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Let V be a projective variety defined over a number field K , let S be a
polarized set of endomorphisms of V all defined over K , and let P ∈ V (K ).
For each prime p of K , let mp(S, P) denote the number of points in the
orbit of P mod p for the semigroup of maps generated by S. Under suitable
hypotheses on S and P , we prove an analytic estimate for mp(S, P) and use
it to show that the set of primes for which mp(S, P) grows subexponentially
as a function of NK/Q p is a set of density zero. For V = P1 we show that this
holds for a generic set of maps S provided that at least two of the maps in S
have degree at least four.
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1. Introduction

A general expectation in arithmetic dynamics over number fields is that the dynam-
ical systems generated by “unrelated” self-maps f1, f2 : V → V should not be too
similar. For example, they should not have identical canonical heights [16], they
should not have infinitely many common preperiodic points [2; 8; 11], their orbits
should not have infinite intersection [10], and arithmetically their orbits should
not have unexpectedly large common divisors [15]. It is not always clear what
“unrelated” should mean, but in any case it includes the assumption that f1 and f2

do not share a common iterate.
Similarly, we expect that the points in semigroup orbits generated by all finite

compositions of “unrelated” maps f1 and f2 should be asymptotically large [4; 13]
when ordered by height, where now unrelated means that the semigroup is not
unexpectedly small. For example, the semigroup is small if it contains no free
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subsemigroups requiring at least 2 generators; cf. [3].
In this note, we study the size of semigroup orbits over finite fields. In particular,

we show that, under suitable hypotheses, a free semigroup of maps defined over a
number field generates many large orbits when reduced modulo primes. See [1; 6;
7; 21] for additional results in this vein.

Definition 1. We set notation that will remain in effect throughout this note.

K/Q a number field
V/K a smooth projective variety defined over K
r ≥ 1 an integer

S = { f1, . . . , fr } a set of morphisms fi : V → V defined over K
d1, . . . , dr real numbers satisfying di > 1 for i = 1, . . . , r

L ∈ PicK (V ) ⊗ R line bundles satisfying f ∗

i L ∼= L⊗di

MS the semigroup generated by S under composition
OrbS(P) the orbit { f (P) : f ∈ MS} of a point P ∈ V

The following property will play a crucial role in some of our results.

Definition 2. A point P ∈ V is called strongly S-wandering if the evaluation map

(1) MS → V, f 7→ f (P),

is injective.

Remark 3. If V = P1 and S is any sufficiently generic set of maps as described
in Section 3, then the set of points that fail to be strongly S-wandering is a set of
bounded height. In particular, it follows in this case that all infinite orbits contain
strongly wandering points, and this weaker condition is sufficient for our orbit
bounds.

Our goal is to study the number of points in the reduction of OrbS(P) modulo
primes. We set some additional notation, briefly recall a standard definition, and
then define our principal object of study.

RK the ring of integers of K
Spec(RK ) the set of prime ideals of RK

Np the norm of p ∈ Spec(RK ), that is, Np := #RK /p.

Definition 4. Let p ∈ Spec(RK ), and let Rp denote the localization of RK at p, and
let kp = Rp/pRp denote the residue field. A finite K -morphism f : V → V has
good reduction at p if there is a scheme Vp/Rp that is proper and smooth over Rp,
and there is an Rp-morphism Fp : Vp → Vp whose generic fiber is f : V → V. 1

1Intuitively, this means that we can find equations for V and for f that have coefficients in RK ,
and so that when we reduce the equations modulo p, the reduced variety Ṽ mod p is non-singular and
the reduced map f̃ : Ṽ → Ṽ is a morphism having the same degree as f . Of course, when we say
“find equations”, this needs to be done locally on an appropriately fine cover by affine neighborhoods.
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We write Ṽp = Vp ×Rp kp for the special fiber of Vp. Properness implies that each
point Q ∈ V (K ) extends to a section Qp ∈ Vp(Rp), and the reduction Q̃p ∈ Ṽp(kp)
of Q modulo p is the intersection of the image of Qp with the fiber Ṽp, i.e.,

{Q̃p} = Qp(Spec Rp) ∩Vp.

