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POLYNOMIAL CONDITIONS
AND HOMOLOGY OF FI-MODULES
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We identify two recursively defined polynomial conditions for FI-modules in
the literature. We characterize these conditions using homological invariants
of FI-modules (namely the local degree and regularity, together with the
stable degree) and clarify their relationship. For one of these conditions, we
give improved twisted homological stability ranges for the symmetric groups.
As another application, we improve the representation stability ranges for
congruence subgroups with respect to the action of an appropriate linear
group by a factor of 2 in its slope.

1. Introduction

There are (at least) two classes of papers that deal in some depth with FI-modules:

(1) In papers such as [3; 4; 6; 11; 14] the FI-module is the central object of study.
They attach homological invariants to an FI-module by means such as FI-homology
or local cohomology, and study the relationship of these invariants both with the
stabilization behavior of the FI-module and/or between each other.

(2) Papers such as [12; 13; 16; 18; 22] might be thought of as stability machines.
The sequence {Sn} of symmetric groups is but one of many sequences of groups they
deal with and FI-modules arise as the suitable notion of coefficient systems for {Sn}.
They declare a coefficient system to be polynomial with certain parameters in a
recursive fashion: there is a base case, and above that, being polynomial demands
a related coefficient system to be polynomial with some of the parameters lowered.

The main objective of this paper is to characterize the polynomial conditions in (2)
for FI-modules by the homological invariants in (1).
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Notation. We write FI for the category of finite sets and injections. An FI-module
is a functor V : FI → Z-Mod and given a finite set S, we write VS for its evaluation;
given an injection of finite sets α : S ↪→ T , we write Vα : VS → VT for its induced map.
For n ∈ N we set Vn := V{1,...,n}. We write FI-Mod for the category of FI-modules.
Throughout, our notation for FI-modules will be consistent with [6] and [1].

Degree and torsion. Given an FI-module W , we write

deg(W ) := min{d ≥ −1 : WS = 0 for |S| > d} ∈ {−1, 0, 1, 2, 3, . . . } ∪ {∞}.

An FI-module V is torsion if for every finite set S and x ∈ VS , there exists an
injection α : S ↪→ T such that Vα(x) = 0 ∈ VT . We write

H0
m : FI-Mod → FI-Mod

for the functor which assigns an FI-module its largest torsion FI-submodule, and
write

h0(V ) := deg(H0
m(V )).

Shift and derivative functors. Given any FI-module V , we write 6V for the
composition

FI
−⊔{∗}

−−−→ FI V
−→ Z-Mod

and call it the shift functor. It receives a natural transformation from the identity
functor idFI-Mod, whose cokernel

1 := coker(idFI-Mod → 6)

we call the derivative functor.

Stable degree. For an FI-module V , we set

δ(V ) := min{r ≥ −1 : 1r+1(V ) is torsion} ∈ {−1, 0, 1, . . . } ∪ {∞}

and call it the stable degree of V . In both polynomial conditions for FI-modules
we shall consider, the stable degree will be in analogy with the usual degree of a
polynomial. Also see [6, Proposition 2.14].

First polynomial condition and local degree. Suppose f is a function in n ∈ N

which is equal to a polynomial of degree ≤ r in the range n ≥ L . We can consider
its discrete derivative 1 f , which is the function

1 f (n) := f (n + 1) − f (n).

Note that 1 f is equal to a polynomial of degree ≤ r − 1 in the same range n ≥ L .
The first polynomial condition we treat for FI-modules is a categorification of
this recursion. See [22, Section 4.4 and Remark 4.19] for references to similar
definitions in the literature.
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Definition 1.1. For every pair of integers r ≥ −1, L ≥ 0, we define a class of
FI-modules Poly1(r, L) recursively via

Poly1(r, L) :=


{V ∈ FI-Mod : deg(V ) ≤ L − 1} if r = −1,{
V ∈ FI-Mod :

h0(V ) ≤ L − 1 and
1V ∈ Poly1(r − 1, L)

}
if r ≥ 0.

Remark 1.2. Let V be an FI-module and r ≥−1, L ≥ 0 be integers. The following
can be seen to be equivalent by inspection:

• V ∈ Poly1(r, L).

• In the sense of [21, Definition 4.10],1 V has degree r at L .

• In the sense of [13, Definition 3.24] and [16, Definition 7.1], V has polynomial
degree ≤ r in ranks > L − 1.

Local cohomology and local degree. The functor H0
m defined above is left exact.

For each j ≥ 0, we write H j
m := R j H0

m for the j -th right derived functor of H0
m, and

write h j (V ) := deg(H j
m(V )) ∈ {−1, 0, 1, . . . } ∪ {∞},

hmax(V ) := max{h j (V ) : j ≥ 0} ∈ {−1, 0, 1, . . . } ∪ {∞}

for every FI-module V . We call hmax(V ) the local degree of V .
Our first main result is that the stable degree δ(V ) and the local degree hmax(V )

together characterize the first polynomial condition.

Theorem A. For every pair of integers r ≥ −1, L ≥ 0, we have

Poly1(r, L) = {V ∈ FI-Mod : δ(V ) ≤ r and hmax(V ) ≤ L − 1}.

Second polynomial condition and regularity. The second polynomial condition we
shall treat is, perhaps deceivingly, very similar to the first one. In fact the confusion
between the two and the resulting need to clarify was what prompted this paper.

