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TO ALGEBRAIC NUMBERS

YANN BUGEAUD AND KHOA D. NGUYEN

Let ξ be an irrational algebraic real number and let ( pk/qk)k≥1 denote the
sequence of its convergents. Let (un)n≥1 be a nondegenerate linear recurrence
sequence of integers, which is not a polynomial sequence. We show that if
the intersection of the sequences (qk)k≥1 and (un)n≥1 is infinite, then ξ is a
quadratic number. This extends an earlier work of Lenstra and Shallit (1993).
We also discuss several arithmetical properties of the base-b representation
of the integers qk, k ≥ 1, where b ≥ 2 is an integer. Finally, when ξ is a
(possibly transcendental) non-Liouville number, we prove a result implying
the existence of a large prime factor of qk−1 qk qk+1 for large k. This is related
to earlier results of Erdős and Mahler (1939), Shorey and Stewart (1983),
and Shparlinskii (1987).

1. introduction

Let θ be an arbitrary irrational real number and (pk(θ)/qk(θ))k≥1 (we will use
the shorter notation pk/qk when no confusion is possible and ξ instead of θ if the
number is known to be algebraic) denote the sequence of its convergents.

Let N be an infinite set of positive integers. It follows from a result of Borosh
and Fraenkel [6] that the set

K(N ) = {θ ∈ R : qk(θ) is in N for arbitrarily large k}

has always Hausdorff dimension at least 1
2 and its Lebesgue measure is zero if there

is some positive δ such that the series
∑

q∈N q−1+δ converges. Examples of sets N
(or integer sequences (un)n≥1) with the latter property include nondegenerate linear
recurrence sequences, the set of integers having a bounded number of nonzero digits
in their base-10 representation, sets of positive values taken at integer values by a
given integer polynomial of degree at least 2, and sets of positive integers divisible
only by prime numbers from a given, finite set.

MSC2020: primary 11J68; secondary 11J87.
Keywords: approximation to algebraic numbers, Schmidt subspace theorem, recurrence sequence,

continued fraction.

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2023.326-1
https://doi.org/10.2140/pjm.2023.326.17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


18 YANN BUGEAUD AND KHOA D. NGUYEN

Our main purpose is to discuss whether K(N ) contains algebraic numbers for
some special sets N for which K(N ) has zero Lebesgue measure. Said differently,
for an arbitrary irrational real algebraic number ξ , we investigate various arithmetical
properties of the sequence (qk(ξ))k≥1. We consider the following questions:

A. Does the greatest prime factor of qk(ξ) tends to infinity with k? If yes, how
rapidly?

B. Does the number of nonzero digits in the base-10 representation of qk(ξ) tends
to infinity with k? If yes, how rapidly?

C. Are there infinitely many squares (cubes, perfect powers) in (qk(ξ))k≥1?

D. Is the intersection of (qk(ξ))k≥1 with a given linear recurrence sequence of
integers finite or infinite?

First, let us recall that very few is known on the continued fraction expansion of
an algebraic number of degree at least 3, while the continued fraction expansion of
a quadratic real number ξ is ultimately periodic and takes the form

ξ = [a0; a1, . . . , ar , ar+1, . . . , ar+s].

Consequently, we have qk+2s = tqk+s − (−1)s qk for k > r , where t is the trace of(
ar+1 1

1 0

) (
ar+2 1

1 0

)
. . .

(
ar+s 1

1 0

)
;

see [18; 19]. This shows that (qk(ξ))k≥1 is the union of s binary recurrences whose
roots are the roots of the polynomial X2

− t X + (−1)s , that is, the real numbers
1
2(t ±

√
t2 − 4(−1)s). Thus, for a quadratic real number ξ , we immediately derive

Diophantine results on (qk(ξ))k≥1 from results on binary recurrences of the above
form.

Question A has already been discussed in [7] and earlier works. Let us mention
that it easily follows from Ridout’s theorem [23] that the greatest prime factor
of qk(ξ) tends to infinity with n, but we have no estimate of the rate of growth,
except when ξ is quadratic (by known effective results on binary recurrences,
see [28]). Furthermore, the theory of linear forms in logarithms gives a lower bound
for the greatest prime factor of the product pk(ξ) qk(ξ), which tends to infinity at
least as fast as some constant times log2 qk(ξ) log3 qk(ξ)/log4 qk(ξ), where log j
denotes the j -th iterated logarithm function. Although we have no new contribution
to Question A as stated for algebraic numbers ξ , we obtain new results on prime
factors of qk(θ) for a transcendental number θ . In 1939, Erdős and Mahler [16]
proved that the greatest prime factor of qk−1(θ) qk(θ) qk+1(θ) tends to infinity as k
tends to infinity. In this paper, we obtain a more explicit result involving the
irrationality exponent of θ .
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We give a partial answer to Question B, which has not been investigated up to
now. Question C is solved when ξ is quadratic: there are only finitely many
perfect powers in the sequence (qk(ξ))k≥1 thanks to results of Pethő [22] and
Shorey and Stewart [25] stating that there are only finitely many perfect powers
in binary recurrence sequences of integers. This result is effective. When ξ has
degree at least 3, Question C appears to be very difficult. Since (nd)n≥1 is a linear
recurrence sequence for any given positive integer d , a large part of Question C is
contained in Question D.

Question D is interesting for several reasons. First, some assumption on the linear
recurrence must be added, since the linear recurrence (n)n≥1 has infinite intersection
with the sequence (qk(ξ))k≥1. Second, as already mentioned, when ξ is quadratic,
its continued fraction expansion is ultimately periodic and the sequence (qk(ξ))k≥1

is the union of a finite set of binary recurrences. Among our results, we show that
if a “nonsingular” linear recurrence has an infinite intersection with (qk(ξ))k≥1,
then ξ must be quadratic. Unfortunately we must exclude linear recurrences of the
form (nd)n≥1, and hence we do not have any contribution to Question C.

