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STABLE SYSTOLES OF HIGHER RANK
IN RIEMANNIAN MANIFOLDS

JAMES J. HEBDA

This paper introduces the stable systoles of higher rank of a Riemannian
manifold as a generalization of the usual stable systoles. Several inequalities
involving these higher rank systoles are proved.

1. Introduction

Let M be a smooth compact orientable manifold of dimension n. A Riemannian met-
ric g on M induces an associated stable mass norm ∥ · ∥ on the real homology groups
Hp(M,R). Because the image of the p-th integral homology group Hp(M,Z) in
Hp(M,R) is a lattice, denoted Hp(M,Z)R, in Hp(M,R), we thereby obtain for
each p a lattice in a normed vector space. Such structures are the central objects of
study in the geometry of numbers [6], and their various numerical invariants thus
give rise to a host of invariants of the Riemannian manifold (M, g).

For example, the p-dimensional stable systole stsysp(M, g) is the minimum
norm of the nonzero elements in the lattice Hp(M,Z)R. These have been studied
extensively [8; 9; 12]. One can also consider the successive minimums of the
lattice or its whole length spectrum [10]. The volume of the Jacobian variety
Jp = Hp(M,R)/Hp(M,Z)R with the (Finsler) metric induced from the stable
norm gives an additional invariant. There are various natural ways to define the
volume of the quotient tori [15]. In [8], the mass and mass* measures were used to
define the volume of Jp. In this paper we will use the Busemann–Hausdorff measure
to define the volume of Jp as well as the higher rank systoles of a Riemannian
manifold.

Given a positive integer k less than or equal to the p-th Betti number bp of M ,
we define stsysp,k(M, g) to be the minimum Hausdorff–Busemann volume of the
fundamental region of sublattices of Hp(M,Z)R of rank k. This can be interpreted
as the k-th systole of Jp. In particular stsysp,1(M, g) is the ordinary stable p-th
systole, and stsysp,bp

(M, g) is the Hausdorff–Busemann volume of Jp.
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Among the results of this paper are sharp stable systolic inequalities. The first of
these generalizes an inequality due to Bangert and Katz [1].

Theorem 5.1. Let (M, g) be a compact oriented manifold of dimension n whose
first Betti number is b. Then

stsys1,b(M, g) stsysn−1,b(M, g)≤ Vol(M, g).

Equality holds if and only if there exists a Riemannian submersion of M onto a flat
torus of dimension b with connected minimal fibers.

A further generalization is Theorem 5.2 which is stated and proved in Section 5.
In addition, we prove a sharp inequality for conformally flat metrics on the 4-
dimensional torus for the 2-dimensional stable systole of rank 6.

Theorem 6.7. Let (M, g) be a conformally flat 4-dimensional torus. Then

stsys2,6(M, g)2 ≤

(
3π
4

)1
3

Vol(M, g).

Equality holds if and only if (M, g) is flat.

This paper is organized as follows. In Section 2, we discuss lattices in normed
vector spaces and their invariants, as well as the behavior of Hausdorff–Busemann
volume under linear transformations. Section 3 reviews some properties of the mass,
comass and L2 norms on the (co)homology of a compact oriented manifold. The
formal definition of the stable systoles of higher rank is given in Section 4. This
section provides a number of inequalities involving them related to the properties of
the cap product. In Section 5, we prove a sharp (1, n−1)-inequality that generalizes
that of Bangert and Katz [1]. In Section 6, we calculate the 2-dimensional systole
of rank 6 in flat 4-dimensional tori, and prove a sharp inequality for conformally
flat metrics on the 4-dimensional torus. Finally, in the Appendix, we prove a result
needed in Section 5 that the dual k-extreme lattices are dual k-perfect.

2. Normed vector spaces

Hausdorff measure. Let (V, ∥ · ∥) be an n-dimensional normed vector space over
the real numbers. Let K ⊂ V be the unit ball in (V, ∥ · ∥). According to a theorem
of Busemann [5, (2.3)], the Hausdorff n-dimensional measure Voln( · , ∥ · ∥) is the
unique translation invariant (Haar) measure on V normalized such that

Voln(K , ∥ · ∥)= ωn =
π

n
2

0
(
1 +

n
2

) .
Here ωn denotes the Euclidean volume of the Euclidean unit ball, and 0 is the
gamma function.
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Proposition 2.1 (cf. [15]). Suppose that T : V → W is a linear isomorphism
between the n-dimensional normed spaces (V, ∥ · ∥) and (W, ∥ · ∥

′) such that

∥T (x)∥′
≤ C ∥x∥

for all x ∈ V for some constant C. Then

(2-1) Voln(T (E), ∥ · ∥
′)≤ Cn Voln(E, ∥ · ∥)

for all Borel sets E ⊂ V . Moreover, if equality holds in (2-1) for some E with
nonzero volume, then equality holds in (2-1) for all E and

∥T (x)∥′
= C ∥x∥

for all x ∈ V .

Proof. Let K and K ′ denote the unit balls of V and W , respectively. By assumption
T (K )⊂ C K ′

={Cx : x ∈ K ′
}. We may choose inner products on V and W so that T

is an isometry. Let Ln denote the n-dimensional Lebesgue measure on V and W for
the Euclidean metrics induced from the inner products. Thus Ln(T (E))= Ln(E)
for all Borel sets E in V . Hence Ln(K ) = Ln(T (K )) ≤ Ln(C K ′) = CnLn(K ′).
Therefore

(2-2) Voln(T (E), ∥ · ∥
′)=

ωn

Ln(K ′)
Ln(T (E))

≤ Cn ωn

Ln(K )
Ln(E)= Cn Voln(E, ∥ · ∥)

proving (2-1). If equality holds for some E with Ln(E) ̸= 0, then, by the proof of
(2-2), Ln(T K )= Ln(C K ′). Now T K ⊂ C K ′ are both closed bounded convex sets
of W . Thus, if T K ̸= C K ′, there would exist an open set contained in C K ′

\T K
which would imply the contradiction Ln(C K ′

\T K ) > 0. Hence T K = C K ′, and
therefore ∥T (x)∥′

= C ∥x∥ for all x ∈ V . □

Lattices. Suppose that Λ is a lattice in (V, ∥ · ∥). The Hausdorff measure in V
passes down to the Hausdorff–Busemann measure on the n-dimensional torus V/Λ.
Its volume is equal to the measure of a fundamental domain for Λ and will be
denoted Voln(V/Λ, ∥ · ∥). The Hausdorff–Busemann volume has the following
asymptotic interpretation. Let N (R) equal the number of lattice points x ∈ Λ with
∥x∥ ≤ R. Then

lim
R→∞

N (R)
Rn =

ωn

Voln(V/Λ, ∥ · ∥)
.

