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PUSHFORWARD AND SMOOTH VECTOR PSEUDO-BUNDLES

ENXIN WU

We study a new operation named pushforward on diffeological vector pseudo-
bundles, which is left adjoint to the pullback. We show how to pushforward
projective diffeological vector pseudo-bundles to get projective diffeological
vector spaces, producing many concrete new examples, together with appli-
cations to smooth splittings of some projective diffeological vector spaces
related to geometry. This brings new objects to diffeology from classical
vector bundle theory.

1. Introduction

Diffeological spaces are elegant generalisations of smooth manifolds, including
many infinite-dimensional spaces, like mapping spaces and diffeomorphism groups,
and singular spaces, e.g., smooth manifolds with boundary or corners, orbifolds
and irrational tori.

On diffeological spaces, one can still do some differential geometry and topology,
such as differential forms and tangent bundles. These tangent bundles are, in general,
no longer locally trivial. Instead, they are diffeological vector pseudo-bundles. We
studied these objects and operations on them in [Christensen and Wu 2022], on
which the current paper is based.

On the other hand, the theory of diffeological vector spaces and their homological
algebra is intimately related to analysis and geometry; see [Wu 2015; Christensen
and Wu 2016; 2021]. The projective objects there deserve special attention. How-
ever, in general, neither is it easy to test whether a given diffeological vector
space is projective or not, nor is it straightforward to construct many concrete
projective objects.

In this paper, we propose a way to use diffeological vector pseudo-bundles to
study diffeological vector spaces. We generalise some results of projective objects
for diffeological vector spaces to such bundles. In particular, we show that every
classical vector bundle is such a projective object. We introduce a left adjoint called
pushforward to the pullback on diffeological vector pseudo-bundles, we show that
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the free diffeological vector space generated by a diffeological space has a canonical
bundle-theoretical explanation, and we show that pushforward preserves projectives.
In this way, we construct many concrete projective diffeological vector spaces from
classical vector bundle theory, together with applications of classical vector bundle
theory to smooth splittings of some projective diffeological vector spaces.

Here is the structure of the paper. In Section 2, we briefly review some necessary
background. In Section 3, we introduce pushforward on diffeological vector pseudo-
bundles. Section 4 contains three parts, including necessary and sufficient conditions
of smooth splittings of short exact sequences of diffeological vector pseudo-bundles,
examples and properties of the projective objects, and preservation of projectives by
pushforward. In particular, we get many new examples of projective diffeological
vector spaces from classical vector bundles. In Section 5, we apply the established
theory to smooth splittings of projective diffeological vector spaces. Readers
interested in concrete examples are suggested to take a look at the last part of this
section first.

2. Background

In this section, we give a very brief review, together with many related references.

Definition 2.1. A diffeological space is a set X together with a collection of maps
U → X (called plots) from open subsets U of Euclidean spaces, such that:

(1) Every constant map is a plot.

(2) The composite V →U → X is a plot if the first map is smooth between open
subsets of Euclidean spaces and the second one is a plot.

(3) The map U → X is a plot if there is an open cover of U such that each
restriction is a plot.

A smooth map X→ Y between diffeological spaces is a map which sends plots
of X to plots of Y . Diffeological spaces with smooth maps form a category denoted
by Diff.

The idea of a diffeological space was introduced in [Souriau 1980], and [Iglesias-
Zemmour 2013] is currently the standard reference for the subject. Also see [Chris-
tensen et al. 2014, Section 2] for a concise summary for the basics of diffeological
spaces.

The category Diff has excellent properties. It contains the category of smooth
manifolds as a full subcategory, and it is complete, cocomplete and cartesian closed.
In particular, we have subspaces, quotient spaces and mapping spaces for diffeolog-
ical spaces. Like charts for manifolds, we have various generating sets of plots for a
diffeological space. Every diffeological space has a canonical topology called the D-
topology; see [Iglesias-Zemmour 1985; Christensen et al. 2014]. Every diffeological
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space has a tangent bundle; see [Hector 1995; Christensen and Wu 2016; 2017].
Diffeological vector spaces are the vector space objects in Diff. Every vector space
can be equipped with a smallest diffeology called the fine diffeology, making it a
diffeological vector space; see [Iglesias-Zemmour 2007]. There are many other
kinds of diffeological vector spaces in practice. Hierarchies of diffeological vector
spaces were studied in [Christensen and Wu 2019], and homological algebra of
diffeological vector spaces was developed in [Wu 2015]. The following two types
of diffeological vector spaces will be needed:

Definition 2.2. A diffeological vector space V is called projective if for any linear
subduction1 f : V1→ V2 and any smooth linear map g : V → V2, there exists a
smooth linear map h : V → V1 such that g = f ◦ h.

Proposition 2.3 [Wu 2015, Proposition 3.5]. Given any diffeological space X ,
there exist a diffeological vector space V and a smooth map i : X→ V satisfying
the following universal property: for any diffeological vector space W and any
smooth map f : X→W , there exists a unique smooth linear map g : V →W such
that f = g ◦ i .

The diffeological vector space V in the above proposition is unique up to iso-
morphism. We call it the free diffeological vector space generated by X , and
we write iX : X → F(X) for i : X → V . As a model, F(X) = ⊕x∈X R as a
vector space, a plot U → F(X) locally factors via a smooth map through some
R×U1×· · ·×R×Uk→ F(X) with (r1, u1, . . . , rk, uk) 7→

∑
i ri [pi (ui )] for some

k ∈ Z>0 and plots pi : Ui → X , and iX (x) = [x], the element 1 in the copy of R

corresponding to x ∈ X .
We recall the following concepts from [Christensen and Wu 2022]:

Definition 2.4. A diffeological vector pseudo-bundle over a diffeological space B
is a smooth map π : E→ B between diffeological spaces such that the following
conditions hold:

(1) For each b ∈ B, π−1(b)=: Eb is a vector space.

(2) The fibrewise addition E ×B E→ E and the fibrewise scalar multiplication
R× E→ E are smooth.

(3) The zero section σ : B→ E is smooth.

Definition 2.5. Given a diffeological space B, a bundle map over B is a commutative
triangle

E1
f //

π1
��

E2

π2
��

B

1A subduction is a smooth map that is isomorphic to a quotient map in Diff.
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where π1, π2 are diffeological vector pseudo-bundles over B, f is smooth and for
each b ∈ B, the restriction f |E1,b : E1,b→ E2,b is linear.

Such f is called a bundle subduction (respectively, bundle induction) over B if
it is both a bundle map over B and a subduction (respectively, an induction2).

For a fixed diffeological space B, all diffeological vector pseudo-bundles over B
and bundle maps over B form a category, denoted by DVPBB . An isomorphism
in DVPBB is called a bundle isomorphism over B. A bundle map over B is a bundle
isomorphism if and only if it is both a bundle induction and a bundle subduction
over B.

