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LOCAL GALOIS REPRESENTATIONS
OF SWAN CONDUCTOR ONE

NAOKI IMAI AND TAKAHIRO TSUSHIMA

We construct the local Galois representations over the complex field whose
Swan conductors are one by using étale cohomology of Artin–Schreier
sheaves on affine lines over finite fields. Then, we study the Galois representa-
tions, and give an explicit description of the local Langlands correspondences
for simple supercuspidal representations. We discuss also a more natural
realization of the Galois representations in the étale cohomology of Artin–
Schreier varieties.

Introduction

Let K be a nonarchimedean local field. Let n be a positive integer. The existence of
the local Langlands correspondence for GLn(K ), proved in [Laumon et al. 1993]
and [Harris and Taylor 2001], is one of the fundamental results in the Langlands
program. However, even in this fundamental case, an explicit construction of the
local Langlands correspondence has not yet been obtained. One of the most striking
results in this direction is the result of Bushnell and Henniart [2005a; 2005b; 2010]
for essentially tame representations. On the other hand, we don’t know much about
the explicit construction outside essentially tame representations.

We discuss this problem for representations of Swan conductor 1. The irreducible
supercuspidal representations of GLn(K ) of Swan conductor 1 are equivalent to
the simple supercuspidal representations in the sense of Adrian and Liu [2016] (see
[Gross and Reeder 2010; Reeder and Yu 2014]). Such representations are called
“epipelagic” in [Bushnell and Henniart 2014].

Let p be the characteristic of the residue field k of K . If n is prime to p, the simple
supercuspidal representations of GLn(K ) are essentially tame. Hence, this case is
covered by the work of Bushnell and Henniart. See also [Adrian and Liu 2016]. It
is discussed in [Kaletha 2015] to generalize the construction of the local Langlands
correspondence for essentially tame epipelagic representations to other reductive
groups.
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In this paper, we consider the case where p divides n. In this case, the simple
supercuspidal representations of GLn(K ) are not essentially tame. Moreover, if n
is a power of p, the irreducible representations of the Weil group WK of Swan
conductor 1, which correspond to the simple supercuspidal representations via the
local Langlands correspondence, cannot be induced from any proper subgroup. Such
representations are called primitive (see [Koch 1977]). For simple supercuspidal
representations, we have a straightforward characterization of the local Langlands
correspondence given in [Bushnell and Henniart 2014]. Further, Bushnell and Hen-
niart study the restriction to the wild inertia subgroup of the Langlands parameters
for the simple supercuspidal representations explicitly. Actually, the restriction to
the wild inertia subgroup already determines the original Langlands parameters
up to character twists, but we need additional data, which appear in Bushnell and
Henniart’s characterization, to pin down the correct Langlands parameters. On
the other hand, the construction of the irreducible representations of WK of Swan
conductor 1 is a nontrivial problem. What we will do in this paper is

• to construct the irreducible representations of WK of Swan conductor 1 without
appealing to the existence of the local Langlands correspondence, and

• to give a description of the Langlands parameters themselves for the simple
supercuspidal representations.

Let ℓ be a prime number different from p. For the construction of the irreducible
representations of WK of Swan conductor 1, we use étale cohomology of an Artin–
Schreier ℓ-adic sheaf on A1

kac , where kac is an algebraic closure of k. It will
be possible to avoid usage of geometry in the construction of the irreducible
representations of WK of Swan conductor 1. However, we prefer this approach,
because

• we can use geometric tools such as the Lefschetz trace formula and the product
formula of Deligne–Laumon to study the constructed representations, and

• the construction works also for ℓ-adic integral coefficients and mod ℓ coeffi-
cients.

A description of the local Langlands correspondence for the simple supercuspidal
representations is discussed in [Imai and Tsushima 2022] in the special case where
n = p = 2. Even in the special case, our method in this paper is totally different
from that in [Imai and Tsushima 2022].

We explain the main result. We write n = pen′, where n′ is prime to p. We fix a
uniformizer ϖ of K and an isomorphism ι : Qℓ ≃ C.

Let Lψ be the Artin–Schreier Qℓ-sheaf on A1
kac associated to a nontrivial charac-

ter ψ of Fp. Let π : A1
kac → A1

kac be the morphism defined by π(y) = y pe
+1. Let

ζ ∈µq−1(K ), where q = |k|. We put Eζ = K [X ]/(Xn′

−ζϖ). Then we can define
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a natural action of WEζ on H 1
c (A

1
kac, π

∗Lψ). Using this action, we can associate
a primitive representation τn,ζ,χ,c of WEζ to ζ ∈ µq−1(K ), a character χ of k×

and c ∈ C×. We construct an irreducible representation τζ,χ,c of Swan conductor 1
as the induction of τn,ζ,χ,c to WK .

We can associate a simple supercuspidal representation πζ,χ,c of GLn(K ) to the
same triple (ζ, χ, c) by type theory. Any simple supercuspidal representation can
be written in this form uniquely (see [Imai and Tsushima 2018, Proposition 1.3]).

Theorem. The representations τζ,χ,c and πζ,χ,c correspond via the local Langlands
correspondence.

In Section 1, we recall a general fact on representations of a semidirect product of
a Heisenberg group with a cyclic group. In Section 2, we give a construction of the
irreducible representations of WK of Swan conductor 1. To construct a representa-
tion of WK which naturally fits a description of the local Langlands correspondence,
we need a subtle character twist. Such a twist appears also in the essentially tame
case in [Bushnell and Henniart 2010], where it is called a rectifier. Our twist can be
considered as an analogue of the rectifier. We construct the representations of WK

using geometry, but we give also a representation theoretic characterization of the
constructed representations. In Section 3, we give a construction of the simple
supercuspidal representations of GLn(K ) using the type theory.

In Section 4, we state the main theorem and recall a characterization of the
local Langlands correspondence for simple supercuspidal representations given in
[Bushnell and Henniart 2014]. The characterization consists of the three equalities
of (i) the determinant and the central character, (ii) the refined Swan conductors,
and (iii) the epsilon factors.

In Section 5, we recall some general facts on epsilon factors. In Section 6, we
recall facts on Stiefel–Whitney classes, multiplicative discriminants and additive
discriminants. We use these facts to calculate Langlands constants of wildly ramified
extensions. In Section 7, we recall the product formula of Deligne–Laumon. In
Section 8, we show the equality of the determinant and the central character using
the product formula of Deligne–Laumon.

In Section 9, we construct a field extension T u
ζ of Eζ such that the restriction

of τn,ζ,χ,c to WT u
ζ

is an induction of a character and p ∤ [T u
ζ : Eζ ], which we call

an imprimitive field. In Section 10, we show the equality of the refined Swan
conductors. We see also that the constructed representations of WK are actually of
Swan conductor 1.

In Section 11, we show the equality of the epsilon factors. It is difficult to calculate
the epsilon factors of irreducible representations of WK of Swan conductor 1 directly,
because primitive representations are involved. However, we know the equality
of the epsilon factors up to pe-th roots of unity if n = pe, since we have already
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checked the conditions (i) and (ii) in the characterization. Using this fact and
p ∤ [T u

ζ : Eζ ], the problem is reduced to study an epsilon factor of a character. Next
we reduce the problem to the case where the characteristic of K is p and k = Fp.
At this stage, it is possible to calculate the epsilon factor if p ̸= 2. However, it is
still difficult if p = 2, because the direct calculation of the epsilon factor involves
an explicit study of the Artin reciprocity map for a wildly ramified extension with a
nontrivial ramification filtration. This is a special phenomenon in the case where
p = 2. We will avoid this difficulty by reducing the problem to the case where e = 1.
In this case, we have already known the equality up to sign. Hence, it suffices to
show the equality of nonzero real parts. This is easy, because the difficult study of
the Artin reciprocity map involves only the imaginary part of the equality.

In Appendix, we discuss a construction of irreducible representations of WK of
Swan conductor 1 in the cohomology of Artin–Schreier varieties. This geometric
construction incorporates a twist by a “rectifier”. We see that the “rectifier” parts
come from the cohomology of Artin–Schreier varieties associated to quadratic forms.
The Artin–Schreier varieties which we use have origins in studies of Lubin–Tate
spaces in [Imai and Tsushima 2017; 2021].

Notation. Let A∨ denote the character group HomZ(A,C×) for a finite abelian
group A. For a nonarchimedean local field K , let

• OK denote the ring of integers of K ,

• pK denote the maximal ideal of OK ,

• vK denote the normalized valuation of K which sends a uniformizer of K to 1,

• ch K denote the characteristic of K ,

• G K denote the absolute Galois group of K ,

• WK denote the Weil group of K ,

• IK denote the inertia subgroup of WK ,

• PK denote the wild inertia subgroup of WK ,

and we put U m
K = 1 + pm

K for any positive integer m.

1. Representations of finite groups

First, we recall a fact on representations of Heisenberg groups. Let G be a finite
group with center Z . We assume:

(i) The group G/Z is an elementary abelian p-group.

(ii) For any g ∈ G \ Z , the map cg : G → Z , g′
7→ [g, g′

] is surjective.

Remark 1.1. The map cg in (ii) is a group homomorphism. Hence, Z is automati-
cally an elementary abelian p-group.
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Let ψ ∈ Z∨ be a nontrivial character.

Proposition 1.2. There is a unique irreducible representation ρψ of G such that
ρψ |Z contains ψ . Moreover, we have (dim ρψ)

2
= [G : Z ] and we can con-

struct ρψ as follows: Take an abelian subgroup G1 of G such that Z ⊂ G1

and 2 dimFp(G1/Z) = dimFp(G/Z). Extend ψ to a character ψ1 of G1. Then
ρψ = IndG

G1
ψ1.

Proof. The claims other than the construction of ρψ is Proposition 8.3.3 in [Bushnell
and Fröhlich 1983]. Note that if an abelian subgroup G1 of G satisfies the conditions
in the claim, then G1/Z is a maximal totally isotropic subspace of G/Z under the
pairing

(G/Z)× (G/Z)→ C×, (gZ , g′Z) 7→ ψ([g, g′
]).

Hence the construction follows from the proof of [Bushnell and Fröhlich 1983,
Proposition 8.3.3]. □

Next, we consider representations of a semidirect product of a Heisenberg group
with a cyclic group. Let A ⊂ Aut(G) be a cyclic subgroup of order pe

+ 1 where
e =

1
2(logp[G : Z ]). We assume:

(3) The group A acts on Z trivially.

(4) For any nontrivial element a ∈ A, the action of a on G/Z fixes only the unit
element.

We consider the semidirect product A⋉G by the action of A on G.

Lemma 1.3. There is a unique irreducible representation ρ ′

ψ of A ⋉ G such that
ρ ′

ψ |G ≃ ρψ and tr ρ ′

ψ(a)= −1 for every nontrivial element a ∈ A.