Recall that any nonzero linear recurrence sequence (un)n≥1 of complex numbers
can be expressed as

un = P1(n) αn
1 + · · · + Pr (n) αn

r for n ≥ 1,

where r ≥ 1, α1, . . . , αr are distinct nonzero complex numbers (called the roots of
the recurrence), and P1, . . . , Pr are nonzero polynomials with complex coefficients.
This expression is unique up to rearranging the terms. The sequence (un)n≥1 is
called nondegenerate if αi/α j is not a root of unity for 1 ≤ i ̸= j ≤ r . For most
problems about linear recurrence sequences, it is harmless to assume that (un)n≥1 is
nondegenerate. Indeed, if (un)n≥1 is degenerate and L denotes the lcm of the orders
of the roots of unity of the form αi/α j , then each of the subsequences (unL+m)n≥1

with m ∈ {0, . . . , L − 1} is either identically zero or nondegenerate.
The proofs of our results rest on the p-adic Schmidt subspace theorem. This

powerful tool was first applied to the study of continued fraction expansions of
algebraic numbers by Corvaja and Zannier in [13; 14]. They proved in [13] that,
for any positive real quadratic irrational α which is neither the square root of a
rational number, nor a unit in the ring of integers of Q(α), the period length of the
continued fraction for αn tends to infinity with n. They established in [14] that
if α(n) and β(n) are power sums over the rationals satisfying suitable necessary
assumptions, then the length of the continued fraction for α(n)/β(n) tends to infinity
with n; see also [12; 17; 24] for related questions. The Schmidt subspace theorem
has also been used by Adamczewski and Bugeaud in [1; 2; 3; 9] to prove that the
continued fraction expansion of an algebraic number of degree at least 3 cannot
have arbitrary long repetitions nor quasipalindromes close to its start.
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Let (un)n≥1 be a nonconstant linear recurrence sequence with integral roots
greater than 1 and rational coefficients. It follows from [15, Theorem 4.16] that the
intersection of the sequences (un)n≥1 and (qk)k≥1 is finite. This gives a first partial
result toward Question D. For a real number θ , we let ∥θ∥ denote the distance from θ

to the nearest integer. Our first main result gives a full answer to Question D. Its
proof uses results of Kulkarni, Mavraki, and Nguyen [20], which extend a seminal
work of Corvaja and Zannier [13], who showed that, if a real algebraic number
α > 1 and ℓ in (0, 1) are such that ∥αn

∥ < ℓn for infinitely many positive integers n,
then there is a positive integer d such that αd is a Pisot number (observe that this
conclusion is best possible).

Theorem 1.1. Let (pk/qk)k≥1 be the sequence of convergents to an irrational real
algebraic number ξ of degree d. Let ε > 0. Let (un)n≥1 be a nondegenerate linear
recurrence sequence of integers, which is not a polynomial sequence. Then the set{

n ∈ N : un ̸= 0 and ∥un ξ∥ <
1

|un|
(1/(d−1))+ε

}
is finite. In particular, if d ≥ 3, then there are only finitely many pairs (n, k) such
that un = qk .

The case d = 2 of Theorem 1.1 is immediate, since quadratic real numbers
have bounded partial quotients in their continued fraction expansion. Consequently,
we restrict our attention to the case d ≥ 3. Theorem 1.1 is a special case of
Theorem 3.6, which deals with a larger class of integer sequences than that of
recurrence sequences.

When d = 3, the exponent 1
d−1 =

1
2 is best possible, as can be seen with the

following example. Let K ⊂ R be a cubic field with a pair of complex-conjugate
embeddings. Let ξ ∈ K with |ξ | > 1 be a unit of the ring of integers. Let α and ᾱ

denote the remaining Galois conjugates of ξ . We have |α| = |ξ |
−1/2 and, setting

un = ξ n
+ αn

+ ᾱn for n ≥ 1, we check that

|un ξ − un+1| ≪ξ |αn
| ≪ξ |un|

−1/2 for n ≥ 1,

where ≪ξ means that the implicit constant is positive and depends only on ξ . When
d ≥ 4, we do not know if Theorem 1.1 remains valid with a smaller exponent
than 1

d−1 .
Theorem 1.1 allows us to complement the result of Lenstra and Shallit [21]:

Theorem 1.2 (Lenstra and Shallit [21]). Let θ be an irrational real number, whose
continued fraction expansion is given by θ = [a0; a1, a2, . . . ], and let (pk)k≥1

and (qk)k≥1 be the sequence of numerators and denominators of the convergents
to θ . Then the following four conditions are equivalent:
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(i) The sequence (pk)k≥1 satisfies a linear recurrence with constant complex
coefficients.

(ii) The sequence (qk)k≥1 satisfies a linear recurrence with constant complex
coefficients.

(iii) The sequence (an)n≥0 is ultimately periodic.

(iv) θ is a quadratic irrational.

The proof of Theorem 1.2 rests on the Hadamard quotient theorem. A simpler
proof of a more general statement has been given by Bézivin [4], who instead
of (ii) only assumes that (qk)k≥1 satisfies a linear recurrence with coefficients being
polynomials in k and that the series

∑
k≥1 qk zk has a nonzero convergence radius.

We strengthen Theorem 1.2 for convergents of algebraic numbers as follows.

Corollary 1.3. Let ξ = [a0; a1, a2, . . . ] be an irrational real algebraic number,
and let (pk)k≥1 and (qk)k≥1 be the sequence of numerators and denominators of the
convergents to ξ . Then the following four conditions are equivalent:

(i) The sequence (pk)k≥1 has an infinite intersection with some nondegenerate
linear recurrence sequence that is not a polynomial sequence.

