain representations

ϕ :Wk ×SL2(C)→ Aut(ĝ)

of the Weil group of k. For simplicity, we assume ϕ is trivial on SL2(C). (See
[Gross and Reeder 2010] for more background on the LLC.) It is of interest to find
invariants relating the discrete series representation π of G to the parameter ϕ for
which π ∈5ϕ .

One invariant of ϕ is its adjoint Swan conductor sw(ϕ, g). This is an integer
depending only on the image I = ϕ(I) of the inertia subgroup I ⊂Wk . There is
a factorization I = S ⋉ P , where P is a p-group and S is a cyclic group of order
prime to p. We have sw(ϕ, g)≥ 0, with equality if and only if P is trivial.

Expected properties of the LLC imply certain inequalities for sw(ϕ, g) which
have been found to hold unconditionally. For example, if ϕ is totally ramified (that
is, if gI

= 0), then the LLC predicts that

(8) dim gθ
≤ sw(ϕ, g),

where θ is a generator of S. This inequality has been proved in [Reeder 2018] and
[Bushnell and Henniart 2020].

Assume now that p does not divide the order of W . By a result of Borel and
Serre [1953], this ensures that P is contained in a maximal torus of Aut(ĝ), which
we may choose to be normalized by θ .
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Let m be the order of θ . Combining (8) with Theorem 1 gives the inequality

(9)
dim(g/t)

m
≤ sw(ϕ, g),

which is weaker than (8), but which depends only on the order m of S, not on S
itself. Moreover, the two inequalities (8) and (9) coincide if and only if θ is ell-reg.

3. Proof of Theorem 1

The torsion automorphisms of g are classified by Kac diagrams. We start with a
summary of Kac diagrams so that the reader can follow the computations. For more
background, see [Kac 1995; Reeder 2010].

3.1. Kac diagrams. Fix a divisor e ∈ {1, 2, 3} of the order of the component
group Out(g) of Aut(g). Let Aut(g, e) be the set of elements in Aut(g) whose
image in Out(g) has order e. Then Aut(g, e) has one or two connected components,
the latter only when g= so8 and e = 3.

For any torsion automorphism θ ∈Aut(g, e), the rank of the fixed point subalge-
bra gθ depends only on e; we denote this rank by ne. If e= 1, then G1 :=Aut(g, 1)

is the identity component of Aut(g) and n1 is the rank of g.
To the pair (g, e) one associates an affine Dynkin diagram D(g, e). As we vary

over all pairs (g, e), the diagrams D(g, e) range exactly over the affine Coxeter
diagrams together with all possible orientations on the multiple edges. If e = 1,
then D(g, 1) is the usual affine Dynkin diagram of g.

The vertices in D(g, e) are indexed by a set I whose cardinality is ne+ 1, and
these vertices are labeled by certain positive integers {ci : i ∈ I }, where 1≤ ci ≤ 6.

The automorphism group Aut(D(g, e)) of the oriented and labeled diagram
D(g, e) contains a (very small) subgroup � with the following property: If e > 1,
then �= Aut(D(g, e)). If e = 1, then �≃ π1(G1).

We fix a connected component 0 of Aut(g, e). For any positive integer m, let 0m

be the set of elements of 0 having order m. Then 0m is nonempty only if e divides m.
The G1-conjugacy classes in 0m are parametrized as follows: Let Sm be the set of
I -tuples s= (si : i ∈ I ) consisting of integers si ≥ 0 such that gcd{si : i ∈ I }= 1 and

m = e ·
∑
i∈I

ci si .

There is a surjective mapping from Sm to the set of G1-conjugacy classes in 0m

(Kac coordinates). The Kac-diagram of the conjugacy class corresponding to s
consists of the diagram D(g, e) with each node i replaced by si . Two elements s
and s ′ ∈ Sm map to the same conjugacy class in 0m if and only if their Kac diagrams
are conjugate under the group �.
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For example, in 0 there is a unique conjugacy class of automorphisms of minimal
order having abelian fixed-point subalgebras. Such automorphisms are called
principal. They are ell-reg and have Kac coordinates s = (si ), where si = 1 for all i .
The order of a principal automorphism in 0, namely

he := e ·
∑
i∈I

ci ,

is the Coxeter number of Aut(g, e). It is known from [Reeder 2010] that equality
holds in Theorem 1 for principal elements, namely, we have

(10) 1
he
=

ne

[g : t]
.

The Kac diagrams of all ell-reg automorphisms of g were tabulated in [Reeder
et al. 2012, Section 7] and are recalled in the Appendix. These diagrams have all
Kac-coordinates si ∈ {0, 1} and are determined by the subset J ={ j ∈ I : s j = 0}⊊ I .

For any subset J ⊊ I , we set

cJ =
∑
j∈J

c j and cJ
=

∑
i /∈J

ci .

The subgraph of D(g, e) supported on J is the finite Dynkin graph of a reductive
subalgebra gJ of g. Let |RJ | be the number of roots of gJ .

Let θ ∈ 0 be a torsion automorphism with Kac-coordinates s = (si ), and let
J = { j ∈ I : s j = 0}. Then J ̸= I , and we have gθ

≃ gJ .

Example. Consider g of type E6. The labeled diagram D(g, 2) for all outer
automorphisms of g is

1 2 3 2 1

The Kac diagram
1 1 0 0 1

represents the conjugacy class of an outer automorphism θ ∈ Aut(g) having order

m = 2 · (1 · 1+ 2 · 1+ 3 · 0+ 2 · 0+ 1 · 1)= 8.

We have cJ = 3+2= 5, cJ
= 1+2+1= 4, and gθ

≃ so5. This automorphism has
minimal order among those with fixed-point subalgebra so5.

Lemma 3. The inequality in Theorem 1 for all torsion automorphisms in a compo-
nent 0 ⊂ Aut(g, e) is equivalent to the inequality

(11) ne · cJ ≤ cJ
· |RJ |

for every subset J ⊊ I .
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Proof. Let θ ∈ 0m have Kac coordinates (si ), and let

J = { j ∈ I : s j = 0}.

Then m ≥ e · cJ with equality if and only if si = 1 for all i ∈ I−J . Since

dim gθ
= dim gJ = ne+ |RJ | and dim(g/t)= hene = e · cI · ne,

it follows that
1
m
≤

1
e·cJ and

dim gθ

dim(g/t)
=

ne+ |RJ |

e · cI · ne
.

So, for every θ , the inequality in Theorem 1 is equivalent to having

e · cI · ne ≤ (ne+ |RJ |) · e · cJ

for every J . Since cI = cJ
+ cJ , the result follows. □

If J is empty then both sides of (11) are zero. We may assume from now on
that J is nonempty and that si = 1 for all i ∈ I − J . Thus J is identified with a
Kac diagram with labels in {0, 1}, where the nodes in J are labeled 0 and the nodes
in I − J are labeled 1.