Similarly, the reduction f̃p of f modulo p is the restriction of Fp to the special
fiber Ṽp.

Remark 5. Continuing with notation from Definition 4, we note that if f has good
reduction at p, then reduction modulo p commutes with evaluation,

f̃ (Q)p = f̃p(Q̃p).

Further, composition commutes with reduction for good reduction maps. In other
words, if f and g have good reduction at p, then(

f̃ ◦ g
)
p
= f̃p ◦ g̃p.

Definition 6. Let p ∈ Spec(RK ). Continuing with notation from Definition 4,
let f1, . . . , fr : V → V be maps that have good reduction modulo p, and let P ∈

V (K ). Then the reduction of the S-orbit of P modulo p is the set

OrbS̃(P̃ mod p) :=
{

f̃p(P̃p) : f ∈ MS
}
.

We define
mp := mp(S, P) = # OrbS̃(P̃ mod p)

to be the size of the mod p reduction of OrbS(P). (If any of the maps f1, . . . , fr

has bad reduction at p, then we formally set mp = ∞.)

Our main result is an analytic formula that implies that mp is not too small on
average.

Theorem 7. Assume that MS is a free semigroup, that P ∈ V (K ) is a strongly
S-wandering point, and that r = #S ≥ 2. Then there exists a constant C1 =

C1(K , V, S, P) such that, for all ϵ > 0,

(2)
∑

p∈Spec(RK )

logNp

Np · mp(S, P)ϵ
≤ C1ϵ

−1.

Remark 8. The principal result of the paper [21] is an estimate exponentially
weaker than (2) in the case that r = #S = 1, while a principal result of the paper [17]
is an estimate that exactly mirrors (2) with mp equal to the number of points on the
mod p reduction of the multiples of a point on an abelian variety. Thus the present
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paper, as well as the papers [4; 13], suggest that the analogy(
arithmetic of points
of an abelian variety

)
⇐⇒

(
arithmetic of points in orbits
of a dynamical system

)
described in [5] and [22, §6.5] may be more accurate when the dynamical system
on the right-hand side is generated by at least two non-commuting maps, rather
than using orbits coming from iteration of a single map.

Estimate (2) can be used to show that there are few primes p for which mp(S,P)

is subexponential compared to Np. We quantify this assertion in the following
corollary.

Corollary 9. Let S, MS and P be as in Theorem 7, and let δ and δ denote the (upper)
logarithmic analytic densities on sets of primes as described in Definition 12.

(a) There is a constant C2 = C2(K , V, S, P) such that

δ
({
p ∈ Spec(RK ) : mp(S, P) ≤ Npγ

})
≤ C2γ

holds for all 0 < γ < 1.

(b) Let L(t) be a subexponential function, i.e., a function with the property that

lim
t→∞

L(t)
tµ

= 0 for all µ > 0.

Then
δ
({
p ∈ Spec(RK ) : mp(S, P) ≤ L(Np)

})
= 0.

In the special case that V = P1, we show that the conclusions of Theorem 7 and
Corollary 9 are true for generic sets of maps. In the statement of the next result, we
write Ratd for the space of rational maps of P1 of degree d ≥ 2, so in particular Ratd
is an affine variety of dimension 2d + 1; see [20, §4.3] for details.

Theorem 10. Let r ≥ 2, and let d1, . . . , dr be integers satisfying

d1, d2 ≥ 4 and d3, . . . , dr ≥ 2.

Then there is a Zariski dense subset

U = U(d1, . . . , dr ) ⊆ Ratd1 × · · · × Ratdr

such that the inequality (2) in Theorem 7 and the density estimates in Corollary 9 are
true for all number fields K/Q, all S ∈U(K ), and all P ∈P1(K ) for which OrbS(P)

is infinite.

