
Pacific
Journal of
Mathematics

ESTIMATE FOR THE FIRST FOURTH STEKLOV EIGENVALUE
OF A MINIMAL HYPERSURFACE WITH FREE BOUNDARY

RONDINELLE BATISTA, BARNABÉ LIMA, PAULO SOUSA AND BRUNO VIEIRA

Volume 325 No. 1 July 2023





PACIFIC JOURNAL OF MATHEMATICS
Vol. 325, No. 1, 2023

https://doi.org/10.2140/pjm.2023.325.1

ESTIMATE FOR THE FIRST FOURTH STEKLOV EIGENVALUE
OF A MINIMAL HYPERSURFACE WITH FREE BOUNDARY

RONDINELLE BATISTA, BARNABÉ LIMA, PAULO SOUSA AND BRUNO VIEIRA

We dedicate this paper to João Xavier da Cruz Neto on the occasion of his sixtieth birthday.

We explore the fourth-order Steklov problem of a compact embedded hyper-
surface 6n with free boundary in a (n+1)-dimensional compact manifold
Mn+1 which has nonnegative Ricci curvature and strictly convex boundary.
If 6 is minimal we establish a lower bound for the first eigenvalue of this
problem. When M = Bn+1 is the unit ball in Rn+1, if 6 has constant mean
curvature H6 we prove that the first eigenvalue satisfies σ1 ≤ n +|H6|. In
the minimal case (H6 = 0), we prove that σ1 = n.

1. Introduction

Let 6n be an n-dimensional compact Riemannian manifold with nonempty boundary
∂6 ̸= ∅. Consider the fourth-order Steklov eigenvalue problem

(1)


12ξ = 0 in 6,

ξ = 0 on ∂6,

1ξ = σ
∂ξ
∂ν6

on ∂6,

where σ is a real number, 1 is the Laplacian operator on 6 and ν6 denotes the
outward unit normal on ∂6. The first nonzero eigenvalue of the above problem will
be denoted by σ1 = σ(6). The first eigenvalue of (1) has the following variational
characterization:

(2) σ1 = inf
w|∂6=0

∫
6
(1w)2∫

∂6

(
∂w
∂ν6

)2 .

Wang and Xia [2009] proved that if 6 has nonnegative Ricci curvature and the
mean curvature of ∂6 is bounded below by a positive constant c then σ1 ≥ c · n.
Furthermore, equality occurs if and only if 6 is isometric to an n-dimensional
Euclidean ball of radius 1

c .
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Since their first appearance in [Stekloff 1902], elliptic problems with parameters
in the boundary conditions are called Steklov problems. Kuttler [1972] and Payne
[1970] studied the isoperimetric properties of the first eigenvalue σ1 of the fourth-
order Steklov problem (1). Moreover, as already noticed in [Kuttler 1972; 1979;
Kuttler and Sigillito 1985], σ1 is the sharp constant for L2 a priori estimates for
solutions of the (second-order) Laplace equation under nonhomogeneous Dirichlet
boundary conditions. In [Ferrero et al. 2005] the authors studied the spectrum
of the biharmonic Steklov problem (1) and obtained a characterization of it, and
presented a physical interpretation of σ1. For comprehensive references on such
Steklov problems, see [Berchio et al. 2006; Bucur et al. 2009; Wang and Xia 2009].

It should be pointed out that the problem

(3)


12ξ = 0 in 6,

ξ = 0 on ∂6,
∂2ξ

∂ν2
6

= λ
∂ξ
∂ν6

on ∂6,

is a natural Steklov problem and one can check that when the mean curvature of
∂6 is constant, it is equivalent to (1).

Let M be a compact Riemannian manifold with nonempty boundary ∂ M and
6 ⊂ M a compact hypersurface (with boundary ∂6) properly embedded into M ,
that is, 6 ∩∂ M = ∂6. We say that 6 is a minimal hypersurface with free boundary
if 6 is a minimal hypersurface and 6 meets ∂ M orthogonally along ∂6. In this
setting, Fraser and Li [2014] obtained a lower bound for the first eigenvalue of the
second-order Steklov problem.