Definition 1.3. For every pair of integers r ≥ −1, M ≥ 0, we define a class of
FI-modules Poly2(r, M) recursively via

Poly2(r, M) :=


{V ∈ FI-Mod : deg(V ) ≤ M − 1} if r = −1,{
V ∈ FI-Mod :

h0(V ) ≤ M − 1 and
1V ∈ Poly2(r − 1, max{0, M − 1})

}
if r ≥ 0.

Remark 1.4. Let V be an FI-module and r ≥−1, M ≥0 be integers. The following
can be seen to be equivalent by inspection:

• V ∈ Poly2(r, M).
• In the sense of [22, Definition 4.10], V has degree r at M .

1Note that [21] is an early preprint version of the published [22]. The authors switched from
Definition 1.1 to Definition 1.3 in between.
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• In the sense of [12, Definition 2.40],2 V has polynomial degree ≤ r in ranks
> M − 1.

• In the sense of [18, Definition 1.6], V is polynomial of degree r starting at M .

FI-homology and regularity. Regard the functor HFI
0 : FI-Mod → FI-Mod de-

fined via
HFI

0 (V )S := coker
(⊕

T⊊SVT → VS
)

for every finite set S, which is right exact. For each i ≥ 0, we write HFI
i := Li HFI

0
for its i-th left derived functor, and write

ti (V ) := deg(HFI
i (V )) ∈ {−1, 0, 1, . . . } ∪ {∞},

reg(V ) := max{ti (V ) − i : i ≥ 1} ∈ {−2, −1, 0, 1, . . . } ∪ {∞}

for every FI-module V . We say that V is generated in degrees ≤ g if t0(V ) ≤ g,
and that V is presented in finite degrees if t0(V ) and t1(V ) are both finite. We call
reg(V ) the regularity of V .

Our second main result is that the stable degree δ(V ) and the regularity reg(V )

together characterize the second polynomial condition.

Theorem B. For every pair of integers r ≥ −1, M ≥ 0, we have

Poly2(r, M) = {V ∈ FI-Mod : δ(V ) ≤ r and reg(V ) ≤ M − 1}.

Twisted homological stability with FI-module coefficients. For any FI-module V
and homological degree k ≥ 0, there is a sequence of maps

Hk(S0; V0) → Hk(S1; V1) → Hk(S2; V2) → · · ·

between the homology groups of the symmetric groups twisted by Vn’s. For the
stabilization of this sequence, recently Putman [18, Theorems A and A′] established
explicit ranges for the class Poly2(r, M) in terms of r, M . We give ranges for the
class Poly1(r, L) in terms of r, L .

Theorem C. Let V be an FI-module and r, L ≥ 0 be integers such that V ∈

Poly1(r, L). Then for every k ≥ 0, the map Hk(Sn; Vn) → Hk(Sn+1; Vn+1) is

an isomorphism for n ≥


2k + r + 1 if L = 0,

2k + r +
⌊L+1

2

⌋
+ 2 if 1 ≤ L ≤ 2r − 2,

max{2k + 2r + 1, L} if L ≥ max{1, 2r − 1},

and a surjection for n ≥


2k + r if L = 0,

2k + r +
⌊L+1

2

⌋
+ 1 if 1 ≤ L ≤ 2r − 2,

max{2k + 2r, L} if L ≥ max{1, 2r − 1}.

2Although the terminology used for the polynomial conditions in [13], [16] and [12] are the same,
the first two use Definition 1.1 while the latter uses Definition 1.3.
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Remark 1.5. Under the same hypotheses with Theorem C, Theorem 5.1 of [21]
establishes

• an isomorphism for n ≥ max{2L + 1, 2k + 2r + 2},

• and a surjection for n ≥ max{2L + 1, 2k + 2r}.

The ranges in Theorem C are improvements over these.

SLU
n -stability ranges for congruence subgroups. For every ring R, the assignment

n 7→ GLn(R) defines an FI-group (a functor from FI to the category of groups), for
which we write GL•(R). If I is an ideal of R, as the kernel of the mod-I reduction
we get a smaller FI-group

GL•(R, I ) := ker
(
GL•(R) → GL•(R/I )

)
called the I -congruence subgroup of GL•(R). For each k ≥ 0 and abelian group A,
taking the k-th homology with coefficients in A defines an FI-module

Hk(GL•(R, I );A).

We wish to extend the Sn-action on Hk(GLn(R, I );A) to an action of a linear
group and formulate representation stability over it, in accordance with [17, fifth
Remark, page 990].

Special linear group with respect to a subgroup of the unit group. For a commu-
tative ring A and a subgroup U ≤ A×, we write

SLU
n (A) := { f ∈ GLn(A) : det( f ) ∈ U},

so that we interpolate between SLn(A)≤ SLU
n (A)≤ GLn(A) as we vary 1 ≤U≤ A×.

Note that we are using the notation in [19], whereas in [13] and [12] this group is
denoted GLU

n (A).

Hypothesis 1.6. In the triple (R, I, n0), we have a commutative ring R, an ideal I
of R, and an integer n0 ∈ N such that the mod-I reduction

SLn(R) → SLn(R/I )

for the special linear group is surjective for every n ≥ n0.

Stable rank of a ring. Let R be a nonzero unital (associative) ring. A column vector
v ∈ Matm×1(R) of size m is unimodular if there is a row vector u ∈ Mat1×m(R)

such that uv = 1. Writing Ir ∈ Matr×r (R) for the identity matrix of size r , we
say a column vector v of size m is reducible if there exists A ∈ Mat(m−1)×m(R)

with block form A = [Im−1 | x] such that the column vector Av (of size m − 1)
is unimodular. We write st-rank(R) ≤ s if every unimodular column vector of
size > s is reducible.
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Remark 1.7. We make a few observations about Hypothesis 1.6.