The contents of this paper are as follows. In Section 2 we build upon prior
work [17; 21] of the second author to prove Theorem 7 and Corollary 9. Then in
Section 3 we use results from [10; 13; 23] to construct many sets of maps on P1
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for which the bounds in Section 2 apply. The key step is to construct a point in
every infinite orbit that is strongly wandering. The construction is explicit, and in
particular, Theorem 15 describes an explicit set U for which Theorem 10 is true.

2. The size of orbits modulo p

We start with a key estimate.

Proposition 11. Let S, MS and P be as in Theorem 7. For each m ≥ 2, we define
an integral ideal

(3) D(m) = D(m; K , V, S, P) :=

∏
p∈Spec(RK )
mp(S,P)≤m

p.

There are constants Ci = Ci (K , V, S, P) for i = 3, 4 such that the following hold:

(a) If r = #S = 1, then

log logND(m) ≤ C3m for all m ≥ 2.

(b) Assume that S generates a free semigroup, that P ∈ V (K ) is strongly S-
wandering, and that r = #S ≥ 2. Then

log logND(m) ≤ C4 log m for all m ≥ 2.

Proof. (a) This is [21, Proposition 10].

(b) Next, since V and S are polarized with respect to some line bundle L, we may
choose N ≥ 1 and an embedding V ⊆ PN such that the fi extend to self-morphisms
of PN . Next, for notational convenience, we write mp for mp(S, P) and use the
standard combinatorics notation [r ] = {1, 2, . . . , r}. Also to ease notation, we write

f i := fi1 ◦ fi2 ◦ · · · ◦ fik for i = (i1, . . . , ik) ∈ [r ]
k .

Let

m ≥ 1 and k = k(m) :=

⌈
log(m + 1)

log r

⌉
.

For each good reduction prime p, we consider the map that sends a function f i to
the image of P under reduction modulo p,

(4) [r ]
k
→ OS̃(P̃ mod p), i 7→ f i (P) ( mod p).

If
mp ≤ m, then r k > mp by our choice of k,

so the map (4) cannot be injective (pigeonhole principle) and there exist

i ̸= j in [r ]
k satisfying f i (P) ≡ f j (P) ( mod p).
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Sine we have assumed that P is strongly wandering, i.e., that the map

MS → V (K ), f 7→ f (P),

is injective, it follows that the global points are distinct,

f i (P) ̸= f j (P),

so the ideals generated by their “differences” are non-zero.
More formally, [21, Lemma 9] says that there is an integral ideal C = CK ⊆ RK

with the property that every point Q ∈ PN (K ) can be written with homogeneous
coordinates

Q = [α0, . . . , αN ]

satisfying2

α0, . . . , αN ∈ RK and (α0 RK + · · · αN RK )
∣∣ CK .

Applying [21, Lemma 9] to our situation, for the given P ∈ V (K ), we can write

f i (P) =
[
A0(i), . . . , AN (i)

]
with A0(i), . . . , AN (i) ∈ RK and such that the ideal

(5) A(i) := A0(i)RK + · · · + AN (i)RK divides the ideal C.

Then for p ∤ C we have

f i (P) ≡ f j (P) (mod p)

⇐⇒ Au(i)Av( j) ≡ Av(i)Au( j) (mod p) for all 0 ≤ u, v ≤ N .

We define a difference ideal

B(i, j) :=

∑
0≤u,v≤N

(
Au(i)Av( j) − Av(i)Au( j)

)
RK ,

and the product of the difference ideals

D′(m) :=

∏
i, j∈[r ]k , i ̸= j

B(i, j).

Then
p ∤ C and mp ≤ m H⇒ p | D′(m),

and hence
D(m) | C ·D′(m).