Proof. The claim is proved in the proof of Lemma 22.2 in [Bushnell and Henniart
2006] if Z is cyclic and ψ is a faithful character. In fact, the same proof works also
in our case. □

Corollary 1.4. There exists a unique representation ρ ′

ψ of A⋉G such that

ρ ′

ψ |Z ≃ ψ⊕pe
and tr ρ ′

ψ(a)= −1

for every nontrivial element a ∈ A. Further, the representation ρ ′

ψ |G is irreducible.

Proof. First we show the existence. We take the representation ρ ′

ψ in Lemma 1.3.
Then ρ ′

ψ has a central character equal to ψ by Proposition 1.2. This shows the
existence.

We show the uniqueness and the irreducibility of ρ ′

ψ |G . Assume that ρ ′

ψ satisfies
the condition in the claim. Take an irreducible subrepresentation ρψ of ρ ′

ψ |G . Then
ρψ satisfies the condition of Proposition 1.2. Hence, dim ρψ = pe. Then we have
ρψ = ρ ′

ψ |G and ρ ′

ψ |G is irreducible. Such ρψ is unique by Lemma 1.3. □
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2. Galois representations

2A. Swan conductor. Let K be a nonarchimedean local field with residue field k.
Let p be the characteristic of k. Let f be the extension degree of k over Fp. We
put q = p f .

Let
ArtK : K ×

−→∼ W ab
K

be the Artin reciprocity map, which sends a uniformizer to a lift of the geometric
Frobenius element.

Let τ be a finite dimensional irreducible continuous representation of WK over C.
Let 9 : K → C× be a nontrivial additive character. Let ε(τ, s, 9) denote the
Deligne–Langlands local constant of τ with respect to 9. We simply write ε(τ,9)
for ε

(
τ, 1

2 , 9
)
.

We define an unramified character ωs : K ×
→ C× by ωs(ϖ) = q−s for s ∈ R,

where ϖ is a uniformizer of K . We recall that

(2-1) ε(τ, s, 9)= ε(τ ⊗ωs, 0, 9)

(see [Tate 1979, (3.6.4)]).
Let ψ0 ∈ F∨

p by ψ0(1)= e2π
√

−1/p. We take an additive character ψK : K → C×

such that ψK (x) = ψ0(Trk/Fp(x̄)) for x ∈ OK . By [Bushnell and Henniart 2006,
Proposition 29.4], there exists an integer sw(τ ) such that

ε(τ, s, ψK )= q− sw(τ )sε(τ, 0, ψK ).

We put Sw(τ )= max{sw(τ ), 0}, which we call the Swan conductor of τ .

2B. Construction. We construct a group Q which acts on a curve C over an
algebraic closure of k. By using this action of Q and Frobenius action, we construct
a representation of a semidirect product Q ⋊Z in étale cohomology of C . Then we
use the representation of Q ⋊Z to construct a representation of a Weil group.

We fix an algebraic closure K ac of K . Let kac be the residue field of K ac. Let n
be a positive integer. We write n = pen′ with (p, n′)= 1. Throughout this paper,
we assume that e ≥ 1. Let

Q = {(a, b, c) | a ∈ µpe+1(kac), b, c ∈ kac, bp2e
+ b = 0, cp

− c + bpe
+1

= 0}

be the group whose multiplication is given by

(a1, b1, c1) · (a2, b2, c2)=

(
a1 a2, b1 + a1 b2, c1 + c2 +

e−1∑
i=0

(a1 bpe

1 b2)
pi
)
.

Remark 2.1. The construction of the group Q has its origin in a study of the
automorphism of a curve C defined below. We can check that the above multipli-
cation gives a group structure on Q directly, but it’s also possible to show this by
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checking that the inclusion from Q to the automorphism group of C defined below
is compatible with the multiplications.

Note that |Q| = p2e+1(pe
+1). Let Q⋊Z be a semidirect product, where m ∈ Z

acts on Q by (a, b, c) 7→ (a p−m
, bp−m

, cp−m
). We put

(2-2) Fr(m)= ((1, 0, 0),m) ∈ Q ⋊Z for m ∈ Z.

Let C be the smooth affine curve over kac defined by

x p
− x = y pe

+1 in A2
kac .

We define a right action of Q ⋊Z on C by

(x, y)((a, b, c), 0)=

(
x +

e−1∑
i=0

(by)pi
+ c, a(y + bpe

)

)
, (x, y)Fr(1)= (x p, y p).

We consider the morphisms

h : A1
kac → A1

kac, x 7→ x p
− x, π : A1

kac → A1
kac, y 7→ y pe

+1.

Then we have the fiber product

C h′

//

π ′

��

□

A1
kac

π

��

A1
kac

h
// A1

kac

where π ′ and h′ are the natural projections to the first and second coordinates
respectively. Let g = ((a, b, c),m) ∈ Q ⋊Z. We consider the morphism

g0 : A1
kac → A1

kac, y 7→ (a(y + bpe
))pm

.

Let ℓ be a prime number different from p. Then we have a natural isomorphism

cg : g∗

0 h′

∗
Qℓ −→∼ h′

∗
g∗ Qℓ −→∼ h′

∗
Qℓ.

We take an isomorphism ι : Qℓ ≃ C. We sometimes view a character over C as a
character over Qℓ by ι. Let ψ ∈ F∨

p . We write Lψ for the Artin–Schreier Qℓ-sheaf
on A1

kac associated to ψ , which is equal to F(ψ) in the notation of [Deligne 1977,
Sommes trig. 1.8(i)]. Then we have a decomposition h∗ Qℓ =

⊕
ψ∈F∨

p
Lψ . This

decomposition gives canonical isomorphisms

(2-3) h′

∗
Qℓ

∼= π∗ h∗ Qℓ
∼=

⊕
ψ∈F∨

p

π∗Lψ .
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The isomorphisms cg and (2-3) induce cg,ψ : g∗

0 π
∗Lψ → π∗Lψ . We define a left

action of Q ⋊Z on H 1
c (A

1
kac, π

∗Lψ) by

H 1
c (A

1
kac, π

∗Lψ)
g∗

0
−→ H 1

c (A
1
kac, g∗

0 π
∗Lψ)

cg,ψ
−−→ H 1

c (A
1
kac, π

∗Lψ) for g ∈ Q ⋊Z.

Let τψ be the representation of Q ⋊ Z over C defined by H 1
c (A

1
kac, π

∗Lψ) and ι.
For θ ∈ µpe+1(kac)∨, let Kθ be the smooth Kummer Qℓ-sheaf on Gm,kac associated
to θ . We view µpe+1(kac)× Fp as a subgroup of Q by (a, c) 7→ (a, 0, c).

Lemma 2.2. We have a natural isomorphism

H 1
c (A

1
kac, π

∗Lψ)≃

⊕
θ∈µpe+1(kac)∨\{1}

H 1
c (Gm,kac,Lψ ⊗Kθ ),

which is compatible with the actions of µpe+1(kac)× Fp where

(a, c) ∈ µpe+1(kac)× Fp

acts on H 1
c (Gm,kac,Lψ ⊗Kθ ) by θ(a)ψ(c). Further, we have

dim H 1
c (Gm,kac,Lψ ⊗Kθ )= 1

for any θ ∈ µpe+1(kac)∨ \ {1}.

Proof. By the projection formula, we have natural isomorphisms

π∗ π
∗Lψ ≃ π∗(π

∗Lψ ⊗ Qℓ)≃ Lψ ⊗π∗ Qℓ on A1
kac .

Further, we have
π∗ Qℓ ≃

⊕
θ∈µpe+1(kac)∨

Kθ on Gm,kac,

since π is a finite étale µpe+1(kac)-covering over Gm,kac . Therefore, we have

(2-4) π∗ π
∗Lψ ≃ Lψ ⊗π∗ Qℓ ≃

⊕
θ∈µpe+1(kac)∨

Lψ ⊗Kθ

on Gm,kac . Let {0} denote the origin of A1
kac . Let i : {0} → A1

kac and j : Gm,kac → A1
kac

be the natural immersions. From the exact sequence

0 → j! j∗π∗Lψ → π∗Lψ → i∗ i∗π∗Lψ → 0,

we have the exact sequence

(2-5) 0 → H 0({0}, i∗π∗Lψ)→ H 1
c (Gm,kac, π∗Lψ)→ H 1

c (A
1
kac, π

∗Lψ)→ 0,

since
H 0

c (A
1
kac, π

∗Lψ)= 0 and H 1({0}, i∗π∗Lψ)= 0.
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Note that H 0({0}, i∗π∗Lψ)≃ ψ . By (2-4), we have isomorphisms

(2-6) H 1
c (Gm,kac, π∗Lψ)≃ H 1

c (Gm,kac, π∗ π
∗Lψ)

≃

⊕
θ∈µpe+1(kac)∨

H 1
c (Gm,kac,Lψ ⊗Kθ ).

We know that

(2-7) dim H 1
c (Gm,kac,Lψ ⊗Kθ )= 1

for any θ ∈ µpe+1(kac)∨ by the proof of [Imai and Tsushima 2017, Lemma 7.1]
(see [Imai and Tsushima 2023, (2.3)]). Since the composition of

H 0({0}, i∗π∗Lψ)→ H 1
c (Gm,kac, π∗Lψ)

and (2-6) is compatible with the actions of µpe+1(kac)× Fp, it factors through an
isomorphism H 0({0}, i∗π∗Lψ)≃ H 1

c (Gm,kac,Lψ) by (2-7). Then the claim follows
from (2-5), (2-6) and (2-7). □

Let ϱ :µ2(k) ↪→ C× be the nontrivial group homomorphism if p ̸= 2. We define
a character θ0 ∈ µpe+1(kac)∨ by

(2-8) θ0(a)=

{
ϱ(a(p

e
+1)/2) if p ̸= 2,

1 if p = 2

for a ∈ µpe+1(kac). For an integer m and a positive odd integer m′, let
( m

m′

)
denote

the Jacobi symbol. For an odd prime p, we set

ϵ(p)=

{
1 if p ≡ 1 mod 4,
√

−1 if p ≡ 3 mod 4.

We have ϵ(p)2 =
(

−1
p

)
. We define a representation τn of Q ⋊Z as the twist of τψ0

by the character

(2-9)

Q ⋊Z → C×,

((a, b, c),m) 7→

{
θ0(a)n

((
−ϵ(p)

(
−2n′

p

))n p−
1
2
)m if p ̸= 2,

((−1)
n(n−2)

8 p−
1
2 )m if p = 2.

The value of this character is related to a quadratic Gauss sum. A geometric origin
of this character is given in (A-3). Let (ζ, χ, c) ∈µq−1(K )× (k×)∨ ×C×. We take
a uniformizer ϖ of K . We choose an element ϕ′

ζ ∈ K ac such that ϕ′n′

ζ = ζϖ and
set Eζ = K (ϕ′

ζ ). We choose elements αζ , βζ , γζ ∈ K ac such that

(2-10) α
pe

+1
ζ = −ϕ′

ζ , β
p2e

ζ +βζ = −α−1
ζ , γ

p
ζ − γζ = β

pe
+1

ζ .
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For σ ∈ WEζ , we set

aσ = σ(αζ )/(αζ ), bσ = aσσ(βζ )−βζ ,

cσ = σ(γζ )− γζ +

e−1∑
i=0

(bpe

σ (βζ + bσ ))pi
.