Definition 2.6. A commutative square

E
g //

π

��

E ′

π ′

��
B

f
// B ′

in Diff, with π and π ′ being diffeological vector pseudo-bundles, is called a bundle
map, if for each b ∈ B, the map g|Eb : Eb→ E ′f (b) is linear.

A bundle map (g, f ), as above, is called a bundle subduction if both g and f
are subductions.

All diffeological vector pseudo-bundles and bundle maps form a category denoted
by DVPB.

Note that diffeological vector pseudo-bundles are neither diffeological fibre bun-
dles in [Iglesias-Zemmour 1985; 2013], nor diffeological fibrations in [Christensen
and Wu 2014]. They were introduced to encode tangent bundles of diffeological
spaces [Christensen and Wu 2016]. Many operations on DVPBB and DVPB were
studied in [Christensen and Wu 2022], such as direct product, direct sum, free
diffeological vector pseudo-bundle induced by a smooth map, tensor product, and
exterior product. We will use the following construction later:

Proposition 2.7 [Christensen and Wu 2022, Proposition 3.3]. Let π : E→ B be
a smooth map between diffeological spaces such that each fibre is a vector space.
Then there is a smallest diffeology on E which contains the given diffeology and
which makes π into a diffeological vector pseudo-bundle over B.

We call the original π : E→ B a diffeological vector prebundle , and the procedure
in this proposition is called dvsification. More precisely, every plot in the new
diffeology of the total space is locally of the following form: Given a plot q :U→ B,
some k ∈ N, plots q1, . . . , qk : U → E such that π ◦ qi = q for all i , and plots
r1, . . . , rk :U→R, the linear combination U→ E with u 7→

∑
i ri (u)qi (u)∈ Eq(u)

2An induction is a smooth map that is isomorphic to an inclusion of a subspace in Diff.
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is a plot in the new diffeology. Note that when k = 0, this is σ ◦ q for the zero
section σ : B→ E .

3. Pushforward

Recall from [Christensen and Wu 2022, Section 3.1] that one can pullback diffeo-
logical vector pseudo-bundles via smooth maps, i.e., a smooth map f : B→ B ′

induces a functor f ∗ : DVPBB ′→ DVPBB by pullback. Now we define a related
operation as follows:

Given a smooth map f : B → B ′ and a diffeological vector pseudo-bundle
π : E→ B, we define
(1) E ′ =

∐
b′∈B ′

( ⊕
b∈ f −1(b′)

Eb
)
.

Note that when f −1(b′)=∅, the term in the above parentheses is R0. There are
canonical maps π f : E ′→ B ′ sending the fibre above b′ to b′, and α f : E → E ′

with Eb ↪→
⊕

b̃∈ f −1( f (b))Eb̃. We then have a natural commutative square

E
α f //

π

��

E ′

π f

��
B

f
// B ′

Hence, we can equip E ′ with the dvsification of the diffeology generated by the
upper horizontal map α f of the above square, making the right vertical map π f a
diffeological vector pseudo-bundle over B ′, and hence the above square becomes a
bundle map from π to π f . (As a warning, each fibre of E ′ may not be the direct
sum of those of E as diffeological vector spaces; see Proposition 3.5. Also notice
that the notation α f will be used later in the paper.) More precisely, we have the
following explicit description of a generating set of plots on E ′:

Lemma 3.1. A plot on E ′ is locally of one of the following forms:

(1) U → E ′ defined by a finite sum
∑

i α f ◦ pi , where pi :U → E are plots on E
such that all f ◦π ◦ pi ’s match;

(2) the composite of a plot of B ′ followed by the zero section B ′→ E ′.

Proof. This is straightforward from the description of dvsification as recalled in the
paragraph right after Proposition 2.7. □

It is straightforward to check that we get a functor f∗ : DVPBB → DVPBB ′ ,
called the pushforward of f , and we write E ′ above as f∗(E). Moreover, from the
above lemma, we have:

(1) f ′
∗
◦ f∗ = ( f ′ ◦ f )∗ for any smooth maps f : B→ B ′ and f ′ : B ′→ B ′′;

(2) (1B)∗ = the identity on DVPBB .
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Example 3.2. Pushforward has been used implicitly in [Christensen and Wu 2022,
Section 5]. For example, E1 and E2 in [Christensen and Wu 2022, Proposition 5.1]
are the pushforward of the tangent bundle R2 ∼= T R→ R along the inclusions
R→ Xg to the x-axis and the y-axis, respectively.

Here is the key result for pushforward:

Theorem 3.3. Given a smooth map f : B→ B ′, we have an adjoint pair of functors

f∗ : DVPBB ⇌ DVPBB ′ : f ∗.

Proof. We show that there is a natural bijection

DVPBB(E, f ∗(E ′))∼= DVPBB ′( f∗(E), E ′).

Given a bundle map E → f ∗(E ′) over B, we have Eb → E ′f (b) for each b ∈ B,
which induce

⊕
b∈ f −1(b′) Eb→ E ′b′ , and hence a map f∗(E)→ E ′. This is clearly a

bundle map over B ′. Conversely, given a bundle map f∗(E)→ E ′ over B ′, we have
a map

⊕
b∈ f −1(b′) Eb→ E ′b′ for each b′ ∈ Im( f ). It then induces a map Eb→ E ′f (b),

which together give a map E→ f ∗(E ′). It is straightforward to check that this is a
bundle map over B. These procedures are inverses to each other, and therefore we
proved the desired result. □

We have the following bundle-theoretical explanation of a free diffeological
vector space:

Proposition 3.4. For any diffeological space B, the total space of the pushforward
of the trivial bundle B ×R→ B along the map B→ R0 is the free diffeological
vector space F(B).

Proof. This follows directly from the diffeology of the total space of the pushforward
(see Lemma 3.1) and the diffeology on free diffeological vector space, as recalled
in the paragraph right after Proposition 2.3. □

From [Christensen and Wu 2022, Section 3], we know that the usual operations
on diffeological vector pseudo-bundles have the obvious diffeology on each fibre
indicated by the operation. But pushforward is an exception, although it is expected
to be so.

Proposition 3.5. Let f : B → B ′ be a smooth map, and let E → B be a diffeo-
logical vector pseudo-bundle. Then the diffeology on the fibre at b′ of the pushfor-
ward f∗(E) has the direct sum diffeology of the diffeological vector spaces Eb with
f (b)= b′ if and only if f −1(b′) as a subspace of B has the discrete diffeology.

Proof. This follows directly from Lemma 3.1. □

Here is the universal property for pushforward:
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Proposition 3.6. Given a bundle map

E
f //

π

��

E ′

π ′

��
B g

// B ′

there exists a unique bundle map β : g∗(E)→ E ′ over B ′ such that f = β ◦αg.