(1) It is straightforward to check that the triple (R, I, n0) satisfies Hypothesis 1.6
if and only if setting U := {x + I : x ∈ R×

}, there is a short exact sequence

1 → GLn(R, I ) → GLn(R) → SLU
n (R/I ) → 1

of groups in the range n ≥ n0 where the epimorphism is the mod-I reduction.
Consequently, for every n ≥ n0 and any coefficients A, the conjugation GLn(R)-
action on the homology groups H⋆(GLn(R, I ),A) descends to an SLU

n (R/I )-action.
It is this action for which we will obtain an improved representation stability range.

(2) For a Dedekind domain R and any ideal I of R, the triple (R, I, 0) satisfies
Hypothesis 1.6; see [7, page 2].

(3) If SLn(R/I ) is generated by elementary matrices for n ≥ n0, then (R, I, n0)

satisfies Hypothesis 1.6.

(4) If the K -group SK1(R/I ) = 0 (equivalently, the natural map K1(R/I ) →

(R/I )× is an isomorphism) and st-rank(R/I ) ≤ s < ∞, then by (3) and [10, 4.3.8,
page 172], the triple (R, I, s + 1) satisfies Hypothesis 1.6.

Theorem D. Let I be a proper ideal in a commutative ring R and s, n0 ∈ N, so

• st-rank(R) ≤ s, and

• the triple (R, I, n0) satisfies Hypothesis 1.6 with n0 ≤ 2s + 3.

Then writing
U := {x + I : x ∈ R×

}, Gn := SLU
n (R/I )

for every homological degree k ≥ 1 and abelian group A, there is a coequalizer
diagram

IndGn
Gn−2

Hk(GLn−2(R, I );A)⇒ IndGn
Gn−1

Hk(GLn−1(R, I );A)→ Hk(GLn(R, I );A)

of ZGn-modules whenever

n ≥

{
2s + 5 if k = 1,

4k + 2s + 2 if k ≥ 2.

Remark 1.8. The best stable ranges established previously in the literature under
the assumptions (with n0 = 0) of Theorem D are due to Miller, Patzt and Petersen
[12, proof of Theorem 1.4, page 46]: they obtained the conclusion of Theorem D
in the range n ≥ 8k + 4s + 9.

2. Homological algebra of FI-modules

Regularity in terms of local cohomology. We first recall a characterization of the
regularity by Nagpal, Sam and Snowden [14].
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Theorem 2.1 [14, Theorem 1.1, Remark 1.3]. Let V be an FI-module presented in
finite degrees which is not HFI

0 -acyclic. Then

reg(V ) = max{h j (V ) + j : H j
m(V ) ̸= 0} = max{h j (V ) + j : h j (V ) ≥ 0}.

Remark 2.2. Under the hypotheses of Theorem 2.1, by [1, Theorem 2.4] and [6,
Corollary 2.13], we have

∅ ̸= { j : H j
m(V ) ̸= 0} = { j : h j (V ) ≥ 0} ⊆ {0, . . . , δ(V ) + 1}.

Corollary 2.3. Let V be a nonzero FI-module with deg(V ) < ∞. Then V is
presented in finite degrees, and

h j (V ) =

{
deg(V ) = reg(V ) if j = 0,

−1, otherwise.

Proof. V is certainly generated in degrees ≤ deg(V ) and also h0(V ) ≤ deg(V ).
Thus by [1, Proposition 2.5] and [20, Theorem A], V is presented in finite degrees.
Now V and the complex 0 → V → 0 → 0 → · · · satisfy the assumptions of [6,
Theorem 2.10] and hence

H j
m(V ) =

{
V if j = 0,

0, otherwise.

The rest follows from Theorem 2.1. □

The derivative and local cohomology. In this section, we investigate the relation-
ship between the local cohomology of an FI-module and that of its derivative.

We write K := ker(idFI-Mod → 6) so that we have an exact sequence

0 → K → idFI-Mod → 6 → 1 → 0

of functors FI-Mod → FI-Mod.

Lemma 2.4. For every FI-module V , we have deg(K V ) = h0(V ).

Proof. Since K V is a torsion submodule of V , we have K V ⊆ H0
m(V ) and hence

deg(K V ) ≤ deg(H0
m(V )) = h0(V ).

There is nothing to show when h0(V ) = −1, so we consider two cases.

Case 1. h0(V )=∞. To show deg(K V )=∞, we will show that for every d ∈ N we
have deg(K V ) ≥ d . Because h0(V ) ≥ d , there exists a torsion element x ∈ VS −{0}

of V with |S| ≥ d. Because x is torsion, the set

{|T | : Vι(x) = 0 for some ι : S ↪→ T } ⊆ N
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is nonempty and hence has a least element, say N . Noting N >d , let A be a finite set
of size N −1 and f : S ↪→ A so by the minimality of N we have 0 ̸= V f (x)∈ (K V )A

and deg(K V ) ≥ |A| = N − 1 ≥ d .

Case 2. 0 ≤ d := h0(V ) < ∞. We pick a torsion element x ∈ VS −{0} with |S| = d
and we claim that Vι(x) = 0 for the embedding ι : S ↪→ S ⊔ {⋆}. There is a finite
set T and an injection f : S ↪→ T such that V f (x) = 0. As x ̸= 0, f cannot be
an isomorphism so |T | > |S| and f = g ◦ ι for some injection g : S ⊔ {⋆} ↪→ T .
As Vg(Vι(x)) = 0, the element Vι(x) is torsion but it lies in degree d + 1, forcing
Vι(x) = 0 and hence x ∈ K V , showing deg(K V ) ≥ d . □

Proposition 2.5. Given an FI-module V , the following are equivalent:

(1) V is presented in finite degrees.