(2-11)

Then we have aσ , bσ , cσ ∈ OK ac . For σ ∈ WEζ , we put nσ = vEζ (Art−1
Eζ (σ )). We

have the homomorphism

(2-12) 2ζ : WEζ → Q ⋊Z, σ 7→ ((āσ , b̄σ , c̄σ ), f nσ ).

Lemma 2.3. The image of the homomorphism 2ζ is Q ⋊ ( f Z).

Proof. It suffices to show that the image of IEζ ⊂ WEζ under 2ζ is equal to
Q ⊂ Q ⋊ Z, since the homomorphism WEζ → f Z, σ 7→ f nσ is surjective. We
put Nζ = Eζ (αζ , βζ , γζ ). Then the kernel of 2ζ is equal to INζ by the definition.
Hence we have an injection IEζ /INζ ↪→ Q. This injection is actually a bijection,
since Nζ is a totally ramified extension over Eζ of degree p2e+1(pe

+ 1), which
equals to |Q|. Therefore, we obtain the claim. □

We write τn,ζ for the representation of WEζ given by 2ζ and τn . Recall that c
is an element of C×. Let φc : WEζ → C× be the character defined by φc(σ )= cnσ .
We have the isomorphism ϕ′Z

ζ × O×

Eζ ≃ Eζ× given by the multiplication. Let
Frobp : k×

→ k× be the inverse of the p-th power map. We consider the following
composition:

λζ : W ab
Eζ ≃ Eζ×

≃ ϕ′Z
ζ ×O×

Eζ
pr2
−→ O×

Eζ
can.
−−→ k× Frobe

p
−−−→ k×.

We put

(2-13) τn,ζ,χ,c = τn,ζ ⊗ (χ ◦ λζ )⊗φc and τζ,χ,c = IndEζ /K τn,ζ,χ,c.

We will see that τζ,χ,c is an irreducible representation of Swan conductor 1 in
Proposition 10.8. This Galois representation τζ,χ,c is our main object in this paper.
We will study several invariants associated to this, for example, its determinant and
epsilon factor.

2C. Characterization. We put

Q0 = {(1, b, c) ∈ Q}, F = {(1, 0, c) ∈ Q | c ∈ Fp}.

We identify Fp with F by c 7→ (1, 0, c).

Lemma 2.4. For any g = (1, b, c)∈ Q0 with b ̸= 0, the map Q0 → F , g′
7→ [g, g′

]

is surjective.
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Proof. For (1, b1, c1), (1, b2, c2) ∈ Q0, we have

[(1, b1, c1), (1, b2, c2)] =

(
1, 0,

e−1∑
i=0

(bpe

1 b2 − b1 bpe

2 )
pi
)
.

If b1 ̸= 0, then

{b ∈ kac
| bp2e

+ b = 0} → Fpe , b2 → bpe

1 b2 − b1 bpe

2

is surjective. The claim follows from the surjectivity of TrFpe/Fp . □

By this lemma, we can apply the results from Section 1 to our situation with
G = Q0, Z = F and A = µpe+1(kac), where the action of µpe+1(kac) on Q0 is
given by the embedding

µpe+1(kac)→ Q, a 7→ (a, 0, 0)

and the conjugation. Let τ 0 denote the unique representation of Q characterized by

(2-14) τ 0
|F ≃ ψ

⊕pe

0 , Tr τ 0((a, 0, 0))= −1

for a ∈ µpe+1(kac) \ {1} (see Corollary 1.4).
We have a decomposition

(2-15) τ 0
=

⊕
θ∈µpe+1(kac)∨\{1}

Lθ

such that a ∈µpe+1(kac) acts on Lθ by θ(a), since the both sides of (2-15) have the
same character as representations of µpe+1(kac). For a positive integer m dividing
pe

+1, we considerµm(kac)∨ as a subset ofµpe+1(kac)∨ by the dual of the surjection

µpe+1(kac)→ µm(kac), x → x (p
e
+1)/m .

We simply write Q for the subgroup Q × {0} ⊂ Q ⋊Z.

Lemma 2.5. We have τψ0 |Q ≃ τ 0.

Proof. The representation τψ0 |Q satisfies the characterization (2-14) by Lemma 2.2.
Hence τψ0 |Q is isomorphic to τ 0. □

Corollary 2.6. The representation τψ0 |Q0 is irreducible.

Proof. This follows from Corollary 1.4, equation (2-14) and Lemma 2.5. □

For any odd prime p, we have

(2-16)
∑
x∈F×

p

ψ0(x2)=

∑
x∈F×

p

(
x
p

)
ψ0(x)= ϵ(p)

√
p

by Gauss.
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Lemma 2.7. We have

Tr τψ0(Fr(1))=

{
−ϵ(p)

√
p if p ̸= 2,

0 if p = 2.

Proof. By the Lefschetz trace formula, we have

∑
x∈A1(Fp)

Tr(Frp, (π
∗Lψ0)x)=

2∑
i=0

(−1)i Tr(Frp, H i
c (A

1
kac, π

∗Lψ)),

where Frp is the geometric p-th power Frobenius morphism. Since H i
c (A

1
kac, π

∗Lψ)
vanishes for i = 0, 2, we have

Tr τψ0(Fr(1))= −

∑
x∈A1(Fp)

Tr(Frp, (π
∗Lψ0)x)

= −

∑
x∈Fp

ψ0(x pe
+1)= −

∑
x∈Fp

ψ0(x2)=

{
−ϵ(p)

√
p if p ̸= 2,

0 if p = 2,

where we use (2-16) in the last equality. □

We assume p = 2 in this paragraph. We take b0 ∈ F22e such that TrF22e/F2(b0)= 1.
Further, we put

(2-17) c0 = b2e

0 +

∑
0≤i< j≤e−1

b2e+i
+2 j

0 .

Then we have

(2-18) c2
0 − c0 = b2e+1

0 + b2e

0 +

∑
0≤i< j≤e−1

b2e+i+1
+2 j+1

0 +

∑
0≤i< j≤e−1

b2e+i
+2 j

0

= b2e+1

0 + b2e

0 +

e−2∑
i=0

b2e+i+1
+2e

0 +

e−1∑
j=1

b2e
+2 j

0

= b2e+1

0 + b2e

0 + b2e

0 (1 + b0 + b2e

0 )= b2e
+1

0 ,

where we use TrF22e/F2(b0)= 1 at the third equality. We put

g = ((1, b0, c0),−1) ∈ Q ⋊Z.

Lemma 2.8. We assume that p = 2. Then we have Tr τψ0(g−1)= −2.

Proof. We note that

(2-19) g−1
= Fr(1)

((
1, b0, c0 +

e−1∑
i=0

(b2e
+1

0 )2
i
)
, 0

)
.
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For y ∈ kac satisfying y2
+ b2e

0 = y, we take xy ∈ kac such that x2
y − xy = y2e

+1.
We take y0 ∈ kac such that y2

0 + b2e

0 = y0. Then, by the Lefschetz trace formula
and (2-19), we have

Tr τψ0(g
−1)= −

∑
y2+b2e

0 =y

Tr(g−1, (π∗Lψ0)y)

= −

∑
y2+b2e

0 =y

ψ0

(
x2

y − xy +

e−1∑
i=0

(b0 y2)2
i
+ c0 +

e−1∑
i=0

(b2e
+1

0 )2
i
)

= −

∑
z∈F2

ψ0

(
(y0 + z)2

e
+1

+

e−1∑
i=0

(b0(y0 + z))2
i
+ c0

)
= −2,

where we change a variable by y = y0 + z at the second equality, and use

y2e
+1

0 +

e−1∑
i=0

(b0 y0)
2i

= y0

(
y0 +

e−1∑
i=0

b2e+i

0

)
+

e−1∑
i=0

b2i

0

(
y0 +

i−1∑
j=0

b2e+ j

0

)
= c0,

y2e

0 + y0 +

e−1∑
i=0

b2i

0 =

e−1∑
i=0

(y2
0 + y0)

2i
+

e−1∑
i=0

b2i

0 = TrF22e/F2(b0)= 1

at the last equality. □

Proposition 2.9. The representation τψ0 is characterized by τψ0 |Q ≃ τ 0 and{
Tr τψ0(Fr(1))= −ϵ(p)

√
p if p ̸= 2,

Tr τψ0(g−1)= −2 if p = 2.

In particular, τψ0 does not depend on the choice of ℓ and ι.

Proof. This follows from Lemmas 2.5, 2.7 and 2.8. □

3. Representations of general linear algebraic groups

3A. Simple supercuspidal representation. Let π be an irreducible supercuspidal
representation of GLn(K ) over C. Let ε(π, s, 9) denote the Godement–Jacquet
local constant of π with respect to the nontrivial character 9 : K → C×. We simply
write ε(π,9) for ε

(
π, 1

2 , 9
)
. By [Godement and Jacquet 1972, Theorem 3.3(4)],

there exists an integer sw(π) such that

ε(π, s, ψK )= q− sw(π)sε(π, 0, ψK ).

We put Sw(π)= max{sw(π), 0}, which we call the Swan conductor of π .

Definition 3.1. An irreducible supercuspidal representation π of GLn(K ) over C

is called simple supercuspidal if Sw(π)= 1.

This definition is equivalent to [Imai and Tsushima 2018, Definition 1.1] by
[Imai and Tsushima 2018, Proposition 1.3].
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3B. Construction. In the following, we construct a smooth representation πζ,χ,c
of GLn(K ) for each triple (ζ, χ, c) ∈ µq−1(K )× (k×)∨ × C×.

Let B ⊂ Mn(k) be the subring consisting of upper triangular matrices. Let
I⊂ Mn(OK ) be the inverse image of B under the reduction map Mn(OK )→ Mn(k).
Then I is a hereditary OK -order (see [Bushnell and Kutzko 1993, (1.1)]). Let P
denote the Jacobson radical of the order I. We put U 1

I = 1 +P ⊂ GLn(OK ). We
set

ϕζ =

(
0 In−1

ζϖ 0

)
∈ Mn(K ) and Lζ = K (ϕζ ).

Then, Lζ is a totally ramified extension of K of degree n.
We put ϕζ,n = n′ϕζ and

ϵ0 =

{ 1
2(n

′
+ 1) if pe

= 2,
0 if pe

̸= 2.

We define a character 3ζ,χ,c : L×

ζ U 1
I → C× by

3ζ,χ,c(ϕζ )= (−1)n−1+ϵ0 f c, 3ζ,χ,c(x)= χ(x̄) for x ∈ O×

K ,

3ζ,χ,c(x)= (ψK ◦ tr)(ϕ−1
ζ,n(x − 1)) for x ∈ U 1

I ,

where tr means the trace as an element of Mn(K ). We put

πζ,χ,c = c-IndGLn(K )
L×

ζ U 1
I

3ζ,χ,c.