If M = Bn is the unit ball in Rn , it is known [Fraser and Schoen 2013] that the
coordinate functions are eigenfunctions of the second-order Steklov problem with
eigenvalue 1. Taking that into consideration, Fraser and Li [2014] conjectured that
the first eigenvalue of the second-order Steklov problem of a compact properly
embedded minimal hypersurface in Bn is 1 and proved that this is limited from
below by 1

2 .
On the one hand, we did not find in the literature an extrinsic approach to the

fourth-order Steklov eigenvalue problem. Motivated by the work of Fraser and Li,
in this paper we consider the fourth-order Steklov problem of a compact properly
embedded minimal hypersurface 6 with free boundary in a compact manifold M .

On the other hand, Ferrero, Gazzola and Weth [Ferrero et al. 2005] explored
the fourth-order Steklov eigenvalue problem in a bounded domain � of Rn and
proved that the first eigenvalue of this problem is equal to n when � = Bn . It is
known that the unit ball Bn is a minimal hypersurface with free boundary in Bn+1.
In this setting, we have established an upper estimate for the first eigenvalue of the
fourth-order Steklov problem of a compact properly embedded CMC hypersurface
in Bn+1 with free boundary on ∂ Bn+1:
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Proposition 1. Let 6n be a compact properly embedded hypersurface in the unit
ball Bn+1, with free boundary on ∂ Bn+1

= Sn . Assume that 6 has constant
normalized mean curvature H6 . Then

σ1 ≤ n + |H6
|.

It follows from Proposition 1 that if 6 is minimal (H6
= 0), then σ1 ≤ n. This,

together with the result of Ferrero, Gazzola and Weth [Ferrero et al. 2005], naturally
led us to formulate and prove the main result of this paper:

Theorem 2. Let 6n be a compact properly embedded minimal hypersurface in the
unit ball Bn+1, with free boundary on ∂ Bn+1

= Sn . Then the first eigenvalue of the
fourth-order Steklov problem of 6 is equal to n.

Wang and Xia [2009] proved that any compact connected Riemannian manifold 6

with boundary ∂6 satisfies

(4) |6|σ1 ≤ |∂6|,

where |∂6| and |6| denote the area of ∂6 and the volume of 6, respectively. If in
addition the Ricci curvature of 6 is nonnegative and the equality holds, then 6 is
isometric to an n-dimensional Euclidean ball. In our context, the equality always
holds even for codimension greater than 1 (see Proposition 2.4 in [Li 2020]), i.e.,

k |6| = |∂6|

for every k-dimensional immersed free boundary minimal submanifold 6k in the
unit ball Bn+1. As a consequence of this equality and from (4) we get that σ1 ≤ k
for free boundary minimal submanifolds 6k

⊂ Bn+1.
Taking that into consideration, it is natural to consider the following question.

Problem 3. Under what additional assumption is it possible to ensure that a
compact properly embedded minimal hypersurface in the unit ball Bn+1, with free
boundary on ∂ Bn+1

= Sn , such that σ1 = n is the unit ball Bn?

In our next result, we prove a lower estimate for σ1 when 6n is a compact properly
embedded minimal hypersurface with free boundary in a compact manifold which
has nonnegative Ricci curvature and strictly convex boundary. More precisely, we
prove the following theorem.

Theorem 4. Let Mn+1 be an (n+1)-dimensional compact orientable Riemannian
manifold with nonnegative Ricci curvature and nonempty boundary ∂ M. Assume the
second fundamental form of ∂ M satisfies A∂ M(v, v) ≥ k > 0, for any unit vector v

tangent to ∂ M.
Let 6n be a properly embedded minimal hypersurface in M with free boundary

on ∂ M. Assume ∂6 has constant mean curvature H ∂6 . If
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(i) 6 is orientable, or

(ii) π1(M) is finite,

then we have the eigenvalue estimate σ1 ≥ H ∂6
+

k
2 , where σ1 is the first eigenvalue

of the fourth-order Steklov problem on 6.