Thus Voln(V/Λ, ∥ · ∥) depends only on the length spectrum of Λ. By the second
Minkowski inequality [6, p. 218], the Hausdorff–Busemann volume also satisfies
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the inequality

2n

n!
Voln(V/Λ, ∥ · ∥)≤ λ1 · · · λnωn ≤ 2n Voln(V/Λ, ∥ · ∥),

where the λi are the successive minimums of the lattice Λ.
Let V ∗ be the dual space of V with dual norm ∥ · ∥

∗. The polar set K ◦
⊂ V ∗ is

defined to be the unit ball in (V ∗, ∥ · ∥
∗). Let Λ∗

⊂ V ∗ denote the dual lattice of Λ.

Lemma 2.2. Let Λ and Λ∗ be dual lattices in the respective dual normed spaces
(V, ∥ · ∥) and (V ∗, ∥ · ∥

∗). There exists a universal constant c > 0 such that

1 ≤ Voln(V/Λ, ∥ · ∥)Voln(V ∗/Λ∗, ∥ · ∥
∗)≤

1
cn
.

Proof. Let K ◦ be the polar of K . Fix an inner product on V with its dual inner
product, and let Ln denote the corresponding n-dimensional Lebesgue measures.
Thus

Voln(V/Λ, ∥ · ∥)Voln(V ∗/Λ∗, ∥ · ∥
∗)= ω2

n
Ln(V/Λ)
Ln(K )

Ln(V ∗/Λ∗)

Ln(K ◦)
.

But by the Santalo and the Bourgain–Milman [4] inequalities,

ω2
n ≥ Ln(K )Ln(K ◦)≥ cnω2

n

for some universal constant c, and by Lemma 5 of [6, p. 24],

Ln(V/Λ)Ln(V ∗/Λ∗)= 1.

The proof is completed by combining these three formulas. □

Remark 2.3. It is conjectured that c =
2
π

. Kuperberg [13] has shown c ≥
1
2 .

Sublattices. Let k be an integer with 1 ≤ k ≤ n. By definition, a sublattice of
Λ of rank k is a lattice Λ′ in a k-dimensional vector subspace V ′ of V such that
Λ′

=Λ∩V ′. Let ∥ · ∥
′ be the restriction of ∥ · ∥ to V ′. Then the Hausdorff–Busemann

volume of Λ′ is Volk(V ′/Λ′, ∥ · ∥
′). Define

1k(Λ, ∥ · ∥)= inf
Λ′

Volk(V ′/Λ′, ∥ · ∥
′),

where Λ′ runs over all sublattices of rank k in Λ. In particular 11(Λ, ∥ · ∥) is just
the length of the shortest nonzero element of Λ.

In the special case when | · | is a Euclidean norm obtained from an inner product
on V ,

Voln(V/Λ, | · |)= det(Λ)≡ |e1 ∧ · · · ∧ en|,

where e1, . . . , en is a basis for Λ. Thus if k is an integer with 1 ≤ k ≤ n, the
numbers 1k(Λ, | · |) are exactly the carcans of flat tori defined by Berger in [3, §7].
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Following [2], define the Hermite–Rankin constants

γn,k = sup
Λ

1k(Λ, | · |)
2

det(Λ)2k/n

and the Bergé–Martinet constants

γ ′

n,k = sup
Λ
1k(Λ, | · |)1k(Λ

∗, | · |∗),

where Λ runs over all lattices in the n-dimensional Euclidean space (V, | · |).

Proposition 2.4. Let (V, ∥ · ∥) be a normed vector space of dimension n. Then

(2-3)
1k(Λ, ∥ · ∥)2

Voln(V/Λ, ∥ · ∥)2k/n ≤ nkγn,k,

and

(2-4) 1k(Λ, ∥ · ∥)1k(Λ
∗, ∥ · ∥

∗)≤ n
k
2 γ ′

n,k .

Proof. Let E be the John ellipsoid for the unit ball in V [11]. Then E determines a
Euclidean norm | · |E on V that satisfies

(2-5) ∥ · ∥ ≤ | · |E ≤
√

n ∥ · ∥.

Thus by Proposition 2.1

Voln(V/Λ, | · |E)≤ n
n
2 Voln(V/Λ, ∥ · ∥),

and, for any sublattice Λ′ of rank k in a k-dimensional subspace V ′,

Volk(V ′/Λ′, ∥ · ∥)≤ Volk(V ′/Λ′, | · |E).

Hence,
1k(Λ, ∥ · ∥)≤1k(Λ, | · |E),

and therefore
1k(Λ, ∥ · ∥)2

Voln(V/Λ, ∥ · ∥)2k/n ≤ nkγn,k .

Passing to the dual norms, inequality (2-5) implies

(2-6) ∥ · ∥
∗
≥ | · |

∗

E ≥
1

√
n

∥ · ∥
∗.

Thus
1k(Λ

∗, ∥ · ∥
∗)≤ n

k
21k(Λ

∗, | · |∗E),

and therefore
1k(Λ, ∥ · ∥)1k(Λ

∗, ∥ · ∥
∗)≤ n

k
2 γ ′

n,k . □
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Linear maps. If T : V → W is a linear isomorphism such that T (Λ)⊂ Γ where Λ

and Γ are lattices in V and W , respectively, then T induces a covering map

T : V/Λ → W/Γ

between two n-dimensional tori. The degree of T is clearly equal to the index of
T (Λ) in Γ as free abelian groups. Let deg(T ) denote this degree.

Proposition 2.5. Suppose that T : V → W is a linear isomorphism between the
n-dimensional normed spaces (V, ∥ · ∥) and (W, ∥ · ∥

′) such that

∥T (x)∥′
≤ C ∥x∥

for all x ∈ V . Suppose also that T (Λ)⊂ Γ where Λ and Γ are lattices in V and W ,
respectively. Then

(2-7) deg(T )Voln(W/Γ, ∥ · ∥
′)≤ Cn Voln(V/Λ, ∥ · ∥).

Equality holds if and only if

∥T (x)∥′
= C ∥x∥

for all x ∈ V .

Proof. Let E ⊂ V be the fundamental domain for the cover V over V/Λ and F ⊂ W
the fundamental domain for the cover W over W/Γ. Then T (E) can be expressed
as a union of the translates of deg(T ) copies of F . By Proposition 2.1 and the
translation invariance of the Hausdorff measure,

deg(T )Voln(F, ∥ · ∥
′)= Voln(T (E), ∥ · ∥

′)≤ Cn Voln(E, ∥ · ∥).

The case of equality follows from Proposition 2.1 as well. □

Suppose now that dim(V )= n, dim(W )= m, and T : V → W is a linear transfor-
mation of rank k such that T (Λ)⊂ Γ. Let V = V/ ker(T ) be the cokernel of T , and
Ŵ = T (V )⊂ W be the image of V under T . Also, let Λ̄⊂ V be the quotient lattice
of Λ, and Γ̂= Γ∩Ŵ the rank-k sublattice of Γ. Then T induces a linear isomorphism

T : V → Ŵ

such that T (Λ̄)⊂ Γ̂. Let ∥ · ∥q denote the quotient norm on V , and let ∥ · ∥
′
r denote

the restriction of ∥ · ∥
′ to Ŵ .