Proof. This is clear by the construction of pushforward, or from the adjoint
(Theorem 3.3). □

Pushforward can send nonisomorphic bundles to isomorphic ones:

Example 3.7. Write B for the cross with the gluing diffeology, and write B ′ for
the cross with the subset diffeology of R2. Then B→ B ′ defined as the identity
underlying set map is smooth, but its inverse is not; see [Christensen and Wu 2016,
Example 3.19]. We show below that the induced map F(B)→ F(B ′) between
the free diffeological vector spaces, which is the identity for the underlying vector
spaces, is indeed an isomorphism of diffeological vector spaces. This means that
the pushforward of the two trivial bundles B×R→ B and B ′×R→ B ′ along the
maps B→ R0 and B ′→ R0 are isomorphic, but clearly the two bundles are not.

By definition of a free diffeological vector space, every plot p :U → F(B ′) can
be locally written as a finite sum p(u)=

∑
i ri (u)(p1i (u), p2i (u)) for smooth maps

ri , p1i , p2i with codomain R satisfying p1i (u)p2i (u)= 0 for all u. It is enough to
show that p can be viewed as a plot of F(B). This is the case since (p1i (u), p2i (u))
can be written as (p1i (u), 0)+ (0, p2i (u))− (0, 0), with each term viewed as a plot
of B.

As a consequence of the above example, the canonical map iX : X→ F(X) from
a diffeological space to the free diffeological vector space generated by it is not
necessarily an induction.

On the other hand, we have:

Proposition 3.8. The canonical map iX : X→ F(X) is an induction if and only if
there exists a family of diffeological vector spaces {Vi }i∈I such that the diffeology
on X is determined by the union of all C∞(X, Vi ), in the sense that U→ X is a plot
if and only if the composite U → X→ Vi is smooth for every smooth map X→ Vi .

In particular, for every Frölicher space X (i.e., the diffeology on X is determined
by C∞(X,R)), the canonical map X→ F(X) is an induction. This applies to B ′

in Example 3.7.

Proof. This follows immediately from the universal property of the free diffeological
vector space generated by a diffeological space. □
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4. Projective diffeological vector pseudo-bundles

4A. Enough projectives. In this subsection, we will work in the category DVPBB

for a fixed diffeological space B. So we will omit the phrase “over B” in many
places, as long as no confusion shall occur. Note that when we take B = R0, we
recover the corresponding results for the category of diffeological vector spaces.

We first study smooth splittings of diffeological vector pseudo-bundles, which
will be used later in the paper.

Definition 4.1. A diagram of morphisms

E1
f // E2

g // E3

in DVPBB is called a short exact sequence if f is a bundle induction, g is a bundle
subduction and

E1,b
fb // E2,b

gb // E3,b

is exact (i.e., ker(gb)= Im( fb)) for every b ∈ B.

As a direct consequence of the above definition, we have:

Corollary 4.2. Given a short exact sequence

E1 // E2 // E3

of diffeological vector pseudo-bundles over B, we have a bundle isomorphism
E2/E1 ∼= E3 over B.

The splitting of a short exact sequence goes as usual:

Theorem 4.3. Assume that

E1
f // E2

g // E3

is a short exact sequence of diffeological vector pseudo-bundles over B. Then the
following are equivalent:

(1) There exists a bundle map g′ : E3→ E2 over B such that g ◦ g′ = 1E3 .

(2) There exists a bundle map f ′ : E2→ E1 over B such that f ′ ◦ f = 1E1 .

(3) There exists a bundle isomorphism E2→ E1⊕E3 over B making the following
diagram commutative:

E1
f //

=

��

E2
g //

��

E3

=

��
E1 i1

// E1⊕ E3 p2
// E3
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If any one of the conditions holds in the theorem, we say that the short exact
sequence splits smoothly, and that E1 (respectively, E3) is a smooth direct summand
of E2. Although every short exact sequence of vector spaces splits, it is not the
case in DVPBB , even when B = R0; see [Wu 2015, Example 4.3] or [Christensen
and Wu 2019, Example 4.1].

Proof. We show below that (1)⇐⇒ (3), and (2)⇐⇒ (3) can be proved similarly.

(1) =⇒ (3): Since we have bundle maps f : E1 → E2 and g′ : E3 → E2, we
define the map E1 ⊕ E3 → E2 by (x1, x3) 7→ f (x1)+ g′(x3) for any x1 ∈ E1,b,
x3 ∈ E3,b and b ∈ B. This is clearly a bundle map over B. Its inverse is given
by x 7→ ( f −1(x − g′ ◦ g(x)), g(x)). It is straightforward to check that this is well
defined, and it is smooth since f is an induction.

(3) =⇒ (1): The map g′ is defined by the composite E3
i2
−→E1⊕ E3

∼=
−→E2. The rest

are straightforward to check. □

Now we can define projective diffeological vector pseudo-bundles and show that
there are enough such objects.

Definition 4.4. A diffeological vector pseudo-bundle E→ B is called projective if
for any bundle subduction f : E1→ E2 over B and any bundle map g : E→ E2

over B, there exists a bundle map h : E→ E1 over B making the triangle commu-
tative:

E
g

��

h

}}
E1 f

// E2

Formally, we have the following basic properties:

Proposition 4.5. (1) Let {Ei → B} be a family of diffeological vector pseudo-
bundles. Then the direct sum

⊕
i Ei → B is projective if and only if each

Ei → B is.

(2) The projectiveness of diffeological vector pseudo-bundles is inherited by taking
retracts.

(3) Any bundle subduction to a projective diffeological vector pseudo-bundle splits
smoothly.

Recall from [Christensen and Wu 2022, Section 3.2.5] that given a smooth map
f : X → B, we get a diffeological vector pseudo-bundle π : FB(X)→ B. More
precisely, it is constructed as follows: For each b ∈ B, write Xb for f −1(b) with
the subset diffeology of X . As a set FB(X)=

∐
b∈B F(Xb), the disjoint union of

the free diffeological vector spaces generated by these Xb and π : FB(X)→ B is
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the canonical projection. So we have the commutative triangle

X i //

f
��

FB(X)

π
��

B

where the horizontal map is given by x ∈ Xb 7→ [x] ∈ F(Xb). The dvsification
of i makes π : FB(X)→ B into a diffeological vector pseudo-bundle3. Then we
have the following universal property for π : FB(X)→ B: Given any diffeological
vector pseudo-bundle E→ B and any smooth map h : X→ E over B, there is a
unique bundle map g : FB(X)→ E over B such that h = g ◦ i .

Lemma 4.6. Let f : X → B be a smooth map. The corresponding diffeological
vector pseudo-bundle π : FB(X)→ B is projective if and only if for any bundle
subduction α : E1→ E2 over B and any smooth map β : X → E2 over B, there
exists a smooth map γ : X→ E1 over B such that β = α ◦ γ .

Proof. As usual, this follows from the universal property of π : FB(X)→ B. □

Proposition 4.7. Every plot U → B induces a projective diffeological vector
pseudo-bundle FB(U )→ B.

