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We explore the fourth-order Steklov problem of a compact embedded hyper-
surface 6n with free boundary in a (n+1)-dimensional compact manifold
Mn+1 which has nonnegative Ricci curvature and strictly convex boundary.
If 6 is minimal we establish a lower bound for the first eigenvalue of this
problem. When M = Bn+1 is the unit ball in Rn+1, if 6 has constant mean
curvature H6 we prove that the first eigenvalue satisfies σ1 ≤ n +|H6|. In
the minimal case (H6 = 0), we prove that σ1 = n.

1. Introduction

Let 6n be an n-dimensional compact Riemannian manifold with nonempty boundary
∂6 ̸= ∅. Consider the fourth-order Steklov eigenvalue problem

(1)


12ξ = 0 in 6,

ξ = 0 on ∂6,

1ξ = σ
∂ξ
∂ν6

on ∂6,

where σ is a real number, 1 is the Laplacian operator on 6 and ν6 denotes the
outward unit normal on ∂6. The first nonzero eigenvalue of the above problem will
be denoted by σ1 = σ(6). The first eigenvalue of (1) has the following variational
characterization:

(2) σ1 = inf
w|∂6=0

∫
6
(1w)2∫

∂6

(
∂w
∂ν6

)2 .

Wang and Xia [2009] proved that if 6 has nonnegative Ricci curvature and the
mean curvature of ∂6 is bounded below by a positive constant c then σ1 ≥ c · n.
Furthermore, equality occurs if and only if 6 is isometric to an n-dimensional
Euclidean ball of radius 1

c .
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Since their first appearance in [Stekloff 1902], elliptic problems with parameters
in the boundary conditions are called Steklov problems. Kuttler [1972] and Payne
[1970] studied the isoperimetric properties of the first eigenvalue σ1 of the fourth-
order Steklov problem (1). Moreover, as already noticed in [Kuttler 1972; 1979;
Kuttler and Sigillito 1985], σ1 is the sharp constant for L2 a priori estimates for
solutions of the (second-order) Laplace equation under nonhomogeneous Dirichlet
boundary conditions. In [Ferrero et al. 2005] the authors studied the spectrum
of the biharmonic Steklov problem (1) and obtained a characterization of it, and
presented a physical interpretation of σ1. For comprehensive references on such
Steklov problems, see [Berchio et al. 2006; Bucur et al. 2009; Wang and Xia 2009].

It should be pointed out that the problem

(3)


12ξ = 0 in 6,

ξ = 0 on ∂6,
∂2ξ

∂ν2
6

= λ
∂ξ
∂ν6

on ∂6,

is a natural Steklov problem and one can check that when the mean curvature of
∂6 is constant, it is equivalent to (1).

Let M be a compact Riemannian manifold with nonempty boundary ∂ M and
6 ⊂ M a compact hypersurface (with boundary ∂6) properly embedded into M ,
that is, 6 ∩∂ M = ∂6. We say that 6 is a minimal hypersurface with free boundary
if 6 is a minimal hypersurface and 6 meets ∂ M orthogonally along ∂6. In this
setting, Fraser and Li [2014] obtained a lower bound for the first eigenvalue of the
second-order Steklov problem.

If M = Bn is the unit ball in Rn , it is known [Fraser and Schoen 2013] that the
coordinate functions are eigenfunctions of the second-order Steklov problem with
eigenvalue 1. Taking that into consideration, Fraser and Li [2014] conjectured that
the first eigenvalue of the second-order Steklov problem of a compact properly
embedded minimal hypersurface in Bn is 1 and proved that this is limited from
below by 1

2 .
On the one hand, we did not find in the literature an extrinsic approach to the

fourth-order Steklov eigenvalue problem. Motivated by the work of Fraser and Li,
in this paper we consider the fourth-order Steklov problem of a compact properly
embedded minimal hypersurface 6 with free boundary in a compact manifold M .