Corollary 2.6. With this notation, if ∥T (x)∥′
≤ C ∥x∥ for all x ∈ V , then

(2-8) deg(T )Volk(Ŵ/Γ̂, ∥ · ∥
′

r)≤ Ck Volk(V /Λ̄, ∥ · ∥q).

Equality holds if and only if

∥T (x)∥′

r = C ∥x∥q

for all x ∈ V where ∥ · ∥
′
r denotes the restriction of ∥ · ∥

′ to Ŵ .
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Proof. By hypothesis and the definition of the quotient norm, ∥T (x)∥′
≤ C ∥x∥q

for all x ∈ V . The result follows immediately from Proposition 2.5. □

The next lemma identifies the dual norm of a quotient norm.

Lemma 2.7. Let (V, ∥ · ∥) be a normed vector space. Let (V , ∥ · ∥q) be a quotient
space of V with quotient norm. Let (V ∗, ∥ · ∥

∗) be the dual space of V with the dual
norm. Then the dual space V ∗ of V can be identified with a subspace of V ∗ and the
dual norm ∥ · ∥

∗
q is equal to the restriction of ∥ · ∥

∗ to V ∗.

Proof. Let V0 be the kernel of the quotient map q : V → V . Clearly

V ∗
= {λ ∈ V ∗

: λ(V0)= 0}.

By definition ∥v̄∥q = inf{∥v∥ : v ∈ V, q(v)= v̄} for every v̄ ∈ V . Let λ ∈ V ∗. Then

∥λ∥∗

q = sup{λ(v̄) : v̄ ∈ V , ∥v̄∥q ≤ 1}

and
∥λ∥∗

= sup{λ(v) : v ∈ V, ∥v∥ ≤ 1}.

Now, there exists v0 ∈ V such that ∥v0∥ ≤ 1 and λ(v0)= ∥λ∥∗. Thus ∥q(v0)∥q ≤

∥v0∥ ≤ 1 and λ(q(v0))= λ(v0)= ∥λ∥∗ which implies ∥λq∥
∗
≥ ∥λ∥∗. But there also

exists v̄0 ∈ V such that ∥v̄0∥q ≤ 1 and λ(v̄o)= ∥λ∥∗
q. Thus there exists v0 ∈ V with

q(v0)= v̄0 and ∥v0∥ = ∥v̄0∥q ≤ 1. Hence λ(v0)= λ(q(v0))= λ(v̄0)= ∥λ∥∗
q which

implies ∥λ∥∗
≥ ∥λ∥∗

q. Therefore ∥λ∥∗
= ∥λ∥∗

q. □

3. Norms on homology and cohomology

Throughout this section (M, g) is a compact oriented Riemannian manifold of
dimension n.

Mass and comass. Recall that the comass norm ∥ · ∥
∗ of a cohomology class

α ∈ H p(M,R) is defined by

∥α∥
∗
= inf{comass(ω) : ω a closed p-form representing α},

where comass(ω)= max{ωx(e1, . . . , ep) : x ∈ M, ei ∈ Tx M, |ei | = 1}, and that the
stable mass norm ∥ · ∥ of a homology class h ∈ Hp(M,R) is defined by

∥h∥ = inf
{∑

i

|ri |volp(σi ) :

∑
i

riσi is a Lipschitz cycle representing h
}
.

It is well known that comass and mass are dual norms relative to the Kronecker
pairing

⟨ · , · ⟩ : Hp(M,R)× H p(M,R)→ R.
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Thus for all h ∈ Hp(M,R) and α ∈ H p(M,R)

(3-1) ⟨h, α⟩ ≤ ∥h∥∥α∥
∗.

Moreover, for all α ∈ H p(M,R) and β ∈ Hq(M,R),

(3-2) ∥α ⌣ β∥
∗
≤ C(n; p, q)∥α∥

∗
∥β∥

∗,

where ⌣ denotes the cup product; see [7, 1.8.1]. (Note that C(n; p, q)≤
(p+q

p

)
and

C(n; p, q)= 1 if p ∈ {0, 1, n −1, n}. We will see in Section 6 that C(4; 2, 2)= 2.)

Lemma 3.1. If h ∈ Hp+q(M,R) and α ∈ H p(M,R), then

∥h ⌢α∥ ≤ C(n; p, q)∥h∥∥α∥
∗,

where ⌢ denotes the cap product.

Proof. If β ∈ Hq(M,R), then using (3-1),

⟨h ⌢α, β⟩ = ⟨h, α ⌣ β⟩ ≤ ∥h∥∥α ⌣ β∥
∗.

Applying inequality (3-2) gives

⟨h ⌢α, β⟩ ≤ ∥h∥C(n; p, q)∥α∥
∗
∥β∥

∗,

and taking the supremum for all β with ∥β∥
∗
≤ 1 gives the result since ∥ · ∥ is dual

to ∥ · ∥
∗. □

The L2 norm. According to Hodge theory the cohomology classes in H p(M,R)

can be represented by the harmonic p-forms on (M, g). Moreover H p(M,R) is
endowed with an inner product which for two harmonic p-forms ϕ and ψ is given by

⟨⟨ϕ,ψ⟩⟩ =

∫
M
ϕ ∧ ⋆ψ,

where ⋆ denotes the Hodge star operator. We will denote the corresponding Eu-
clidean norm as | · |

∗

2.
We have need of the following proposition proved in [9, Corollary 3].

Proposition 3.2. Let h ∈ Hp(M,R) be the Poincaré dual of the cohomology class
α ∈ H n−p(M,R). Then

(3-3) ∥h∥ ≤ Vol(M, g)
1
2 C(n, p)|α|

∗

2,

where C(n, p) is a constant depending only on n and p. Moreover, if equality holds
then α can be represented by a harmonic p-form of constant norm.

Remark 3.3. Conversely, the proof of [9, Corollary 3] also shows that equality
holds in (3-3) for p ∈ {1, n − 1} when α is represented by a harmonic p-form of
constant norm. Note that if p equals 0, 1, n − 1, or n, then C(n, p)= 1, and that in
any case C(n, p)≤

(n
p

) 1
2 always.
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4. Higher rank systoles

Let (M, g) be a compact oriented Riemannian manifold of dimension n, and let ∥ · ∥

denote the stable mass norm on Hp(M,R) induced from g. The image of the p-th
integral homology group Hp(M,Z) in Hp(M,R) is a lattice in Hp(M,R) which
will be denoted Hp(M,Z)R. The following definition generalizes the well-known
p-dimensional stable systole stsysp(M, g).

Definition 4.1. For any integer k between 1 and the p-th Betti number bp of M ,
the p-dimensional stable systole of rank k is defined to be

stsysp,k(M, g)=1k(Hp(M,Z)R, ∥ · ∥)
1
k .

Clearly stsysp,1(M, g)= stsysp(M, g)= inf{∥x∥ : 0 ̸= x ∈ Hp(M,Z)R}.
The dual lattice H p(M,Z)R in H p(M,R) can be identified with the set of

cohomology classes of degree p with integral periods [12, Lemma 15.4.2]. Thus

H p(M,Z)R = {α ∈ H p(M,R) : ⟨x, α⟩ ∈ Z ∀x ∈ Hp(M,Z)R}.