(2) h0(V ) < ∞ and 1V is presented in finite degrees.

Proof. Assume (1). Then by [8, Theorem 1] 6V is presented in finite degrees, and
hence so are K V and 1V by [20, Theorem B] and [1, Proposition 2.5]. We have
h0(V ) < ∞ by [20, Theorem A].

Conversely, assume (2). By [6, Proposition 2.9, part (4)], u := δ(1V ) < ∞,
so 1u+2V = 1u+11V is torsion. Also, by applying the implication (1) ⇒ (2)
to 1V and iterating it, 1u+2V is presented in finite degrees. Being a torsion FI-
module generated in finite degrees, 1u+2V has finite degree, say d. Therefore by
[3, Proposition 4.6], V is generated in degrees ≤ u + d + 2. We conclude by [20,
Theorem A]. □

Proposition 2.6. Given an FI-module V , the following hold:

(1) If h0(V ) < ∞, then there is a long exact sequence

0 // K V

// H0
m(V ) // 6H0

m(V ) // H0
m(1V )

· · ·

// H j
m(V ) // 6H j

m(V ) // H j
m(1V )

// H j+1
m (V ) // 6H j+1

m (V ) // H j+1
m (1V ) // · · ·

(2) If V is presented in finite degrees, (1) holds such that every FI-module in the
sequence has finite degree.

Proof. For (1), note that K V is certainly generated in degrees

≤ deg(K V ) = h0(V ) < ∞
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by Lemma 2.4. Thus by [20, Theorem A] (see [1, Proposition 2.5]), K V is presented
in finite degrees. Therefore, [6, Theorem 2.10] applies to K V and the complex
0 → K V → 0 → 0 → . . . and hence

H j
m(K V ) =

{
K V if j = 0,

0, otherwise.

Now applying H0
m to the short exact sequence

0 → K V → V → V/K V → 0,

the associated long exact sequence gives a short exact sequence

0 → K V → H0
m(V ) → H0

m(V/K V ) → 0

and isomorphisms
H j
m(V ) ∼= H j

m(V/K V )

for every j ≥ 1. Using these isomorphisms after applying H0
m to the short exact

sequence
0 → V/K V → 6V → 1V → 0,

the associated long exact sequence will almost have the desired form, except we
need to splice it in the beginning and interchange the order of the shift functor 6

with local cohomology H⋆
m in the middle column. To see 6 ◦ H⋆

m = H⋆
m ◦6, first

note that 6 : FI-Mod → FI-Mod

• is exact,

• has an exact left adjoint [9, Theorem 4],

• satisfies 6 ◦ H0
m = H0

m ◦ 6.

Consequently, given an FI-module U and an injective resolution 0 → U → I ⋆,
applying 6 we get an injective resolution 0 → 6U → 6 I ⋆ of 6U , and hence

H j
m(6U ) = H j (H0

m(6 I ⋆)) = H j (6H0
m(I ⋆)) = 6H j (H0

m(I ⋆)) = 6H j
m(U )

for every j ≥ 0, naturally in U .
For (2), assume V is presented in finite degrees. Then deg(K V )=h0(V )<∞ (so

we have the long exact sequence from (1)) and 1V is presented in finite degrees by
Lemma 2.4 and Proposition 2.5. Now invoke [6, Theorem 2.10] for V and 1V . □

Corollary 2.7. For every FI-module V presented in finite degrees, the following
hold:

(1) For every j ≥ 0, we have h j (1V ) ≤ max{h j (V ) − 1, h j+1(V )}.

(2) For every j ≥ 1, we have h j (V ) ≤ max{h j−1(1V ), h j (1V )}.
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Proof. By Proposition 2.6, for every j ≥ 0 we have

h j (1V ) = deg H j
m(1V )

≤ max{deg 6H j
m(V ), deg H j+1

m (V )} = max{deg 6H j
m(V ), h j+1(V )}.

If H j
m(V ) ̸= 0, then

deg 6H j
m(V ) = deg H j

m(V ) − 1 = h j (V ) − 1

and (1) follows. If H j
m(V ) = 0, then H j

m(1V ) embeds in H j+1
m (V ) and (1) again

follows.
To prove (2), fix j ≥ 1 and set N := max{h j−1(1V ), h j (1V )} so for every

n > N , by Proposition 2.6 we have an isomorphism

H j
m(V )n ∼= 6H j

m(V )n = H j
m(V )n+1.

But H j
m(V ) has finite degree, therefore the above isomorphisms in the entire range

n > N have to be between zero modules so that h j (V ) = deg H j
m(V ) ≤ N . □

Critical index and the regularity of derivative. In this section, we introduce the
notion of critical index for an FI-module and use it to study how regularity interacts
with the derivative functor.

Definition 2.8. For an FI-module V presented in finite degrees which is not HFI
0 -

acyclic, we define its critical index as

crit(V ) := min{ j : h j (V ) ≥ 0 and h j (V ) + j = reg(V )}.

Remark 2.9. Let V be as in Definition 2.8 and set γ := crit(V ), ρ := reg(V ). The
following will not be needed in our arguments but we note them for context.

(1) By Theorem 2.1 and [6, Theorem 2.10], the set of indices

{ j : h j (V ) ≥ 0 and h j (V ) + j = ρ}

is a nonempty subset of {0, . . . , δ(V ) + 1}; thus 0 ≤ γ ≤ δ(V ) + 1.