On the other hand, Ferrero, Gazzola and Weth [Ferrero et al. 2005] explored
the fourth-order Steklov eigenvalue problem in a bounded domain � of Rn and
proved that the first eigenvalue of this problem is equal to n when � = Bn . It is
known that the unit ball Bn is a minimal hypersurface with free boundary in Bn+1.
In this setting, we have established an upper estimate for the first eigenvalue of the
fourth-order Steklov problem of a compact properly embedded CMC hypersurface
in Bn+1 with free boundary on ∂ Bn+1:
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Proposition 1. Let 6n be a compact properly embedded hypersurface in the unit
ball Bn+1, with free boundary on ∂ Bn+1

= Sn . Assume that 6 has constant
normalized mean curvature H6 . Then

σ1 ≤ n + |H6
|.

It follows from Proposition 1 that if 6 is minimal (H6
= 0), then σ1 ≤ n. This,

together with the result of Ferrero, Gazzola and Weth [Ferrero et al. 2005], naturally
led us to formulate and prove the main result of this paper:

Theorem 2. Let 6n be a compact properly embedded minimal hypersurface in the
unit ball Bn+1, with free boundary on ∂ Bn+1

= Sn . Then the first eigenvalue of the
fourth-order Steklov problem of 6 is equal to n.

Wang and Xia [2009] proved that any compact connected Riemannian manifold 6

with boundary ∂6 satisfies

(4) |6|σ1 ≤ |∂6|,

where |∂6| and |6| denote the area of ∂6 and the volume of 6, respectively. If in
addition the Ricci curvature of 6 is nonnegative and the equality holds, then 6 is
isometric to an n-dimensional Euclidean ball. In our context, the equality always
holds even for codimension greater than 1 (see Proposition 2.4 in [Li 2020]), i.e.,

k |6| = |∂6|

for every k-dimensional immersed free boundary minimal submanifold 6k in the
unit ball Bn+1. As a consequence of this equality and from (4) we get that σ1 ≤ k
for free boundary minimal submanifolds 6k

⊂ Bn+1.
Taking that into consideration, it is natural to consider the following question.

Problem 3. Under what additional assumption is it possible to ensure that a
compact properly embedded minimal hypersurface in the unit ball Bn+1, with free
boundary on ∂ Bn+1

= Sn , such that σ1 = n is the unit ball Bn?

In our next result, we prove a lower estimate for σ1 when 6n is a compact properly
embedded minimal hypersurface with free boundary in a compact manifold which
has nonnegative Ricci curvature and strictly convex boundary. More precisely, we
prove the following theorem.

Theorem 4. Let Mn+1 be an (n+1)-dimensional compact orientable Riemannian
manifold with nonnegative Ricci curvature and nonempty boundary ∂ M. Assume the
second fundamental form of ∂ M satisfies A∂ M(v, v) ≥ k > 0, for any unit vector v

tangent to ∂ M.
Let 6n be a properly embedded minimal hypersurface in M with free boundary

on ∂ M. Assume ∂6 has constant mean curvature H ∂6 . If
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(i) 6 is orientable, or

(ii) π1(M) is finite,

then we have the eigenvalue estimate σ1 ≥ H ∂6
+

k
2 , where σ1 is the first eigenvalue

of the fourth-order Steklov problem on 6.

This estimate for σ1 is analogous to the estimates of Fraser and Li [2014] for the
first nonzero Steklov eigenvalue of the Dirichlet-to-Neumann map on 6.

Remark 5. If M = Bn+1 is the unit ball in Rn+1 and 6 = Bn
⊂ Bn+1 is the unit ball

in Rn (“equatorial disk”), then H ∂6
= n−1 and k = 1, and we get that σ1 = H ∂6

+k.
For this reason, we believe that σ1 ≥ H ∂6

+ k is the sharp estimate. Consequently,
the hypothesis in Theorem 4 that ∂6 has constant mean curvature becomes natural
to assume.