Proof. Given any bundle subduction f : E1→ E2 over B and any smooth map
g : U → E2 over B, we have smooth local liftings hi of g to E1. Let {λi } be a
smooth partition of unity subordinate to the corresponding open cover {Ui } of U .
Then

∑
i λi · hi : U → E1 is a global smooth lifting of g over B, where each

λi · hi :U → E1 is defined as

(λi · hi )(u)=
{
λi (u)hi (u), if u ∈Ui ,

σ1 ◦π2 ◦ g(u), else,

with σ1 : B→ E1 denoting the zero section and π2 : E2→ B denoting the given
diffeological vector pseudo-bundle. The result then follows from Lemma 4.6. □

As a direct consequence of the above proof, we have:

Corollary 4.8. For every bundle subduction, a plot of the total space of the
codomain globally lifts to a plot of the total space of the domain.

Theorem 4.9. For every diffeological space B, the category DVPBB has enough
projectives, i.e., given any diffeological vector pseudo-bundle E→ B, there exists
a projective diffeological vector pseudo-bundle E ′ → B together with a bundle
subduction E ′→ E over B.

3More precisely, the map i transfers the diffeology of X to the set FB(X), which makes
π : FB(X)→ B into a diffeological vector prebundle because of the above commutative triangle. The
dvsification is then applied to this prebundle.
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Proof. We take E ′→ B to be the direct sum in DVPBB of all FB(U )→ B indexed
over all plots U → E . By Proposition 4.7, each FB(U )→ B is projective, and
hence by Proposition 4.5 (1), E ′→ B is projective. By the universal property of
FB(U )→ B, we get a bundle map FB(U )→ E over B, and hence a bundle map
E ′→ E over B. By construction, this map is a subduction. □

In summary, for a fixed diffeological space B, the pair of projective diffeological
vector pseudo-bundles over B and the bundle subductions over B forms a projective
class.

4B. Examples and properties of projectives. We first give some examples of
projective diffeological vector pseudo-bundles related to classical vector bundle
theory. To do so, we need:

Lemma 4.10. For a smooth map f : B → B ′, the pullback f ∗ sends a bundle
subduction over B ′ to a bundle subduction over B, and hence it preserves short
exact sequences.

Proof. Let g : E ′1→ E ′2 be a bundle subduction over B ′. Then f ∗(E ′1)→ f ∗(E ′2) is
given by sending (b, x) to (b, g(x)). Every plot p :U→ f ∗(E ′2) gives rise to smooth
maps p1 :U→ B and p2 :U→ E ′2 via composition with the two projections. Since
g is a bundle subduction, p2 locally lifts as a smooth map to E ′1, which together
with p1 induces a local lifting of p to f ∗(E ′1), showing the first claim.

Since f ∗ is a right adjoint by Theorem 3.3, it preserves bundle inductions, which
together with the first claim proves the second one. □

Remark 4.11. The above lemma also follows from the fact that the pullback
f ∗ :DVPBB ′→DVPBB has a right adjoint f!. Given a diffeological vector pseudo-
bundle π : E→ B, the bundle f!(E)→ B ′ is constructed as

f!(E)=
∐

b′∈B ′
0(π | f −1(b′)).

When f −1(b′)=∅, 0(π | f −1(b′)) is R0. A map p :U → f!(E) is a plot if:

(1) The composite U
p
−→ f!(E)

π̃
−→B ′ is a plot of B ′, where π̃ sends 0(π | f −1(b′))

to b′.

(2) For any smooth map g : V→U and any plot h : V→ B such that the following
diagram commutes:

V
g //

h
��

U
p // f!(E)

π̃

��
B

f
// B ′

the map V → E defined by v 7→ (p(g(v)))(h(v)) is a plot of E .
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It is straightforward to check that π̃ is a smooth map between diffeological spaces
such that each fibre is a vector space. After dvsification, we get the desired diffeology
on the total space f!(E). One can check that f! is a functor which is right adjoint
to the pullback f ∗. Moreover, each fibre of f!(E)→ B ′ has the diffeology of the
section space; see [Christensen and Wu 2022, Section 3.1]. (I would like to thank
J. Daniel Christensen for the suggestion of the set-theoretical construction of f!(E)
in this remark from a type theory point of view.)

Projectiveness is local in the following sense:

Proposition 4.12. Let π : E→ B be a diffeological vector pseudo-bundle. Assume
that there exists a D-open cover {Bj } of B such that i∗j (E)→ Bj is projective in
DVPBBj for each j , where i j : Bj→ B denotes the inclusion, together with a smooth
partition of unity {λ j : B→ R} subordinate to this cover. Then π is projective in
DVPBB .

Proof. For any bundle subduction f : E1 → E2 over B and any bundle map
g : E→ E2 over B, we get a diagram over Bj for each j :

i∗j (E)

i∗j (g)

��
i∗j (E1)

i∗j ( f )
// i∗j (E2)

Lemma 4.10 shows that the horizontal arrow is a bundle subduction over Bj .
By assumption, we have a smooth lifting h j : i∗j (E) → i∗j (E1) over Bj . Then∑

jλ j · h j : E→ E1 is a bundle map over B, as we desired. □

We also have the following expected result:

Proposition 4.13. Let V be a projective diffeological vector space, and let B be a
smooth manifold. Then the trivial bundle B× V → B is projective.

Surprisingly, note that the result can fail if B is an arbitrary diffeological space;
see Example 4.27.

Proof. We first reduce the above statement to a special case. By Proposition 4.12,
it is enough to prove this for the case when B is an open subset of a Euclidean
space. Recall that every projective diffeological vector space is a smooth direct
summand of direct sums of F(U ) for open subsets U of Euclidean spaces [Wu
2015, Corollary 6.15]. By Proposition 4.5 (1) and (2), it is enough to show this for
the case when V = F(U ) for an open subset U of a Euclidean space.

Now we prove the statement for the special case when V = F(U ) and both B
and U are Euclidean open subsets. As diffeological vector pseudo-bundles over B,
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we have isomorphisms FB(B ×U ) ∼= B × F(U ) of total spaces. The result then
follows directly from Proposition 4.7. □

Combining the above two propositions together with the fact that every fine
diffeological vector space is projective, we get:

Corollary 4.14. Vector bundles in classical differential geometry are projective.

However, a projective diffeological vector pseudo-bundle does not need to be
locally trivial, even when the base space is Euclidean:

Example 4.15. Let f : R→ R be the square function x 7→ x2. By Proposition 4.7,
FR(R)→ R is projective. Clearly, the fibre is R0 for b < 0, R for b = 0 and R2 for
b > 0. Therefore, a projective diffeological vector pseudo-bundle does not need to
be locally trivial.

Now we discuss some properties of projective diffeological vector pseudo-
bundles.

Proposition 4.16. Every projective diffeological vector pseudo-bundle E→ B is a
smooth direct summand of direct sum in DVPBB of FB(U )→ B induced by some
plots U → B.