(2) Although they do not give it a name, Nagpal, Sam and Snowden [14, Defini-
tion 3.3] use the critical index: their invariant ν satisfies

ν(HFI
i (V )i+ρ) = i + γ

for i ≫ 0 [14, Proposition 4.3].

(3) It is possible that hγ (V )<hmax(V ). To see this, let us start by an exact sequence

(♢) 0 → Z → A → B → W → 0
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of FI-modules presented in finite degrees where A, B are HFI
0 -acyclic, deg(W ) = 0.

Breaking this into two short exact sequences, the associated long exact sequences
for H∗

m yields
H j
m(Z) ∼= H j−2

m (W )

for every j ≥ 0. In particular, h2(Z) = 0 and h j (Z) = −1 if j ̸= 2. Now setting
V := Z ⊕ T with deg(T ) = 1, we get

h j (V ) =


1 if j = 0,

0 if j = 2,

−1, otherwise

so that reg(V ) = crit(V ) = 2, h2(V ) = 0, but hmax(V ) = 1.

Proposition 2.10. Let V be an FI-module presented in finite degrees which is not
HFI

0 -acyclic. Then:

(1) reg(1V ) ≤ reg(V ) − 1.

(2) If crit(V ) ≥ 1, then 0 ≤ reg(1V ) = reg(V ) − 1 and crit(1V ) = crit(V ) − 1.

Proof. Note that 1V is presented in finite degrees by Proposition 2.5. Set ρ :=

reg(V ) and γ := crit(V ).
Assume 1V is HFI

0 -acyclic. Then by [1, Theorem 2.4], h j (1V ) = −1 for every
j ≥ 0, and hence by part (2) of Corollary 2.7 we have h j (V ) = −1 for every j ≥ 1,
forcing γ = 0. Therefore the condition reg(1V ) < 0 (which is equivalent to 1V
being HFI

0 -acyclic by [1, Corollary 2.9]) implies γ = 0. In this case, we further have

reg(1V ) < 0 ≤ h0(V ) = ρ

by [1, Theorem 2.4] and (1) follows.
Next, assume 1V is not HFI

0 -acyclic (hence neither is V , see the discussion in
[6, Section 2.3]). Let us write

J (V ) := { j ≥ 0 : h j (V ) ≥ 0}.

Let j ∈ J (1V ). By part (1) of Corollary 2.7, we have either 0≤h j (1V )≤h j (V )−1
or 0 ≤ h j (1V ) ≤ h j+1(V ). In the former case, we have j ∈ J (V ) and

h j (1V ) + j ≤ h j (V ) + j − 1 ≤ ρ − 1

by Theorem 2.1, and in the latter case, we have j + 1 ∈ J (V ) and

h j (1V ) + j ≤ h j+1(V ) + j + 1 − 1 ≤ ρ − 1

by Theorem 2.1. Yet another application of Theorem 2.1 now yields reg(1V ) ≤

ρ−1, which is exactly (1). To prove (2), we further assume that γ ≥1. We claim that

hγ−1(1V ) + γ − 1 = ρ − 1.
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To that end, by Proposition 2.6 we have an exact sequence

6Hγ−1
m (V ) → Hγ−1

m (1V ) → Hγ
m(V ) → 6Hγ

m(V ),

which we evaluate at a finite set of size ρ − γ to get an exact sequence

Hγ−1
m (V )ρ−γ+1 → Hγ−1

m (1V )ρ−γ → Hγ
m(V )ρ−γ → Hγ

m(V )ρ−γ+1

of Sρ−γ -modules. Here:

• Hγ−1
m (V )ρ−γ+1 = 0, because by the definition of critical index we have

hγ−1(V ) + γ − 1 < ρ, deg(Hγ−1
m (V )) < ρ − γ + 1.

• Hγ
m(V )ρ−γ ̸= 0 and Hγ

m(V )ρ−γ+1 = 0, because by the definition of critical
index we have

hγ (V ) ≥ 0 and hγ (V ) + γ = ρ, deg(Hγ
m(V )) = ρ − γ.

Therefore we conclude that

Hγ−1
m (1V )ρ−γ ̸= 0, hγ−1(1V ) ≥ 0 and hγ−1(1V ) + γ − 1 ≥ ρ − 1.

On the other hand, part (1) and Theorem 2.1 give the reverse inequality to the
above, establishing our claim, the equation reg(1V ) = ρ − 1 and the inequality
crit(1V ) ≤ γ −1. To see in fact crit(1V ) = γ −1, we can take 0 ≤ j < γ −1 and
evaluate the exact sequence

6H j
m(V ) → H j

m(1V ) → H j+1
m (V )

at a finite set of size ρ − 1 − j to get

0 = H j
m(V )ρ− j → H j

m(1V )ρ−1− j → H j+1
m (V )ρ−( j+1) = 0

and conclude h j (1V ) + j < ρ − 1, as desired. □

Identifying the polynomial conditions. In this section we prove Theorems A and B.
Because FI-modules being presented in finite degrees is such a common assumption,
we first incorporate it as a redundant hypothesis in Theorems 2.12 and 2.13, and
then remove this redundancy using Theorem 2.11.

Theorem 2.11. For an FI-module V with δ(V ) < ∞, the following are equivalent:

(1) reg(V ) < ∞.

(2) hmax(V ) < ∞.

(3) V is presented in finite degrees.

Proof. (3) ⇒ (1): Immediate from [3, Theorem A].