We will show that the integer f (g, e, J ) defined by

f (g, e, J )= cJ
|RJ | − necJ

satisfies f (g, e, J )≥0. Our analysis will also find those J for which f (g, e, J )=0.
It turns out that the Kac diagrams of ell-reg automorphisms are exactly those for
which f (g, e, J )= 0.

3.2. Type An. The case g= sln+1 and e = 1 is very simple but different from the
other cases, so we treat it separately here. Fix a nonempty subset J ⊊ I . The root
system RJ has type

a∏
i=1

Aqi

for some positive integers q1, . . . , qa . Let q =
∑

qi . Since all ci = 1, we have
cJ = q and cJ

= n+ 1− q ≥ a. Now,

f (g, 1, J )= cJ
a∑

i=1
qi (qi + 1)− (cJ

+ q − 1)q

= cJ
a∑

i=1
q2

i − q2
+ q ≥ a

a∑
i=1

q2
i − q2

+ q ≥ q,

where the arithmetic-geometric inequality is used in the last step. Since J ̸=∅, we
have f (g, 1, J )≥ q > 0.
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(g, e) D(g, e) h = e · cI

2A2n, n ≥ 2 · · ·
1 2 2 2 2

2(2n+ 1)

Cn, n ≥ 2 · · ·
1 12 2 2

2n

2Dn+1, n ≥ 2 · · ·
1 1 1 1 1

2(n+ 1)

2A2n−1, n ≥ 3
· · ·

1

1 12 2

2(2n− 1)

Bn, n ≥ 3
· · ·

1

1 2 2 2

2n

Dn, n ≥ 4
· · ·

1 1

1 12 2

2n− 2

Table 1. The relevant diagrams D(g, e) for n ≥ 2.

3.3. The remaining classical Lie algebras. In this section, (g, e) is of classical
type not equal to (sln, 1). We will write

n = ne and h = he.

Since the criteria in Lemma 3 are easy to check for outer automorphisms of sl3, we
may assume n ≥ 2.

The relevant diagrams D(g, e), for n ≥ 2, are listed in Table 1. Each diagram
has n+ 1 nodes. They are grouped according to their underlying Coxeter diagram.
Note that 2A3 =

2D3 and B2 = C2.

3.3.1. Small rank. For the reduction arguments to come, it is necessary to directly
verify Theorem 1 for classical g of minimal rank in Table 1. (One can shorten the
task by using the first parts of Sections 3.4.1 and 3.4.2 below.) For J ̸= ∅, we
obtain the following:

For (g, e) of types 2A4, C2, and 2D3, we have f (g, e, J )≥ 0 with equality just
for the Kac diagrams:

1 0 0 1 0 1 0 1 0

respectively. These diagrams represent the nonprincipal ell-reg automorphisms of
sl5, sp4, and so6; each is an involution. See Sections A.1, A.4, and A.5.
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For (g, e) of types 2A5 and B3, we have f (g, e, J ) ≥ 0, with equality just for
the Kac diagrams:

0 0 1

0

1 0 1

1

0 1 0

0

These are the nonprincipal ell-reg automorphisms of sl6 and so7; see Sections A.2
and A.3.

Finally consider (g, e) of type D4. We write I = {0, 1, 2, 3, 4}, where 0 is
the degree-four vertex in D(so8, 1). Let q be the number of degree-one vertices
in J . One easily computes the following: If s0 = 1, then f (so8, 1, J )= 2q(4− q).
If s0 = 0, then f (so8, 1, J )≥ 0, with equality just for q = 0. Hence the inequality
of Theorem 1 holds, with equality just for the Kac diagrams:

1 1 1

1

1

0 1 0

0

0

1 0 1

1

1

These are the Kac diagrams for the ell-reg inner automorphisms of so8; see
Section A.5.

3.4. Refinements. Let X be the set of all triples (g, e, J ), where (g, e) is one of
the above classical types for n ≥ 2 and J is a nonempty proper subset of the set I of
vertices of D(g, e). For any subset Y ⊂X , let Y0={(g, e, J )∈Y : f (g, e, J )= 0}.
We must prove that f ≥ 0 on X and that X0 consists precisely of the diagrams listed
in the Appendix for classical (g, e).

Definition. If Y ′ ⊂ Y are subsets of X , we say Y ′ is a refinement of Y if for every
(g, e, J ) ∈ Y −Y ′, we have either:

(i) f (g, e, J ) > 0 or

(ii) there exists (g′, e′, J ′) ∈ Y ′ and a positive integer c such that

c · f (g, e, J ) > f (g′, e′, J ′).

We note the following:

(i) Refinement is transitive: if Y ′′ is a refinement of Y ′ and Y ′ is a refinement
of Y , then Y ′′ is a refinement of Y .

(ii) If Y is a refinement of X and f ≥ 0 on Y , then f > 0 on X −Y and X0 = Y0.

From (ii), it suffices to find a refinement Y of X such that f ≥ 0 on Y and Y0

consists precisely of the ell-reg triples listed in the Appendix.
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This classification guides our refinements. Ignoring the principal automorphisms
as we may, we observe that in classical ell-reg Kac diagrams the vertices in I−J
are: (i) never adjacent and (ii) tend to be equally spaced from each other.

We say that a vertex i ∈ I is interior if i is adjacent to at least two other vertices
in D(g, e). If i is adjacent to just one other vertex in D(g, e), we say i is a boundary
vertex. Since n ≥ 3, every pair of adjacent vertices has at least one interior vertex.
Table 1 shows that all interior i have the same value c of ci (c = 1 in type 2Dn+1

and c = 2 in the other classical diagrams), and c ≥ ci for all i ∈ I .

Lemma 4. Let Y be the set of (g, e, J ) ∈ X for which no two interior vertices of
I−J are adjacent in D(g, e). Then Y is a refinement of X .

Proof. Consider a triple (g, e, J ) ∈ X , and let i, j ∈ I−J be adjacent interior
vertices in D(g, e).

Let k be another vertex adjacent to i . The possible configurations of i, j, k in
the Kac diagram are:

1 1 * · · ·· · ·

j i k
1 1 *· · ·

j i k
* 1 1 · · ·
k i j

where the double bond has either orientation and ∗, • ∈ {0, 1} are arbitrary.
Removing i and joining j to k with a bond of the same type as the bond previously

joining i to k, we obtain a diagram D(g′, e) of the same type as D(g, e). The vertices
of D(g′, e) are indexed by I ′= I−{i}, and we have J ⊂ I ′. In this way, the diagram
D(g, e, J ) contracts by one vertex to the diagram D(g′, e, J ). The root system R′J
of g′J is isomorphic to RJ , we have

∑
i ′∈I ′−J ci ′ = cJ

− c, and cJ is unchanged. It
follows that

f (g, e, J )− f (g′, e, J )= cJ
|RJ |−ncJ − (cJ

− c)|RJ |+ (n−1)cJ = c|RJ |− cJ .