This estimate for σ1 is analogous to the estimates of Fraser and Li [2014] for the
first nonzero Steklov eigenvalue of the Dirichlet-to-Neumann map on 6.

Remark 5. If M = Bn+1 is the unit ball in Rn+1 and 6 = Bn
⊂ Bn+1 is the unit ball

in Rn (“equatorial disk”), then H ∂6
= n−1 and k = 1, and we get that σ1 = H ∂6

+k.
For this reason, we believe that σ1 ≥ H ∂6

+ k is the sharp estimate. Consequently,
the hypothesis in Theorem 4 that ∂6 has constant mean curvature becomes natural
to assume.

Combining the inequality (4) with our Theorem 4 we deduce the following
corollary.

Corollary 6. Let Mn+1 be an (n+1)-dimensional compact orientable Riemannian
manifold with nonnegative Ricci curvature and nonempty boundary ∂ M. Assume the
second fundamental form of ∂ M satisfies A∂ M(v, v) ≥ k > 0, for any unit vector v

tangent to ∂ M.
Let 6 be a properly embedded minimal hypersurface in M with free boundary

on ∂ M. Assume ∂6 has constant mean curvature H ∂6 . Then

|∂6| ≥

(
H ∂6

+
k
2

)
|6|.

2. Preliminaries

In this section we will collect some basic results that are essential to deduce
Theorem 4. Let Mn+1 be a (n+1)-dimensional compact Riemannian manifold with
nonempty boundary ∂ M . Denote by ⟨ · , · ⟩ the metric on M and D the Riemannian
connection on M . We define the second fundamental form of the boundary ∂ M
with respect to the outward unit normal µ by A∂ M(u, v) = ⟨Duµ, v⟩, where u, v

are tangent to ∂ M . The mean curvature H ∂ M of ∂ M is then defined as the trace of
A∂ M , i.e.,

H ∂ M
=

n∑
j=1

A∂ M(e j , e j ),

where e1, . . . , en is any orthonormal basis for T ∂ M .
The following, known as Reilly’s formula, was settled in [Fraser and Li 2014,

Lemma 2.6]; see also [Choi and Wang 1983].

Proposition 7 [Fraser and Li 2014]. Let � be a compact (n+1)-manifold with
piecewise smooth boundary ∂� =

⋃ ∑k
i=1 6i . Suppose f is a continuous function
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on � where f ∈ C∞(� \ S), S =
⋃ ∑k

i=1∂6i , and there exists some C > 0 such
that ∥ f ∥C3(�

′
) ≤ C for all �

′

⊂ � \ S. Then, Reilly’s formula holds:

(5) 0 =

∫
�

Ric�(D f, D f )−(1� f )2
+∥Hess� f ∥

2

+

k∑
i=1

∫
6i

[(
16i f +H6i ∂ f

∂ηi

)
∂ f
∂ηi

−

〈
∇

6i f, ∇6i ∂ f
∂ηi

〉
+h6i (∇6i f, ∇6i f )

]
.

Here, Ric�is the Ricci tensor of �; 1�, Hess� and ∇� are the Laplacian, Hessian
and gradient operators on �, respectively; 16i and ∇

6i are the Laplacian and
gradient operators on each 6i , respectively; ηi is the outward unit normal of 6i ;
H6i and h6i are the mean curvature and second fundamental form of 6i in � with
respect to the outward unit normal, respectively.

To prove our main result we need a few considerations. Let ϕ : 6 → M
be a properly embedded minimal hypersurface with free boundary in a compact
orientable manifold M . Assume that ∂ M is strictly convex and M has nonnegative
Ricci curvature. Under these assumptions, ∂ M is connected [Fraser and Li 2014,
Proposition 2.8], and any properly embedded minimal hypersurface in M with free
boundary is connected [Fraser and Li 2014, Lemma 2.5]. Furthermore, if both
6 and M are orientable then M \ ϕ(6) consists of two components �1 and �2

(see [Fraser and Li 2014, Corollary 2.10]). Take � = �1. Let ∂� = 6 ∪ 0 where
0 ⊂ ∂ M . Thus, ∂6 = ∂0. Note that 0 is not necessarily connected, but each
component of 0 must intersect 6 along some component of ∂6. Otherwise, ∂ M
would have more than one component, a contradiction.