(1) ⇒ (2): We write:



POLYNOMIAL CONDITIONS AND HOMOLOGY OF FI-MODULES 219

• FB for the category of finite sets and bijections.

• IndFI
FB for the left adjoint of the restriction functor ResFI

FB : FI-Mod→ FB -Mod.

• W := HFI
0 (V ).

Then there is a short exact sequence

(†) 0 → K → IndFI
FB(W ) → V → 0

for some FI-module K . Here IndFI
FB(W ) is HFI

0 -acyclic [3, Lemma 2.3]. Moreover,
the HFI

0 -image of the epimorphism in (†) is the identity map HFI
0 (V ) → HFI

0 (V ).
Thus applying HFI

0 to (†), the associated long exact sequence splits into isomor-
phisms

HFI
i+1(V ) ∼= HFI

i (K )

for every i ≥ 0. In particular, we have

ti (K ) = ti+1(V ) < reg(V ) + i + 1 < ∞

for every i ≥ 0, so K is presented in finite degrees. Consequently hmax(K ) < ∞ by
[6, Proposition 2.9, part (4)] and [6, Theorem 2.10]. We will be done once we show

H∗

m(IndFI
FB(W )) = 0,

because applying H0
m to (†), the long exact sequence yields hmax(V )=hmax(K ). The

last claim follows from W being the direct product of FB-modules each supported
in a single degree, and the functors IndFI

FB, H∗
m commuting with direct products (for

instance, the former via [5, Definition 2.2.2] and the latter via [11, Definition 5.4])
together with [1, Theorem 2.4].

(2) ⇒ (3): We employ induction on δ(V ): if δ(V ) = −1, then V = H0
m(V ) is

torsion and so
deg(V ) = h0(V ) ≤ hmax(V ) < ∞.

Thus V is presented in finite degrees by Corollary 2.3. Next, assume δ(V ) ≥ 0.
We can apply Proposition 2.6 to V to conclude hmax(1V ) < ∞. We also have
δ(1V ) ≤ δ(V ) − 1, therefore 1V is presented in finite degrees by the induction
hypothesis. We conclude by applying Proposition 2.5. □

Theorem 2.12. For every pair of integers r ≥ −1, L ≥ 0, we have

Poly1(r, L) =

{
V ∈ FI-Mod :

V is presented in finite degrees,
δ(V ) ≤ r, and hmax(V ) ≤ L − 1

}
.

Proof. We fix L ≥ 0 and employ induction on r . For the base case r = −1, we first
let V ∈ Poly1(−1, L), that is, deg(V ) ≤ L −1. Then V is torsion so δ(V ) = −1, and
by Corollary 2.3 V is presented in finite degrees with hmax(V ) ≤ L −1. Conversely,
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suppose V is presented in finite degrees, δ(V ) ≤ −1, and hmax(V ) ≤ L − 1. Then
V is torsion, so H0

m(V ) = V has degree ≤ L − 1.
For the inductive step, fix r ≥ 0 and assume that we have

Poly1(r − 1, L) =

{
U ∈ FI-Mod :

U is presented in finite degrees,
δ(U ) ≤ r − 1, and hmax(U ) ≤ L − 1

}
.

Next, let V ∈ Poly1(r, L), so by Definition 1.1, h0(V ) ≤ L − 1 and

1V ∈ Poly1(r − 1, L).

By the induction hypothesis, we conclude the following.

• 1V is presented in finite degrees: it follows that V is presented in finite degrees
by Proposition 2.5.

• δ(1V ) ≤ r − 1: this means 1r1V = 1r+1V is torsion, so δ(V ) ≤ r .

• hmax(1V ) ≤ L − 1: by part (2) of Corollary 2.7, we have hmax(V ) ≤ L − 1.

Conversely, let V be an FI-module which is presented in finite degrees, δ(V ) ≤ r ,
and hmax(V ) ≤ L − 1. We observe:

• 1r+1V = 1r1V is torsion, so δ(1V ) ≤ r − 1.

• By Proposition 2.5, 1V is presented in finite degrees.

• hmax(1V ) ≤ L − 1 by part (1) of Corollary 2.7.

Therefore by the induction hypothesis, we get 1V ∈ Poly1(r − 1, L) and hence
V ∈ Poly1(r, L) by Definition 1.1. □

Proof of Theorem A. Immediate from Theorems 2.12 and 2.11. □

Theorem 2.13. For every pair of integers r ≥ −1, M ≥ 0, we have

Poly2(r, M) =

{
V ∈ FI-Mod :

V is presented in finite degrees,
δ(V ) ≤ r, and reg(V ) ≤ M − 1

}
.

Proof. We fix M ≥ 0 and employ induction on r . For the base case r = −1, we first
let V∈Poly2(−1, M), that is, deg(V )≤ M−1. Then V is torsion so δ(V )=−1, and
by Corollary 2.3 V is presented in finite degrees with reg(V ) ≤ M − 1. Conversely,
suppose V is presented in finite degrees, δ(V ) ≤ −1, and reg(V ) ≤ M − 1. Then
V is torsion, so H0

m(V ) = V has degree ≤ M − 1 by Theorem 2.1.
For the inductive step, fix r ≥ 0 and assume that for every M ′

≥ 0 we have

Poly2(r − 1, M ′) =

{
U ∈ FI-Mod :

U is presented in finite degrees,
δ(U ) ≤ r − 1, and reg(U ) ≤ M ′

− 1

}
.

Next, fix M ≥ 0 and let V ∈ Poly2(r, M), so by Definition 1.3, h0(V ) ≤ M − 1 and

1V ∈ Poly2(r − 1, max{0, M − 1}).
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By the induction hypothesis, we conclude the following.