Proof. By the proof of Theorem 4.9, we get a bundle subduction E ′→ E over B,
with E ′ a direct sum in DVPBB of FB(U )→ B induced by the plots U → E (and
hence some plots U→ B, where repetition is allowed). Since E→ B is projective,
the result then follows from Proposition 4.5 (3). □

We are going to use the following notation from [Christensen and Wu 2019]:
Let V be a diffeological vector space, and let X be a diffeological space.

(1) We say that all smooth linear functionals V → R separate points of V , if for
any v ∈ V \{0}, there exists a smooth linear map f : V→R such that f (v) ̸= 0.
Write SV for the family of all such diffeological vector spaces.

(2) We say that all smooth functions X → R separate points of X , if for any
x, x ′ ∈ X with x ̸= x ′, there exists a smooth function f : X → R such that
f (x) ̸= f (x ′). Write SD′ for the family of all such diffeological spaces.

Corollary 4.17. Let E → B be a projective diffeological vector pseudo-bundle.
Then Eb ∈ SV for every b ∈ B, i.e., the smooth linear functionals on Eb separate
points.

Proof. By Proposition 4.16, we know that E is a smooth direct summand of
direct sums in DVPBB of FB(U )→ B induced by some plots U → B. As SV is
closed under taking both smooth direct summands and direct sums [Christensen
and Wu 2019, Proposition 3.11], it is enough to show the claim for the special
case FB(U )→ B which is induced by a plot p : U → B. In this case, the fibre
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at b ∈ B is the free diffeological vector space generated by p−1(b) [Christensen
and Wu 2022, Section 3.2.5], which is a subset of a Euclidean space, and hence
p−1(b)∈ SD′, i.e., the smooth functions on p−1(b) separate points. The result then
follows from [Christensen and Wu 2019, Proposition 3.13]. □

One would expect that each fibre of a projective diffeological vector pseudo-
bundle is a projective diffeological vector space. This is equivalent to the statement
that the free diffeological vector space generated by any subset with the subset
diffeology of a Euclidean space is projective, by a similar argument as above. But I
don’t know whether this is true or not. Nevertheless, we have:

Proposition 4.18. Let B be a diffeological space. Then every fibre of a projective
diffeological vector pseudo-bundle E→ B is a projective diffeological vector space
if and only if for every plot p :U→ B and every b ∈ B, the free diffeological vector
space generated by p−1(b) is projective.

Proof. (⇒): This follows directly from Proposition 4.7.

(⇐): The proof follows from a similar argument as the one in the proof of the
above corollary. □

Proposition 4.19. Let B be a discrete diffeological space, i.e., every plot is locally
constant. Then a diffeological vector pseudo-bundle over B is projective if and
only if each fibre is a projective diffeological vector space.

Proof. (⇒): This follows from the definition of a discrete diffeological space,
together with Proposition 4.18 and [Wu 2015, Corollary 6.4].

(⇐): This follows from the fact that every diffeological vector pseudo-bundle over
a discrete diffeological space is a coproduct in DVPB of diffeological vector spaces
over a point. □

Also, we have the following results:

Proposition 4.20. Let π : E→ B be a projective diffeological vector pseudo-bundle,
and let π1 → π2 → π3 be a short exact sequence in DVPBB , with πi : Ei → B.
Then HomB(π, π1)→HomB(π, π2)→HomB(π, π3) is also a short exact sequence
in DVPBB .

Proof. By Proposition 4.16, we know that π is a smooth direct summand of direct
sums of FB(U ) → B indexed by some plots U → B. It is straightforward to
check that both direct summand and direct product preserve short exact sequences
in DVPBB . For the direct product case, one needs Corollary 4.8 for the subduction
part. By the universal property of a free bundle induced by a smooth map (see
[Christensen and Wu 2022, Section 3.2.5] or the paragraph above Lemma 4.6), one
has a bundle isomorphism over B from HomB(FB(U ), Ei ) to the set HomB(U, Ei )

of all smooth maps U → Ei preserving B, equipped with the subset diffeology
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of C∞(U, Ei ). Again by Corollary 4.8, it is direct to check that the functor
HomB(U,−) preserves short exact sequences in DVPBB . The result then follows
by the above observations together with the first isomorphism in [Christensen and
Wu 2022, Proposition 3.13] □

Remark 4.21. The converse of Proposition 4.20 is false. This is due to the fact
that HomB(π,−) always preserves short exact sequences in DVPBB for the trivial
bundle π : B×R→ B, as it is naturally isomorphic to the identity functor. But the
trivial bundle may not be projective; see Example 4.27.

As a consequence of Proposition 4.20 and [Christensen and Wu 2022, Proposi-
tion 3.12], we have:

Corollary 4.22. If E1→ B and E2→ B are projective diffeological vector pseudo-
bundles, then so is their tensor product E1⊗ E2→ B.

Since
∧k E is a smooth direct summand of E⊗k (as a result of [Pervova 2019,

Lemma 2.11] and Theorem 4.3), by the above corollary and Proposition 4.5 (2),
we have:

Corollary 4.23. If E→ B is a projective diffeological vector pseudo-bundle, then
so is each exterior product

∧k E→ B for k ≥ 1.

4C. Base change.

Theorem 4.24. The pushforward f∗ : DVPBB→ DVPBB ′ sends projectives in the
domain to the projectives in the codomain.

Proof. By the adjunction of Theorem 3.3, the following lifting problems are
equivalent:

f∗(E)

��||
E ′1 // E ′2

⇐⇒

E

��yy
f ∗(E ′1) // f ∗(E ′2)

where E ′1→ E ′2 is a bundle subduction over B ′. By Lemma 4.10 and Definition 4.4,
we know that the lifting problem on the right has a solution, and hence so is the
one on the left. □

This theorem has several applications. We first give another class of examples of
projective diffeological vector pseudo-bundles from tangent bundles of diffeological
spaces. To do so, we need the following result:

Note that projective diffeological vector pseudo-bundles are defined in DVPBB ,
but they have a similar property in DVPB as follows:
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Proposition 4.25. Given a bundle subduction f : E ′1→ E ′2 over B ′ and a bundle
map

E
g //

π

��

E ′2

��
B

l
// B ′

with π projective, there exists a bundle map h : E→ E ′1 such that g = f ◦ h.