Then, πζ,χ,c is a simple supercuspidal representation of GLn(K ), and every simple
supercuspidal representation is isomorphic to πζ,χ,c for a uniquely determined
(ζ, χ, c) ∈ µq−1(K )× (k×)∨ × C× by [Imai and Tsushima 2018, Proposition 1.3].
The representation πζ,χ,c contains the m-simple stratum [I, 1, 0, ϕ−1

ζ,n] in the sense
of [Bushnell and Henniart 2014, Section 2.1].

Proposition 3.2. ε(πζ,χ,c, ψK )= (−1)n−1+ϵ0 f χ(n′) c.

Proof. This follows from [Bushnell and Henniart 1999, Section 6.1, Lemma 2 and
Section 6.3, Proposition 1]. □

4. Local Langlands correspondence

Our main theorem is the following.

Theorem 4.1. The representations πζ,χ,c and τζ,χ,c correspond via the local Lang-
lands correspondence.

To prove this theorem, we recall a characterization of the local Langlands cor-
respondence for epipelagic representations due to Bushnell–Henniart. Recall that
9 : K → C× is a nontrivial character. The following lemma is a special case of
[Deligne and Henniart 1981, Proposition 4.13].
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Lemma 4.2 [Bushnell and Henniart 2014, Lemma 2.3]. Let τ be an irreducible
smooth representation of WK such that sw(τ ) ≥ 1. Then, there exists γτ,9 ∈ K ×

such that
ε(χ ⊗ τ, s, 9)= χ(γτ,9)

−1ε(τ, s, 9)

for any tamely ramified character χ of WK . This property determines the coset
γτ,9U 1

K uniquely.

Definition 4.3. Let τ be an irreducible smooth representation of WK such that
sw(τ )≥ 1. We take γτ,9 as in Lemma 4.2. We put

rsw(τ,9)= γ−1
τ,9 ∈ K ×/U 1

K ,

which we call the refined Swan conductor of τ with respect to 9.

Remark 4.4. By (2-1), we have vK (rsw(τ, ψK ))= Sw(τ ) in Definition 4.3.

Lemma 4.5. Let π be an irreducible supercuspidal representation of GLn(K ) such
that sw(π)≥ 1.

(1) There exists γπ,9 ∈ K × such that

ε(χ ⊗π, s, 9)= χ(γπ,9)
−1ε(π, s, 9)

for any tamely ramified character χ of K ×. This property determines the coset
γπ,9U 1

K uniquely.

(2) Let [A,m, 0, α] be a simple stratum contained in π . Then we have γπ,9 ≡

detα mod U 1
K .

Proof. The first statement is [Bushnell and Henniart 1999, Theorem 1.4(i)]. The
second statement follows from [Bushnell and Henniart 1999, Remark 1.4]. □

Definition 4.6. Let π be an irreducible supercuspidal representation of GLn(K )
such that sw(π)≥ 1. We take γπ,9 as in Lemma 4.5. Then we put

rsw(π,9)= γ−1
π,9 ∈ K ×/U 1

K ,

which we call the refined Swan conductor of π with respect to 9.

Remark 4.7. We have vK (rsw(π, ψK ))= Sw(π) in Definition 4.6.

For an irreducible supercuspidal representation π of GLn(K ), let ωπ denote the
central character of π .

Proposition 4.8 [Bushnell and Henniart 2014, Proposition 2.3]. Let π be a sim-
ple supercuspidal representation of GLn(K ). The Langlands parameter for π is
characterized as the n-dimensional irreducible smooth representation τ of WK

satisfying

det τ = ωπ , rsw(τ, ψK )= rsw(π, ψK ), ε(τ, ψK )= ε(π,ψK ).
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We will show that τζ,χ,c and πζ,χ,c satisfy the conditions of Proposition 4.8 in
Propositions 8.6, 10.5, Lemma 10.7 and Proposition 11.6.

5. General facts on epsilon factors

In this section, we recall some general facts on epsilon factors.
For a finite separable extension L over K , we put 9L =9 ◦ TrL/K and let

λ(L/K , 9)=
ε(IndL/K 1, s, 9)
ε(1, s, 9L)

denote the Langlands constant which is independent of s, where 1 is the trivial
representation of WL (see [Bushnell and Henniart 2006, Section 30.4]).

Proposition 5.1. Let τ be a finite dimensional smooth representation of WK such
that τ |PK is irreducible and nontrivial. Let L be a tamely ramified finite extension
of K . Then we have

ε(τ |WL , 9L)= λ(L/K , 9)− dim τ δL/K (rsw(τ,9)) ε(τ,9)[L:K ].

Proof. This is proved by the same arguments as in [Bushnell and Henniart 2006,
Proposition 48.3]. □

Proposition 5.2. Let τ be a finite dimensional smooth representation of WK such
that τ |PK does not contain the trivial character.

(1) If φ is a tamely ramified character of WK , then rsw(τ ⊗φ,9)= rsw(τ,9).

(2) Let L be a tamely ramified finite extension of K . Then we have

rsw(τ |WL , 9L)= rsw(τ,9) mod U 1
L .

Proof. This is [Bushnell and Henniart 2006, Theorem 48.1(2), (3)]. □

For a nontrivial character ξ of K ×, the level of ξ means the least integer m ≥ 0
such that ξ is trivial on U m+1

K .

Proposition 5.3. Let ξ be a character of K × of level m ≥ 1. Assume that γ ∈ K ×

satisfies
ξ(1 + x)=9(γ x) for x ∈ p

[m/2]+1
K .

(1) We have rsw(ξ,9)= γ−1.

(2) We have

ε(ξ,9)= q [(m+1)/2]−(m+1)/2
∑

y∈U [(m+1)/2]

K /U [m/2]+1
K

ξ(γ y)−19(γ y).

Proof. Claim (1) follows from [Bushnell and Henniart 2006, Stability theorem 23.8].
Claim (2) follows from [Bushnell and Henniart 2006, Section 23.5, Lemma 1,
(23.6.2) and Proposition 23.6]. □
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For a finite Galois extension L of K , let ψL/K denote the Herbrand function
of L/K and Gal(L/K )i denote the lower numbering i-th ramification subgroup of
Gal(L/K ) for i ≥ 0 (see [Serre 1968, Chapter IV]). We use the following lemmas
to calculate the refined Swan conductor of a character of a Weil group.

Lemma 5.4. Let m be a positive integer dividing f . Let h be a positive integer that
is prime to p and less than pmvK (p)/(pm

− 1). Let L be a Galois extension of K
defined by x pm

− x = 1/ϖ h . Then we have

Gal(L/K )i =

{
Gal(L/K ) if i ≤ h,
{1} if i > h

and
ψL/K (v)=

{
v if v ≤ h,
pm(v− h)+ h if v > h.

Proof. Take an integer l such that lh ≡ 1 mod pm . Then we have

vL

(
1

x lϖ (lh−1)/pm

)
= 1.

Hence, for σ ∈ Gal(L/K ) and i ≥ 0, we have σ ∈ Gal(L/K )i if and only if

(5-1) i +1 ≤ vL

(
σ

(
1

x lϖ (lh−1)/pm

)
−

1
x lϖ (lh−1)/pm

)
= vL(σ (x)l − x l)+hl +1.

The right-hand side of (5-1) is h + 1 if σ ̸= 1. Hence the first claim follows. The
second claim follows from the first claim. □

Lemma 5.5. Let L be a totally ramified finite abelian extension of K . Let m ≥ 1.

(1) We have

NrL/K (U
ψL/K (m)
L )⊂ U m

K , NrL/K (U
ψL/K (m)+1
L )⊂ U m+1

K ,

ArtK (U m
K )⊂ Gal(L/K )ψL/K (m).

(2) We take α ∈ K and β ∈ L such that vK (α)= m and vL(β)= ψL/K (m). We put
P(z)= z p

− z for z ∈ k. Assume that

UψL/K (m)
L

NrL/K
//

pL ,β

��

U m
K

pK ,α

��

k P
// k

is commutative, where

pK ,α : U m
K → k, 1 +αx 7→ x̄,

pL ,β : UψL/K (m)
L → k, 1 +βx 7→ x̄ .
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Let ϖL be a uniformizer of L. Then we have

pL ,β

(
ArtK (1 +αx)(ϖL)

ϖL

)
= Trk/Fp(x̄)

for x ∈ OK .

Proof. The first claim follows from [Serre 1968, Chapter V, Section 3, Proposition 4
and Chapter XV, Section 2, Corollaire 3 of Théorème 1]. We note that our normal-
ization of the Artin reciprocity map is inverse to that in [Serre 1968, Chapter XIII,
Section 4]. Let x ∈ OK . By [Serre 1968, Chapter XV, Section 3, Proposition 4]
and the construction of the isomorphism of [Serre 1968, Chapter XV, Section 2,
Proposition 3], we have

pL ,β

(
ArtK (1 +αx)(ϖL)

ϖL

)
= zq

x − zx ,

where we take zx ∈ kac such that z p
x − zx = x̄ . Then we have the second claim, since

zq
x − zx = Trk/Fp(z

p
x − zx)= Trk/Fp(x̄)

for such zx . □

6. Stiefel–Whitney class and discriminant

6A. Stiefel–Whitney class. Let R(WK ,R) be the Grothendieck group of finite-
dimensional representations of WK over R with finite images. For V ∈ R(WK ,R),
we put VC = V ⊗R C and define ε(VC, 9) by the additivity using the epsilon
factors in Section 2A. For V ∈ R(WK ,R), we define the i-th Stiefel–Whitney class
wi (V ) ∈ H i (G K ,Z/2Z) for i ≥ 0 as in [Deligne 1976, (1.3)]. Let

cl : H 2(G K ,Z/2Z)→ H 2(G K , K ac,×)−→∼ Q/Z,

where the first map is induced by Z/2Z → K ac,×, m 7→ (−1)m and the second
isomorphism is the invariant map.

Theorem 6.1 [Deligne 1976, Théorème 1.5]. Assume that V ∈ R(WK ,R) has
dimension 0 and determinant 1. Then we have

ε(VC, 9)= exp
(
2π

√
−1 cl(w2(V ))

)
.

In particular, we have ε(VC, 9)= 1 if ch K = 2.

6B. Discriminant. Let L be a finite separable extension of K . We put

δL/K = det(IndL/K 1).
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6B1. Multiplicative discriminant. Assume ch K ̸= 2. We define dL/K ∈ K ×/(K ×)2

as the discriminant of the quadratic form TrL/K (x2) on L . For a ∈ K ×/(K ×)2, let
{a} ∈ H 1(G K ,Z/2Z) and κa ∈ Hom(WK , {±1}) be the elements corresponding to
a under the natural isomorphisms

K ×/(K ×)2 ≃ H 1(G K ,Z/2Z)≃ Hom(WK , {±1}).