Remark 8. From a result due to M. C. Li [2011, Theorem 1.1.8], any compact Rie-
mannian 3-manifold M with nonempty boundary ∂ M admits a nontrivial compact
embedded minimal surface 6 with free boundary. Some examples of free boundary
submanifolds in the unit ball are given in [Fraser and Schoen 2013].

3. Proof of the results

3.1. Proof of Proposition 1.

Proof. Let ξ : Bn+1
→ R be defined by ξ(x) = 1 − ∥x∥

2. As can be easily seen

ξ|∂6 = 0 and 16ξ(x) = −2
(
n + H6

⟨x, N (x)⟩
)
,

where N is a unit vector field normal to 6n in Bn+1. Thus,

(16ξ)2
≤ 4n2

(
1 +

|H6
|

n

)2

.
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On the other hand, if ν6 is the outward unit conormal along ∂6 and xi are the
coordinate functions, the condition

∂xi

∂ν6

= xi

is equivalent to ν6 = x , which is equivalent to the condition that 6 meets ∂ Bn

orthogonally. Then, 6 meets ∂ Bn orthogonally if and only if

∂ξ

∂ν6

= −2.

Now, using the variational characterization of σ1 we get

σ1 · |∂6| ≤ n2
(

1 +
|H6

|

n

)2

· |6|,

and applying inequality (4) we conclude that

σ1 ≤ n + |H6
|. □

3.2. Proof of Theorem 2.
Proof. Again let us consider the function ξ : Bn+1

→ R defined by ξ(x) = 1−∥x∥
2.

Since 6 is minimal, it follows from the proof of Proposition 1 that 16ξ =−2n. Thus
12

6ξ = 0 in 6,

ξ = 0 on ∂6,

16ξ = n ∂ξ
∂ν6

on ∂6,

which implies that n is an eigenvalue. Now we will show that σ1 = n.
It is known (see Theorem 1 in [Berchio et al. 2006]) that the infimum in (2) is

achieved and that, up to a multiplicative constant, the minimizer is unique, smooth
up to the boundary, positive in 6, and the normal derivative relative to the outward
unit normal is negative on ∂6. Arguing as in the proof of Lemma 2.2 in [Ferrero
et al. 2005] we conclude that σ1 = n. □

3.3. Proof of Theorem 4.
Proof. Firstly suppose that 6 is orientable. Since M is orientable we have 6 is
connected and M \ϕ(6) consists of two components �1 and �2 (see [Fraser and
Li 2014, Corollaries 2.5 and 2.10]). Let � = �1 and ∂� = 6 ∪0, where 0 ⊂ ∂ M ,
so that ∂6 = ∂0.

Let ξ ∈ C∞(6) be an eigenfunction corresponding to the first eigenvalue σ1 of
the fourth-order Steklov problem, that is,

(6)


12

6ξ = 0 in 6,

ξ = 0 on ∂6,

16ξ = σ1
∂ξ
∂ν6

on ∂6,
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where ν6 is the outward conormal vector of ∂6 with respect to 6. Next, we consider
the Dirichlet–Neumann boundary value problem on the compact (n+1)-manifold �

with piecewise smooth boundary ∂� = 6 ∪ 0

(7)


1� f = 0 in �,

f = 16ξ on 6,
∂ f
∂η0

= (σ1 − H ∂6) f on 0.

Analyzing the relationship between the first eigenvalues of problems (1) and (3)
it is possible to conclude that σ1 > H ∂6 . To ensure the existence of a solution for
problem (7), we will consider the homogeneous problem

(8)


1� f = 0 in �,

f = 0 on 6,
∂ f
∂η0

= µ f on 0.

This mixed Steklov–Dirichlet problem has a discrete spectrum {µi } (see [Guo
and Xia 2019, Section 2]) where

0 < µ1 ≤ µ2 ≤ · · · → +∞.