• 1V is presented in finite degrees: it follows that V is presented in finite degrees
by Proposition 2.5.

• δ(1V ) ≤ r − 1: this means 1r1V = 1r+1V is torsion, so δ(V ) ≤ r .

• reg(1V ) ≤ max{−1, M − 2}.

Three possibilities arise:

(1) V is HFI
0 -acyclic. Then reg(V ) = −2 ≤ M − 1.

(2) V is not HFI
0 -acyclic and crit(V ) = 0. Here the definition of critical index

immediately yields
reg(V ) = h0(V ) ≤ M − 1.

(3) V is not HFI
0 -acyclic and crit(V ) ≥ 1. Part (2) of Proposition 2.10 yields

1 ≤ reg(V ) = reg(1V ) + 1 ≤ max{0, M − 1}.

Hence M − 1 > 0 and reg(V ) ≤ M − 1.

Conversely, let V be an FI-module which is presented in finite degrees, δ(V ) ≤ r ,
and reg(V ) ≤ M − 1 (in particular, h0(V ) ≤ M − 1 by Theorem 2.1). We observe:

• 1r+1V = 1r1V is torsion, so δ(1V ) ≤ r − 1.

• By Proposition 2.5, 1V is presented in finite degrees.

• Either V is HFI
0 -acyclic and hence so is 1V (see the discussion in [6, Section 2.3])

and reg(1V ) = −2, or V is not HFI
0 -acyclic so that

0 ≤ t1(V ) − 1 ≤ reg(V ) ≤ M − 1

by [1, Corollary 2.9], and reg(1V ) ≤ M − 2 by part (1) of Proposition 2.10. In
both cases we have reg(1V ) ≤ max{−1, M − 2}.

Therefore the induction hypothesis yields 1V ∈ Poly2(r − 1, max {0, M − 1}). We
also have h0(V ) ≤ M − 1, so V ∈ Poly2(r, M) by Definition 1.3. □

Proof of Theorem B. Immediate from Theorems 2.13 and 2.11. □

Twisted homological stability.

Proof of Theorem C. By Theorem 2.12, V is presented in finite degrees, δ(V ) ≤ r ,
and hmax(V ) ≤ L − 1. Hence by [1, Theorem 2.6], the triple (V, L − 1, r) satisfies
[1, Hypothesis 1.2]. Noting that

r >
⌈L−1

2

⌉
if and only if L < 2r,
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by [1, Theorem C] we have

reg(V ) ≤


−2 if L = 0,

L if L ≥ max{1, 2r},

r +
⌊L+1

2

⌋
if 1 ≤ L < 2r.

Thus by Theorem B, we have

V ∈


Poly2(r, 0) if L = 0,

Poly2(r, L + 1) if L ≥ max{1, 2r},

Poly2
(
r, r +

⌊L+1
2

⌋
+ 1

)
if 1 ≤ L < 2r.

Consequently by [18, Theorem A], for every k ≥ 0 the map

Hk(Sn; Vn) → Hk(Sn+1; Vn+1)

is an isomorphism for

n ≥


2k + r + 1 if L = 0,

2k + L + 2 if L ≥ max{1, 2r},

2k + r +
⌊L+1

2

⌋
+ 2 if 1 ≤ L < 2r

and a surjection for

n ≥


2k + r if L = 0,

2k + L + 1 if L ≥ max{1, 2r},

2k + r +
⌊L+1

2

⌋
+ 1 if 1 ≤ L < 2r.

It remains to improve the bounds in the case L ≥ max{1, 2r − 1} to

• n ≥ max{2k + 2r + 1, L} for the isomorphism range,

• n ≥ max{2k + 2r, L} for the surjection range.

To that end, we induct on r . For the base case r = 0, by [1, Theorem 2.11] there
is an HFI

0 -acyclic I with δ(I ) ≤ 0 and a map V → I which is an isomorphism in
degrees ≥ L . As 1I is torsion but also is HFI

0 -acyclic, we have 1I = K I = 0, in
other words I → I is an isomorphism. Thus In is the same trivial Sn-representation
for every n ≥ 0 (namely the abelian group I0 with the trivial Sn-action). Now by
[15, Corollary 6.7], for every k ≥ 0 the map

Hk(Sn; I0) → Hk(Sn+1; I0)

is an isomorphism for n ≥ 2k. Thus for every k ≥ 0, the map

Hk(Sn; Vn) → Hk(Sn+1; Vn+1)

is an isomorphism for n ≥ max{2k, L} (which is better than what the base case de-
mands: an isomorphism for n ≥max{2k+1, L} and a surjection for n ≥max{2k, L}).
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Next, take r ≥ 1 and assume that every FI-module U ∈ Poly1(r, L − 1), that is,
by Theorem 2.12, every U presented in finite degrees with δ(U ) ≤ r − 1 and
hmax(U ) ≤ L − 1 satisfies3 the following: for every k ≥ 0 the map

Hk(Sn; Un) → Hk(Sn+1; Un+1)

is an isomorphism for
n ≥ max{2k + 2r − 1, L}

and a surjection for
n ≥ max{2k + 2r − 2, L}.

In particular by [6, Proposition 2.9, part (7)], this applies to

U := coker(V → 6L V ).