We have

(6-1) δL/K = κdL/K

by [Bourbaki 1981, Chapter V, Section 10, Example 2(6)] (see [Serre 1984, Sec-
tion 1.4]). For a, b ∈ K ×/(K ×)2, we put

{a, b} = {a} ∪ {b} ∈ H 2(G K ,Z/2Z).

Proposition 6.2 [Abbes and Saito 2010, Proposition 6.5]. Let m be the extension
degree of L over K . We take a generator a of L over K . Let f (x) ∈ K [x] be the
minimal polynomial of a. We put D = f ′(a) ∈ L. Then we have

dL/K = (−1)(
m
2)NrL/K (D) ∈ K ×/(K ×)2,

w2(IndL/K κD)=

(m
4

)
{−1,−1} + {dL/K , 2} ∈ H 2(G K ,Z/2Z).

6B2. Additive discriminant. We put Pm(x) = xm
− x for any positive integer m.

We assume that ch K = 2.

Definition 6.3 [Bergé and Martinet 1985, Définition 2.7]. Let m be the extension
degree of L over K . Let f (x) ∈ K [x] be the minimal polynomial of a generator
of L over K . We have a decomposition f (x) =

∏
1≤i≤m(x − ai ) over the Galois

closure of L over K . We put

d+

L/K =

∑
1≤i< j≤m

ai a j

(ai + a j )2
∈ K/P2(K ),

which we call the additive discriminant of L over K .

Theorem 6.4 [Bergé and Martinet 1985, Théorème 2.7]. Let L ′ be the subextension
of K ac over K corresponding to Ker δL/K . Then the extension L ′ over K corresponds
to d+

L/K ∈ K/P2(K ) by the Artin–Schreier theory.

7. Product formula of Deligne–Laumon

We recall a statement of the product formula of Deligne–Laumon. In this paper, we
need only the rank one case, which is proved in [Deligne 1973, Proposition 10.12.1],
but we follow the notation from [Laumon 1987].



56 NAOKI IMAI AND TAKAHIRO TSUSHIMA

7A. Local factor. We consider a triple (T,F, ω) which consists of the following.

• The affine scheme T = SpecOKT where OKT is the ring of integers in a local
field KT of characteristic p whose residue field contains k.

• A constructible Qℓ-sheaf F on T .

• A nonzero meromorphic 1-form ω on T .

Then we can associate εψ0(T,F, ω)∈C× to the triple (T,F, ω) as in [Laumon 1987,
Théorème 3.1.5.4] using ι.

Assume that KT = k((t)). Let η= Spec k((t)) be the generic point of T with the
natural inclusion j : η→ T . We define a character 9ω : k((t))→ C× by

9ω(a)= (ψ0 ◦ Trk/Fp)(Res(aω)) for a ∈ k((t)).

Let l(9ω) be the level of 9ω in the sense of [Bushnell and Henniart 2006, Def-
inition 1.7]. We fix an algebraic closure k((t))ac of k((t)). For a rank 1 smooth
Qℓ-sheaf V on η corresponding to a character χ : Gk((t)) → C× via ι, we have

(7-1) εψ0(T, j∗ V, ω)= q−l(9ω)/2ε(χω−1/2, 9ω)

by [Laumon 1987, Théorème 3.1.5.4(v); Tate 1979, (3.6.2)] and [Bushnell and
Henniart 2006, Proposition 23.1(3)].

7B. Product formula. Let X be a geometrically connected proper smooth curve
over k of genus g. Let F be a constructible Qℓ-sheaf on X . Let Frobq ∈ Gk be the
geometric Frobenius element. We put

ε(X,F)= ι

( 2∏
i=0

det(− Frobq; H i (X ⊗k kac,F))(−1)i−1
)
.

Let rk(F) be the generic rank of F .

Theorem 7.1 [Laumon 1987, Théorème 3.2.1.1]. Let ω be a nonzero meromorphic
1-form on X. Then we have

ε(X,F)= q rk(F)(1−g)
∏

x∈|X |

εψ0(X(x),F |X(x), ω|X(x)),

where |X | is the set of closed points of X , and X(x) is the completion of X at x.

8. Determinant

In this section, we study det τψ0 to show the equality ωπζ,χ,c =det τζ,χ,c of the central
character and the determinant. We use the product formula of Deligne–Laumon to
study det τψ0(Fr(1)), where Fr(1) is defined in (2-2).

Lemma 8.1. We have Qab
= Q/Q0.
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Proof. By Lemma 2.4, we have Qab
= (Q/F)ab. For (a, b, c) ∈ Q, let (a, b) be the

image of (a, b, c) in Q/F . Then we have

(a, 0)(a, b)(a, 0)−1(a, b)−1
= (1, (a − 1)b).

Hence, we obtain the claim. □

We view θ0 defined in (2-8) as a character of Q by (a, b, c) 7→ θ0(a). Recall
that τ 0 is the representation of Q defined in (2-14).

Lemma 8.2. We have det τ 0
= θ0.

Proof. By Lemma 8.1, it suffices to show det τ 0
= θ0 on µpe+1(kac). By Lemma 2.2

and Lemma 2.5, we have

det τ 0(a)=

∏
χ∈µpe+1(kac)∨\{1}

χ(a)

for a ∈ µpe+1(kac). Hence, the claim follows. □

For a ∈ k×, let
(a

k

)
denote the quadratic residue symbol of k defined by(

a
k

)
=

{
1 if a is square in k,

−1 if a is not square in k.

Lemma 8.3. Let m be a positive integer that is prime to p. We take an m-th root
ϖ 1/m of ϖ , and put L = K (ϖ 1/m).

(1) If m is odd, then δL/K is the unramified character satisfying δL/K (ϖ)=
( q

m

)
.

(2) If m is even, we have δL/K (ϖ)=
(

−1
q

)m/2 and δL/K (x)=
( x̄

k

)
for x ∈ O×

K .

Proof. These are proved in [Bushnell and Fröhlich 1983, (10.1.6)] if ch K = 0.
Actually, the same proof works also in the positive characteristic case. □

Lemma 8.4. Let m,m′ be positive integers that are prime to p. We take an m-th
root ϖ 1/m of ϖ , and put L = K (ϖ 1/m). Let ψ ′

K : K → C× be a character such
that ψ ′

K (x)= ψ0(Trk/Fp(m
′ x̄)) for x ∈ OK . Then we have

λ(L/K , ψ ′

K )=

{( q
m

)
if m is odd,

−
(
−ϵ(p)

( 2mm′

p

)(
−1
p

)(m/2)−1) f if m is even.

Proof. If m is odd, we have

λ(L/K , ψ ′

K )= ε(δL/K , ψ
′

K )=

(
q
m

)
by [Henniart 1984, Proposition 2] and Lemma 8.3(1).

Assume that m is even. Note that p ̸= 2 in this case. Then we have

(8-1) dL/K = (−1)m/2 NrL/K (m(ϖ 1/m)m−1)= −(−1)m/2ϖ ∈ K ×/(K ×)2



58 NAOKI IMAI AND TAKAHIRO TSUSHIMA

by Proposition 6.2. For χ ∈ (F×
q )

∨ and ψ ∈ F∨
q \ {1}, we set

τ(χ,ψ)= −

∑
x∈F×

q

χ−1(x)ψ(x)

and have the Hasse–Davenport formula

(8-2) τ(χ ◦ NrFqn /Fq , ψ ◦ TrFqn /Fq )= τ(χ,ψ)n.

Let
( , )K : K ×/(K ×)2 × K ×/(K ×)2 → {±1}

denote the Hilbert symbol. By (6-1) and (8-1), we have

δL/K (x)= κdL/K (x)= (x, dL/K )K = (x,ϖ)K =

(
x̄
k

)
for x ∈ O×

K . By [Bushnell and Henniart 2006, Theorem 23.5], we have

ε(δL/K , ψ
′

K )= q−1/2
∑

x∈O×

K/U 1
K

δL/K (x)ψ ′

K (x)= q−1/2
∑
x∈k×

( x
k

)
ψ0(Trk/Fp(m

′x)).

By applying (8-2) to the extension k over Fp and using (2-16), we have

q−1/2
∑
x∈k×

(
x
k

)
ψ0(Trk/Fp(m

′x))= −

(
−ϵ(p)

(
m ′

p

)) f
.

Hence, we have

λ(L/K , ψ ′

K )= ε(δL/K , ψ
′

K )
(

m
q

)(
−1
q

)(m/2)−1
(dL/K , 2)K

= −

(
−ϵ(p)

(
2mm ′

p

)(
−1
p

)(m/2)−1) f

by [Saito 1995, Theorem II.2B] and [Tate 1979, (3.6.1)]. □

Lemma 8.5. We have

det τψ0(Fr(1))=

{(
−ϵ(p)

( 2
p

)) f q pe/2 if p ̸= 2,
q2e−1

if p = 2.

Proof. Let x be the standard coordinate of A1
k . Let j be the open immersion A1

k ↪→P1
k .

We put t = 1/x . As in Section 7A, we put T = Spec k[[t]] and η = Spec k((t)) with
the open immersion j : η→ T .

We consider k((s)) as a subfield of k((t)) by s = t pe
+1. Let ξ̃ : Gk((s)) → C× be

the Artin–Schreier character associated to y p
− y = 1/s and ψ0, which means the

composite of
Gk((s)) → Fp, σ 7→ σ(y)− y

and ψ−1
0 where y is an element of k((t))ac such that y p

− y = 1/s.
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We use the notation in Lemma 5.5. Note that ψk((s))(y)/k((s))(1)= 1 by Lemma 5.4.
We can check that

Nrk((s))(y)/k((s))(1 + y−1x)= 1 + s(x p
− x)

for x ∈ k. For x ∈ Ok((s)), we have

ξ̃ (1 + sx)= ψ−1
0

(
Artk((s))(1 + sx)(y)− y

)
= ψ−1

0

(
−pk((s))(y),y−1

(
Artk((s))(1 + sx)(y−1)

y−1

))
= ψ0(Trk/Fp(x̄)),

where we use Lemma 5.5 with α = s, β = ϖk((s)) = y−1. Hence, we have
rsw(ξ̃ , 9s−1ds)= s by Proposition 5.3(1).

Let ξ : Gk((t))→ C× be the restriction of ξ̃ to Gk((t)). Then ξ is the Artin–Schreier
character associated to y p

− y = 1/t pe
+1 and ψ0.