As is Section 3, ∥ · ∥
∗ is the comass norm and | · |

∗

2 is the L2 norm on H p(M,R).
In general, the existence of nonzero cap products give rise to inequalities involving

higher rank stable systoles. The results that follow give examples of such inequalities
under various hypotheses. Proposition 4.2 is used in the proofs of Corollaries 4.3
and 4.4 and Theorems 4.5 and 4.6.

Proposition 4.2. Suppose h ∈ Hp+q(M,Z)R, and h ⌢: H p(M,R)→ Hq(M,R)

has rank k. Then

deg(h ⌢)
1
k stsysq,k(M, g) stsysp,k(M, g)≤

C(n; p, q)
c

∥h∥,

where C(n; p, q) is the constant in (3-2) and c is the constant in Lemma 2.2

Proof. Using Lemma 3.1, apply Corollary 2.6 to obtain

(4-1) deg(h ⌢)Volk(Ŵ/Γ̂, ∥ · ∥
′

r)≤ C(n; p, q)k∥h∥
k Volk(V̄ /Λ̄, ∥ · ∥q),

where Ŵ ⊂ Hq(M,R) is the image of H p(M,R) under h ⌢, Γ̂= Hq(M,Z)R ∩ Ŵ ,
and V̄ and Λ̄ are the quotients of H p(M,R) and H p(M,Z)R by the kernel of h ⌢.
Multiply both sides of (4-1) by Volk(V̄ ∗/Λ̄∗, ∥ · ∥

∗
q) and use Lemma 2.2 to obtain

(4-2) deg(h ⌢)Volk(Ŵ/Γ̂, ∥ · ∥
′

r)Volk(V̄ ∗/Λ̄∗, ∥ · ∥
∗

q)≤ C(n; p, q)k∥h∥
k 1

ck
.

But V ∗ is a k-dimensional subspace of Hp(M,R) and Λ̄∗
= Hp(M,Z)R ∩ V ∗. On

taking k-th roots and using the Definition 4.1 we obtain the stated inequality. □



114 JAMES J. HEBDA

Here is a simple application. Let T 4 be the 4-dimensional torus. It is easily
checked that h ⌢: H 1(T 4,R) → H2(T 4,R) has rank 3 for every nonzero h ∈

H3(T 4,R). Thus for nonzero h ∈ H3(T 4,Z)R and any Riemannian metric g on T 4

we have by Proposition 4.2,

stsys1,3(T
4, g) stsys2,3(T

4, g)≤ 2 ∥h∥

because C(4; 1, 2) = 1, c ≥
1
2 and deg(h ⌢) ≥ 1. This leads to the following

intersystolic inequality.

Corollary 4.3. For every Riemannian metric g on T 4,

stsys1,3(T
4, g) stsys2,3(T

4, g)≤ 2 stsys3,1(T
4, g).

By taking h = [M] ∈ Hn(M,Z), the fundamental class of M , in Proposition 4.2
we obtain:

Corollary 4.4. Let 0< p < n, and let bp the p-th Betti number of M. Then

stsysp,bp
(M, g) stsysn−p,bp

(M, g)≤
C(n; p, n− p)

c
Vol(M, g).

Proof. Capping by [M] is the Poincaré duality map which is a linear isomorphism
of rank bp from H p(M,R) to Hn−p(M,R) with degree 1. Also observe that
∥[M]∥ = Vol(M, g). □

Theorem 4.5. Suppose for every nonzero h ∈ Hp+q(M,R) there exists an α ∈

H p(M,R) such that h ⌢α ̸= 0. Then

min
1≤k≤b

stsysq,k(M, g) stsysp,k(M, g)≤
C(n; p, q)

c
stsysp+q,1(M, g),

where b = min(bp, bq).

Proof. Take h ∈ Hp+q(M,Z)R with ∥h∥ = stsysp+q,1(M, g). By assumption,

h ⌢: H p(M,R)→ Hq(M,R)

has rank k for some 1 ≤ k ≤ b = min(bp, bq), and deg(h ⌢) ≥ 1. We apply
Proposition 4.2 to obtain the stated inequality. □

The next result shows that the existence of just one nonzero cap product places a
bound on the stable systoles in appropriate dimensions.

Theorem 4.6. Suppose there exist h ∈ Hp+q(M,R) and α ∈ H p(M,R) such that
h ⌢α ̸= 0. Then

min
1≤k≤b

stsysq,k(M, g) stsysp,k(M, g)≤
C(n; p, q)

c
λbp+q ,

where b = min(bp, bq) and λbp+q is the bp+q-th successive minimum of the lattice
(Hp+q(M,Z)R, ∥ · ∥).
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Proof. There is a basis h1, . . . , hbp+q of Hp+q(M,R) consisting of the successive
minimums of (Hp+q(M,Z)R, ∥ · ∥). Write h = t1h1 + · · · + tβhβ . Since

h ⌢α = t1h1 ⌢α+ · · · + tβhβ ⌢α ̸= 0,

there is at least one successive minimum hi ∈ Hp+q(M,Z)R with hi ⌢α ̸= 0. Thus
capping by hi has rank k for some 1 ≤ k ≤ b and deg(hi ⌢) ≥ 1. By definition
∥hi∥ = λi ≤ λbp+q . The result now follows by applying Proposition 4.2 □

Proposition 4.7. Let α ∈ H p(M,Z)R. Suppose that ⌢ α : Hp+q(M,R) →

Hq(M,R) is injective. Then

(4-3) deg(⌢ α)
1

bp+q stsysq,bp+q
(M, g)≤ C(n; p, q) stsysp+q,bp+q

(M, g)∥α∥
∗,

where bp+q is the (p+q)-th Betti number.

Proof. By hypothesis the rank of T =⌢ α is bp+q . Using Lemma 3.1 and the
injectivity of T =⌢α, apply Corollary 2.6 to obtain

(4-4) deg(⌢ α)Volbp+q (Ŵ/Γ̂, ∥ · ∥
′)≤ (C(n; p, q)∥α∥

∗)bp+q Volbp+q (V/Λ, ∥ · ∥),

where Ŵ ⊂ Hq(M,R) is the image of Hp+q(M,R) under⌢α, Γ̂= Hq(M,Z)R∩Ŵ ,
V = Hp+q(M,R), and Λ = Hp+q(M,Z)R. Since Ŵ has dimension bp+q we have

(4-5) deg(⌢ α)1bp+q (Hq(M,Z)R, ∥ · ∥)

≤ (C(n; p, q)∥α∥
∗)bp+q1bp+q (Hp+q(M,Z)R, ∥ · ∥).

Finally (4-3) follows from (4-5) by taking bp+q -th roots. □

The following lemma is needed to show, in Proposition 4.9, that the product of
two stable systoles of the same rank in complementary dimensions is bounded from
above in terms of the volume of the manifold.