Combining the inequality (4) with our Theorem 4 we deduce the following
corollary.

Corollary 6. Let Mn+1 be an (n+1)-dimensional compact orientable Riemannian
manifold with nonnegative Ricci curvature and nonempty boundary ∂ M. Assume the
second fundamental form of ∂ M satisfies A∂ M(v, v) ≥ k > 0, for any unit vector v

tangent to ∂ M.
Let 6 be a properly embedded minimal hypersurface in M with free boundary

on ∂ M. Assume ∂6 has constant mean curvature H ∂6 . Then

|∂6| ≥

(
H ∂6

+
k
2

)
|6|.

2. Preliminaries

In this section we will collect some basic results that are essential to deduce
Theorem 4. Let Mn+1 be a (n+1)-dimensional compact Riemannian manifold with
nonempty boundary ∂ M . Denote by ⟨ · , · ⟩ the metric on M and D the Riemannian
connection on M . We define the second fundamental form of the boundary ∂ M
with respect to the outward unit normal µ by A∂ M(u, v) = ⟨Duµ, v⟩, where u, v

are tangent to ∂ M . The mean curvature H ∂ M of ∂ M is then defined as the trace of
A∂ M , i.e.,

H ∂ M
=

n∑
j=1

A∂ M(e j , e j ),

where e1, . . . , en is any orthonormal basis for T ∂ M .
The following, known as Reilly’s formula, was settled in [Fraser and Li 2014,

Lemma 2.6]; see also [Choi and Wang 1983].

Proposition 7 [Fraser and Li 2014]. Let � be a compact (n+1)-manifold with
piecewise smooth boundary ∂� =

⋃ ∑k
i=1 6i . Suppose f is a continuous function
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on � where f ∈ C∞(� \ S), S =
⋃ ∑k

i=1∂6i , and there exists some C > 0 such
that ∥ f ∥C3(�

′
) ≤ C for all �

′

⊂ � \ S. Then, Reilly’s formula holds:

(5) 0 =

∫
�

Ric�(D f, D f )−(1� f )2
+∥Hess� f ∥

2

+

k∑
i=1

∫
6i

[(
16i f +H6i ∂ f

∂ηi

)
∂ f
∂ηi

−

〈
∇

6i f, ∇6i ∂ f
∂ηi

〉
+h6i (∇6i f, ∇6i f )

]
.

Here, Ric�is the Ricci tensor of �; 1�, Hess� and ∇� are the Laplacian, Hessian
and gradient operators on �, respectively; 16i and ∇

6i are the Laplacian and
gradient operators on each 6i , respectively; ηi is the outward unit normal of 6i ;
H6i and h6i are the mean curvature and second fundamental form of 6i in � with
respect to the outward unit normal, respectively.

To prove our main result we need a few considerations. Let ϕ : 6 → M
be a properly embedded minimal hypersurface with free boundary in a compact
orientable manifold M . Assume that ∂ M is strictly convex and M has nonnegative
Ricci curvature. Under these assumptions, ∂ M is connected [Fraser and Li 2014,
Proposition 2.8], and any properly embedded minimal hypersurface in M with free
boundary is connected [Fraser and Li 2014, Lemma 2.5]. Furthermore, if both
6 and M are orientable then M \ ϕ(6) consists of two components �1 and �2

(see [Fraser and Li 2014, Corollary 2.10]). Take � = �1. Let ∂� = 6 ∪ 0 where
0 ⊂ ∂ M . Thus, ∂6 = ∂0. Note that 0 is not necessarily connected, but each
component of 0 must intersect 6 along some component of ∂6. Otherwise, ∂ M
would have more than one component, a contradiction.

Remark 8. From a result due to M. C. Li [2011, Theorem 1.1.8], any compact Rie-
mannian 3-manifold M with nonempty boundary ∂ M admits a nontrivial compact
embedded minimal surface 6 with free boundary. Some examples of free boundary
submanifolds in the unit ball are given in [Fraser and Schoen 2013].