(ii) The sequence (qk)k≥1 has an infinite intersection with some nondegenerate
linear recurrence sequence that is not a polynomial sequence.

(iii) The sequence (an)n≥0 is ultimately periodic.

(iv) ξ is a quadratic irrational.

Now we present our results concerning Question B. Let b ≥ 2 be an integer.
Every positive integer N can be written uniquely as

N = dk bk
+ · · · + d1 b + b0,

where
d0, d1, . . . , dk ∈ {0, 1, . . . , b − 1}, dk ̸= 0.

We define the length
L(N , b) = Card{0 ≤ j ≤ k : d j ̸= 0}

of the b-ary representation of N . We also define the number of digit changes by

DC(N , b) = Card{2 ≤ j ≤ k : d j ̸= d j−1}.

Theorem 1.4. Let ξ be an irrational real algebraic number and let b ≥ 2 be an
integer. Let (un)n≥1 be a strictly increasing sequence of positive integers and
λ ∈ (0, 1] such that for every ε > 0, the inequality

∥un ξ∥ < u−λ+ε
n

holds for all but finitely many n. We have:
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(i) Let k be a positive integer and let ε > 0. For all sufficiently large n, if δ is a
divisor of un with L(δ, b) ≤ k then δ < u(k−λ)/k+ε

n .

(ii) Let k be a nonnegative integer and let ε > 0. For all sufficiently large n, if δ is
a divisor of un with DC(δ, b) ≤ k then δ < u(k+2−λ)/(k+2)+ε

n .

Consequently, let (pk/qk)k≥1 denote the sequence of convergents to ξ then each
one of the limits limk→+∞ L(qk, b), limk→+∞ DC(qk, b), limk→+∞ L(pk, b), and
limk→+∞ DC(pk, b) is infinite.

Except for certain quadratic numbers, it seems to be a very difficult problem to get
an effective version of the last assertion of Theorem 1.4. Stewart [27, Theorem 2]
established that if (un)n≥1 is a binary sequence of integers, whose roots ξ, ξ ′ are
quadratic numbers with |ξ |>max{1, |ξ ′

|}, then there exists a positive real number C
such that

L(un, b) >
log n

log log n + C
− 1, n ≥ 5.

Consequently, if (pk/qk)k≥1 denote the sequence of convergents to a quadratic real
algebraic number, then for k ≥ 4 we have

L(qk, b) >
log k

log log k + C
− 1 and DC(qk, b) >

log k
log log k + C

− 1.

A similar question can be asked for the Zeckendorf representation [30] of qk .
Let (Fn)n≥0 denote the Fibonacci sequence defined by

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for n ≥ 0.

Every positive integer N can be written uniquely as a sum:

N = εℓFℓ + εℓ−1 Fℓ−1 + · · · + ε2 F2 + ε1 F1,

with εℓ = 1, ε j in {0, 1}, and ε jε j+1 = 0 for j = 1, . . . , ℓ − 1. This representation
of N is called its Zeckendorf representation. The number of digits of N in its
Zeckendorf representation is the number of positive integers j for which ε j is equal
to 1. By using the Schmidt subspace theorem we can in a similar way prove that the
number of digits of qk(ξ) in its Zeckendorf representation tends to infinity with k,
we omit the details (but see [10]).

Our last result is motivated by a theorem of Erdős and Mahler [16] on convergents
to real numbers. Let S be a set of prime numbers. For a nonzero integer N , let [N ]S

denote the largest divisor of N composed solely of primes from S. Set [0]S = 0.
Recall that the irrationality exponent µ(θ) of an irrational real number θ is the
supremum of the real numbers µ such that there exist infinitely many rational
numbers r/s with s ≥ 1 and |θ − r/s| < 1/sµ. It is always at least equal to 2
and, by definition, θ is called a Liouville number when µ(θ) is infinite. Erdős and
Mahler [16] established that, when θ is irrational and not a Liouville number, then
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the greatest prime factor of qk−1 qk qk+1 tends to infinity with k. We obtain the
following more precise version of their result.

Theorem 1.5. Let θ be an irrational real number and µ its irrationality exponent.
Let (pk/qk)k≥1 denote the sequence of convergents to θ . Let S be a finite set of
prime numbers. If µ is finite, then, for every ε > 0 and every k sufficiently large
(depending on ε), we have

(1-1) [qk−1 qk qk+1]S < (qk−1 qk qk+1)
µ/(µ+1)+ε.

The same conclusion holds when the sequence (qk)k≥1 is replaced by (|pk |)k≥1.

When θ is algebraic irrational and ε > 0, we have [qk]S < qε
k for all large k by

Ridout’s theorem. The interesting feature of Theorem 1.5 is that it holds for all
transcendental non-Liouville numbers.

Theorem 1.5 is ineffective. Under its assumption, it is proved in [11] that there
exists a (large) positive, effectively computable c = c(S) such that

[qk−1 qk qk+1]S < (qk−1 qk qk+1)
1−1/(cµ log µ), k ≥ 2.

For µ = 2 (that is, for almost all θ), the exponent in (1-1) becomes 2
3 + ε. It is

an interesting question to determine whether it is best possible. It cannot be smaller
than 1

3 . Indeed, the Folding lemma (see, e.g., [8, Section 7.6]) allows one, for any
given integer b ≥ 2, to construct explicitly real numbers θ with µ(θ) = 2 and having
infinitely many convergents whose denominator is a power of b.