Lemma 4.8. Let 0< p< n, let bp be the p-th Betti number of M , and let 1 ≤ k ≤ bp.
Then

stsysp,k(M, g)≤ C(n, p)Vol(M, g)
1
21k(H n−p(M,Z)R, | · |

∗

2)
1
k ,

where C(n, p) is the constant in Proposition 3.2.

Proof. Let Λ be a sublattice of H n−p(M,Z)R of rank k in a k-dimensional subspace
V ⊂ H n−p(M,R). Then Poincaré duality maps Λ onto a sublattice Γ of Hp(M,Z)R

of rank k in a k-dimensional subspace W ⊂ Hp(M,R) (because Poincaré duality
is an isomorphism). Thus Poincaré duality is of rank k and degree 1. Applying
Propositions 2.5 and 3.2, we obtain

(4-6) Volk(W/Γ, ∥ · ∥)≤ (Vol(M, g))
k
2 C(n, p)k Volk(V/Λ, | · |∗2).

The result follows by taking the infima over all rank-k sublattices and k-th roots. □
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Proposition 4.9. Let 0 < p < n, and let bp be the p-th Betti number of M and
1 ≤ k ≤ bp. Then

stsysp,k(M, g) stsysn−p,k(M, g)≤ C(n, p)2 Vol(M, g)(γ ′

bp,k)
1
k .

Proof. Multiply the inequalities of Lemma 4.8 with p equal to p and to n − p. Ob-
serve that C(n, p)= C(n, n− p), and that, because H p(M,Z)R and H n−p(M,Z)R

are dual lattices,

1k(H p(M,Z)R, | · |
∗

2)1k(H n−p(M,Z)R, | · |
∗

2)≤ γ ′

bp,k . □

5. A sharp inequality in dimensions 1 and n−1

The two theorems in this section are analogs of the main theorem in [1].

Theorem 5.1. Let (M, g) be a compact oriented manifold of dimension n whose
first Betti number is b. Then

(5-1) stsys1,b(M, g) stsysn−1,b(M, g)≤ Vol(M, g).

Equality holds in (5-1) if and only if there exists a Riemannian submersion of M
onto a flat torus of dimension b with connected minimal fibers.

Proof. The inequality (5-1) follows from Proposition 4.9 because C(n, 1)= 1 and
γ ′

b,b = 1.
Suppose now that equality holds in (5-1). Then by the proof of Proposition 4.9,

equality holds in Lemma 4.8. Thus inequality (4-6) is an equality for p ∈ {1, n −1}

and k = b, that is,

Volb(Hp(M,R)/Hp(M,Z)R, ∥ · ∥)

= Vol(M, g)
b
2 Volb(H n−p(M,R)/H n−p(M,Z)R, | · |

∗

2)

for p ∈ {1, n − 1}. Consequently, by Propositions 2.5 and 3.2,

∥[M]⌢α∥ = Vol(M, g)
1
2 |α|

∗

2

for all α ∈ H p(M,R) with p ∈ {1, n − 1}. Hence by Proposition 3.2, the first
(and (n−1)-st) degree cohomology classes of M with integral periods are repre-
sented by harmonic 1-forms (and (n−1)-forms) of constant norm. Applying [12,
Proposition 16.7.3], there exists a Riemannian submersion of M onto a flat torus of
dimension b with minimal fibers. In fact the submersion is the Abel–Jacobi map
using a basis of harmonic 1-forms from H 1(M,Z)R which induces an epimorphism
on the fundamental groups. Thus the fibers are connected.

Conversely, if there exists a Riemannian submersion of M onto a flat torus of
dimension b with connected minimal fibers, then each step in this argument is
reversible with equality holding at every step. Therefore equality holds in (5-1). □
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This result can be generalized to stable systoles of rank k, 1 ≤ k ≤ b.

Theorem 5.2. Let (M, g) be a compact oriented manifold of dimension n whose
first Betti number is b. Then, for each 1 ≤ k ≤ b,

(5-2) stsys1,k(M, g) stsysn−1,k(M, g)≤ (γ ′

b,k)
1
k Vol(M, g).

Equality holds if and only if there exists a Riemannian submersion with connected
minimal fibers from M onto a flat b-dimensional torus Rb/Λ such that Λ is dual
k-critical.

Proof. The inequality (5-2) follows from Proposition 4.9 because C(n, 1)= 1.
Suppose that equality holds in (5-2). Since p = 1, the proof of Proposition 4.9

implies
1k(H 1(M,Z)R, | · |

∗

2)1k(H n−1(M,Z)R, | · |
∗

2)= γ ′

b,k .

This means that the lattice Λ = H 1(M,Z)R is dual k-critical (Definition A.1), and
thus, by Lemma A.4, it is dual k-perfect (Definition A.3). Observe that the dual
lattice H n−1(M,Z)R can be identified under the Hodge star operator with the lattice

Λ∗
= {ϕ ∈ H 1(M,R) : ⟨⟨ϕ,ψ⟩⟩ ∈ Z,∀ψ ∈ Λ}.

Let Q denote the vector space of quadratic forms on H 1(M,R). That Λ is dual k-
perfect implies that Q∗ is generated by the linear functionals of the form q 7→ q(α)
where, in the notation of the Appendix, α ∈ W ∈ S(Λ)∪ S(Λ∗). We next need to
prove that every α ∈ W ∈ S(Λ)∪ S(Λ∗) can be represented by a harmonic 1-form
of constant norm. For then arguing as in [12, Remark 16.11.6], dual k-perfection
implies that every harmonic 1-form on M has constant norm. This reduces us to the
situation in Theorem 5.1, so that by [12, Proposition 16.7.3], the Abel–Jacobi map
defines a Riemannian submersion with connected minimal fibers of M onto Rb/Λ.

Let V ∈ S(Λ) and set Λ′
= V ∩Λ. Thus Volk(V/Λ′, | · |∗2)=1k(Λ). The Poincaré

duality map
T = [M]⌢: V → Hn−1(M,R)

restricted to V has rank k and degree 1. Set W = T (V ) and Γ= W ∩ Hn−1(M,Z)R.
Since we are assuming equality in (5-2), equality holds in Proposition 4.9 which
implies that equality holds in Lemma 4.8. Thus equality holds in (4-6) with p = 1,
that is,

Volk(W/Γ, ∥ · ∥)≤ (Vol(M, g))
k
2 Volk(V/Λ′, | · |∗2).

Hence by Propositions 2.5 and 3.2,

∥T (α)∥ = Vol(M, g)
1
2 |α|

∗

2



118 JAMES J. HEBDA

for all α ∈ V , and thus by Proposition 3.2, every such α is represented by a harmonic
1-form of constant norm. A similar argument shows that if V ∈ S(Λ∗), then every
α ∈ V also can be represented by a harmonic (n−1)-form of constant norm, so that
its Hodge star ⋆α ∈ Λ∗ is represented by a harmonic 1-form of constant norm.