2If RK is a PID, then we can take CK = RK , so gcd(α0, . . . , αN ) = 1. Thus [21, Lemma 9]
provides a weaker version of this gcd result that holds for all RK .
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Since C depends only on K , it remains to estimate the norm of D′(m).
Let h( · ) denote the logarithmic Weil height on PN , and let A(i) for i ∈ [r ]

k be
the ideals defined by (5). Then, using [21, Proposition 7], we find for all i and j
that

1
[K : Q]

log
NB(i, j)

NA(i) ·NA( j)
≤ h( f i (P)) + h( f j (P)) + C5,

where C5 is an absolute constant. Since NA(i) and NA( j) are smaller than NC,
this implies that

1
[K : Q]

logNB(i, j) ≤ h( f i (P)) + h( f j (P)) + C6.

Next we apply the height estimate

h( f i (P)) ≤ C7 ·

k∏
u=1

diu ,

which is a weak form of [12, Lemma 2.1]. This yields

1
[K : Q]

logNB(i, j) ≤ C7 ·

k∏
u=1

diu + C7 ·

k∏
u=1

d ju + C6.

This gives

logD′(m) =

∑
i, j∈[r ]k , i ̸= j

logB(i, j)

≤

∑
i, j∈[r ]k , i ̸= j

(
C7 ·

k∏
u=1

diu + C7 ·

k∏
u=1

d ju + C6

)

≤ C8 · r k
·

∑
i∈[r ]k

k∏
u=1

diu

= C8 ·

(
r ·

∑
i∈[r ]

di

)k

≤ C9 ·

(
r ·

∑
i∈[r ]

di

)1+
log(m+1)

log r
.

Hence
log logD′(m) ≤ C10 · log(m + 1) + C11.

Since m ≥ 2, we can absorb C11 into C10, although we remark that if we leave
in C11(K , V, S, P), then we can take C10 to depend on only the degrees of the
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maps in S,

C10 = C10(d1, . . . , dr ) = 1 +
log(d1 + · · · + dr )

log r
.

This completes the proof of Proposition 11. □

Proof of Theorem 7. To ease notation, we let

g(t) =
log t

t
and G(t) =

1
tϵ

.

We start with two elementary estimates. First, the mean value theorem gives

(6) G(m) − G(m + 1) ≤ sup
m≤t≤m+1

−G ′(t) = sup
m≤t≤m+1

ϵ

t1+ϵ
=

ϵ

m1+ϵ
.

Second, an easy integral calculation gives

(7)
∑
m≥1

g(m)G(m) ≤

∫
∞

1

log x
x1+ϵ

dx =
1
ϵ2 .

We use these and our other calculations to estimate∑
p∈Spec(RK )

logNp

Np · mϵ
p

=

∑
p∈Spec(RK )

g(Np) · G(mp) (by definition of g and G)

=

∑
m≥1

G(m)
∑

p∈Spec(RK )
mp=m

g(Np)

=

∑
m≥1

(
G(m) − G(m +1)

) ∑
p∈Spec(RK )

mp≤m

g(Np) (Abel summation)

≤

∑
m≥1

ϵ

m1+ϵ

∑
p∈Spec(RK )

mp≤m

g(Np) (from (6))

=

∑
m≥1

ϵ

m1+ϵ

∑
p∈Spec(RK )

p|D(m)

g(Np) (by definition (3) of D(m))

≤

∑
m≥1

ϵ

m1+ϵ
·
(
C12 log logD(m) + C13

)
(from [17, Corollary 2.3])

≤ C14
∑
m≥1

ϵ

m1+ϵ
· log m (from Proposition 11(b))

= C14 · ϵ ·

∑
m≥1

g(m) · G(m) (by definition of g and G)

≤ C15ϵ
−1 (from (7)). □
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Definition 12. Let P ⊂ Spec(RK ) be a set of primes. The upper logarithmic
analytic density of P is

δ(P) := lim sup
s→1+

(s − 1)
∑
p∈P

logNp

Nps .