Since |RJ | ≥ 2|J | and cJ ≤ c|J |, we have

(12) f (g, e, J )− f (g′, e, J )≥ c|J |> 0.

Since |I ′ − J | = |I − J | − 1, repeating this procedure will eventually produce a
diagram D(g′′, e, J ) ∈ Y , and we will have f (g, e, J ) > f (g′′, e, J ). □

Our next refinement heads toward equilibrium for the interior components of RJ .
Given a diagram D(g, e, J ) ∈ X , let J ◦ be the set of interior vertices in J . We

have a decomposition of root systems

RJ = R◦J ⊔ R∂J ,

where R◦J (respectively, R∂J ) is the union of those irreducible components of RJ

whose bases are (respectively, are not) contained in J ◦. Let R1, R2, . . . , Ra be the
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components of R◦J . Each Ri has type Aqi for some integer qi ≥ 1. Let

d(J )=max{|qi − q j | : 1≤ i ≤ j ≤ a}.

Lemma 5. Let Y be as in Lemma 4, and let Y ′ be the set of (g, e, J ) ∈ Y for which
d(J )≤ 1. Then Y ′ is a refinement of Y .

Proof. The value of f(g,e,J ) is unchanged by permuting the components R1, . . . ,Ra .
If d(J )≥ 2, then we may choose such a permutation to arrange that q1− q2 ≥ 2,
and there are three interior vertices {i, j, k} such that j ∈ R1, i ∈ I − J , k ∈ R2, as
shown:

0 1 0 · · ·· · ·

j i k

Now switch si and s j to obtain a diagram

D(g, e, J ′) = 1 0 0 · · ·· · ·

j i k

Note that D(g, e, J ′) ∈ Y , since q1 ≥ 2. The values n, cJ , and cJ are unchanged,
and one checks that

f (g, e, J )− f (g, e, J ′)= 2cJ (q1− q2− 1) > 0.

Repeating this process, we eventually find a subset J ′′ ⊂ I with f (g, e, J ) >

f (g, e, J ′′) and d(J ′′)≤ 1. □

We next strengthen the refinement of Lemma 4 to include boundary vertices.

Lemma 6. Let Y ′ be as in Lemma 5, and let Z be the set of (g, e, J ) ∈ Y ′ for which
no two vertices of I−J are adjacent in D(g, e). Then Z is a refinement of Y ′.

Proof. Assume (g, e, J ) ∈ Y ′ and that i and j are adjacent vertices in D(g, e, J ).
Since Y ′ ⊂Y , we may assume that i is an interior vertex and j is a boundary vertex.
Lemma 6 has been proved for the minimal cases in Section 3.3.1, so we may also
assume there is another interior vertex k adjacent to i . Near i , the possibilities for
D(g, e, J ) are as shown:

(13) (i) 1 1 0 · · ·
j i k

(ii) 1 1 0 · · ·
j i k

(iii) 1 1 0 · · ·
j i k

s
where s ∈ {0, 1}.

In cases (i) and (ii), we proceed as in Lemma 4 by removing i and joining jk by
the bond j i to obtain D(g′, e, J ). The same calculation as Lemma 4 shows that
f (g, e, J ) > f (g′, e, J ).

Now for case (iii), let RK be the component of RJ containing k, where k ∈ K ⊂ J ,
and let q = |K | ≥ 1.
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Suppose RK ⊂ R∂J . Then RK and the right-hand boundary of D(g, e, J ) have
one of these types (where ∗ ∈ {0, 1}):

0 0 0· · ·
k

0 0 0· · ·
k

0 0 0· · ·
k

*
In view of (13), the diagram D(g, e, J ) is specific enough to compute f (g, e, J )>0
in each of these cases.

From now on, we may assume that RK is an interior component of RJ , hence of
type Aq , where q ≥ 1. As in Lemma 5, after permuting components of R◦J , we may
also assume that R◦J = x Aq−1+ y Aq for integers x, y with y > 0. An expanded
view of the neighborhood of i containing RK , with single bonds omitted, is

D(g, e, J ) = 1 1 0 0 0 · · · 0
s

j i k ︷ ︸︸ ︷q−1 vertices

with s ∈ {0, 1}. Switch si and sk to obtain

(14) D(g, e, J ′) = 1 0 1 0 0 · · · 0 · · ·
s

j i k ︷ ︸︸ ︷q−1 vertices

Since cJ ′
= cJ , n′ = n, and cJ ′ = cJ , we find that

f (g, e, J )− f (g, e, J ′)= 2(q + s− 2)cJ .

If q + s > 2, then f (g, e, J ) > f (g, e, J ′), so we may assume q + s ≤ 2.
Assume that q+s=1. Then q=1 and s=0, so R◦J = y A1. Since cases (i) and (ii)

of (13) have been eliminated, we may assume D(g, e, J ) has one of the forms below,
where each diagram has y copies of 0 1 in the top row and single bonds are omitted:

1 1 0 1 0 1 · · · 0 1 0 0 · · · 0
0

︷ ︸︸ ︷Br

1 1 0 1 0 1 · · · 0 1 0 0 · · · 0
0

︷ ︸︸ ︷Cr

(r≥1)

1 1 0 1 · · · 0 1 0 1
0

1 1 0 1 · · · 0 1 0 1
0

1 1 0 1 · · · 0 1 0 · · · 0 0
0 0

︷ ︸︸ ︷Dr

1 1 0 1 · · · 0 1 0 · · · 0 0
0 1

︷ ︸︸ ︷Ar

(r≥2)

1 1 0 1 · · · 0 1
0 1

1 1 0 1 · · · 0 1 1
0 1
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In each of the above cases, it is straightforward to calculate that f (g, e, J ) =

yβ(r)+ γ (r), where β and γ are polynomials (of degree at most two) which are
positive for all integer values of r .

Assume q = s = 1. Then we have f (g, e, J )= f (g, e, J ′), with J ′ as in (14).
Since k is interior, there is a boundary vertex ℓ adjacent to k, with sℓ = 1. Then
D(g, e, J ′) has one of the forms:

1 0 1 1
j i k ℓ

1

1 0 1 1
j i k ℓ

1

1 0 1 1
j i k ℓ

1 *
with ∗ ∈ {0, 1}. Again, one easily checks that f (g, e, J ) > 0.