Furthermore, there exist irrational real numbers θ = [a0; a1, a2, . . . ] with con-
vergents pk/qk such that the qk’s are alternating among powers of 2 and 3. Indeed,
let k ≥ 2 and assume that qk−1 = 2c and qk = 3d for positive integers c, d. Then,
we have to find a positive integer ak+1 such that 2c

+ak+1 3d is a power of 2. To do
this, it is sufficient to take for m the smallest integer greater than c such that 2m−c

is congruent to 1 modulo 3d and then define ak+1 = (2m−c
− 1)/3d . The sequence

(ak)k≥1 increases very fast and θ is a Liouville number.
We are grateful to Professor Igor Shparlinskii for bringing our attention to [26].

Suppose the irrational number θ has the property that log qn ≪ n for every n; the
set of all such θ ’s is strictly smaller than the set of all non-Liouville numbers. Then
[26, Theorem 5] implies P[q1 · · · qn] ≫ n for all sufficiently large n where P[ · ]

denotes the largest prime factor. It seems possible to relax the condition log qn ≪ n
at the expense of a weaker lower bound for P[q1 · · · qn] in order to allow θ to
be certain Liouville numbers. On the other hand, it seems possible to extend the
proof of Theorem 1.5 to get a lower bound for P[q1 · · · qn] in terms of n and the
irrationality exponent of θ . We leave this further discussion for future work.
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The outline of this paper is as follows. The proof of Theorem 1.5 and additional
remarks on [16] are given in Section 4. Theorem 1.4 is established in Section 2 and
the other results are proved in Section 3.

2. Proof of Theorem 1.4

For a prime number ℓ, we let vℓ : Q → Z ∪ {∞} be the additive ℓ-adic valuation
and let | · |ℓ = ℓ−vℓ( · ) be the ℓ-adic absolute value.

Proof of Theorem 1.4. First, we prove part (i). Let N1 be the set of tuples
(m, n1, . . . , na) such that:

• 1 ≤ a ≤ k and n1 < n2 < · · · < na are nonnegative integers.

• There exist d1, . . . , da in {1, . . . , b − 1} such that δ := da bna + · · ·+ d1 bn1 is
a divisor of um and δ ≥ u(k−λ)/k+ε

m .

Assume that N1 is infinite. Then, there exist an integer h with 1 ≤ h ≤ k, positive
integers D1, . . . , Dh , an infinite set N2 of (h + 1)-tuples (mi , n1,i , . . . , nh,i ) for
i ≥ 1 such that:

• n1,i < · · · < nh,i are nonnegative integers.

• For i ≥ 1, we have a divisor of umi :

δmi := Dh bnh,i + · · · + D1 bn1,i ,

with δmi ≥ u(k−λ)/k+ε
mi .

• We have

(2-1) lim
i→+∞

(n j,i − n j−1,i ) = +∞, j = 2, . . . , h.

For i ≥ 1, let wmi denote the nearest integer to umi ξ and let

(2-2) vmi := umi /δmi ≤ uλ/k−ε
m .

When mi is sufficiently large, we have

(2-3) |ξ Dh vmi bnh,i + · · · + ξ D1 vmi bn1,i − wmi | = ∥ξumi ∥ < |umi |
−λ+ε/2,

thanks to the given properties of (um)m≥1 and λ. We are in position to apply the
Schmidt subspace theorem.

Let S denote the set of prime divisors of b. Consider the linear forms in

X = (X0, X1, . . . , Xh)

given by

L j,∞(X) := X j , j = 1, . . . , h,

L0,∞(X) := ξ Dh Xh + · · · + ξ D1 X1 − X0,
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and, for every prime number ℓ in S,

L j,ℓ(X) := X j , j = 0, . . . , h.

For the tuple
bi = (wmi , vmi bnh,i , . . . , vmi bn2,i , vmi bn1,i ),

with a sufficiently large mi , we use (2-2) and (2-3) to obtain
h∏

j=0

|L j,∞(bi )| ×
∏
ℓ∈S

h∏
j=0

|L j,ℓ(bi )|ℓ ≤ ∥ξumi ∥ · |vmi |
h

< |umi |
−(h−1/2) ε

≪ H(bi )
−(h−1/2) ε,

where the implied constant is independent of i and H(bi ) is the Weil height of the
projective point [wmi : vmi bnh,i : · · · : vmi bn1,i ].

The subspace theorem [5, Corollary 7.2.5] implies that there exist integers
t0, t1, . . . , th , not all zero, and an infinite subset N3 of N2 such that

(2-4) vmi (th bnh,i + · · · + t1 bn1,i ) + t0 wmi = 0 for (wmi , nh,i , . . . , n1,i ) ∈ N3.

Dividing the above equation by umi and letting i tend to infinity, we deduce that
th
Dh

+ t0 ξ = 0.

Since ξ is irrational, we must have t0 = th = 0. Then, we use (2-1) and (2-4) to
derive that t1 = · · · = th−1 = 0, a contradiction. This finishes the proof of (i).

We now prove part (ii) using a similar method. Let s ≥ 0 and let x be a positive
integer such that DC(x, b) = s. If s = 0, we can write

x = d + db + · · · + dbn
=

dbn+1
− d

b − 1
,

with n ≥ 0 and d ∈ {1, . . . , b − 1}. If s > 0, let 0 < c1 < c2 < · · · < cs denote the
exponents of b where digit changes take place:

x = d0(1 + · · · + bc1−1) + d1(bc1 + · · · + bc2−1) + · · · + ds(bcs + · · · + bn)

=
−d0 + (d0 − d1) bc1 + (d1 − d2) bc2 + · · · + (ds−1 − ds) bcs + ds bn+1

b − 1
,

with n ≥ cs , d0, . . . , ds ∈ {0, . . . , b − 1}, and di+1 ̸= di for 0 ≤ i ≤ s − 1.
Let N4 be the set of tuples (m, n0, n1, . . . , na) such that:

• 0 ≤ a ≤ k + 1 and n0 < . . . < na are nonnegative integers.