Conversely, if there exists a Riemannian submersion with connected minimal
fibers from M onto a flat b-dimensional torus Rb/Λ such that Λ is dual k-critical,
the steps of the above argument are reversible with equality holding at each step so
that equality holds in (5-2). □

6. Example

Unless the manifold is nice enough, computing a stable systole of higher rank for
a general Riemannian manifold is a difficult task. The purpose of this section is
to illustrate the computation of a stable systole of higher rank in a case where the
manifold is simple and nice enough to effect such a computation. In particular we
compute the two dimensional stable systole of rank 6 in flat 4-dimensional tori.
As a consequence we obtain a sharp stable systolic inequality for conformally flat
4-dimensional tori (Theorem 6.7).

Here we will consider a 4-dimensional flat torus M = R4/Λ where Λ is a lattice
in R4. According to [14] there are natural isomorphisms in cohomology

(6-1) H∗(M,R)∼=3∗(R4)

and

(6-2) H∗(M,Z)R ∼=3∗

Z(Λ
∗),

as well as in homology

(6-3) H∗(M,R)∼=3∗(R4)

and

(6-4) H∗(M,Z)R ∼=3∗

Z(Λ).

Lemma 6.1. The mass norm for ξ ∈32(R4) is given by

(6-5) ∥ξ∥ = (|ξ |2 + |ξ ∧ ξ |)
1
2 ,

where | · | is the norm on the exterior algebra 3∗(R4) induced from the Euclidean
norm of R4.

Proof. Under an orthogonal change of coordinates in R4 any given ξ can be put in
the form

ξ = Ae1 ∧ e2 + Be3 ∧ e4.
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Whitney [17, equation (13), p. 54] has proved that for such ξ , ∥ξ∥ = |A|+|B|. Thus

∥ξ∥2
= |A|

2
+ |B|

2
+ 2|A||B| = |ξ |2 + |ξ ∧ ξ |.

This completes the proof because the expression (6-5) is invariant under orthogonal
changes of coordinates. □

Lemma 6.2. The comass norm for φ ∈32(R4) is given by

(6-6) ∥φ∥
∗
=

(
|φ|

2
+

√
|φ|4 − |φ ∧φ|2

2

)1
2

.

Thus

(6-7) ∥φ∥
∗
≤ |φ| ≤

√
2 ∥φ∥

∗.

In particular the constant C(4, 2)=
√

2.

Proof. By the invariance of the expression (6-6) under orthogonal changes of
coordinates in R4, it suffices to consider the case φ = Ae1 ∧ e2 + Be3 ∧ e4. In
this case the left-hand side of (6-6) is ∥φ∥

∗
= max(|A|, |B|) according to [17,

equation (12), p. 54]. The right-hand side of (6-6) becomes(
A2

+ B2
+

√
(A2 + B2)2 − (2AB)2

2

)1
2

=

(
A2

+ B2
+ |A2

− B2
|

2

)1
2

,

which is equal to max(|A|, |B|). The inequality (6-7) follows easily from (6-6). □

Lemma 6.3. Let K be the unit mass ball of 32(R4). Then

Vol6(K , | · |)=
2π2

9
.

Proof. Setting

ξ = x1e2 ∧ e3 − x2e1 ∧ e3 + x3e1 ∧ e2 + y1e1 ∧ e4 + y2e2 ∧ e4 + y3e3 ∧ e4

gives an isomorphism between32(R4) and R3
×R3

= R6 with the Euclidean norms.
If dVR6 and dVS5 are the volume elements in R6 and S5, respectively, we have, on
switching to spherical coordinates,

Vol6(K , | · |)=

∫
∥ξ∥≤1

dVR6 =

∫
ξ∈S5

∫ 1
∥ξ∥

0
r5 dr dVS5 =

1
6

∫
ξ∈S5

1
∥ξ∥6 dVS5 .

The mapping S2
×

[
0, π2

]
×S2

→ S5 given by sending the ordered triplet (X, t, Y ) to
ξ = (cos(t)X, sin(t)Y ) ∈ R3

× R3 reparameterizes S5 except on a set of measure 0.
Making this change of variables in the integral gives us

Vol6(K , | · |)=
1
6

∫
Y∈S2

∫ π
2

0

∫
X∈S2

cos2(t) sin2(t)
(1 + 2 cos(t) sin(t)|X · Y |)3

dVS2 dt dVS2 .
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By the invariance of the inner product under isometries of S2, the value of the inner
double integral is independent of Y ∈ S2. Because the area of S2 is 4π , integrating
over Y gives the value

Vol6(K , | · |)=
4π
6

∫ π
2

0

∫
X∈S2

cos2(t) sin2(t)
(1 + 2 cos(t) sin(t)|X · N |)3

dVS2 dt,

where

N =

0
0
1


is the north pole of S2. Now change to spherical coordinates (φ, θ) with 0 ≤ θ ≤ 2π ,
0 ≤ φ ≤ π , on S2. Since X · N = cos(φ) we obtain

Vol6(K , | · |)=
4π
6

∫ π
2

0

∫ 2π

0

∫ π

0

cos2(t) sin2(t)
(1 + 2 cos(t) sin(t)| cos(φ)|)3

sin(φ) dφ dθ dt.

Using the double angle formula for sin(2t), the symmetry of the integrand in φ
about π2 , and the independence of the integrand in θ we obtain

Vol6(K , | · |)=
4π2

6

∫ π
2

0

∫ π
2

0

sin2(2t)
(1 + sin(2t) cos(φ))3

sin(φ) dφ dt.

This can be easily evaluated by iterated integration to obtain

Vol6(K , | · |)=
π2

3

∫ π
2

0
sin(2t)−

sin(2t)
(1 + sin(2t))2

dt =
2π2

9
.

□

Corollary 6.4. The Hausdorff–Busemann measure in 32(R4) is given by

Vol6(−, ∥ · ∥)=
3π
4

Vol6(−, | · |).

Proof. Let K be the unit mass ball in 32(R4). By definition of the Hausdorff-
Busemann measure and Lemma 6.3,

Vol6(−, ∥ · ∥)=
ω6

Vol6(K , ∥ · ∥)
Vol6(−, | · |)=

π3/3!

2π2/9
Vol6(−, | · |). □

Lemma 6.5.
Vol6(32(R4)/32

Z(Λ), | · |)= Vol4(R4/Λ, | · |)3.