Let Vξ be the smooth Qℓ-sheaf on η corresponding to ξ via ι. Then we have
Vξ ≃ Lψ0 |η by [Deligne 1977, Définition 1.7 in Sommes trig.]. Let the notation be
as in Lemma 2.2. We write ω for the meromorphic 1-form dx on P1

k . By [Laumon
1987, Théorème 3.1.5.4(v)], we have

εψ0

(
X(x), ( j! π∗Lψ0)|X(x), ω|X(x)

)
= 1

for any x ∈ |A1
k | with X = P1

k in the notation of Theorem 7.1. We simply write ω
for ω|T . Then we have

det τψ0(Fr(1))= (−1)pe
ε(P1

k, j! π∗Lψ0)= (−1)pqεψ0(T, j! Vξ , ω)

by Theorem 7.1. Since ξ is a ramified character, we have j! Vξ ≃ j∗Vξ . Hence,

εψ0(T, j! Vξ , ω)= εψ0(T, j∗ Vξ , ω)= q−1ε(ξω−1/2, 9ω)

by (7-1). Since ω = −t−2dt on T , we have

ε(ξω−1/2, 9ω)= (ξω−1/2)(−t−1) ε(ξω−1/2, 9t−1dt)

by [Bushnell and Henniart 2006, 23.5 Lemma 1]. We have

ξ(−t−1)= ξ(−t pe
)= ξ(−t)pe

= 1,

since Nrk((t))(y)/k((t))(y)= 1/t pe
+1. Hence we obtain

(ξω−1/2)(−t−1) ε(ξω−1/2, 9t−1dt)= q pe/2ε(ξ,9t−1dt)

by Lemma 4.2, since rsw(ξ,9t−1dt)=s by rsw(ξ̃ , 9s−1ds)=s and Proposition 5.2(2).
By Proposition 5.3(2), we have ε(ξ̃ , 9s−1ds) = ξ̃ (s) = 1, since the level of ξ̃ is 1
and Nrk((s))(y)/k((s))(y−1)= s. Hence, we obtain

ε(ξ,9t−1dt)= λ
(
k((t))/k((s)),9s−1ds

)−1
δk((t))/k((s))(rsw(ξ̃ , 9s−1ds))
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by Proposition 5.1. By Lemmas 8.4 and 8.3, we respectively have

λ
(
k((t))/k((s)),9s−1ds

)
=

{
−

(
−ϵ(p)

( 2
p

)(
−1
p

)(pe
−1)/2) f if p ̸= 2,( q

pe+1

)
if p = 2

and

δk((t))/k((s))(rsw(ξ̃ , 9s−1ds))=

{(
−1
q

)(pe
+1)/2 if p ̸= 2,( q

pe+1

)
if p = 2.

The claim follows from the above equalities. □

We simply write τζ for τζ,1,1.

Proposition 8.6. We have ωπζ,χ,c = det τζ,χ,c.

Proof. By (2-13) and [Gallagher 1965, (1)], we have

(8-3) det τζ,χ,c = δ
pe

Eζ /K (det τn,ζ,χ,c)|K ×,

since δEζ /K = det(IndEζ /K 1) and the transfer homomorphism W ab
K → W ab

Eζ is
compatible with the natural inclusion K ×

→ E×

ζ under the Artin reciprocity maps.
Hence, we may assume χ = 1 and c = 1 by twist (see (2-13)). Then it suffices to
show det τζ = 1. We see that det τζ is unramified by (2-9), Lemmas 2.5, 8.2, 8.3
and equation (8-3).

If p and n′ are odd, then we have

det τζ (ϖ)=

(
q
n′

)pe(
−ϵ(p)

(
2
p

)
p pe/2

)f n′((
−ϵ(p)

(
−2n′

p

))n
p−

1
2

)f n′ pe

=

((
p
n′

)(
n′

p

)
ϵ(p)pen−1

)f n′

=

((
p
n′

)(
n′

p

)
(−1)

1
2 (p−1) 1

2 (n
′
−1)

)f n′

= 1

by (8-3), Lemmas 8.3(1) and 8.5. We see that det τζ (ϖ)= 1 similarly also in the
other case using (8-3), Lemmas 8.3 and 8.5. □

9. Imprimitive field

In this section, we construct a field extension T u
ζ of Eζ such that τn,ζ |WT u

ζ
is an

induction of a character. We call T u
ζ an imprimitive field of τn,ζ , since τn,ζ |WT u

ζ
is

not primitive.

9A. Construction of character. Here we construct subgroups R ⊂ Q′
⊂ Q ⋊Z

and a character φn of R. Later (see Section 9B) we will see that τn|Q′ ≃ IndQ′

R φn .
Our imprimitive field T u

ζ will correspond to the subgroup Q′
⊂ Q ⋊Z.

Let e0 be the positive integer such that e0 ∈ 2N and e/e0 is odd.

Lemma 9.1. Assume p ̸= 2. Then we have Tr τψ0(Fr(2e0))= pe0 .
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Proof. For a ∈ kac and b ∈ Fp2e0 such that a p
− a = bpe

+1, we have that

(9-1) a p2e0
− a = TrF

p2e0 /Fp(b
pe

+1).

By (9-1) and the Lefschetz trace formula, we see that

Tr τψ0(Fr(2e0))= −

∑
b∈F

p2e0

(ψ0 ◦ TrFpe0 /Fp)(TrF
p2e0 /Fpe0 (b

pe0+1))

= −1 − (pe0 + 1)
∑

x∈F×

pe0

(ψ0 ◦ TrFpe0 /Fp)(x)= pe0

using (pe
+ 1, p2e0 − 1)= pe0 + 1. □

Corollary 9.2. Assume p ̸= 2. Then we have Tr τn
(
Fr(2e0)

)
= (−1)ne0(p−1)/2.

Proof. This follows from (2-9) and Lemma 9.1. □

Let n0 be the biggest integer such that 2n0 divides pe0 + 1. We take r ∈ kac such
that r2n0

= −1. We define a subgroup R0 of Q0 by

R0 = {(1, b, c) ∈ Q0 | bpe
− rb = 0}.

Lemma 9.3. (1) If p ̸= 2, then the action of 2e0Z ⊂ Z on Q stabilizes R0.

(2) If p = 2, then the action of g on Q ⋊Z by conjugation stabilizes R0.

Proof. The first claim follows from r p2e0−1
= 1. We can see the second claim easily

using (2-19). □

We put

Q′
=

{
Q0 ⋊ (2e0Z) if p ̸= 2,
Q0 ⋊Z if p = 2,

R =

{
R0 ⋊ (2e0Z) if p ̸= 2,
R0 · ⟨g⟩ if p = 2

as subgroups of Q ⋊ Z, which are well-defined by Lemma 9.3. We are going
to construct a character φn of R in this subsection. Then, we will show that
τn|Q′ ≃ IndQ′

R φn in the next subsection.
First, we consider the case where p is odd. We define a homomorphism φn :

R → C× by

(9-2)
φn

(
((1, b, c), 0)

)
= ψ0

(
c −

1
2

e−1∑
i=0

(rb2)pi
)

for (1, b, c) ∈ R0,

φn(Fr(2e0))= (−1)ne0((p−1)/2).

Then φn extends the character ψ0 of F .
Next, we consider the case where p = 2. We define an abelian group R′

0 as

R′

0 = {(b, c) | b ∈ F2, c ∈ F22e , c2e
− c = b},
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with the multiplication given by

(b1, c1) · (b2, c2)= (b1 + b2, c1 + c2 + b1 b2).

We define φ : R0 → R′

0 by

φ((1, b, c))=

(
TrF2e/F2(b), c +

∑
0≤i< j≤e−1

b2i
+2 j

)
for (1, b, c) ∈ R0,

which is a homomorphism by

(9-3) TrF2e/F2(b)TrF2e/F2(b
′)= TrF2e/F2(bb′)+

∑
0≤i< j≤e−1

(b2i
b′2 j

+ b′2i
b2 j
)

for b, b′
∈ F2e . Let b0 ∈ F22e be as before Lemma 2.8. Let F ′ be the kernel of the

homomorphism
F2e → F2, c 7→ TrF2e/F2((b0 + b2e

0 ) c).

We put R′′

0 = R′

0/F
′, where we consider F ′ as a subgroup of R′

0 by c 7→ (0, c).
Then R′′

0 is a cyclic group of order 4. We write ḡ(b, c) for the image of (b, c) ∈ R′

0
under the projection R′

0 → R′′

0 . Let φ′
: R0 → R′′

0 be the composite of φ and the
projection R′

0 → R′′

0 . We put

(9-4) s =

e−1∑
i=0

b2i

0 , t = TrF22e/F2e (b0).

We have s2
+ s = t and TrF2e/F2(t)= TrF22e/F2(b0)= 1. We have(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

)
∈ R′

0,

which is of order 4. The element ḡ
(
1, s2

+
∑

0≤i< j≤e−1t2i
+2 j )

is a generator of R′′

0 ,
because

2ḡ
(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

)
= ḡ(0, 1) ̸= 0.

Let ψ̃0 : R′′

0 → C× be the faithful character satisfying

ψ̃0

(
ḡ
(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

))
= −

√
−1.

We define a homomorphism φn : R → C× by

(9-5)
φn

(
((1, b, c), 0)

)
= (ψ̃0 ◦φ′)((1, b, c)) for (1, b, c) ∈ R0,

φn(g)= (−1)
1
8 n(n−2)−1+

√
−1

√
2

,

which is a character of order 8. Then φn extends the character ψ0 of F .
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9B. Induction of character.

Lemma 9.4. We have τn|Q′ ≃ IndQ′

R φn .

Proof. We write ψ̃n for φn|R0 . We know that τn|Q0
∼= IndQ0

R0
ψ̃n by Proposition 1.2,

since R0 is an abelian group such that 2 dimFp(R0/F)= dimFp(Q0/F).
First, we consider the case where p is odd. The claim for general f follows

from the claim for f = 1 by the restriction. Hence, we may assume that f = 1.
If ψ̃ ∈ R∨

0 satisfies ψ̃ |F =ψ0, then we have τn|Q0
∼= IndQ0

R0
ψ̃ by Proposition 1.2,

and obtain an injective homomorphism ψ̃ ↪→ τn|R0 as representations of R0 by
Frobenius reciprocity. Hence we have a decomposition

(9-6) τn|R0 =

⊕
ψ̃∈R∨

0 , ψ̃ |F =ψ0

ψ̃,

since the number of ψ̃ ∈ R∨

0 such that ψ̃ |F = ψ0 is pe.
We put

R0 = {b ∈ kac
| bpe

− rb = 0}.

The ψ̃n-component in (9-6) is the unique component that is stable by the action of
((1, 0, 0), 2e0), since the homomorphism

R0 → R0, b 7→ bp2e0
− b

is an isomorphism. Hence, we have a nontrivial homomorphism φn → τn|R by
Corollary 9.2. Then we have a nontrivial homomorphism IndQ′

R φn → τn|Q′ by
Frobenius reciprocity. The representation τn|Q′ is irreducible by Corollary 2.6.
Then we obtain the claim, since [Q′

: R] = pe.
Next we consider the case where p = 2. Then it suffices to show that

Tr(IndQ′

R φn)(g−1)= −(−1)
1
8 n(n−2)

√
2

by (2-9) and Proposition 2.9. We have a decomposition

(9-7) (IndQ′

R φn)|R0 =

⊕
φ∈R∨

0 , φ|F =ψ0

φ.