For the remaining case q = 2 and s = 0, we have f (g, e, J )= f (g, e, J ′) and

(15) D(g, e, J ′) = 1 0 1 0 · · ·
0

j i k

where single bonds have been omitted. Here, RJ ′ has no adjacent vertices, except
possibly at the other end of D(g, e, J ′), where one of the configurations of (13) could
be mirrored. In that case, starting with (15), we repeat the above steps at the other end
of D(g, e, J ′) to produce a triple (g′, e, J ′′)∈Z such that f (g, e, J )≥ f (g′, e, J ′′).
These steps only affect vertices to the right of k, so the A2 boundary component
of i in (15) persists in RJ ′′ . In Sections 3.4.2 and 3.4.3, we will find by direct
computation that f > 0 on every triple in Z having a boundary component of
type An , for n ≥ 2. This completes the proof of Lemma 6. □

To prove Theorem 1, it now suffices to calculate f on the set Z from Lemma 6.
Recall that Z consists of those triples (g, e, J ) for which no two vertices in I−J
are adjacent and whose components of R◦J have at most two types Aq−1 and Aq ,
occurring x and y times, respectively.

The refinement calculations made above were (mostly) local, using only data
near the modification of the Kac diagram D(g, e, J ) to estimate f (g, e, J ) from
below. To actually calculate f (g, e, J ) requires the entire Kac diagram D(g, e, J ),
including the boundary. From here on we must proceed in cases, according to the
various labeled boundaries of the graphs D(g, e).

Recall that R∂J is the union of the components of RJ not in R◦J . Let ∂J be the
subset of J supporting R∂J . Then R∂J is a product of two classical root systems
whose ranks (possibly zero) we will denote by p and r . We have

|RJ | = |R∂J | + q(q − 1)x + q(q + 1)y and cJ = c∂J + c(q − 1)x + cqy,

where
c∂J =

∑
j∈∂J

c j .
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Define integers a and b by

cJ
= a+ cx + cy and n = b+ qx + (q + 1)y,

where c is the common value of ci on the interior vertices of I . A straightforward
computation gives the following:

Lemma 7. For (g, e, J ) ∈ Z , the integer f (g, e, J )= |RJ |cJ
− ncJ has the form

f (g, e, J )= cxy+αx +βy+ γ,

where α, β, and γ are polynomial expressions in p, q , and r given by:

(16)

α =
(
c|R∂J | + aq(q − 1)

)
−

(
bc(q − 1)+ qc∂ J

)
,

β =
(
c|R∂J | + aq(q + 1)

)
−

(
bcq + (q + 1)c∂ J

)
,

γ = a|R∂J | − bc∂J .

We will show that α, γ ≥ 0. Since β is obtained from α upon replacing q by q+1,
then also β ≥ 0, so this will imply that

f (g, e, J )≥ 0,

with equality if and only if 0 = xy = α = γ . Without loss of generality, we may
then assume y = 0. Theorem 1 will then follow by comparison with the tables of
ell-reg automorphisms in the Appendix.

3.4.1. Types 2A2n , Cn , and 2Dn+1. The underlying Coxeter diagram with indexing
set I = {0, 1, . . . , n} is

0 1 2 · · · (n− 1) n

The three types differ only in the labels ci , which do not affect |RJ |. Let (g, e) and
(g′, e′) be two of 2A2n , Cn , and 2Dn+1, with corresponding labellings ci and c′i . For
each subset A ⊂ I , we set

cA =
∑
i∈A

ci and c′A =
∑
i∈A

c′i .

We set K = I − J .
One more local calculation will reduce the number of cases further. Set:

f = f (g, e, J )= |RJ |cK − ncJ and f ′ = f (g′, e′, J )= |RJ |c′K − nc′J .

Suppose (g, e)= 2A2n and (g′, e′)= Cn . If n ∈ K , then cK = c′K + 1 and cJ = c′J ,
so f > f ′. If n ∈ J , then cK = c′K and cJ = c′J + 1, so f < f ′.

Suppose (g, e) = 2A2n and (g′, e′) = 2Dn+1. If 0 ∈ K , then 1+ cK = 2c′K and
cJ = 2c′J , so 2 f ′ > f . If 0 ∈ J , then 1+ cJ = 2c′J and cK = 2c′K , so f > 2 f ′.
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Suppose (g, e) = Cn and (g′, e′) = 2Dn+1. If {0, n} ∈ J , then 2c′K = cK and
2c′J = cJ + 2, so f = 2 f ′+ 2n > 2 f ′. If 0 ∈ J and n ∈ K , then cK + 1= 2c′K and
cJ + 1= 2c′J , so 2 f ′ = f + |RJ | − n. Since no two vertices in K are adjacent, it
follows that |RJ |> n, so 2 f ′ > f .

This discussion shows that we need only consider the following three cases:

(1) (g, e)= 2A2n , with 0 ∈ K and n ∈ J ,

(2) (g, e)= Cn , with {0, n} ∈ K ,

(3) (g, e)= 2Dn+1, with {0, n} ⊂ J .

Indeed, if f (g, e, J ) ≥ 0 in Cases 1–3, then f (g, e, J ) ≥ 0 in all cases and
f (g, e, J )= 0 can only occur in Cases 1–3.

Case 1. Assume (g, e)= 2A2n and RJ = Br + x Aq−1+ y Aq , with r ≥ 1. Then:

|RJ | = 2r2
+ q(q − 1)x + q(q + 1)y, cK = 1+ 2x + 2y,

n = r + xq + y(q + 1), cJ = 2r + 2(q − 1)x + 2qy,

γ = 0, α = (q − 2r)(q − 2r − 1).

Thus we have f (g, e, J )≥ 0, with equality if and only if q = 2r or 2r + 1. These
cases are the last two rows in the table in Section A.1 for n ≥ 2.

Case 2. Assume (g, e)= Cn and RJ = x Aq−1+ y Aq . Then:

|RJ | = q(q − 1)x + q(q + 1)y, cK = 2x + 2y,

n = qx + (q + 1)y, cJ = 2(q − 1)x + 2qy,

γ = 0, α = 0.

Thus we have f (g, e, J ) ≥ 0, with equality if and only if xy = 0. These are the
cases with k = q in the table in Section A.4.

Case 3. Assume (g, e)= 2Dn+1 and RJ = Bp+ x Aq−1+ y Aq + Br , with p, r > 0
and q > 1. Then:

|RJ | = 2p2
+2r2
+q(q−1)x+q(q+1)y, cK = 1+x+y,

n = p+r+qx+(q+1)y, cJ = p+r+(q−1)x+qy,

γ = (p−r)2, α = (p−r)2
+(p+r−q)(p+r−q+1).

Thus we have f (g, e, J )≥ 0, with equality if and only if xy = 0, p= r and q = 2p
or q = 2p+ 1. These are the cases in the last two rows of the table in Section A.6.
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3.4.2. Types 2A2n−1 and Bn . The underlying Coxeter diagram with indexing set
I = {0, 1, . . . , n} is

0 1 2 · · · (n− 1) n

0

The two types differ only in the label cn=1 for 2A2n−1 and cn=2 for Bn . Comparing,
as in the previous section, we may assume n ∈ K for 2A2n−1 and n ∈ J for Bn .