Proof. By the universal property of pushforward (Proposition 3.6), we can write g as
a bundle map g̃ : l∗(E)→ E ′2 over B ′ followed by the bundle map αl : E→ l∗(E). By
Theorem 4.24, the assumption that π is projective over B implies that πl : l∗(E)→ B ′

is projective over B ′. Therefore, we have a bundle map h̃ : l∗(E)→ E ′1 over B ′ such
that g̃= f ◦ h̃. Then the composite h̃ ◦αl is the bundle map h we are looking for. □

Let B be an arbitrary diffeological space, and let b ∈ B. The local structure
of B at b is encoded by the pointed plot category whose objects are the pointed
plots (U, 0)→ (B, b) for open subsets U of some Euclidean spaces containing the
origin 0, and whose morphisms are the obvious commutative triangles preserving
the base points. The (internal) tangent space Tb(B) is defined to be the colimit of the
functor from the pointed plot category to the category of vector spaces by sending
p : (U, 0)→ (B, b) to T0(U ). As a set, the total space TB of the (internal) tangent
bundle of B is the disjoint union of all these Tb(B), and TB→ B is the obvious
projection. Every plot p :U → B gives rise to a natural commutative square

T U
T p //

��

TB

��
U p

// B

Hector [1995] defined a diffeology on the set TB as the smallest one containing all
such Tp, and we denote this diffeological space as T HB. In this way, T HB→ B
is in general a diffeological vector prebundle, but not necessarily a diffeological
vector pseudo-bundle. Its dvsification is denoted by T dvs B→ B.

Equivalently, [Christensen and Wu 2016, Theorem 4.17] claims that every tangent
bundle T dvs B→ B of a diffeological space B is a colimit in DVPB of the tangent
bundles T U → U indexed by the plots U → B. Each T U → U is projective by
Corollary 4.14. It is possible that some tangent bundles are projective. (But this is
not always the case; see Example 4.27.) We show this by an example:

Example 4.26. Write B for the cross with the gluing diffeology. We show below
that the tangent bundle T dvs B→ B is projective.

Note that B is the pushout of

R R00oo 0 // R
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in Diff. It is straightforward to check that the tangent bundle T dvs B→ B is the
colimit of

T R

��

T R0T 0oo T 0 //

��

T R

��
R R0

0
oo

0
// R

in DVPB. Write T x : T R→ T dvs B and T y : T R→ T dvs B for the two struc-
tural maps. Given a bundle subduction f : E1 → E2 over B and a bundle map
g : T dvs B→ E2, since T R→ R is projective, by Proposition 4.25 we have bundle
maps hx, hy : T R→ E1 such that g ◦ T x = f ◦ hx and g ◦ T y = f ◦ hy. By the
universal property of pushout, we get a desired bundle map h : T dvs B→ E1 over B
with the required property.

As another consequence of Theorem 4.24, we have the following example which
gives counterexamples to several arguments:

Example 4.27. If the free diffeological vector space F(B) is not projective, then
the trivial bundle B×R→ B is not projective. This happens when the D-topology
on B is not Hausdorff [Christensen and Wu 2019, Corollary 3.17]. The proof of
the statement follows from Proposition 3.4 and Theorem 4.24.

This example shows that not every trivial bundle is projective, even when the
fibre is a projective (or fine) diffeological vector space. It also shows that the
pullback functor does not preserve projectives, since the trivial bundle B×R→ B
is the pullback of R→ R0 along the map B→ R0. Furthermore, it shows that not
every tangent bundle is projective. For example, TB→ B is not projective when
B is an irrational torus, since in this case TB = B×R [Christensen and Wu 2016,
combining Examples 3.23 and 4.19 (3) with Theorem 4.15] and the D-topology
on B is not Hausdorff.

Moreover, via Theorem 4.24 and Section 4B, we get many examples of projective
diffeological vector spaces from classical differential geometry!

5. Applications to smooth splittings of projective diffeological vector spaces

By [Christensen and Wu 2019, Proposition 3.14 and Theorem 4.2], we know that
every finite-dimensional linear subspace of a projective diffeological vector space
is a smooth direct summand; or in other words, the only indecomposable projective
diffeological vector space is R. In this section, we use classical smooth bundle
theory, and the theory established so far, to get some general criteria and interesting
examples of smooth splittings of projective diffeological vector spaces.
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To simplify notation, we write Vπ (or VE when the bundle is understood) for
the diffeological vector space obtained from the pushforward of the diffeological
vector pseudo-bundle π : E→ B along the map B→ R0.

5A. General theory. Here is the general setup. Given a classical fibre (respectively,
principal) bundle E→ B, we get a linear subduction F(E)→ F(B) of diffeological
vector spaces which splits smoothly since F(B) is projective. We aim to give a
bundle-theoretical explanation of its kernel. In fact, we will prove more general
results as follows:

Given a bundle map

E1
g //

π1

��

E2

π2

��
B1 f

// B2

from a diffeological vector pseudo-bundle π1 to another π2, by Proposition 3.6,
we get a bundle map h : f∗(E1) → E2 over B2 so that g = h ◦ α f , where
α f : E1→ f∗(E1) is the structural map introduced at the beginning of Section 3.
Write π : E→ B2 for the kernel of h.

Here is the key result:

Theorem 5.1. Let (g, f ) : π1 → π2 be a bundle map as above, with E1 locally
Euclidean, and B2 Hausdorff and filtered 4. Then we have a smooth linear map
g∗ : Vπ1 → Vπ2 between diffeological vector spaces, whose kernel is isomorphic
to Vπ , with π : E→ B2 defined above.

Proof. By Proposition 3.6, we get a smooth linear map g∗ : Vπ1 → Vπ2 . Write K
for its kernel. It consists of elements of finite sum

∑
i ei in Vπ1 , with ei ∈ E1, such

that for each b2 ∈ B2, the subsum
∑

i :π2◦g(ei )=b2
g(ei )= 0. So there is a canonical

isomorphism α : Vπ → K as vector spaces, which is smooth by Lemma 3.1.
Now we use all the extra assumptions to show that the inverse map α−1 is smooth.

Take a plot p : U → K and fix u0 ∈ U . Since the composite U → K ↪→ Vπ1 is
smooth, by Lemma 3.1, there exist finitely many plots pi :U→ E1, by shrinking U
around u0 if necessary, such that p(u) =

∑
i pi (u) which satisfies that for each

b2 ∈ B2, the subsum
∑

i : f ◦π1◦pi (u)=b2
g(pi (u)) = 0 for every u ∈ U . Fix b0

2 ∈ B2.
Since B2 is Hausdorff, we may assume that the image of the composites f ◦π1 ◦ pi

do not intersect if their value at u0 are distinct. Now take all the index i so that
f ◦ π1 ◦ pi (u0) = b0

2, and denote this index subset by Iu0,b0
2
. Since E1 is locally

4A diffeological space X is filtered, if for every x ∈ X , the germ category of X at x is filtered, i.e.,
every finite diagram in the germ category has a cocone. Here, the germ category is like the pointed
plot category, with morphisms changed to be smooth germs at the base points instead of genuine
pointed maps. See [Christensen and Wu 2017; 2022] for more details.
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Euclidean and B2 is filtered, there exist a pointed plot q : (V, 0)→ (B2, b0
2) and

smooth pointed germs hi : (E1, pi (u0))→ (V, 0), so that q ◦hi = f ◦π1 and hi ◦ pi

is independent of i , for all i ∈ Iu0,b0
2
. This then implies that f ◦π1 ◦ pi = q ◦hi ◦ pi

are independent of i for all i ∈ Iu0,b0
2
, and hence follows the smoothness of α−1. □

Proposition 5.2. If (g, f ) : π1→ π2 is a bundle subduction, then we get a linear
subduction g∗ : Vπ1 → Vπ2 of diffeological vector spaces.