• There exist integers e0, . . . , ea in [−(b − 1), b − 1] such that

δ :=
e0 bn0 + · · · + ek+1 bnk+1

b − 1

is a divisor of um and δ ≥ u(k+2−λ)/(k+2)+ε
m .
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Assume that N4 is infinite. Then, there exist an integer h with 0 ≤ h ≤ k + 1,
nonzero integers E0, . . . , Eh , an infinite set N5 of (h+2)-tuples (mi , nh,i , . . . , n0,i )

for i ≥ 1 such that:

• n0,i < . . . < nh,i are nonnegative integers.

• For i ≥ 1,
δmi :=

Eh bnh,i + · · · + E0 bn0,i

b − 1

is a divisor of umi with δmi ≥ u(k+2−λ)/(k+2)+ε
mi .

• We have

lim
i→+∞

(n j,i − n j−1,i ) = +∞, j = 1, . . . , h.

We can now apply the subspace theorem in essentially the same way as before to
finish the proof. □

3. Proof of Theorem 1.1 and Corollary 1.3

In Corollary 1.3, the equivalence (iii) ⇔ (iv) and the implications (iv) ⇒ (i)
and (iv) ⇒ (ii) are well known and have already appeared in Theorem 1.2. The
implication (ii) ⇒ (iv) is essentially the last assertion of Theorem 1.1 while the
remaining implication (i) ⇒ (iv) follows from the inequality ∥pk/ξ∥ ≪ξ |pk |

−1

and Theorem 1.1 again. We spend the rest of this section to discuss Theorem 1.1.
From now on N is the set of positive integers, N0 = N ∪ {0}, µ is the group of

roots of unity, and GQ = Gal(Q/Q). Let h denote the absolute logarithmic Weil
height on Q. Let k ∈ N, a tuple (α1, . . . , αk) of nonzero complex numbers is called
nondegenerate if αi/α j /∈ µ for 1 ≤ i ̸= j ≤ k. We consider the following more
general family of sequences than (nondegenerate) linear recurrence sequences:

Definition 3.1. Let K be a number field. Let S (K ) be the set of all sequences
(un)n≥1 of complex numbers with the following property. There exist k ∈ N0

together with a nondegenerate tuple (α1, . . . , αk) ∈ (K ∗)k such that, when n is
sufficiently large, we can express

(3-1) un = qn,1 αn
1 + · · · + qn,k αn

k

for qn,1, . . . , qn,k ∈ K ∗ and max1≤i≤k h(qn,i ) = o(n).

In Definition 3.1, we allow k = 0 for which the empty sum in the right-hand side
of (3-1) means 0. Any sequence (un)n≥1 that is eventually 0 is in S (K ).

Example 3.2. Consider a linear recurrence sequence (vn)n≥1 of the form

vn = P1(n) rn
1 + · · · + Pk(n) rn

k ,
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with k ∈ N, distinct r1, . . . , rk ∈ K ∗, and nonzero P1, . . . , Pk ∈ K [X ]. Let L be the
lcm of the order of the roots of unity that appear among the ri/r j for 1 ≤ i, j ≤ k.
Then each one of the L sequences (vnL+r )n≥1 for r = 0, . . . , L − 1 is a member
of S (K ).

As an explicit example, consider vn = 2n
+ (−2)n

+ n for n ∈ N. The sequence
(v2n = 2·4n

+2n)n≥1 is in S (Q) and a tuple (α1, . . . , αk) satisfying the requirement
in Definition 3.1 is (α1 = 4, α2 = 1). The sequence (v2n+1 = 2n +1)n≥1 is in S (Q)

and a tuple (α1, . . . , αk) satisfying the requirement in Definition 3.1 is (α1 = 1).

Lemma 3.3. Let K be a number field and let (un)n≥1 be an element of S (K ). Let
k, ℓ ∈ N0 and let (α1, . . . , αk) and (β1, . . . , βℓ) be nondegenerate tuples of nonzero
elements of K . Suppose that when n is sufficiently large, we can express

un = qn,1 αn
1 + · · · + qn,k αn

k = rn,1 βn
1 + · · · + rn,ℓ βn

ℓ

for qn,1, . . . , rn,ℓ ∈ K ∗ such that

max{h(qn,i ), h(rn, j ) : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} = o(n)

as n tends to infinity. Then k = ℓ and there exist a permutation σ of {1, . . . , k}

together with roots of unity ζ1, . . . , ζk in K such that αi = ζi βσ(i) for 1 ≤ i ≤ k
and qn,i ζ

n
i = rn,σ (i) for every sufficiently large n and for every 1 ≤ i ≤ k.

Proof. This follows from [20, Proposition 2.2]. □

Definition 3.4. Let K be a number field and let (un)n≥1 be in S (K ). Let (α1, . . . ,αk)

satisfy the requirement in Definition 3.1. We call k the number of S (K )-roots
of (un)n≥1; this is well defined, thanks to Lemma 3.3. We call (α1, . . . , αk) a
tuple of S (K )-roots of (un)n≥1; this is well defined up to permuting the αi ’s and
multiplying each αi by a root of unity in K .

Here is the reason why we use the strange terminology “S (K )-roots” instead of
the usual “characteristic roots”. In the theory of linear recurrence sequences, we
have the well defined notion of characteristic roots. For example, the characteristic
roots of (un = 2n

+ 1)n≥1 are 2 and 1. When regarding (un)n≥1 as an element
of S (K ), we may say that any tuple (2ζ, ζ ′) where ζ and ζ ′ are roots of unity in K
is a tuple of S (K )-roots of (un)n≥1.