Similarly, the logarithmic analytic density of P , denoted δ(P), is given by the same
formula with a limit, instead of a lim sup.

Proof of Corollary 9. (a) For any 0 < γ < 1, we let

Pγ :=
{
p ∈ Spec(RK ) : mp ≤ Npγ

}
.

Then

(8)

C1

ϵ
≥

∑
p∈Spec(RK )

logNp

Np · mϵ
p

(from Theorem 7)

≥

∑
p∈Pγ

logNp

Np · mϵ
p

(summing over a smaller set)

≥

∑
p∈Pγ

logNp

Np1+γ ϵ
(by definition of Pγ ).

This allows us to estimate the upper logarithmic density of Pγ by

δ(Pγ ) = lim sup
s→1+

(s − 1)
∑
p∈Pγ

logNp

Nps

= lim sup
ϵ→0+

γ ϵ
∑
p∈Pγ

logNp

Np1+γ ϵ
(setting s = 1 + γ ϵ)

≤ lim sup
ϵ→0+

γ ϵ ·
C1

ϵ
(from (8))

= C1γ.

This completes the proof of Corollary 9(a).

(b) We let

PL :=
{
p ∈ Spec(RK ) : mp ≤ L(Np)

}
.

The assumption that L is subexponential means that for all µ > 0 there exists a
constant C16(L , µ) depending only on L and µ such that

L(t) ≤ tµ for all t > C16(L , µ).
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We also note that

p ∈ PL ⇐⇒ mp ≤ L(Np)

H⇒ mp ≤ (Np)µ for all Np > C16(L , µ).(9)

We now fix a µ > 0 and estimate

δ(PL) = lim sup
λ→0+

λ
∑
p∈PL

logNp

Np1+λ

= lim sup
λ→0+

λ
∑
p∈PL

Np≥C16(L ,µ)

logNp

Np1+λ
(since µ is fixed, so we can discard

finitely many terms)

≤ lim sup
λ→0+

λ
∑
p∈PL

Np≥C16(L ,µ)

logNp

Np
·

1

mλ/µ
p

(from (9))

≤ lim sup
λ→0+

λ
∑

p∈Spec RK

logNp

Np
·

1

mλ/µ
p

≤ lim sup
λ→0+

λ · C1 ·

(
λ

µ

)−1

(from Theorem 7)

= C1µ.

This estimate holds for all µ > 0, so we find that

δ(PL) ≤ inf
µ>0

C1 · µ = 0,

which completes the proof that δ(PL) = 0. □

3. Orbits of generic families of maps of P1

In this section, we show that there are many sets of endomorphisms of P1 for which
Theorem 7 holds. To make this statement precise, we need some definitions.

Definition 13. Let f be a non-constant rational map of P1 defined over Q. A
point w ∈ P1(Q) is a critical value of f if f −1(w) contains fewer than deg( f )

elements. It is a simple critical value if

# f −1(w) = deg( f ) − 1.

The map f is critically simple if all of its critical values are simple.

Definition 14. Let f and g be non-constant rational maps of P1 with respective
critical value sets CritVal f and CritValg. We say that f and g are critically separated
if

CritVal f ∩ CritValg = ∅.
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Our first result says that the conclusions of Theorem 7 and Corollary 9 hold for
certain sets S that contain a pair of critically simple and critically separated maps
and initial points P with infinite orbit.

Theorem 15. Let K/Q be a number field, let S be a set of endomorphisms of P1

defined over K containing a pair of critically simple and critically separated maps
of degree at least 4, and let P ∈ P1(K ) be a point with infinite S-orbit. Then there
is a constant C17 = C17(K , S, P) such that for all ϵ > 0,∑

p∈Spec(RK )

logNp

Np · mp(S, P)ϵ
≤ C17 · ϵ−1.