3. Proof of the results

3.1. Proof of Proposition 1.

Proof. Let ξ : Bn+1
→ R be defined by ξ(x) = 1 − ∥x∥

2. As can be easily seen

ξ|∂6 = 0 and 16ξ(x) = −2
(
n + H6

⟨x, N (x)⟩
)
,

where N is a unit vector field normal to 6n in Bn+1. Thus,

(16ξ)2
≤ 4n2

(
1 +

|H6
|

n

)2

.
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On the other hand, if ν6 is the outward unit conormal along ∂6 and xi are the
coordinate functions, the condition

∂xi

∂ν6

= xi

is equivalent to ν6 = x , which is equivalent to the condition that 6 meets ∂ Bn

orthogonally. Then, 6 meets ∂ Bn orthogonally if and only if

∂ξ

∂ν6

= −2.

Now, using the variational characterization of σ1 we get

σ1 · |∂6| ≤ n2
(

1 +
|H6

|

n

)2

· |6|,

and applying inequality (4) we conclude that

σ1 ≤ n + |H6
|. □

3.2. Proof of Theorem 2.
Proof. Again let us consider the function ξ : Bn+1

→ R defined by ξ(x) = 1−∥x∥
2.

Since 6 is minimal, it follows from the proof of Proposition 1 that 16ξ =−2n. Thus
12

6ξ = 0 in 6,

ξ = 0 on ∂6,

16ξ = n ∂ξ
∂ν6

on ∂6,

which implies that n is an eigenvalue. Now we will show that σ1 = n.
It is known (see Theorem 1 in [Berchio et al. 2006]) that the infimum in (2) is

achieved and that, up to a multiplicative constant, the minimizer is unique, smooth
up to the boundary, positive in 6, and the normal derivative relative to the outward
unit normal is negative on ∂6. Arguing as in the proof of Lemma 2.2 in [Ferrero
et al. 2005] we conclude that σ1 = n. □

3.3. Proof of Theorem 4.
Proof. Firstly suppose that 6 is orientable. Since M is orientable we have 6 is
connected and M \ϕ(6) consists of two components �1 and �2 (see [Fraser and
Li 2014, Corollaries 2.5 and 2.10]). Let � = �1 and ∂� = 6 ∪0, where 0 ⊂ ∂ M ,
so that ∂6 = ∂0.

Let ξ ∈ C∞(6) be an eigenfunction corresponding to the first eigenvalue σ1 of
the fourth-order Steklov problem, that is,

(6)


12

6ξ = 0 in 6,

ξ = 0 on ∂6,

16ξ = σ1
∂ξ
∂ν6

on ∂6,
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where ν6 is the outward conormal vector of ∂6 with respect to 6. Next, we consider
the Dirichlet–Neumann boundary value problem on the compact (n+1)-manifold �

with piecewise smooth boundary ∂� = 6 ∪ 0

(7)


1� f = 0 in �,

f = 16ξ on 6,
∂ f
∂η0

= (σ1 − H ∂6) f on 0.

Analyzing the relationship between the first eigenvalues of problems (1) and (3)
it is possible to conclude that σ1 > H ∂6 . To ensure the existence of a solution for
problem (7), we will consider the homogeneous problem

(8)


1� f = 0 in �,

f = 0 on 6,
∂ f
∂η0

= µ f on 0.

This mixed Steklov–Dirichlet problem has a discrete spectrum {µi } (see [Guo
and Xia 2019, Section 2]) where

0 < µ1 ≤ µ2 ≤ · · · → +∞.