Definition 3.5. Let K be a number field. Let (un)n≥1 be an element of S (K ) and
let k ∈ N0 be its number of S (K )-roots. We say that (un)n≥1 is admissible if

• either k = 0, i.e., (un)n≥1 is eventually 0,

• or k > 0 and at least one entry in a tuple of S (K )-roots of (un)n≥1 is not a
root of unity.
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Since every nondegenerate linear recurrence sequence of algebraic numbers that
is not a polynomial sequence is an admissible element of S (K ) for some number
field K , Theorem 1.1 follows from the below theorem.

Theorem 3.6. Let ξ be an algebraic number of degree d ≥ 3. Let ε > 0 and let K
be a number field. Let (un)n≥1 be a sequence of integers that is also an admissible
element of S (K ). Then the set{

n ∈ N : un ̸= 0 and ∥un ξ∥ <
1

|un|
(1/(d−1))+ε

}
is finite.

The proof of Theorem 3.6 relies on a result of Kulkarni et al. [20], which extends
a seminal work of Corvaja and Zannier [13]. By a sublinear function, we mean a
function f : N → (0, ∞) such that limn→∞ f (n)/n = 0, that is, f (n) = o(n). We
need the following slightly more flexible version of [20, Theorem 1.4]:

Theorem 3.7. Let C ∈ (0, 1]. Let K be a number field, let k ∈ N, let (α1, . . . , αk)

be a nondegenerate tuple of algebraic numbers satisfying |αi | ≥ C for 1 ≤ i ≤ k,
and let f be a sublinear function. Assume that for some θ ∈ (0, C), the set M of
(n, q1, . . . , qk) ∈ N × (K ∗)k satisfying∥∥∥ k∑

i=1

qi αn
i

∥∥∥ < θn and max
1≤i≤k

h(qi ) < f (n)

is infinite. Then:

(i) αi is an algebraic integer for i = 1, . . . , k.

(ii) For each σ ∈ GQ and i = 1, . . . , k such that σ(αi )
α j

/∈ µ for j = 1, . . . , k, we
have |σ(αi )| < C.

Moreover, for all but finitely many (n, q1, . . . , qk) ∈ M we have

for (σ, i, j) ∈ GQ × {1, . . . , k}
2, σ (qi αn

i ) = q j αn
j if and only if

σ(αi )

α j
∈ µ.

Remark 3.8. Theorem 3.7 in the case C = 1 is exactly [20, Theorem 1.4].

Proof of Theorem 3.7. When n is fixed, there are only finitely many tuples
(n, q1, . . . , qk) in M, thanks to the upper bound on max h(qi ) and Northcott’s
property. In the following, for (n, q1, . . . , qk) in M, we tacitly assume that n is
sufficiently large.

For N large enough, we have 1/θ N > 3/C N and the interval [1/C N , 1/θ N )

contains a prime number D which does not divide the denominator of αi for
i = 1, . . . , k. We have

Dθ N < 1 ≤ DC N .
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Fix θ ′
∈ (Dθ N , 1). Let βi = DαN

i for 1 ≤ i ≤ k. We now define the set M′ as
follows. Consider (n, q1, . . . , qk) ∈ M with n ≡ r mod N , write n = m N + r with
r ∈ {0, . . . , N − 1}, then we have∥∥∥ k∑

i=1

qi αr
i β

m
i

∥∥∥ =

∥∥∥ k∑
i=1

qi αr
i (DαN

i )m
∥∥∥ < Dm θn

= θr (Dθ N )m < θ ′m,

assuming n and hence m are sufficiently large so that the last inequality holds,
thanks to the choice θ ′

∈ (Dθn, 1). We include the tuple (m, q1 αr
1, . . . , qk αr

k)

in M′. Finally, consider the sublinear function

g(n) = f (n) + (N − 1) max
1≤i≤k

h(αi ),

so that max1≤i≤k h(qi αr
i ) < g(n).

We apply [20, Theorem 1.4] for the tuple (β1, . . . , βk), the function g, the
number θ ′, and the set M′ to conclude that:

• DαN
i is an algebraic integer for 1 ≤ i ≤ k. Our choice of D implies that αi is

an algebraic integer for 1 ≤ i ≤ k.

• For each σ ∈ GQ and i ∈ {1, . . . , k} such that σ(αi )
σ (α j )

/∈µ for every j ∈ {1, . . . , k},
we have σ(DαN

i ) < 1 consequently σ(αi ) < 1/D1/N
≤ C .

• The last assertion of Theorem 3.7 holds.

This finishes the proof. □

Proof of Theorem 3.6. Let k denote the number of S (K )-roots of (un)n≥1. The case
k = 0 (i.e., (un)n≥1 is eventually 0) is obvious. Assume k > 0 and let (α1, . . . , αk)

be a tuple of S (K )-roots of (un)n≥1. For L ∈ N and r ∈ {0, . . . , L − 1}, each
sequence (unL+r )n≥1 is an admissible element of S (K ) and admits (αL

1 , . . . , αL
k )

as a tuple of S (K )-roots. Let L be the lcm of the order of roots of unity among the
σ(αi )/τ(α j ) for σ, τ ∈ GQ and 1≤ i, j ≤ k and replace (un)n≥1 by each (unL+r )n≥1,
we may assume

(3-2) for σ, τ ∈ GQ and 1 ≤ i, j ≤ k,
σ (αi )

τ (α j )
∈µ if and only if σ(αi )= τ(α j ).

We first prove that the set {α1, . . . , αk} is Galois invariant.
For sufficiently large n, express

un = qn,1 αn
1 + · · · + qn,k αn

k

as in Definition 3.1. Let σ ∈ GQ, since un ∈ Z we have

qn,1 αn
1 + · · · + qn,k αn

k = σ(qn,1) σ (α1)
n
+ · · · + σ(qn,k) σ (αk)

n for all large n.