Remark 16. In particular, there is a constant C18(S) such that Theorem 15 holds
for all P ∈ P1(K ) satisfying h(P) > C18(S); see Lemma 18.

We start with a definition and some basic height estimates. In what follows, we
fix an embedding V ⊆ PN and extend the maps fi to self-morphisms of PN ; here
we use our assumption that S is polarizable with respect to some line bundle L.
Moreover, h( · ) denotes the logarithmic Weil height on PN .

Definition 17. A point P ∈ V is moderately S-preperiodic if

g ◦ f (P) = f (P) for some f, g ∈ MS with g ̸= 1.

Lemma 18. Let V/Q be a variety, and let S = { f1, . . . , fr } be a set of polarized
endomorphisms as described in Definition 1. Then there exists a constant C19 =

C19(S, V,L) such that the following statements hold for all Q ∈ V (Q):

(a) If Q is moderately S-preperiodic as described in Definition 17, then h(Q)≤C19.
In particular, this is true if OrbS(Q) is finite.

(b) If h(Q) > C19, then

h( f (Q)) ≥ h(Q) for all f ∈ MS .

Proof. These estimates are proven in [4, Lemma 2.11]. □

We combine Lemma 18 with the techniques in [13; 19] to obtain the following
result for pairs of maps that are critically simple and critically separated.

Proposition 19. Let f1 and f2 be endomorphisms of P1 of degree at least 4, let S =

{ f1, f2}, and suppose that f1 and f2 are critically simple and critically separated.
Then the following statements hold:

(a) The semigroup MS is free.

(b) Let P ∈ P1(Q) be a point whose S-orbit OrbS(P) is infinite. Then there exists
a point Q ∈ OrbS(P) such that Q is strongly S-wandering as described in
Definition 2.
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Proof. (a) See [13, Proposition 4.1].

(b) We fix a number field K over which P , f1, and f2 are defined. Letting 1 ⊂

P1
× P1 be the diagonal, we define three curves

0i := ( fi × fi )
−1(1) for i = 1, 2,

01,2 := ( f1 × f2)
−1(1).

Then the main results in [19] (see also [13, Proposition 4.6]) imply that the curves 01

and 02 are each the union of 1 and an irreducible curve of geometric genus ≥ 2,
while 01,2 is itself an irreducible curve of geometric genus ≥ 2.

More specifically, the assumption that f1 and f2 are critically simple implies
from [19, Corollary 3.6] that C1 ∖1 and C2 ∖1 are irreducible, while the assump-
tion that f1 and f2 are critically separated implies from [19, Proposition 3.1] that
C1,2 is irreducible. It then follows from [19, pages 208 and 210] that the geometric
genera of these curves are given by the formulas

genus(0i ∖1) =
(
deg( fi ) − 2

)2 for i = 1, 2,

genus(01,2 ∖1) = (deg( f1) − 1)(deg( f2) − 1).

In particular, the assumption that f1 and f2 have degree at least 4 ensures that these
genera are at least 2.

We now invoke Faltings’s theorem [9], [14, Theorem E.0.1] to deduce that the
set

6 := 01,2(K ) ∪ (01 ∖1)(K ) ∪ (02 ∖1)(K )

is finite. We note that the definition of 6 says that for all P, Q ∈ P1(K ), we have

(10)

 P ̸= Q and f1(P) = f1(Q) H⇒ (P, Q) ∈ 6

P ̸= Q and f2(P) = f2(Q) H⇒ (P, Q) ∈ 6

f1(P) = f2(Q) H⇒ (P, Q) ∈ 6

 .

Let π1, π2 : P1
× P1

→ P1 be the two projection maps, and let

C20 := max
(
{h(P) : P ∈ π1(6)} ∪ {h(P) : P ∈ π2(6)}

)
be the maximum of the heights of the coordinates of the finitely many points in 6.
We then set

C21 := max{C19, C20},

where C19 is the constant that appears in Lemma 18.
The fact that OrbS(P) ⊆ P1(K ) is infinite, combined with Northcott’s theo-

rem [18] saying that P1(K ) has only finitely many points of bounded height,
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implies that there exists a point Q ∈ OrbS(P) satisfying

(11) h(Q) > C21.