Let ψ̃ ′
n be the twist of ψ̃n by the character

R0 → Q×

ℓ , (1, b, c) 7→ ψ0(TrF2e/F2(b)).

Then only the ψ̃n-component and the ψ̃ ′
n-component in (9-6) are stable by the action

of ((1, b0, c0), 1), since the image of the homomorphism

F2e → F2e , b 7→ b2
− b
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is equal to Ker TrF2e/F2 . The action of Fr(e) permutes the ψ̃n-component and the
ψ̃ ′

n-component. Hence, g acts on the ψ̃ ′
n-component by φn(g) times

φn(Fr(e)−1 g Fr(e)g−1)=φn

(((
1, t, c0+c2e

0 +

e−1∑
i=0

(b2e
+1

0 +b2e+1

0 )2
i
)
, 0

))
=

√
−1.

Hence we have

Tr(IndQ′

R φn)(g−1)= (1 −
√

−1) φn(g−1)= −(−1)
1
8 n(n−2)

√
2. □

We use the notations from equation (2-10). We set Tζ = Eζ (αζ ), Mζ = Tζ (βζ )
and Nζ = Mζ (γζ ). Let f0 be the positive integer such that f0 ∈ 2N and f/ f0 is odd.
We put

N =

{
2e0/ f0 if p ̸= 2 and f0|2e0,

1, otherwise.

Let K ur be the maximal unramified extension of K in K ac. Let K u
⊂ K ur be the

unramified extension of degree N over K . Let kN be the residue field of K u. For
a finite field extension L of K in K ac, we write Lu for the composite field of L
and K u in K ac. For a ∈ kac, we write â ∈OK ur for the Teichmüller lift of a. We put

(9-8) δ′ζ =

{
β

pe

ζ − r̂βζ if p ̸= 2,
β2e

ζ −βζ +
∑e−1

i=0 b̂2i

0 if p = 2,
ϵ1 =

{
0 if p ̸= 2,
1 if p = 2.

Then we have
δ
′pe

ζ − r̂−1δ′ζ ≡ −α−1
ζ + ϵ1 mod pT u

ζ (δ
′

ζ )
.

We take δζ ∈ T u
ζ (δ

′

ζ ) such that

(9-9) δ
pe

ζ − r̂−1δζ = −α−1
ζ + ϵ1, δζ ≡ δ′ζ mod pT u

ζ (δ
′

ζ )
.

We put M ′u
ζ =T u

ζ (δζ ). The image of2ζ |WM ′u
ζ

is contained in R. Let ξn,ζ :WM ′u
ζ

→C×

be the composite of the restrictions2ζ |WM ′u
ζ

and φn|R . By the local class field theory,

we regard ξn,ζ as a character of M ′u
ζ

×.

Proposition 9.5. We have τn,ζ |WT u
ζ

≃ IndM ′u
ζ /T u

ζ
ξn,ζ .

Proof. This follows from Lemma 9.4. □

Remark 9.6. Our imprimitive field is different from that in [Bushnell and Henniart
2014, Section 5.1]. In our case, T u

ζ need not be normal over K . This choice is
technically important in our proof of the main result.

9C. Study of character. Here we study the character ξn,ζ in detail.
Assume that ch K = p and f = 1 in this subsection. We will use results in this

subsection to compute the epsilon factor of ξn,ζ later after a reduction to the case
where ch K = p and f = 1. By (2-10), (9-8), (9-9) and ch K = p, we have that
δζ = δ′ζ .
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9C1. Odd case. Assume p ̸= 2. We put

(9-10) θζ = γζ +
1
2

e−1∑
i=0

(rβ2
ζ )

pi
.

Since r pe0+1
= −1 and (pe

+ 1)/(pe0 + 1) is an odd integer, we have r pe
+1

= −1.
Then we have

(9-11) θ
p
ζ − θζ = β

pe
+1

ζ −
1
2r
(β

2pe

ζ + r2β2
ζ )

= −
1
2r
(β

2pe

ζ − 2rβ pe
+1

ζ + r2β2
ζ )= −

1
2r
δ2
ζ .

We put N ′u
ζ = M ′u

ζ (θζ ). Let ξ ′

n,ζ be the twist of ξn,ζ by the unramified character

WM ′u
ζ

→ C×, σ 7→
√

−1
nnσ (p−1)/2

,

where nσ is as before (2-12).

Lemma 9.7. If p ̸= 2, then ξ ′

n,ζ factors through Gal(N ′u
ζ /M ′u

ζ ).

Proof. Let σ ∈ Ker ξ ′

n,ζ . Recall that aσ , bσ , cσ are defined in (2-11). Then we have
(āσ , b̄σ , c̄σ ) ∈ R0 and

c̄σ −
1
2

e−1∑
i=0

(r b̄2
σ )

pi
= 0

by (9-2). Hence, we see that

σ(θζ )− θζ = cσ −

e−1∑
i=0

(rbσ (βζ + bσ ))pi
+

1
2

e−1∑
i=0

(
r((βζ + bσ )2 −β2

ζ )
)pi

= cσ −
1
2

e−1∑
i=0

(rb2
σ )

pi
≡ 0 mod pN ′u

ζ

by (2-11). Therefore, we obtain the claim by σ(δζ )= δζ and (9-11). □

9C2. Even case. Assume p = 2. Let ξ ′

n,ζ be the twist of ξn,ζ by the character

(9-12) WM ′u
ζ

→ C×, σ 7→

(
(−1)

1
8 n(n−2)−1+

√
−1

√
2

)nσ
.

We take b1, b2 ∈ kac such that

(9-13) b2
1 − b1 = s, b2

2 − b2 = t
(

b2
1 +

e−1∑
i=0

(b1 s)2
i
)
.

We put

(9-14) ηζ =

e−1∑
i=0

β2i

ζ + b1, γ ′

ζ = γζ +

∑
0≤i< j≤e−1

β2i
+2 j

ζ ,
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and

(9-15) θ ′

ζ =

e−1∑
i=0

(tγ ′

ζ )
2i

+

∑
0≤i≤ j≤e−2

t2i
(δζηζ )

2 j

+

∑
0≤ j<i≤e−1

t2i
(b1δζ + sηζ )2

j
+ b2

1ηζ + b2.

Lemma 9.8. We have η2
ζ − ηζ = δζ and θ ′2

ζ − θ ′

ζ = (δζηζ )
2e−1

.

Proof. We can check the first claim easily. We show the second claim. We use Pm

in Section 6B2. We have

(9-16) P2(γ
′

ζ )= (β2e

ζ −βζ )

e−1∑
i=0

β2i

ζ +β2
ζ = (δζ − s)(ηζ − b1)+β

2
ζ .

Hence, we have

(9-17) P2e(γ ′

ζ )=

e−1∑
i=0

((δζ − s)(ηζ − b1))
2i

+ (ηζ − b1)
2.

By b4
1 + b1 = s2

+ s = t and η2
ζ − ηζ = δζ , we have

(b2
1ηζ )

2
+b2

1ηζ = tη2
ζ +b1η

2
ζ +b2

1ηζ = tη2
ζ +b1(η

2
ζ +ηζ )+sηζ = tη2

ζ +b1δζ +sηζ .

Hence, by using
∑e−1

i=1 t2i
= 1 − t and t ∈ F2e , we have

θ ′2
ζ − θ ′

ζ = t P2e(γ ′

ζ )+ t
e−1∑
i=0

(δζηζ + b1δζ + sηζ )2
i
+ (δζηζ )

2e−1
+ tη2

ζ + b2
2 − b2

= t
(e−1∑

i=0

(b1 s)2
i
+ η2

ζ + b2
1

)
+ (δζηζ )

2e−1
+ tη2

ζ + b2
2 − b2 = (δζηζ )

2e−1
,

where we use (9-17) at the second equality and (9-13) at the third one. □

We take θζ ∈ K ac such that θ ′

ζ = θ2e−1

ζ . Then we have θ2
ζ − θζ = δζηζ . We put

N ′u
ζ = M ′u

ζ (ηζ , θζ ), which is a cyclic extension of M ′u
ζ of order 4 by Lemma 9.8.

Lemma 9.9. The character ξ ′

n,ζ factors through Gal(N ′u
ζ /M ′u

ζ ).

Proof. Let σ ∈ Ker ξ ′

n,ζ . We take σ1, σ2 ∈ Ker ξ ′

n,ζ such that σ = σ1σ
−nσ
2 , σ1 ∈ IM ′u

ζ

and2ζ (σ2)= ((1, b0, c0),−1). Then we have (āσ1, b̄σ1, c̄σ1)∈ R0, TrF2e/F2(b̄σ1)=0
and

(9-18) TrF2e/F2

(
t
(

c̄σ1 +

∑
0≤i< j≤e−1

b̄2i
+2 j

σ1

))
= 0

by (9-5). It suffices to show that σi (ηζ )= ηζ and σi (θ
′

ζ )= θ ′

ζ for i = 1, 2.
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We have

σ1(ηζ )− ηζ ≡

e−1∑
i=0

b2i

σ1
≡ 0 mod pN ′u

ζ
,

σ2(ηζ )− ηζ ≡

e−1∑
i=0

b2i

0 + b2
1 − b1 ≡ 0 mod pN ′u

ζ

by TrF2e/F2(b̄σ1)= 0 and b2
1 − b1 = s. By Lemma 9.8, we have

σi (ηζ )− ηζ ∈ F2 for i = 1, 2.

Hence, we have σi (ηζ )= ηζ for i = 1, 2. We have

σ1(θ
′

ζ )− θ
′

ζ =

e−1∑
i=0

(
t (σ1(γ

′

ζ )− γ
′

ζ )

)2i

.

Further, we have

σ1(γ
′

ζ )− γ
′

ζ ≡ cσ1 +

e−1∑
i=0

(bσ1)
2i+1

+

e−1∑
i=0

b2i

σ1

e−1∑
i=0

β2i

ζ +

∑
0≤i< j≤e−1

b2i
+2 j

σ1

≡ cσ1 +

∑
0≤i< j≤e−1

b2i
+2 j

σ1
mod pN ′u

ζ
,

where we use (2-11) and b̄σ1 ∈ F2e at the first equality, and use TrF2e/F2(b̄σ1) = 0
at the second one. This implies σ1(θ

′

ζ ) ≡ θ ′

ζ mod pN ′u
ζ

by (9-18). By a similar
argument as above using Lemma 9.8, we obtain σ1(θ

′

ζ )= θ ′

ζ .
It remains to show σ2(θ

′

ζ )= θ ′

ζ . Using (9-16) and TrF2e/F2(t)= 1, we see that

(9-19)
e−1∑
i=0

(tγ ′

ζ )
2i

= γ ′

ζ +

∑
1≤i≤ j≤e−1

t2 j
β2i

ζ +

∑
0≤i< j≤e−1

t2 j
((δζ − s)(ηζ − b1))

2i
.

We put
γ ′′

ζ = γ ′

ζ +

∑
1≤i≤ j≤e−1

t2 j
β2i

ζ .