30 YANN BUGEAUD AND KHOA D. NGUYEN

From [20, Proposition 2.2], we have that for every i ∈ {1, . . . , k} there exists
j ∈ {1, . . . , k} such that σ(αi )/α j ∈ µ and this gives σ(αi ) = α j , thanks to (3-2).
Theorem 3.7 implies that the αi ’s are algebraic integers and for every sufficiently
large n, for (σ, i, j) ∈ GQ × {1, . . . , k}

2 we have

(3-3) σ(qn,i ) = qn, j , whenever σ(αi ) = α j .

Since (un)n≥1 is admissible, at least one of the αi ’s is not a root of unity and hence

(3-4) M := max
1≤i≤k

|αi | > 1.

Suppose the set

T :=

{
n ∈ N : un ̸= 0 and ∥un ξ∥ <

1
|un|

(1/(d−1))+ε

}
is infinite, then we will arrive at a contradiction. Let δ denote a sufficiently small
positive real number that will be specified later. By [20, Section 2], we have

(3-5) |un| > M (1−δ) n

for all large n. Therefore

(3-6) ∥ξ qn,1 αn
1 + · · · + ξ qn,k αn

k ∥ <
1

M (1−δ)(1/(d−1)+ε) n

for all large n in T .
We relabel the αi ’s and let m ≤ ℓ ≤ k such that

(i) |α1| = M .

(ii) |αi | ≥
1

M1/(d−1)+δ for 1 ≤ i ≤ ℓ while |αi | < 1
M1/(d−1)+δ for ℓ + 1 ≤ i ≤ k.

(iii) Among the α1, . . . , αℓ, we have that α1, . . . , αm are exactly the Galois conju-
gates of α1. When combining with (ii), this means that α1, . . . , αm are precisely
the Galois conjugates of α1 with modulus at least M−(1/(d−1)+δ).

We require δ small enough so that

(3-7) 1
d−1

+ δ < (1 − δ)
(

1
d−1

+ ε
)
.

Choose the real number c such that:

(3-8) 1
d−1

+ δ < c < (1 − δ)
(

1
d−1

+ ε
)

and |αi | <
1

Mc
for ℓ + 1 ≤ i ≤ k.

Thanks to this choice of c and the assumption that h(qn,i ) = o(n) for 1 ≤ i ≤ k,
we have

(3-9) |ξ qn,ℓ+1 αn
ℓ+1 + · · · + ξ qn,k αn

k | <
1

2Mcn



ARITHMETICAL PROPERTIES OF CONVERGENTS TO ALGEBRAIC NUMBERS 31

for all sufficiently large n. From (3-6) and (3-8), we have

(3-10) ∥ξ qn,1 αn
1 + · · · + ξ qn,k αn

k ∥ <
1

2Mcn

for all large n in T . Combining the above inequalities, we have

(3-11) ∥ξ qn,1 αn
1 + · · · + ξ qn,ℓ αn

ℓ∥ <
1

Mcn

for all large n in T .
Let F be the Galois closure of K (ξ). We apply Theorem 3.7 for the tuple

(α1, . . . , αℓ), C = M−(1/(d−1)+δ), θ = M−c, and the inequality (3-11) then use
(3-2) and (3-3) to have that for every large n in T , σ ∈ Gal(F/Q), and 1 ≤ i, j ≤ ℓ,

(3-12) if σ(αi ) = α j , then σ(ξ qn,i αn
i ) = ξ qn, j αn

j and hence σ(ξ) = ξ.

Since α1, . . . , αm are exactly the Galois conjugates of α1 among the α1, . . . , αℓ,
equation (3-12) implies that ξ is fixed by at least m| Gal(F/Q(α1))|= m[F : Q(α1)]

many automorphisms in Gal(F/Q). Put d ′
= [Q(α1) : Q], we have

(3-13) [F : Q(ξ)] = | Gal(F/Q(ξ))| ≥ m[F : Q(α1)] =
m
d ′

[F : Q].

Since [Q(ξ) : Q] = d, equation (3-13) implies m ≤ d ′/d. This means α1 has at
least d ′(d − 1)/d many Galois conjugates with modulus less than M−(1/(d−1)+δ).
Combining with the fact that all Galois conjugates of α1 have modulus at most M ,
we have

| NQ(α1)/Q(α1)| ≤ Md ′/d M−(1/(d−1)+δ) d ′(d−1)/d < 1,

since M > 1 and δ > 0. This contradicts the fact that α1 is a nonzero algebraic
integer and we finish the proof. □

4. Proof of Theorem 1.5 and further discussion on Erdős and Mahler [16]

Proof of Theorem 1.5. We assume that θ is not a Liouville number, that is, we
assume that µ is finite. Define

Qk = qk−1 qk qk+1, k ≥ 2.

Let S be a finite set of prime numbers. Write θ = [a0; a1, a2, . . . ] and recall that

qk+1 = ak+1 qk + qk−1, k ≥ 2.

Let k ≥ 2 and set dk = gcd(qk−1, qk+1). Since qk−1 and qk are coprime, we see that
dk divides ak+1. Define

q∗

k−1 = qk−1/dk, q∗

k+1 = qk+1/dk, a∗

k+1 = ak+1/dk .
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Then, we have
q∗

k+1 = a∗

k+1 qk + q∗

k−1, k ≥ 2.