Case A1. Assume n ∈ K , {0, 1} ⊂ J , RJ = Dp+ x Aq−1+ y Aq , with p≥ 2. Then:

|RJ | = 2p(p−1)+q(q−1)x+q(q+1)y, cK = 1+2x+2y,

n = p+qx+(q+1)y, cJ = 2(p−1)+2(q−1)x+2qy,

γ = 0, α = (2p−q)(2p−q−1).

In this case, we have f (g, e, J )≥ 0, with equality if and only if xy = 0 and q = 2p
or q = 2p− 1. These are the cases with d = 1 or k = p in Section A.2.

Case A2. Assume {0, n} ⊂ K , 1 ∈ J , and RJ = Ap + x Aq−1+ y Aq . Then:

|RJ | = p(p+ 1)+ q(q − 1)x + q(q + 1)y, cK = 2+ 2x + 2y,

n = 1+ p+ qx + (q + 1)y, cJ = 2p− 1+ 2(q − 1)x + 2qy,

γ = p+ 1, α = 2(p− q + 1)2
+ q.

In this case, we have f (g, e, J ) > 0.

Case A3. Assume {0, 1, n} ⊂ K and RJ = x Aq−1+ y Aq , where q ≥ 2. Then:

|RJ | = q(q − 1)x + q(q + 1)y, cK = 1+ 2x + 2y,

n = 1+ qx + (q + 1)y, cJ = 2(q − 1)x + 2qy,

γ = 0, α = (q − 1)(q − 2).

In this case, we have f (g, e, J )≥ 0, with equality if and only if q = 2. This is the
case d = n in Section A.2.

Case B1. Assume {0, 1, n} ⊂ J and RJ = Dp + x Aq−1+ y Aq + Br . Then:

|RJ |=2p(p−1)+2r2
+q(q−1)x+q(q+1)y, cK =2(1+x+y),

n= p+r+qx+(q+1)y, cJ =2(p+r−1)+2(q−1)x+2qy,

γ =2(p−r)(p−r−1), α=2(p−r)(p−r−1)+2(p+r−q)2.

In this case, we have f (g, e, J )≥ 0, with equality if and only if p = r and q = 2r ,
or p = r + 1 and q = 2r + 1. these are the cases in the last two rows of the table in
Section A.3 with k = q .
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Case B2. Assume {1, n} ⊂ J , 0 ∈ K , and RJ = Ap + x Aq−1+ y Aq + Br , where
p, r ≥ 1. Then:

|RJ | = p(p+1)+2r2
+q(q−1)x+q(q+1)y, cK = 3+2x+2y,

n = p+r+1+qx+(q+1)y, cJ = 2p+2r−1+2(q−1)x+2qy,

γ = (2r−p−1)2
+3r, α = 2(p−q+1)2

+(q−2r)2
+2r.

In this case, we have f (g, e, J ) > 0.

Case B3. Assume n∈ J , {0, 1}⊂K , and RJ = x Aq−1+y Aq+Br , where r ≥1. Then:

|RJ | = 2r2
+ q(q − 1)x + q(q + 1)y, cK = 2+ 2x + 2y,

n = r + 1+ qx + (q + 1)y, cJ = 2r + 2(q − 1)x + 2qy,

γ = 2r(r − 1), α = 2(q − r − 1)2
+ 2r(r − 1).

In this case, we have f (g, e, J )≥ 0, with equality if and only if r = 1 and q = 2.
This is the case k = 2 in Section A.3

3.4.3. Type Dn . Since the case n = 4 was covered in Section 3.3.1, we assume
n ≥ 5. Choose the indexing set I = {0, 1, . . . , n} as in [Bourbaki 2002], so that
{i ∈ I : ci = 1} = {0, 1, n− 1, n}. Up to automorphisms of D(so2n, 1), there are
six cases for J ∩ {0, 1, n− 1, n}.

Case 1. Assume {0, 1, n− 1, n} ⊂ J and RJ = Dp × x Aq−1× y Aq × Dr , where
p, q, r ≥ 2. Then:

|RJ | = 2p(p−1)+2r(r−1)+q(q−1)x cK = 2+2x+2y,

+q(q+1)y,

n = p+r+qx+(q+1)y, cJ = 2
(

p+r−2+(q−1)x+qy
)
,

γ = 2(p−r)2, α = 2(p−r)2
+2(p−q+r)(p−q+r−1).

In this case, we have f (g, e, J )≥ 0, with equality if and only if p = r and q = 2p
or q = 2p− 1. These are the cases 2 < k = q in Section A.5

Case 2. Assume {0, 1, n−1}⊂ J , where n ∈ K , and RJ = Dp×x Aq−1× y Aq× Ar ,
where p, q, r ≥ 2. Then:

|RJ | = 2p(p−1)+r(r+1)+q(q−1)x cK = 3+2x+2y,

+q(q+1)y,

n = 1+p+r+qx+(q+1)y, cJ = 2p+2r−3+2(q−1)x+2qy,

γ = (2p−r−1)(2p−r−2)+p+r+1, α = (2p−q−1)2
+2(q−r−1)2

+2p−1.

In this case, f (g, e, J ) > 0.
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Case 3. Assume {0, n}⊂ J , {1, n−1}⊂ K , and RJ = Ap−1+x Aq−1+ y Aq+Ar−1,
where p, q, r ≥ 2. Then:

|RJ | = p(p−1)+r(r−1)+q(q−1)x+q(q+1)y, cK = 4+2x+2y,

n = p+r+qx+(q+1)y, cJ = 2
(

p+r−3+(q−1)x+qy
)
,

γ = 2(p−r)2
+2(p+r), α = 2(p−q)2

+2(q−r)2
+2q.

In this case, f (g, e, J ) > 0.

Case 4. Assume {0, 1} ⊂ J , {n − 1, n} ⊂ K , and RJ = Dp + x Aq−1 + y Aq ,
where p ≥ 2. Then:

|RJ | = 2p(p−1)+q(q−1)x+q(q+1)y, cK = 2(1+x+y),

n = 1+p+qx+(q+1)y, cJ = 2
(

p−1+(q−1)x+qy
)
,

γ = 2(p−1)2, α = 2(p−q+1)2
+2(p−2)(p−1)

+2(q−2).

In this case, f (g, e, J ) > 0.

Case 5. Assume 0 ∈ J , {1, n− 1, n} ⊂ K , and RJ = Ap−1+ x Aq−1+ y Aq . Then:

|RJ | = p(p− 1)+ q(q − 1)x + q(q + 1)y, cK = 3+ 2x + 2y,

n = 1+ p+ qx + (q + 1)y, cJ = 2p− 3+ 2(q − 1)x + 2qy,

γ = (p− 1)2
+ 2, α = 2(p− q)2

+ (q − 1)2
+ 1.

In this case, f (g, e, J ) > 0.