Next, we will establish a lower bound for µ1. Consider f1 an eigenfunction asso-
ciated with µ1 and assume without loss of generality that

∫
6

h6(∇6 f1, ∇
6 f1) ≥ 0

(otherwise, we choose �=�2 instead). We get by Reilly’s formula (5) applied to f1

0 ≥ nk
∫

0

(
∂ f1

∂η0

)2

+

∫
0

10 f
∂ f1

∂η0

−

∫
0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
+ k

∫
0

|∇
0 f1|

2,

where η6 and η0 are the outward unit normals of 6 and 0, respectively, with
respect to �. Integrating by parts we get∫

0

10 f1
∂ f1

∂η0

= −

∫
0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
+

∫
∂0

∂ f1

∂ν0

∂ f1

∂η0

,

where ν6 and ν0 are the outward conormal vectors of ∂6 = ∂0 with respect to
6 and 0, respectively. Since 6 meets 0 orthogonally along ∂6 = ∂0, we have
ν6 = η0 and η6 = ν0 along the common boundary ∂6. Thereby

0 =

∫
∂6

∂ f1

∂ν6

∂ f1

∂η6

=

∫
∂6

∂ f1

∂ν6

∂ f1

∂ν0

=

∫
∂0

∂ f1

∂ν0

∂ f1

∂η0

,

which implies

2
∫

0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
≥ nk

∫
0

(
∂ f1

∂η0

)2

+ k
∫

0

|∇
0 f1|

2.

We conclude that µ1 ≥
k
2 . Having proved this fact, we will make an analysis

divided into two cases. Namely, if there is i ∈ N such that σ1 − H ∂6
= µi ≥ µ1 we
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get σ1 ≥ H ∂6
+

k
2 . Otherwise, σ1 − H ∂6

̸= µi for all i ∈ N. So, the homogeneous
problem (8) has only the trivial solution, and it follows from standard elliptic PDE
theory, more specifically from the Fredholm alternative, that the problem (7) has
a unique solution f . Note that 16( f |6) = 12

6ξ = 0 in 6, and assuming without
loss of generality that

∫
6

h6(∇6 f, ∇6 f ) ≥ 0, by substituting this function f in
formula (5) we obtain

0 ≥ −

∫
6

〈
∇

6 f, ∇6 ∂ f
∂η6

〉
+ nk

∫
0

(
∂ f
∂η0

)2

+

∫
0

10 f
∂ f
∂η0

−

∫
0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+ k

∫
0

|∇
0 f |

2.

Now, using that∫
6

〈
∇

6 f, ∇6 ∂ f
∂η6

〉
= −

∫
6

∂ f
∂η6

16 f +

∫
∂6

∂ f
∂ν6

∂ f
∂η6

=

∫
∂6

∂ f
∂ν6

∂ f
∂η6

and ∫
0

10 f
∂ f
∂η0

= −

∫
0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+

∫
∂0

∂ f
∂ν0

∂ f
∂η0

,

we have

0 ≥ −

∫
∂6

∂ f
∂ν6

∂ f
∂η6

+

∫
∂0

∂ f
∂ν0

∂ f
∂η0

− 2
∫

0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+ nk

∫
0

(
∂ f
∂η0

)2

+ k
∫

0

|∇
0 f |

2.

As we saw previously,∫
∂6

∂ f
∂ν6

∂ f
∂η6

=

∫
∂6

∂ f
∂ν6

∂ f
∂ν0

=

∫
∂0

∂ f
∂ν0

∂ f
∂η0

.

Therefore,

2
∫

0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
≥ nk

∫
0

(
∂ f
∂η0

)2

+ k
∫

0

|∇
0 f |

2.

Now, using the last equality in (7) we get

2(σ1 − H ∂6) ≥ k =⇒ σ1 ≥ H ∂6
+

k
2
.

This proves the theorem when 6 is orientable. In the case when 6 nonorientable
and π1(M) finite, we can argue as in [Fraser and Li 2014, Theorem 3.1]. □

3.4. Proof of Corollary 6.

Proof. The proof of Corollary 6 follows directly from (4) and Theorem 4. □
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