Proof. This follows directly from Proposition 3.6 and Lemma 3.1. □

As a consequence of the above results, we have:

Corollary 5.3. Let (g, f ) : π1→ π2 be a bundle subduction so that E1 is locally
Euclidean, and B2 is Hausdorff and filtered. Then we have a short exact sequence
of diffeological vector spaces

0→ Vπ → Vπ1 → Vπ2 → 0.

Now we discuss a special case:

(2)

Y ×R

Pr1

��

f×1R // B×R

Pr1

��
Y

f
// B

where f is an arbitrary smooth map.
Observe that:

Proposition 5.4. The pushforward of Pr1 : Y ×R→ Y along f : Y → B is exactly
the free bundle FB(Y )→ B.

Proof. This follows directly from the definition of the free bundle (see [Christensen
and Wu 2022, Section 3.2.5] or the paragraph right after Proposition 4.5) and the
definition of pushforward of a diffeological vector pseudo-bundle from Section 3. □

Note that the bundle map FB(Y )→B×R over B is given by
∑

i ri [yi ] 7→
(
b,

∑
iri

)
,

where f (yi )= b for all i . We write f̄∗ : F B(Y )→ B for its kernel.

Remark 5.5. (1) This proposition generalises Proposition 3.4 by taking B = R0.

(2) From above, we know that F(Y ) always has a smooth direct summand R

(i.e., F(Y ) ∼= R⊕ F(Y )), since R is a projective diffeological vector space. This
can be viewed as a property of the free diffeological vector space, and not every
diffeological vector space is free over some diffeological space.

On the contrary, not every trivial line bundle B×R→ B is projective when B ̸=R0

(see Example 4.27), so the free bundle FB(Y )→ B may not have a smooth direct
summand B×R→ B.

In the current special case, we have:
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Corollary 5.6. Let f : Y → B be a smooth map, with Y locally Euclidean and B
Hausdorff and filtered.

(1) The kernel of f∗ : F(Y )→ F(B) is isomorphic to V f̄∗ with f̄∗ : F B(Y )→ B
as defined above.

(2) If f is a subduction, then we get a short exact sequence of diffeological vector
spaces

0→ V f̄∗→ F(Y )→ F(B)→ 0.

(3) The pushforward of the free bundle FB(Y )→ B along B→ R0 is isomorphic
to the free diffeological vector space F(Y ).

Remark 5.7. To make f∗ : F(Y )→ F(B) a linear subduction, it is not necessary
to require f : Y → B to be a subduction; see Example 3.7.

Now we discuss a more special case, which occurs often in practice: In the
diagram (2), we further assume that f is a principal G-bundle5 for some diffeological
group G. We give an alternative description of the bundle V f̄∗ as follows.

As a setup, assume that G acts smoothly on Y on the right. Note that G acts
smoothly on F(G) on the left by G × F(G)→ F(G), given by g ·

∑
i ri [gi ] =∑

i ri [ggi ], and it passes to a smooth left action of G on F(G), where F(G) is
the linear subspace of F(G) consisting of elements of finite sum

∑
i ri [gi ] with∑

i ri = 0. So we get a commutative square in Diff:

(3)

Y×F(G) //

��

Ẽ

π̃

��
Y

f
// B

where Ẽ is the quotient of Y × F(G) with (y, v)∼ (y · g, g−1
·v) for y ∈ Y , g ∈ G

and v ∈ F(G), and π̃ [y, v] = f (y).

Lemma 5.8. With the above notations, π̃ is a vector bundle over B with fibre F(G).

Proof. Let p :U → B be a plot. Since f : Y → B is a principal G-bundle, we may
shrink U so that we have a pullback diagram:

U×G
φ //

��

Y

f
��

U p
// B

5Principal bundle here is in the sense of [Iglesias-Zemmour 1985], i.e., pullback along every plot
of the base space is locally trivial. The same applies to all principal (respectively, vector, fibre) bundles
and coverings discussed afterwards.
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We are left to show that there is an isomorphism α : P→U×F(G) as diffeological
vector pseudo-bundles over U , where P is the pullback of

U
p // B Ẽ .π̃oo

We define α(u, [y, v])= (u, θ(u, y) · v), where y = φ(u, e) · θ(u, y) since f (y)=
p(u) = f (φ(u, e)), and e is the identity element in the group G. It is clear that
α is smooth and fibrewise isomorphic as vector spaces. And α−1 is given by
(u, v) 7→ (u, [φ(u, e), v]), which is obviously smooth. □

It is straightforward to check that the above square (3) is a bundle map.

Proposition 5.9. Recall that the kernel of the bundle map FB(Y )→ B×R over B
is denoted by f̄∗ : F B(Y )→ B. It is isomorphic to π̃ : Ẽ → B as vector bundles
over B.

Proof. The isomorphism as vector bundles over B is given by Ẽ→ F B(Y ) with[
y,

∑
i ri [gi ]

]
7→

∑
i ri [y ·gi ], and it is easy to check all the required conditions. □

As a consequence of the above results, we have:

Corollary 5.10. Let f : Y → B be a principal G-bundle with Y being locally
Euclidean, and B being Hausdorff and filtered. Then we have a short exact sequence
of diffeological vector spaces

0→ Vπ̃ → F(Y )→ F(B)→ 0.

Note that when f : Y → B is a classical fibre (respectively, principal) bundle,
the conditions ( f being a subduction, Y being locally Euclidean, and B being
Hausdorff and filtered) are satisfied.

Proposition 5.11. Let π : E→ Y be a vector bundle of fibre type a diffeological
vector space V , and let f : Y → B be a fibre bundle of fibre type a diffeological
space X.

(1) If X is finite discrete 6, then the pushforward f∗(E)→ B is a vector bundle
with fibre type F(X)⊗ V .

(2) Assume that both π and f are locally trivial, and there exists a D-open cov-
ering {Bi }i of B which trivialises f and simultaneously the D-open covering
{ f −1(Bi )}i trivialises π . Then the pushforward f∗(E)→ B is also a locally
trivial vector bundle of fibre type F(X)⊗ V .

(3) If π is trivial, then f∗(E)→ B is a vector bundle of fibre type F(X)⊗ V .

6When the fibre of a fibre bundle f : Y → B is discrete, f is also called a covering.
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Proof. (1): Let p : U → B be a plot. Since f : Y → B is a covering with fibre
type X , we may shrink U to get a pullback diagram:

U×X
φ //

��

Y

f
��

U p
// B

Since π : E→ Y is a vector bundle of fibre type V , for each x ∈ X , we may further
shrink U to get a pullback diagram:

U×{x}×V
ψx //

��

E

π

��
U×{x}

φ|U×{x}

// Y

As X is finite discrete, we gather these together and get a pullback diagram:

U×X×V
ψ //

��

E

π

��
U×X

φ
// Y

Write P for the pullback of U
p
−→ B← f∗(E). Then P consists of elements of the

form
(
u,

∑
i eyi

)
, with p(u) = f (yi ) for all i . Define U × (F(X)⊗ V )→ P by

linear expansion of (u, [x] ⊗ v) 7→ (u, ψ(u, x, v)). It is straightforward to check
that this map is smooth and an isomorphism of vector spaces, and its inverse is
also smooth.