Case 6. Assume {0, 1, n− 1, n} ⊂ K and RJ = x Aq−1+ y Aq , where q ≥ 2. Then:

|RJ | = q(q − 1)x + q(q + 1)y, cK = 2+ 2x + 2y,

n = 2+ qx + (q + 1)y, cJ = 2(q − 1)x + 2qy,

γ = 0, α = 2(q − 1)(q − 2).

In this case, f (g, e, J )≥ 0, with equality if and only if q = 2. This is the case k= 2
in Section A.5.

4. Exceptional Lie algebras

On a computer one can verify Theorem 1 for the exceptional Lie algebras and 3D4 by
checking the theorem for each subset J ⊂ I . (See [Reeder 2010, (2.6)] for g= E8.)
The aim of this section is to make this verification somewhat more transparent.
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Assume the diagram D(g, e), with labels ci has one of the following types:

G2 :
1 2 3

3D4 :
1 2 1

F4 :
1 2 3 4 2 2E6 :

1 2 3 2 1

E6 :

1 2 3 2 1

2

1

E7 :

1 2 3 4 3 2 1

2

E8 :

1 2 3 4 5 6 4 2

3

4.1. Small J. We begin with cases where |RJ | ≤ 8.
When RJ = A1, Theorem 1 follows from an observation which applies uniformly

to all exceptional cases. Namely, each coefficient ci is at most twice the average of
the remaining coefficients, with equality just for the unique largest coefficient ci0=c;
the vertex i0 is the target of the arrow or is the branch node. Equivalently, we have

(17) 2cI = (n+ 2)c.

On the other hand, the Kac diagrams:

1 1 0 1 0 1

1 1 1 0 1 1 1 0 1 1
1 1 0 1 1

1

1

1 1 1 0 1 1 1

1

1 1 1 1 0 1 1

1

are those of the ell-reg automorphisms of order h− ec.
Now suppose RJ = 2A1. Then J = {i, j}, where i, j are not adjacent in D(g, e).

The maximum value of ci + c j is 2c− 2, with c as above. From (17), we obtain

|RJ |cJ
− ncJ ≥ 2(n− 2c+ 4).
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We check that the latter is ≥ 0, with equality only in G2, F4, and E8. On the other
hand, the Kac diagrams:

0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1

1

are those of ell-reg automorphisms of order h− 2c+ 2.
If RJ = A2, one finds similarly that

|RJ |cJ
− ncJ = 6cI − (n+ 6)(ci + c j )≥ 0,

with equality only in 3D4. The Kac diagram

0 0 1

is the ell-reg outer automorphism so8 of order e = 3.
If RJ = B2 or G2, one finds that |RJ |cJ

− ncJ > 0.
At this point, the theorem is proved for G2 and 3D4, and we may assume RJ has

rank at least three in the remaining cases.
Assume that RJ = 3A1. Then f (g, e, J )= 6cI − (n+ 6)cJ . The Kac diagrams

with maximal cJ are:

0 1 0 1 0 0 1 0 1 0
1 0 1 0 1

0

1

1 0 1 0 1 0 1

1

1 1 0 1 0 1 1

0

1 0 1 0 1 0 1 1

1

1 1 0 1 0 1 0 1

1

1 1 1 0 1 0 1 0

1

1 1 1 1 0 1 0 1

0

These all have f (g, e, J )≥ 0, with equality just in the E6 case, where we find the
Kac diagram of the ell-reg inner automorphism of g= E6 of order six.

Assume that RJ = A1+ A2. In the same manner we find f (g, e, J ) ≥ 0, with
equality only in the cases

1 0 1 0 0 and 1 0 0 1 0

which are the Kac diagrams for the ell-reg automorphisms of F4 of order four and
the outer ell-reg automorphism of E6 of order six.
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Assume that RJ = 4A1. This only exists in type E . We find f (g, e, J )≥ 0, with
equality only in the case

1 1 0 1 0 1 0 1

0

This is the ell-reg automorphism of E8 of order 15.

4.2. Types F4 and 2E6. We now complete the proof of Theorem 1 for (g, e) of
types F4 and 2E6, for which D(g, e) has the same underlying Coxeter diagram. By
the previous section, we may assume |RJ | > 8. Arguing as in Section 3.4.1, we
need only consider cases of the form:

* * * 0 0 * * * 1 1

* * * 1 0 * * * 0 1

The Kac diagrams of these types, with |RJ |> 8 are tabulated as follows (the first
four rows are for F4 and the last six for 2 E6):

J RJ · cJ 4 · cJ

1 0 0 0 0 48 · 1 4 · 11
0 1 0 0 0 20 · 2 4 · 10←
0 0 1 0 0 12 · 3 4 · 9 ←
1 1 0 0 0 18 · 3 4 · 9

0 0 0 1 1 12 · 3 4 · 6

0 0 0 1 0 14 · 2 4 · 7 ←

0 0 0 0 1 32 · 1 4 · 8 ←
1 0 0 0 1 18 · 2 4 · 7
0 1 0 0 1 10 · 3 4 · 6

We have f (g, e, J ) ≥ 0 with equality in the cases marked by← . These are the
ell-reg automorphisms of orders 2 and 3 for F4 and outer ell-reg automorphisms
of E6 of orders 4 and 2. This completes the proof of Theorem 1 in the cases F4

and 2E6.

4.3. Types E6 , E7, and E8. Here, e = 1. We consider the ends of the interval
1 < m < h in two steps:

Step 1. For each 1 < m < n, we compute the minimum

r(m)=min{|RJ | : cJ
= m}.



162 MARK REEDER

In the tables below, we check that

(18) r(m)≥
|R|
m
− n

for each m < n, and we verify that equality holds in (18) for at most one J with
cJ
= m. This will prove Theorem 1 when m < n.
Next we will consider |RJ |, where cJ

≥ n. If |RJ |> h− n, then

cJ
|RJ | − ncJ > cJ (h− n)− ncJ = cJ h− n(cJ

+ cJ )= (cJ
− n)h ≥ 0,

so f (g, 1, J ) > 0. Hence, we may also assume |RJ | ≤ h−n. Since we have already
proved Theorem 1 for |RJ | ≤ 8, we may in fact assume that

10≤ |RJ | ≤ h− n.

Step 2. For each even integer r ≤ h− n, we compute the minimum

m(r)=min{cJ
: |RJ | = r}.

In the tables below, we check that

(19) r ≥
|R|

m(r)
− n,

and we verify that equality holds in (19) for at most one J with |RJ | = r . This will
complete the proof of Theorem 1.