Proof. Let v1, v2, v3, v4 ∈ R4 be a set of generators for Λ over Z. Then

Vol4(R4/Λ, | · |)= |det(v1, v2, v3, v4)|,

and
v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4
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is a set of generators for 32(Λ) over Z. Recall that det(v1, v2, v3, v4) may be
computed by keeping track of the sequence of elementary row operations that convert
v1, v2, v3, v4 to the standard basis e1, e2, e3, e4. An elementary row operation either
(i) adds one of the vectors to another, (ii) interchanges two vectors, or (iii) factors
out a constant multiple c from one of the vectors. If v′

1, v
′

2, v
′

3, v
′

4 is the result of
applying an elementary row operation to v1, v2, v3, v4 we have det(v′

1, v
′

2, v
′

3, v
′

4)=

det(v1, v2, v3, v4) in case (i), −det(v′

1, v
′

2, v
′

3, v
′

4) = det(v1, v2, v3, v4) in case (ii),
and c det(v′

1,v
′

2,v
′

3,v
′

4)=det(v1,v2,v3,v4) in case (iii). Since det(e1,e2,e3,e4)=1,
we see that det(v1, v2, v3, v4) is equal to the product of the constants c that we
factored out in operations of type (ii) times ±1 depending on whether there were
an even or odd number of operations of type (ii). Now consider what happens to
the generators of 32(Λ) under this sequence of operations. The operation that takes
v1, v2, v3, v4 to v′

1, v
′

2, v
′

3, v
′

4 will correspondingly take

v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4

to
v′

1 ∧ v′

2, v′

1 ∧ v′

3, v′

1 ∧ v′

4, v′

2 ∧ v′

3, v′

2 ∧ v′

4, v′

3 ∧ v′

4.

If the operation is of type (i), the corresponding operation has the same effect
as two operations of type (i). If the operation is of type (ii), the corresponding
operation has the same effect as two operations of type (ii) and multiplying one
vector by −1. If the operation is of type (iii), then the corresponding operation has
the same effect as factoring out the same constant c from three of the vectors. As
the result of the sequence of corresponding operations is the orthonormal basis

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4,

the result follows because the sequence of elementary row operations gives a power
of 3 times those computing the determinant of v1, v2, v3, v4. □

Theorem 6.6. Let (M, g) be a 4-dimensional flat torus R4/Λ. Then

stsys2,6(M, g)2 =

(3π
4

)1
3

Vol(M, g)

Proof. By Corollary 6.4 and Lemma 6.5,

Vol6(32(R4)/32
Z(Λ), ∥ · ∥)

=
3π
4

Vol6(32(R4)/32
Z(Λ), | · |)=

3π
4

Vol4(R4/Λ, | · |)3. □

The paper [16] proved systolic inequalities for metrics on real projective spaces
which are conformal to the constant curvature metric. Similar ideas combined
with Theorem 6.6 lead to the following result about conformally flat metrics on
4-dimensional tori.
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Theorem 6.7. Let (M, g) be a conformally flat 4-dimensional torus. Then

stsys2,6(M, g)2 ≤

(3π
4

)1
3

Vol(M, g).

Equality holds if and only if (M, g) is flat.

Proof. Since (M, g) is conformally flat, we may assume that there exists a lattice Λ in
R4 such that M = R4/Λ and that g = f 2g0 for some positive real-valued function f
on M where g0 is the flat metric on M . Let G be the group of isometries of the
flat metric g0 with Haar measure da normalized so that

∫
a∈G da = 1. Set f̄ (x)=(∫

a∈G f (ax)2 da
) 1

2 . Since G acts transitively on M , f̄ would be a constant function.
Set ḡ = f̄ 2g0. Then (M, ḡ) is flat. Thus if dx is the volume form for (M, g0),

(6-8) Vol(M, ḡ)=

∫
x∈M

f̄ (x)4 dx =

∫
x∈M

(∫
a∈G

f (ax)2 da
)2

dx

≤

∫
x∈M

∫
a∈G

f (ax)4 da dx

=

∫
a∈G

∫
x∈M

f (ax)4 dx da =

∫
a∈G

∫
x∈M

f (ax)4 dx da

=

∫
a∈G

Vol(M, g) da = Vol(M, g),

where we have used successively Jensen’s inequality, Fubini’s theorem, the change
of variables formula, that a is an isometry of g0, and that G has unit measure. Note
on account of Jensen’s inequality, if equality holds then f is a constant function,
and thus (M, g) would be flat.

On the other hand, given a homology class h ∈ H2(M, R) taking a 2-chain S in M
representing h that gives the least mass (area) ∥h∥ḡ in the homology class, one has

∥h∥ḡ = Area(S, ḡ)=

∫
a∈G

Area(aS, g)≥ ∥h∥g.

As an explanation, suppose that S is a surface and j : S → M is the inclusion
mapping. Then j∗g0 induces an area form ds on S. Thus j∗g induces the area
form ( f ◦ j)2ds and j∗ḡ induces ( f̄ ◦ j)2ds. Thus

(6-9) Area(S, ḡ)=

∫
s∈S
( f̄ ◦ j)2 ds =

∫
s∈S

∫
a∈G

f (aj (s))2 da ds

=

∫
a∈G

∫
s∈S

f (aj (s))2 ds da =

∫
a∈G

Area(aS, g) da.

Therefore by Proposition 2.1

(6-10) Vol6(H2(M,R)/H2(M,Z), ∥ · ∥g)≤ Vol6(H2(M,R)/H2(M,Z), ∥ · ∥ḡ).

Thus, since (M, ḡ) is flat,

stsys2,6(M, g)≤ stsys2,6(M, ḡ)=

(3π
4

)1
3

Vol(M, ḡ)≤

(3π
4

)1
3

Vol(M, g).
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If equality holds, then f must be constant and thus (M, g) would be flat. □

It is an open question whether this inequality also holds for metrics on 4-
dimensional tori which are not conformally flat.

Theorem 6.6 gives information about the conformal volume norm of flat 4-
dimensional tori. The conformal volume norm is an invariant of a conformal
class of Riemannian metrics; see [8, 7.4; 12, 15.8]. When M is a 4-dimensional
manifold, h ∈ H2(M,R), and G is a conformal class of Riemannian metrics on M ,
the conformal volume norm satisfies

∥h∥L2 = sup
{

∥h∥g
√

Vol(M, g)
: g ∈ G

}
,

where ∥h∥g is the stable mass norm for the Riemannian metric g. Thus for any
g ∈ G and h ∈ H2(M,R), one has

∥h∥g ≤
√

Vol(M, g) ∥h∥L2 .

Corollary 6.8. Let (M, g) be a 4-dimensional flat torus R4/Λ. Then(3π
4

)1
6
≤ confsys2,6(M, g).

Proof. Applying Proposition 2.5, the Hausdorff–Busemann volumes satisfy

Vol6(32(R4)/32
Z(Λ), ∥ · ∥)≤ Vol(R4/Λ, g)3 Vol6(32(R4)/32

Z(Λ), ∥ · ∥L2).

Dividing by Vol(R4/Λ, g)3, extracting 6-th roots, and using Theorem 6.6 gives(3π
4

)1
6
=

stsys2,6(M, g)

Vol(M, g)
1
2

≤ Vol6(32(R4)/32
Z(Λ), ∥ · ∥L2)

1
6 ,

where the right side of the inequality is by the definition of confsys2,6(M, g). □

Appendix

The following proof that a dual k-extreme lattice is dual k-perfect is a modification
of the argument in [2] that a dual extreme lattice is dual perfect.

Let V be a Euclidean space of dimension n with Euclidean norm | · |, and let Λ be
a lattice in V . Define Sk(Λ) to be the collection of all k-dimensional subspaces W of
V for which Γ=Λ∩W is a rank-k sublattice of Λ such that Volk(W/Γ, | · |)=1k(Λ).