We claim that Q is strongly wandering for S. To see this, suppose that

(12) fi1 ◦ · · · ◦ fin (Q) = f j1 ◦ · · · ◦ f jm (Q),

where without loss of generality we may assume that n ≥ m. Our goal is to prove
that m = n and ik = jk for all 1 ≤ i ≤ n.

To ease notation, we let

(13) F = fi2 ◦ · · · ◦ fin and G = f j2 ◦ · · · ◦ f jm

be the compositions with the initial map omitted. Thus (12) and (13) say that

(14) fi1

(
F(Q)

)
= f j1

(
G(Q)

)
.

It follows from (14) and (10) that one of the following is true:

(i) i1 = j1 and F(Q) = G(Q).

(ii) i1 = j1 and F(Q) ̸= G(Q) and
(
F(Q), G(Q)

)
∈ 6.

(iii) i1 ̸= j1 and
(
F(Q), G(Q)

)
∈ 6.

On the other hand, we know that(
F(Q), G(Q)

)
∈ 6 H⇒ h

(
F(Q)

)
≤ C21 < h(Q)

by (11). But this contradicts Lemma 18. Hence (ii) and (iii) are false, so (i) is true.
We recall that m ≤ n, so repeating this argument, we conclude that

ik = jk for all 1 ≤ k ≤ m.

If m < n is a strict inequality, then we see that

fim+1 ◦ · · · ◦ fin (Q) = Q.

But then Lemma 18 implies that h(Q) ≤ C19 ≤ C21, and we obtain a contradiction
of (11). Thus m = n and ik = jk for all 1 ≤ k ≤ n, which completes the proof that Q
is a strongly S-wandering point. □

We now have the tools in place to prove Theorem 15.

Proof of Theorem 15. Let S be the given set of endomorphisms of P1, and let f1

and f2 be the given maps in S that have degree at least 4 and that are critically
simple and critically separated. We let

S′
= { f1, f2}.
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We are given that the point P ∈ P1(K ) has infinite S-orbit, and hence by Northcott’s
theorem [18], there are points of arbitrarily large height in OrbS(P). We choose a
point

Q′
∈ OrbS(P) satisfying h(Q′) > C19(S′),

where C19(S′) is the constant associated to the set S′ appearing in Lemma 18. In
particular, it follows from Lemma 18(b) and Northcott’s theorem that OrbS′(Q′)

must be infinite. Then Proposition 19 implies that MS′ is free and that there is a
point

Q ∈ OrbS′(Q′) ⊆ OrbS(P)

that is strongly S′-wandering. Applying Theorem 7 to the set S′ and the point Q,
we deduce that∑

p∈Spec(RK )

logNp

Np · mp(S, P)ϵ
≤

∑
p∈Spec(RK )

logNp

Np · mp(S′, Q)ϵ
≤ C17ϵ

−1

for some constant C17 depending on S, Q (and so P) and K . For this last conclusion,
we have also used the fact that

mp(S′, Q) ≤ mp(S, P),

which is immediate from the inclusion OrbS′(Q) ⊆ OrbS(P). □

Proof of Theorem 10. We recall that Ratd denotes the space of rational maps of
degree d. Then it follows from Theorems 1.1–1.4 in [19] that if d1, d2 ≥ 4, then
the set

Vd1,d2 :=

{
( f1, f2) ∈ Ratd1 × Ratd2 :

f1 and f2 are critically simple
and critically separated

}
is Zariski dense in Ratd1 × Ratd2 . Then for any d3, . . . , dr ≥ 2, the set

U(d1, . . . , dr ) := Vd1,d2 × Ratd3 × · · · × Ratdr

is Zariski dense in Ratd1 × · · · × Ratdr , and Theorem 15 gives us that the desired
inequality (2) for every S generated by a set of maps

( f1, . . . , fr ) ∈ U(d1, . . . , dr ). □

We conclude with a variant of Theorem 15 in which the maps are polynomials.
We start with a definition.