4.3.1. Type E6. In Step 1 for E6, we take 1 < m < 6 and compute r(m) in the
following table. The types of RJ for which cJ

= m are shown; those for which
|RJ |= r(m) are in bold. We write the irreducible components of RJ multiplicatively.
The rightmost column indicates the unique J for which r(m)= (|R|/m)− n, if it
exists. The tabulations of Step 1 are as follows, with single bonds omitted:

m types of RJ with cJ
= m r(m) (|R|/m)− 6 J

2 A1 A5, D5 32 30 none

3 A3
2, A1 A4, D4, A5 18 18

0 0 1 0 0
0
0

4 A1 A2
2, A1 A3, A2

1A3, A4 14 12 none

5 A2
1 A2, A1 A2

2, A1 A3, A3 10 42
5 none

Since h−n=12−6<8, the proof of Theorem 1 for E6 is completed by Step 1 alone.
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4.3.2. Type E7. In Step 1 for E7, we take 1 < m < 7 and compute r(m) in the
following table, using the same notational conventions as for E6 above, with single
bonds omitted:

m types of RJ with cJ
= m r(m) (|R|/m)−7 J

2 A7, A1 D6, E6 56 56 0 0 0 0 0 0 0
1

3 A2 A5, A1 D5, A6, D6 36 35 none

4
A1 A2

3, A2 A4, A2
1 D4, A5, 26 49

2 noneA1 A5, D5

5
A1 A2 A3, A1 A4, A2 A4, 20 91

5 noneA1 D4, A5, A1 A5

6
A1 A2

2, A2
1A3, A2 A3, A3

2, A3
1 A3,

A4, A1 A4, A2
3, D4, A5

14 14 1 0 0 1 0 0 1
0

For Step 2, we need only consider r = 10. The only simply laced root systems with
10 roots are A5

1 and A2
1A2. All occurrences of these as RJ in E7 have cJ

≥ 8. Since

|R|
8
− 7= 35

4
< 10,

Theorem 1 is now proved for E7.

4.3.3. Type E8. In Step 1 for E8, we take 1 < m < 8 and compute r(m) in the
following table, using the same notational conventions as for E6 and E7 above,
with single bonds omitted:

m types of RJ with cJ
= m r(m) (240/m)− 8 J

2 D8, A1 E7 112 112 0 0 0 0 0 0 0 1
0

3 A8, A2 E6, D7, E7 72 72 0 0 0 0 0 0 0 0
1

4 A3 D5, A7, A1 A7, A1 D6, A1 E6 52 52 0 0 0 1 0 0 0 0
0

5 A2
4, A1 A6, A2 D5, A7, D6, A1 E6 40 40 0 0 0 0 1 0 0 0

0

6 A3 A4, A2
1A5, A3 D4, A2 A5, A1 A2 A5,

A1 D5, A6, A2
1 D5, A7, E6

32 32 1 0 0 0 1 0 0 0
0

7
A1 A2 A4, A2 D4, A3 A4, A1 A5 28 184

7 noneA1 D5, A6, A1 A6, A2 D5

For Step 2, we take r = 10, 12, . . . , 22 and compute m(r) in the following table.
The types of RJ for which |RJ | = r are shown; those for which cJ

= m(r) are in
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bold; and that J for which |RJ | = (240/cJ )− n, if it exists, is shown in the right
column (single bonds have been omitted).

r types of RJ with |RJ | = r m(r) [240/m(r)] − 8 J

10 A5
1, A2

1 A2 14 64
7 none

12 A3
1 A2, A2

2, A3 12 12 1 0 1 0 0 1 0 1
0

14 A4
1 A2, A1 A2

2, A1 A3 12 12 none

16 A2
1 A2

2, A2
1A3 10 16 1 0 1 0 0 1 0 0

0

18 A2 A3, A3
1 A3, A3

2 10 16 none

20 A1 A2 A3, A1 A3
2, A4 9 56

3 none

22 A2
1 A2 A3, A1 A4 8 22 0 1 0 0 0 1 0 0

0

In each case, we have
r ≥

[ 240
m(r)

]
− 8,

and equality is achieved by at most one J , as indicated in the rightmost column.
The proof of Theorem 1 for E8 is now complete.

Appendix: The classification of ell-reg automorphisms

For reference in the proofs above, we recall the classification of ell-reg automor-
phisms given in [Reeder et al. 2012]. There is only one inner ell-reg automorphism
of sln , namely the principal one, so we ignore this case. Recall that m denotes the
order of an ell-reg automorphism of g.

A.1. Type 2A2n. The ell-reg outer automorphisms of sl2n+1 correspond to odd
quotients d of 2n and 2n+ 1. The graphs D(sl2n+1, 2) are as shown:

n ≥ 1 :
1 2

n > 1 : · · ·
1 2 2 2 2 2

The ell-reg outer automorphisms of sl2n+1 correspond to odd quotients d of 2n+ 1
and 2n. We write these quotients as

d = 2n+1
2k+1

and d = n
k
,

respectively. The cases overlap only when d = 1. The corresponding ell-reg
automorphism has order m = 2d in both cases:

d = m/2 s
3 1 1
2 1 0
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d = m/2 s

2n+ 1 1 1 1 · · · 1 1 1
1 1 0 0 · · · 0 0 0

2n+1
2k+1 1 0 0 1 0 0 1 1 0 0 0· · ·

︷ ︸︸ ︷A2k

· · ·
︷ ︸︸ ︷A2k

· · · · · ·
︷ ︸︸ ︷Bk

n
k 1 0 0 1 0 0 1 1 0 0 0· · ·

︷ ︸︸ ︷A2k−1

· · ·
︷ ︸︸ ︷A2k−1

· · · · · ·
︷ ︸︸ ︷Bk

In the two last rows we have 0 < k < n such that d is odd and the number of type-A
factors is (d − 1)/2. The next-to-last row corrects an error in [Reeder et al. 2012].

A.2. Type 2A2n−1. The graph D(sl2n, 2), with n ≥ 3 and labels c0, c1, . . . , cn , is
shown here, with c0 = cn = 1:

· · ·

1

1 2 2 1

The ell-reg outer automorphisms of sl2n correspond to odd quotients d of 2n− 1
and 2n. We write these quotients as

d = 2n−1
2k−1

and d = n
k
,

respectively. The cases overlap only when d = 1. The corresponding ell-reg
automorphism has order m = 2d in both cases.

d = m/2 s

2n− 1
1 1 1 1 1 1 1

1

· · ·

1
0 0 0 0 0 0 1

0

· · ·

n, n odd
1 0 1 0 1 1 0 1

1

· · ·

2n−1
2k−1

0 0 0 1 0 0 1 1 0 0 1· · ·

︷ ︸︸ ︷Dk

· · ·

︷ ︸︸ ︷A2k−2

· · · · · ·

︷ ︸︸ ︷A2k−2

0

n
k

0 0 0 1 0 0 1 1 0 0 1· · ·

︷ ︸︸ ︷Dk

· · ·

︷ ︸︸ ︷A2k−1

· · · · · ·

︷ ︸︸ ︷A2k−1

0
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In the last two rows we have 1 < k < n such that d is odd and there are (d − 1)/2
components of type A.