(2) and (3) can be proved in a similar way. □

Corollary 5.12. If f : Y → B is a (locally trivial) fibre bundle of fibre type a
diffeological space X , then FB(Y )→ B is a (locally trivial) vector bundle of fibre
type F(X).

Proof. This follows immediately from Propositions 5.4 and 5.11. □

5B. Examples. Now we deal with the case of a principal bundle whose group G
is discrete. In this case, F(G) is a fine diffeological vector space whose dimension
matches the cardinality of G, and F(G) is a codimension-one linear subspace
of F(G), and hence also a fine diffeological vector space.

Example 5.13. For the principal Z/2Z-bundle Sn
→ RPn , F(Z/2Z) ∼= R2 and

F(Z/2Z)∼= R. And therefore, the bundle π̃ in the commutative square (3) in the
previous subsection can be viewed as the quotient of Sn

×R with the equivalence
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relation given by (z, x)∼ (−z,−x), which is the tautological line bundle γ 1
n on RPn .

So we have an isomorphism

(4) F(Sn)∼= F(RPn)⊕ Vγ 1
n
.

Taking n = 1, γ 1
1 is the Möbius band. Moreover, since RP1 is diffeomorphic to S1,

we get

(5) F(S1)∼= F(S1)⊕ Vγ 1
1
∼= · · · ∼= F(S1)⊕ (Vγ 1

1
)m

for any m ∈ N.

By some results from [Milnor and Stasheff 1974], we have:

Example 5.14. (1) Since the tangent bundle TSn
→ Sn direct sum the normal

bundle (which is the trivial line bundle) of Sn in Rn+1 is a trivial bundle over Sn of
rank n+ 1, we get

F(Sn)n+1 ∼= F(Sn)⊕ VTSn .

Moreover, by [Adams 1962], VTSn has a smooth direct summand F(Sn)ρ(n+1)−1,
where ρ(n+ 1)= 2c

+ 8d with n+ 1= 2b(2a+ 1), b = c+ 4d and 0≤ c ≤ 3.

(2) Since the tangent bundle T RPn
→ RPn direct sum the trivial line bundle

over RPn is isomorphic to the direct sum of n+ 1 copies of the tautological line
bundle γ 1

n → RPn , we get

(Vγ 1
n
)n+1 ∼= F(RPn)⊕ VT RPn .

(3) The total space of the tangent bundle TSn
→ Sn can be viewed as a submanifold

of Rn+1
×Rn+1, with the first component for the base and the second one for the

tangent part. If we identify (x, v) with (−x,−v) in TSn , we get the total space of
the tangent bundle T RPn

→RPn; if we identify (x, v) with (−x, v) in TSn , we get
another locally trivial vector bundle π : E→RPn of rank n. (In the case n= 1, π is
exactly the Möbius band over RP1; notice the difference from Example 5.13, based
on the different meaning of the coordinates!) Write f : Sn

→ RPn for the quotient
map. Note that E→ f∗(TSn) given by [x, v] 7→ (x, v)+ (−x, v) is a bundle map
over RPn , using Proposition 5.11 (1), which is the kernel of the canonical bundle
map f∗(TSn)→ T RPn . Hence, we have an isomorphism

VTSn ∼= VT RPn ⊕ Vπ ,

which also recovers the first isomorphism in (5) in Example 5.13.

Therefore, if we combine the three isomorphisms in this example, we get

F(RPn)⊕ F(Sn)n+1 ∼= F(Sn)⊕ Vπ ⊕ (Vγ 1
n
)n+1.

By taking n = 1, we obtain

F(S1)3 ∼= F(S1)⊕ (Vγ 1
1
)3 ∼= F(S1).
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Remark 5.15. (1) The isomorphism F(S1)3∼= F(S1) implies that pushforward can
take nonisomorphic bundles over the same base space into isomorphic diffeological
vector spaces.

(2) The isomorphism F(S1)3 ∼= F(S1) can also be derived directly by considering
the covering map S1

→ S1 with z 7→ z3.

(3) I don’t know if F(S1)2 is isomorphic to F(S1) as diffeological vector spaces.
If it is not, then there seems to be some connection with Bott periodicity in the
complex case.

(4) I wonder if the approach here can lead to an alternative proof of the maximal
number of linearly independent vector fields on spheres.

Finally, we show by the following example that the extra condition of filteredness
added to the results in the previous subsection is necessary:

Example 5.16. Let Z/2Z act on R by±1·x=±x , and write B for the quotient space.
Then B is weakly filtered but not filtered [Christensen and Wu 2017, Example 4.7],
and B with the D-topology is homeomorphic to the subspace [0,∞) of R (hence
is Hausdorff). Write f : R→ B for the quotient map, and write K for the kernel of
F(R)→ F(B). It consists of elements of the form of a finite sum

∑
i ri [xi ] with

ri , xi ∈R such that for every fixed x ∈ X , the subsum
∑

i :xi=±x ri =0. So, p :R→K
defined by t 7→ [t]−[−t] is a plot of K . On the other hand, the map f∗ : FB(R)→ B
has fibre R over [0] ∈ B and fibre R2 over [b] ∈ B for b ̸= 0. Hence, f̄∗ : F B(R)→ B
has fibre R0 over [0] ∈ B and fibre R over [b] ∈ B for b ̸= 0. The canonical smooth
linear bijection α : V f̄∗→ K is not an isomorphism of diffeological vector spaces
since α−1

◦ p is not a plot of V f̄∗ . If it were, then by iterated use of Lemma 3.1,
there exist finitely many smooth germs (p1

i, j , p2
i, j ) : R→ R(base)×R(fibre) at 0 ∈ R

such that
p(t)= α

( ∑
i, j
αg

(
α f (p1

i, j (t), p2
i, j (t))

))
,

where g : B→ R0, both α f and αg are structural maps from Section 3, the range
of j depends on i , f ◦ p1

i, j is independent of j for any fixed i , p2
i, j (t)= 0 whenever

p1
i, j (t)= 0 (by the description of V f̄∗), which causes the contradiction as follows:

By evaluating at t = 0, we know that∑
i, j :p1

i, j (0)=x
p2

i, j (0)= 0

for any fixed x ∈ R \ {0}. By continuity of the p2
i, j , we know that∑

i, j :p1
i, j (t)=t

p2
i, j (t) ̸= 1

for t ̸= 0 but sufficiently close to 0, which implies that α−1
◦ p cannot be a plot.
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