Next, we will establish a lower bound for µ1. Consider f1 an eigenfunction asso-
ciated with µ1 and assume without loss of generality that

∫
6

h6(∇6 f1, ∇
6 f1) ≥ 0

(otherwise, we choose �=�2 instead). We get by Reilly’s formula (5) applied to f1

0 ≥ nk
∫

0

(
∂ f1

∂η0

)2

+

∫
0

10 f
∂ f1

∂η0

−

∫
0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
+ k

∫
0

|∇
0 f1|

2,

where η6 and η0 are the outward unit normals of 6 and 0, respectively, with
respect to �. Integrating by parts we get∫

0

10 f1
∂ f1

∂η0

= −

∫
0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
+

∫
∂0

∂ f1

∂ν0

∂ f1

∂η0

,

where ν6 and ν0 are the outward conormal vectors of ∂6 = ∂0 with respect to
6 and 0, respectively. Since 6 meets 0 orthogonally along ∂6 = ∂0, we have
ν6 = η0 and η6 = ν0 along the common boundary ∂6. Thereby

0 =

∫
∂6

∂ f1

∂ν6

∂ f1

∂η6

=

∫
∂6

∂ f1

∂ν6

∂ f1

∂ν0

=

∫
∂0

∂ f1

∂ν0

∂ f1

∂η0

,

which implies

2
∫

0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
≥ nk

∫
0

(
∂ f1

∂η0

)2

+ k
∫

0

|∇
0 f1|

2.

We conclude that µ1 ≥
k
2 . Having proved this fact, we will make an analysis

divided into two cases. Namely, if there is i ∈ N such that σ1 − H ∂6
= µi ≥ µ1 we
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get σ1 ≥ H ∂6
+

k
2 . Otherwise, σ1 − H ∂6

̸= µi for all i ∈ N. So, the homogeneous
problem (8) has only the trivial solution, and it follows from standard elliptic PDE
theory, more specifically from the Fredholm alternative, that the problem (7) has
a unique solution f . Note that 16( f |6) = 12

6ξ = 0 in 6, and assuming without
loss of generality that

∫
6

h6(∇6 f, ∇6 f ) ≥ 0, by substituting this function f in
formula (5) we obtain

0 ≥ −

∫
6

〈
∇

6 f, ∇6 ∂ f
∂η6

〉
+ nk

∫
0

(
∂ f
∂η0

)2

+

∫
0

10 f
∂ f
∂η0

−

∫
0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+ k

∫
0

|∇
0 f |

2.

Now, using that∫
6

〈
∇

6 f, ∇6 ∂ f
∂η6

〉
= −

∫
6

∂ f
∂η6

16 f +

∫
∂6

∂ f
∂ν6

∂ f
∂η6

=

∫
∂6

∂ f
∂ν6

∂ f
∂η6

and ∫
0

10 f
∂ f
∂η0

= −

∫
0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+

∫
∂0

∂ f
∂ν0

∂ f
∂η0

,

we have

0 ≥ −

∫
∂6

∂ f
∂ν6

∂ f
∂η6

+

∫
∂0

∂ f
∂ν0

∂ f
∂η0

− 2
∫

0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+ nk

∫
0

(
∂ f
∂η0

)2

+ k
∫

0

|∇
0 f |

2.

As we saw previously,∫
∂6

∂ f
∂ν6

∂ f
∂η6

=

∫
∂6

∂ f
∂ν6

∂ f
∂ν0

=

∫
∂0

∂ f
∂ν0

∂ f
∂η0

.

Therefore,

2
∫

0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
≥ nk

∫
0

(
∂ f
∂η0

)2

+ k
∫

0

|∇
0 f |

2.

Now, using the last equality in (7) we get

2(σ1 − H ∂6) ≥ k =⇒ σ1 ≥ H ∂6
+

k
2
.

This proves the theorem when 6 is orientable. In the case when 6 nonorientable
and π1(M) finite, we can argue as in [Fraser and Li 2014, Theorem 3.1]. □

3.4. Proof of Corollary 6.

Proof. The proof of Corollary 6 follows directly from (4) and Theorem 4. □
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