A.3. Type Bn. The graph D(so2n+1, 1) with labels c0, c1, . . . , cn is shown here,
with c0 = cn = 1:

· · ·

1

1 2 2 2

The ell-reg automorphisms of so2n+1 are of the form π k , where π is a principal
automorphism and k is a divisor of n. The order m of π k is m = 2n/k, and the
Kac coordinates of π k are given in the table below. We replace each node i by the
Kac coordinate si ∈ {0, 1}, and also omit the single bonds in the graph. Recall that
J = {i ∈ I : si = 0}.

k | n m s = (s0, s1, . . . , sn)

1 2n
1 1 1 1 1 1 1 1

1

· · ·

2 n
1 0 1 0 1 0 1 0

1

· · ·

k > 2,
k even

2n
k

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0· · ·

︷ ︸︸ ︷Dk/2
· · ·

︷ ︸︸ ︷Ak−1
· · · · · ·

︷ ︸︸ ︷Ak−1
· · · · · ·

︷ ︸︸ ︷Bk/2

0

k > 1,
k odd

2n
k

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0· · ·

︷ ︸︸ ︷D(k+1)/2
· · ·

︷ ︸︸ ︷Ak−1
· · · · · ·

︷ ︸︸ ︷Ak−1
· · · · · ·

︷ ︸︸ ︷B(k−1)/2

0

The second line, where m = n, only occurs if n is even. In the last two lines there
are (n/k)− 1 factors of type Ak−1.

A.4. Type Cn. The graph D(sp2n, 1) with labels c0, c1, . . . , cn is shown here,
with c0 = cn = 1:

· · ·
1 2 2 2 1

The Coxeter number is 2n. As with so2n+1, the ell-reg automorphisms of sp2n are
powers π k of a principal automorphism π , where k is a divisor of n. The order m
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of π k is m = 2n/k, and the Kac coordinates of π k are these:

k | n m s = (s0, s1, . . . , sn)

1 2n 1 1 1 1 1 1 1 1· · ·

k > 1 2n
k 0 0 0 1 0 0 1 1 0 0 1· · ·

︷ ︸︸ ︷Ak−1

· · ·

︷ ︸︸ ︷Ak−1

· · · · · ·

︷ ︸︸ ︷Ak−1

In the last line, for k > 1, there are n/k factors of type Ak−1.

A.5. Type Dn. The graph D(so2n, 1) with labels c0, c1, . . . , cn is shown here,
with c0 = c1 = cn−1 = cn = 1:

· · ·

1

1

1

2 2 2 2 1

The ell-reg conjugacy classes in Aut(so2n, 1) correspond to even divisors k of n,
where m = 2n/k, and odd divisors k of n− 1, where m = (2n− 2)/k, as shown in
the table below:

k m s = (si )

1 2n−2
1 1 1 1 11 1

1 1

· · ·

2 n,
n even

1 0 1 0 1 1 0 1 0 1· · ·

11

n,
n even 2 0 0 0 1 0 0 0· · ·

︷ ︸︸ ︷Dn/2

· · ·

︷ ︸︸ ︷Dn/2

0 0

k even,
k | n,

2<k <n

2n
k 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0· · ·

︷ ︸︸ ︷Dk/2

· · ·

︷ ︸︸ ︷Ak−1

· · ·

︷ ︸︸ ︷Ak−1

· · · · · ·

︷ ︸︸ ︷Dk/2

0 0

k odd,
k | n−1,

1<k<n−1

2n−2
k 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0· · ·

︷ ︸︸ ︷D(k+1)/2

· · ·

︷ ︸︸ ︷Ak−1

· · ·

︷ ︸︸ ︷Ak−1

· · · · · ·

︷ ︸︸ ︷D(k+1)/2

0 0

In the last two rows, the number of type-A factors is one less than n/k and
(n− 1)/k, respectively.

A.6. Type 2Dn+1. The graph D(so2n+2, 2), with n ≥ 2 and c0 = c1 = · · · = cn = 1:

2Dn+1 : · · ·
1 1 1 1 1 1
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The ell-reg classes in Aut(so2n+2, 2) correspond to even divisors k of n with order
m = 2n/k and odd divisors k of n+ 1 with order m = 2(n+ 1)/k.

k m s = (s0, s1, . . . , sn)

1 2n+ 2 1 1 1 1 11 1· · ·

2 n, n even 0 1 0 1 0 0 1 0 1 0· · ·

k even,
k | n,
2 < k

2n
k 0 0 0 1 0 0 1 1 0 0 1 0 0 1· · · · · ·

︷ ︸︸ ︷Bk/2︷ ︸︸ ︷Bk/2

· · ·

︷ ︸︸ ︷Ak−1

· · · · · ·

︷ ︸︸ ︷Ak−1

k odd,
k | n+ 1,

1 < k

2n+2
k 0 0 0 1 0 0 1 1 0 0 1 0 0 0· · · · · ·

︷ ︸︸ ︷B(k−1)/2︷ ︸︸ ︷B(k−1)/2

· · ·

︷ ︸︸ ︷Ak−1

· · · · · ·

︷ ︸︸ ︷Ak−1

In the last two rows, the number of type A factors is one less than n/k and (n+1)/k,
respectively.

A.7. Exceptional Lie algebras. When only single bonds are present, they have
been omitted.

E6
2E6 E7

m s

12
1 1 1 1 1

1
1

9
1 1 0 1 1

1
1

6
1 0 1 0 1

0
1

3
0 0 1 0 0

0
0

m s

18 1 1 1 1 1
12 1 1 0 1 1
6 1 0 0 1 0
4 0 0 0 1 0
2 0 0 0 0 1

m s

18 1 1 1 1 1 1 1
1

14 1 1 1 0 1 1 1
1

6 1 0 0 1 0 0 1
0

2 0 0 0 0 0 0 0
1

G2 F4
3D4

m s
6 1 1 1
3 1 1 0
2 0 1 0

m s

12 1 1 1 1 1
8 1 1 1 0 1
6 1 0 1 0 0
4 1 0 1 0 0
3 0 0 1 0 0
2 0 1 0 0 0

m s
12 1 1 1
6 1 0 1
3 0 0 1

E8

m s

30 1 1 1 1 1 1 1 1
1

24 1 1 1 1 1 0 1 1
1

20 1 1 1 0 1 0 1 1
1

15 1 1 0 1 0 1 0 1
0

12 1 0 1 0 0 1 0 1
0

10 1 0 1 0 0 1 0 0
0

8 0 1 0 0 0 1 0 0
0

6 1 0 0 0 1 0 0 0
0

5 0 0 0 0 1 0 0 0
0

4 0 0 0 1 0 0 0 0
0

3 0 0 0 0 0 0 0 0
1

2 0 0 0 0 0 0 0 1
0
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