In degrees n ≥ L , writing I := 6L V , we have a short exact sequence

0 → Vn → In → Un → 0

of Sn-modules, and the associated long exact sequence in H∗(Sn; −) maps to
that of H∗(Sn+1; −). More precisely, suppressing the symmetric groups in the
homology notation, there is a commutative diagram

Hk+1(In) //

µk+1

��

Hk+1(Un) //

νk+1

��

Hk(Vn) //

λk
��

Hk(In) //

µk

��

Hk(Un)

νk

��

Hk+1(In+1) // Hk+1(Un+1) // Hk(Vn+1) // Hk(In+1) // Hk(Un+1)

of abelian groups with exact rows. We observe:

• As I is HFI
0 -acyclic and δ(I ) ≤ r , then I ∈ Poly1(r, 0) and so for every k ≥ 0 the

map µk is an isomorphism for n ≥ 2k + r + 1 and a surjection for n ≥ 2k + r .

• By the induction hypothesis on U , for every k ≥ 0 the map νk is an isomorphism
for n ≥ max{2k + 2r − 1, L} and a surjection for n ≥ max{2k + 2r − 2, L}.

Therefore we have:

• By the five-lemma, λk is an isomorphism provided that νk+1 and µk are isomor-
phisms, µk+1 is surjective, and νk is injective: these are guaranteed in the range
n ≥ max{2k + 2r + 1, L} (noting 2(k + 1)+ r ≤ 2(k + 1)+ 2r − 1 because r ≥ 1).

• By one of the four-lemmas, λk is surjective provided that νk+1 and µk are surjec-
tive, and νk is injective: these are guaranteed in the range n ≥ max{2k + 2r, L}. □

3Here the inequality L ≥max{1, 2(r−1)−1} is guaranteed as we are assuming L ≥max{1, 2r−1}.
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3. Application to congruence subgroups

Proof of Theorem D. By [1, Theorem 4.15], we have

• δ(Hk(GL•(R, I );A)) ≤ 2k, and

• reg(Hk(GL•(R, I );A)) ≤

{
2s + 3 if k = 1,

4k + 2s if k ≥ 2.

We now consider the groupoid G := SLU(R/I ) in order to follow the argument and
notation in [12, proof of Theorem 1.4], with the following adjustment: Declare a
new FI-module V via

VS :=

{
Hk(GLS(R, I );A) if |S| ≥ n0,

0 if |S| < n0,

so that by part (1) of Remark 1.7, V extends to a UG-module. Note that as an
FI-module by construction there is a short exact sequence

0 → V → Hk(GLS(R, I );A) → T → 0,

with deg(T ) ≤ n0 −1 ≤ 2s +2. Invoking Corollary 2.3, applying H0
m the associated

long exact sequence here yields

h0(V ) ≤ h0(Hk(GL•(R, I );A)),

h1(V ) ≤ max{deg T, h1(Hk(GL•(R, I );A))},

h j (V ) = h j (Hk(GL•(R, I );A)) if j ≥ 2.

Thus if h j (V ) ≥ 0 for j ̸= 1, we have h j (Hk(GL•(R, I );A)) ≥ 0 and hence

h j (V ) + j ≤ h j (Hk(GL•(R, I );A)) + j ≤

{
2s + 3 if k = 1,

4k + 2s if k ≥ 2

by Theorem 2.1 applied to Hk(GL•(R, I );A). If h1(V ) ≥ 0, there are two possibil-
ities:

• h1(Hk(GL•(R, I );A) ≤ deg T . Then h1(V ) + 1 ≤ deg T + 1 ≤ 2s + 3.

• h1(Hk(GL•(R, I );A) > deg T . Then h1(Hk(GL•(R, I );A)) ≥ 0 and hence by
Theorem 2.1,

h1(V ) + 1 ≤ h1(Hk(GL•(R, I );A)) + 1 ≤

{
2s + 3 if k = 1,

4k + 2s if k ≥ 2.

Applying Theorem 2.1 to V now, we get

reg(V ) ≤

{
2s + 3 if k = 1,

4k + 2s if k ≥ 2.
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By [6, Proposition 3.3] we also have δ(V )≤2k. Thus by Theorem B and Remark 1.4,
and in the sense of [12, Definition 2.40], V has polynomial degree ≤ 2k

in ranks >

{
2s + 3 if k = 1,

4k + 2s if k ≥ 2.

(1) By [12, Remark 2.42], V has the same polynomial degree and rank bounds as
a UG-module.

(2) Noting that st-rank(R/I )≤ s as well [2, Lemma 4.1], by [12, Proposition 2.13],
the category UG satisfies H3(2, s + 1).

Therefore by [12, Theorem 3.11], we have

H̃G
i (V )n = 0 for n >

{
max{2s + i + 4, s + 2i + 3} if k = 1,

max{4k + 2s + i + 1, 2k + s + 2i + 1} if k ≥ 2,

and in particular

H̃G
−1(V )n = 0 for n >

{
2s + 3 if k = 1,

4k + 2s if k ≥ 2,

H̃G
0 (V )n = 0 for n >

{
2s + 4 if k = 1,

4k + 2s + 1 if k ≥ 2.

Noting that the definitions of H̃G
∗

in [13, Definition 3.14] and [12, Definition 2.9]
are consistent with each other, the vanishing above corresponds to a coequalizer
diagram of the form

IndGn
Gn−2

Vn−2 ⇒ IndGn
Gn−1

Vn−1 → Vn

of ZGn-modules whenever

n ≥

{
2s + 5 if k = 1,

4k + 2s + 2 if k ≥ 2

by [13, Remark 3.16]. In this range, we have n − 2 ≥ 2s + 3 ≥ n0, so that

V j = Hk(GL j (R, I );A) for j ∈ {n − 2, n − 1, n}. □
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