Definition 20. A polynomial f (x) ∈ Q[x] is power-like if there exist polynomi-
als R(x), C(x), L(x) ∈ Q[x] such that

f = R ◦ C ◦ L ,deg(L) = 1,deg(C) ≥ 2,

C(x) = a power map or a Chebyshev polynomial.
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Theorem 21. Let K/Q be a number field, let S be a set of endomorphisms of P1

defined over K , and let P ∈ P1(K ) be a point such that OrbS(P) is infinite. Suppose
further that S contains polynomials f1(x), f2(x) ∈ K [x] having the following
properties:

(1) Neither f1 nor f2 is power-like; see Definition 20.

(2) For all g ∈ Q[x] satisfying deg(g) ≥ 2, we have

f1 ̸= f2 ◦ g and f2 ̸= f1 ◦ g.

Then there is a constant C22 = C22(K , S, P) such that for all ϵ > 0,∑
p∈Spec(RK )

logNp

Np · mp(S, P)ϵ
≤ C22 · ϵ−1.

The proof of Theorem 21 is similar to the proof of Theorem 15, except that we
use [10; 23] instead of [13; 19]. As a first step, we need the following result, which
is a polynomial analogue of Proposition 19.

Proposition 22. Let f1 and f2 be polynomials satisfying the hypotheses of Theorem
21, and let S = { f1, f2}. Then the following statements hold:

(a) The semigroup MS is free.

(b) Let P ∈ P1(Q) be a point whose S-orbit OrbS(P) is infinite. Then there exists
a strongly S-wandering point Q ∈ OrbS(P).

Proof. (a) See [13, Proposition 4.5].

(b) The proof is very similar to the proof of Proposition 19, so we just give a brief
sketch, highlighting the differences. We note that we have picked a coordinate
function x on P1. We let ∞ ∈ P1 be the pole of x and let A1

= P1 ∖ {∞}.
Replacing P with another point in OrbS(P) if necessary, we may assume that P ̸=∞

is not the point at infinity. We choose a set S of primes of K so that the ring of S-
integers RK ,S satisfies

P ∈ A1(RK ,S) and f1(x), f2(x) ∈ RK ,S[x].

We use the map f1 × f2 : A2
→ A2 to define three affine curves,

01 := ( f1 × f1)
−1(1), 02 := ( f2 × f2)

−1(1), 01,2 := ( f1 × f2)
−1(1).

Then [13, Proposition 4.5], itself a consequence of the main results of [10; 23],
tells us that these are geometrically irreducible curves of geometric genus at least 1.
(This is where we use the assumptions (1) and (2) of Theorem 21 on f1 and f2.)
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The Siegel–Mahler theorem for integral points on affine curves [14, Theorem D.9.1]
then implies that

01(RK ,S), 02(RK ,S), and 01,2(RK ,S) are finite sets,

and hence that

6 := 01,2(RK ,S) ∪ (01 ∖1)(RK ,S) ∪ (02 ∖1)(RK ,S)

is finite.
The remainder of the proof of Proposition 22 follows the proof of Proposition 19,

starting with the three possibilities described in (10). □

Proof of Theorem 21. The proof of Theorem 21 is identical to that of Theorem 15.
We first use Lemma 18, Proposition 22, and the fact that OrbS(P) is infinite to find
a point Q ∈ OrbS(P) that is strongly wandering for S′

= { f1, f2}. We then apply
Theorem 7 to the point Q and the set S′

= { f1, f2} to deduce the desired result
for P and S. □
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