Let ε > 0. By the Schmidt subspace theorem, the set of points (q∗

k−1, q∗

k+1) such
that

q∗

k−1 q∗

k+1

∏
p∈S

|q∗

k−1 q∗

k+1(q
∗

k+1 − q∗

k−1)|p < (q∗

k+1)
−ε

is contained in a union of finitely many proper subspaces. Since q∗

k−1 and q∗

k+1 are
coprime, this set is finite. We deduce that, for k large enough, we get∏

p∈S

|q∗

k−1 q∗

k+1(q
∗

k+1 − q∗

k−1)|p > (q∗

k−1 q∗

k+1)
−1(q∗

k+1)
−ε,

thus ∏
p∈S

|qk−1 qk+1(a∗

k+1 qk)|p > (qk−1 qk+1)
−1(q∗

k+1)
−ε,

and hence ∏
p∈S

|qk−1 qk+1 qk |p > (qk−1 qk+1)
−1(qk+1)

−ε.

Recalling that qk−1 < qk and qk+1 < qµ−1+ε
k for k large enough, we get

[Qk]S < qk−1 q1+ε
k+1 < qµ+ε

k Qε
k .

Since
Qk < q2

k qk+1 < qµ+1+ε
k ,

we get
[Qk]S < Q(µ+ε)/(µ+1+ε)

k Qε
k .

This proves (1-1). The last assertion can be proved in the same manner, thanks to
the identity pk+1 = ak+1 pk + pk−1 and the inequalities

|pk−1| < |pk | and |pk+1| < |pk |
µ−1+ε

for large k. □

The following was suggested at the end of [16]:

Question 4.1 (Erdős and Mahler [16]). Let θ be an irrational real number such
that the largest prime factor of pn(θ) qn(θ) is bounded for infinitely many n. Is it
true that θ is a Liouville number?

Without further details, Erdős and Mahler stated the existence of θ with the
given properties in Question 4.1. We provide a construction here for the sake of
completeness.

Let S and T be disjoint nonempty sets of prime numbers such that S has at least
two elements. We construct uncountably many θ such that for infinitely many n the
prime factors of pn(θ) belong to S while the prime factors of qn(θ) belong to T . To
simplify the notation, we consider the case S ={2, 3} and T ={5}. The construction
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for general S and T follows the same method. The constructed numbers θ have the
form

θ =

+∞∑
i=1

ai

53i .

Let 0 be the set of positive integers with only prime factors in {2, 3}. For every
positive integer m, let γ (m) denote the smallest element of 0 that is greater than m.
Let f (m) :=

γ (m)−m
m . By [29], we have

(4-1) lim
m→+∞

f (m) = 0.

First, we construct the sequence of positive integers s(1)< s(2)< . . . recursively:

• s(1) = 1.

• After having s(1), . . . , s(k), let Nk be a positive integer depending on s(k) such
that

(4-2) f (m) <
1

53s(k)+1 for m ≥ Nk .

Then we choose s(k + 1) so that

(4-3) 52·3s(k+1)−1
≥ Nk and s(k + 1) > s(k) + 1.

Now we construct the ai ’s:

• a1 = 1.

• Choose arbitrary ai ∈ {1, 2} for i /∈ {s(1), s(2), . . . }. Since s(k + 1) > s(k) + 1
for every k, the set N \ {s(1), s(2), . . . } is infinite. Hence there are uncountably
many choices here.

• Since s(1) = 1, we already had as(1). Suppose we have as(1), . . . , as(k) positive
integers with the following properties:

(i) For 1 ≤ j ≤ k, we have
∑s( j)

i=1
ai

53i =
us( j)

53s( j) with us( j) ∈ 0.

(ii) For 2 ≤ j ≤ k, we have as( j)

53s( j) < 1
53s( j−1)+1 .

We now define as(k+1) so that the above two properties continue to hold with j =k+1
as well. Thanks to property (ii) and the fact that ai ≤ 2 for i /∈ {s(1), s(2), . . . }, we
have the rough estimate

u
53s(k+1)−1 :=

s(k+1)−1∑
i=1

ai

53i ≤

s(k+1)−1∑
i=1

2
53i +

k−1∑
j=1

1
53s( j)+1 < 1,
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and hence, u < 53s(k+1)−1
. From

s(k+1)∑
i=1

ai

53i =
u

53s(k+1)−1 +
as(k+1)

53s(k+1)
=

u · 52·3s(k+1)−1
+ as(k+1)

53s(k+1)
,

we now define
as(k+1) = γ (u · 52·3s(k+1)−1

) − u · 52·3s(k+1)−1
.

Recall that γ (u · 52·3s(k+1)−1
) is the smallest element of 0 that is greater than

u · 52·3s(k+1)−1
. This verifies property (i) for j = k + 1. To verify (ii) for j = k + 1,

we have

as(k+1)

53s(k+1)
=

γ (u · 52·3s(k+1)−1
) − u · 52·3s(k+1)−1

u · 52·3s(k+1)−1 ·
u · 52·3s(k+1)−1

53s(k+1)

<
γ (u · 52·3s(k+1)−1

) − u · 52·3s(k+1)−1

u · 52·3s(k+1)−1 [since u < 53s(k+1)−1
]

= f (u · 52·3s(k+1)−1
)

<
1

53s(k)+1 by (4-2) and (4-3).

By the principle of recursive definition, we have ai for i ∈ {s(1), s(2), . . . } such
that property (i) holds for every j ≥ 1 and property (ii) holds for every j ≥ 2.

Write un/vn =
∑

i≤n
ai

53i with vn = 53n
. We have

|θ − us(k)/vs(k)| =

∞∑
i=s(k)+1

ai

53i <

∞∑
i=s(k)+1

2
53i +

∞∑
j=k

1
53s( j)+1 <

4
53s(k)+1 =

4
v3

s(k)

.

Therefore the us(k)/vs(k) are among the convergents to θ .
It is not clear to us whether the above numbers θ are always Liouville numbers.

However, we suspect that this is the case. In order to construct Liouville numbers,
we can use a similar method for numbers of the form

∑
i≥1

bi
5i ! .
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