Definition A.1. A lattice Λ of rank k is dual k-extreme if it is a local maximum of
the function

Λ 7→1k(Λ)1k(Λ
∗)

and is dual k-critical if it is an absolute maximum, that is, if

1k(Λ)1k(Λ
∗)= γ ′

n,k .
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Lemma A.2. Suppose there exists a hyperspace H of V such that W ⊂ H for
all W ∈ Sk(Λ). Then there exists a lattice M near Λ such that 1k(Λ)1k(Λ

∗) <

1k(M)1k(M
∗). In other words, Λ is not dual k-extreme.

Proof. Let 0< r < 1, and consider the linear transformation τ : V → V such that
τ is the identity on H and contracts by a factor of r on H⊥. As W ⊂ H for all
W ∈ S(Λ), by continuity, if r is chosen close enough to 1, then Sk(τ (Λ))= Sk(Λ)

and 1k(Λ)=1k(τ (Λ)). Note that the adjoint map (τ †)−1 is the identity on H and
expands by a factor of 1

r > 1 on H⊥ and that (τΛ)∗ = (τ †)−1Λ∗. Thus if W is a
k-dimensional subspace such that Γ∗

= Λ∗
∩ W is a rank-k sublattice of Λ∗ which is

not contained in H , then

(A-1) Volk((τ †)−1(W )/(τ †)−1(Γ∗), | · |) > Volk(W/Γ∗, | · |).

Thus if no W ∈ Sk(Λ
∗) is contained in H , we have 1k((τΛ)

∗) > 1k(Λ
∗) and we

may take M = τ(Λ). However if W ⊂ H for some W ∈ Sk(Λ
∗), then on account of

our hypothesis and (A-1), W ⊂ H for all W ∈ Sk(τΛ)∪ Sk((τΛ)
∗) and

1k(τ (Λ))1k((τΛ)
∗)=1k(Λ)1k(Λ

∗).

Now proceed by taking a hyperplane F in H which contains no W ∈ Sk((τΛ)
∗).

We have the orthogonal decomposition

V = H⊥
⊕ H = H⊥

⊕ F⊥
⊕ F,

where F⊥ is the orthogonal complement to F in H . Consider a linear transformation
σ : V → V whose matrix, relative to an orthonormal basis which respects this
orthogonal decomposition, can be written in the block form

σ =

q 0 0
a 1 0
0 0 Id

 ,

where q > 1 and a ̸= 0. Then

(σ †)−1
=

 1
q −

a
q 0

0 1 0
0 0 Id

 .

Observe that σ is the identity on H , so that if q is sufficiently close to 1 and a to 0,
Sk(στΛ)= Sk(τΛ) and1k(στΛ)=1k(τΛ)=1k(Λ). However, σ increases lengths
of vectors in H which are not in F . Thus 1k((στΛ)

∗) > 1k((τΛ)
∗) = 1k(Λ

∗).
Therefore 1k(Λ)1k(Λ

∗) < 1k(M)1k(M
∗) where M = στΛ. □

Definition A.3. Let Q be the vector space of quadratic forms on V . We say
that a lattice Λ is dual k-perfect if the linear functionals q 7→ q(x) for x ∈ W ∈

Sk(Λ)∪ Sk(Λ
∗) generate Q∗.
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Clearly Λ is k-perfect if q(x)= 0 for all x ∈ W ∈ Sk(Λ)∪ Sk(Λ
∗) implies q = 0.

Note that the elements q of Q correspond to symmetric endomorphisms υ of V
such that q(x)= υ(x) · x for x ∈ V where · denotes the inner product on V .

Lemma A.4. If Λ is dual k-extreme, then Λ is dual k-perfect.

Proof. If Λ is not dual k-perfect, then there exists a nonzero symmetric endomor-
phism υ of V such that υ(x) · x = 0 for all x ∈ W ∈ Sk(Λ)∪ Sk(Λ

∗). Consider the
linear isomorphism τ = id +ϵυ. Since υ is symmetric, τ †

= τ . If ϵ >0 is sufficiently
small, Sk(τΛ) ⊂ Sk(Λ) and Sk((τ

†)−1Λ∗) ⊂ Sk(Λ
∗). Thus if x ∈ W ∈ Sk(Λ), then

τ(x)= x + ϵυ(x) and thus, using υ(x) · x = 0,

|τ(x)|2 = |x |
2
+ ϵ2

|υ(x)|2.

Hence τ increases lengths of vectors x ∈ W for W ∈ Sk(Λ). Therefore 1k(Λ
∗) ≥

1k(Λ), with equality if and only if υ(x)= 0 for all x ∈ W ∈ Sk(τΛ).
Choosing ϵ > 0 sufficiently small so that ϵ |υ| < 1, where |υ| is the operator

norm, one has the series expansion

(τ †)−1
= τ−1

= id −ϵυ + ϵ2υ2
− ϵ3υ3

+ · · · .

Thus if y ∈ W ∈ Sk(Λ
∗), then

(τ †)−1(y)= y − ϵυ(y)+ ϵ2υ2(y)− ϵ3υ3(y)+ · · · .

Using the symmetry of υ, it follows that

|(τ †)−1(y)|2 = |y|
2
− 2ϵυ(y) · y + 3ϵ2υ(y) · υ(y)− 4ϵ3υ2(y) · υ(y)+ · · · .

But by assumption, υ(y) · y = 0. Hence, using the symmetry of υ,

(A-2) |(t†)−1(y)|2 = |y|
2
+ 3ϵ2υ(y) · υ(y)− 4ϵ3υ2(y) · υ(y)+ 5ϵ4υ3(y) · υ(y)− · · ·

= |y|
2
+ 3ϵ2

|υ(y)|2 − 4ϵ3υ2(y) · υ(y)+ 5ϵ4
|υ2(y)|2 − · · ·

≥ |y|
2
+ ϵ2

|υ(y)|2(3 − 4ϵ|υ| − 6ϵ3
|υ|

3
− · · · ),

since the terms with odd coefficients are nonnegative. If ϵ is sufficiently small,
inequality (A-2) shows that (τ †)−1 increases lengths of vectors y ∈W ∈ Sk(Λ

∗). Thus
1k((τΛ)

∗)≥1k(Λ
∗) with equality if and only if υ(y)= 0 for all y ∈ W ∈ Sk((τΛ)

∗).
Since Λ is assumed to be dual k-extreme, these inequalities show

1k(τΛ)1k((τΛ)
∗)≤1k(Λ)1k(Λ

∗)≤1k(τΛ)1k((τΛ)
∗).

Thus 1k((τΛ))=1k(Λ) and 1k((τΛ)
∗)=1k(Λ

∗). Consequently, as υ is nonzero,
every W ∈ Sk(Λ)∪ Sk(Λ

∗) is contained in the hyperplane υ(x)= 0 contradicting
the dual k-extremality of Λ by Lemma A.2. Therefore Λ is dual k-perfect. □
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