By c2
0 + c0 = b2e

+1
0 and t = b0 + b2e

0 (see (2-18), (9-4)), we have

σ2(γζ )− γζ ≡ c0 +

e−1∑
i=0

(b2e

0 (βζ + b0))
2i

≡ c2e

0 +

e−1∑
i=0

((b0 + t) βζ )2
i

mod pN ′u
ζ
.

Then we have

σ2(γ
′

ζ )− γ
′

ζ ≡ c2e

0 + s(ηζ − b1)+

e−1∑
i=0

(tβζ )2
i
+

∑
0≤i< j≤e−1

b2i
+2 j

0 mod pN ′u
ζ
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by (9-4) and (9-14). Hence, we have

σ2(γ
′′

ζ )− γ
′′

ζ ≡ σ2(γ
′

ζ )− γ
′

ζ +

∑
1≤i≤ j≤e−1

t2 j+1
(βζ + b0)

2i
−

∑
1≤i≤ j≤e−1

t2 j
β2i

ζ

≡ σ2(γ
′

ζ )− γ
′

ζ + t (ηζ − b1)+

e−1∑
i=0

(tβζ )2
i
+

∑
1≤i< j≤e

b2i

0 t2 j

≡ c2e

0 + s2(ηζ − b1)+
∑

0≤i< j≤e−1

b2i
+2 j

0 +

∑
1≤i< j≤e

b2i

0 t2 j
mod pN ′u

ζ
,

where we use (9-14) and t ∈ F2e at the second equality and s2
+ s = t at the last

equality. We can check that

c2e

0 +

∑
0≤i< j≤e−1

b2i
+2 j

0 +

∑
1≤i< j≤e

b2i

0 t2 j
= st

by (2-17), (9-4) and TrF22e/F2(b0)= 1. As a result, we obtain

σ2(γ
′′

ζ )− γ
′′

ζ ≡ s2ηζ + b1 s2
+ st mod pN ′u

ζ
.

Hence, by (9-15) and (9-19), we have

σ2(θ
′

ζ )− θ
′

ζ ≡

2e−1
+2e−2∑

i=0

di η
i
ζ mod pN ′u

ζ

for some di ∈ kac. We have

d0 = b1 s2
+ st + t

e−1∑
j=1

(b1 s)2
j
+ b1 s

e−1∑
l=1

t2l
+ b2

2 − b2 = 0.

This implies σ2(θ
′

ζ )= θ ′

ζ , since we know that σ2(θ
′

ζ )− θ
′

ζ ∈ F2 by Lemma 9.8. □

10. Refined Swan conductor

Let K̃ ⊂ K ur be the unramified extension of K u generated by µp4pe−1(K ur). For a
finite field extension L of K in K ac, we write L̃ for the composite field of L and K̃
in K ac. We write M̃ ′

ζ for M̃ ′u
ζ . Then Ñζ is a Galois extension of M̃ ′

ζ . By equations
(9-8) and (9-9), we can take β ′

ζ ∈ M̃ζ such that

(10-1) β
′pe

ζ − r̂β ′

ζ = δζ , β ′

ζ ≡ βζ mod pM̃ζ
,

since there is x ∈ F24e such that x2e
− x =

∑e−1
i=0 b2i

0 if p = 2. Then we have
M̃ζ = M̃ ′

ζ (β
′

ζ ) by Krasner’s lemma.

Lemma 10.1. (1) We have

(10-2) ψÑζ /M̃ ′

ζ
(v)=


v if v ≤ 1,
pe(v− 1)+ 1 if 1< v ≤ 2,
pe+1(v− 2)+ pe

+ 1 if 2< v.
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(2) We have

Gal(Ñζ/M̃ ′

ζ )i =


Gal(Ñζ/M̃ ′

ζ ) if i ≤ 1,
Gal(Ñζ/M̃ζ ) if 2 ≤ i ≤ pe

+ 1,
{1} if pe

+ 2 ≤ i.

Proof. We have

ψM̃ζ /M̃ ′

ζ
(v)=

{
v if v ≤ 1,
pe(v− 1)+ 1 if v > 1,

ψÑζ /M̃ζ
(v)=

{
v if v ≤ pe

+ 1,
p(v− pe

− 1)+ pe
+ 1 if v > pe

+ 1

by (2-10), (10-1) and Lemma 5.4 noting that r̂ has a (pe
− 1)-st root in M̃ ′

ζ . Hence,
claim (1) follows fromψÑζ /M̃ ′

ζ
=ψÑζ /M̃ζ

◦ψM̃ζ /M̃ ′

ζ
. Claim (2) follows from claim (1)

and
Gal(Ñζ/M̃ ′

ζ )pe+1 ⊃ Gal(Ñζ/M̃ζ )pe+1 = Gal(Ñζ/M̃ζ ). □

We set

ϖM̃ ′

ζ
= δ−1

ζ , ϖM̃ζ
= β−1

ζ and ϖÑζ = (γζϖ
pe−1

M̃ζ
)−1.

Then the elements ϖM̃ ′

ζ
, ϖM̃ζ

and ϖÑζ are uniformizers of M̃ ′

ζ , M̃ζ and Ñζ respec-
tively. Let k̃ be the residue field of K̃ .

Lemma 10.2. We have a commutative diagram

U pe
+1

Ñζ

NrÑζ /M̃ ′
ζ
//

��

U 2
M̃ ′

ζ

��

k̃ P
// k̃

where the map P is given by x 7→ x p
− x and the vertical maps are given by

pÑζ ,−γ−1
ζ

: U pe
+1

Ñζ
→ k̃, 1 − xγ−1

ζ 7→ x̄,

pM̃ ′

ζ ,r̂ϖ
2
M̃ ′
ζ

: U 2
M̃ ′

ζ

→ k̃, 1 + xr̂ϖ 2
M̃ ′

ζ

7→ x̄ .

Proof. The norm maps NrÑζ /M̃ζ
and NrM̃ζ /M̃ ′

ζ
induce

U pe
+1

Ñζ
/U pe

+2
Ñζ

→ U pe
+1

M̃ζ
/U pe

+2
M̃ζ

, 1 − uγ−1
ζ 7→ 1 − (u p

− u)ϖ pe
+1

M̃ζ
,

U pe
+1

M̃ζ
/U pe

+2
M̃ζ

→ U 2
M̃ ′

ζ

/U 3
M̃ ′

ζ

, 1 − uϖ pe
+1

M̃ζ
= 1 − uβ ′−1

ζ ϖM̃ ′

ζ
7→ 1 + ur̂ϖ 2

M̃ ′

ζ

respectively by Lemma 5.5(1) and calculations of the norms. Hence, the claim
follows. □
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For any finite extension M of K , we write ψM for the composite ψK ◦ TrM/K .

Lemma 10.3. We have rsw(ξn,ζ |WM ′u
ζ

, ψM ′u
ζ
)= −n′δ

−(pe
+1)

ζ mod U 1
M ′u
ζ

.

Proof. We put ξ̃n,ζ = ξn,ζ |WM̃ ′
ζ

, and regard it as a character of M̃ ′×

ζ . By (2-12),

Lemmas 5.5(1) and Lemma 10.1, the restriction of ξ̃n,ζ to U 2
M̃ ′

ζ

is given by the
composition

U 2
M̃ ′

ζ

ArtM̃ ′
ζ

−−−→ Gal(Ñζ/M̃ζ )≃ Fp
ψ0
−→ Q×

ℓ ,

where the isomorphism Gal(Ñζ/M̃ζ )≃ Fp is given by σ 7→ σ(γζ )− γζ . We define
pÑζ ,−γ−1

ζ
as in Lemma 10.2. For u ∈ OM̃ ′

ζ
, we put σu = ArtM̃ ′

ζ
(1 + ur̂ϖ 2

M̃ ′

ζ

) and

then have

(10-3) ξ̃n,ζ (1 + ur̂ϖ 2
M̃ ′

ζ

)= ψ0(σu(γζ )− γζ )

= ψ0

(
pÑζ ,−γ−1

ζ

(
γζ

σu(γζ )

))
= ψ0

(
pÑζ ,−γ−1

ζ

(
σu(ϖÑζ )

ϖÑζ

))
= ψ0 ◦ Trk̃/Fp

(ū),

where we use Lemmas 5.5(2) and 10.2 at the last equality. Since we have

TrM̃ ′

ζ /T̃ζ (δ
pe−1
ζ u)= −r−1ū

for u ∈ OM̃ ′

ζ
, we obtain

ξ̃n,ζ (1 + x)= ψM̃ ′

ζ
(−n′−1δ

pe
+1

ζ x)

for x ∈ p2
M̃ ′

ζ

by (10-3). This implies

(10-4) ξn,ζ (1 + x)= ψM ′u
ζ
(−n′−1δ

pe
+1

ζ x)

for x ∈ p2
M ′u
ζ

, because Trk̃/kN
: k̃ → kN is surjective. The claim follows from (10-4)

and Proposition 5.3(1). □

Lemma 10.4. We have rsw(τn,ζ,χ,c, ψEζ )= n′ϕ′

ζ mod U 1
Eζ .

Proof. By Proposition 5.2(1), we may assume that χ = 1, c = 1. By Proposition 9.5
and Lemma 10.3, we have

(10-5) rsw(τn,ζ |WT u
ζ
, ψT u

ζ
)= NrM ′u

ζ /T u
ζ
(rsw(ξn,ζ , ψM ′u

ζ
))= n′ϕ′

ζ mod U 1
T u
ζ
.

Since T u
ζ is a tamely ramified extension of Eζ , we have

(10-6) rsw(τn,ζ , ψEζ )= rsw(τn,ζ |WT u
ζ
, ψT u

ζ
) mod U 1

T u
ζ

by Proposition 5.2(2). The claim follows from (10-5) and (10-6). □
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Proposition 10.5. We have rsw(τζ,χ,c, ψK )= rsw(πζ,χ,c, ψK ).

Proof. By τζ,χ,c = IndEζ /K τn,ζ,χ,c, we have

(10-7) rsw(τζ,χ,c, ψK )= NrEζ /K (rsw(τn,ζ,χ,c, ψEζ )).

Hence, the claim follows from Lemmas 4.5 and 10.4. □

Lemma 10.6. We have Sw(τζ,χ,c)= 1.

Proof. This follows from Lemma 10.4 and (10-7). □

Lemma 10.7. The representation τζ,χ,c is irreducible.

Proof. We know that the restriction of τn,ζ,χ,c to the wild inertia subgroup of WEζ
is irreducible by Corollary 2.6. Assume that τζ,χ,c is not irreducible. Then we have
an irreducible factor τ ′ of τζ,χ,c such that Sw(τ ′) = 0, by Lemma 10.6 and the
additivity of Sw. Then, the restriction of τ ′ to the wild inertia subgroup of WK

is trivial by Sw(τ ′)= 0. On the other hand, we have an injective homomorphism
τn,ζ,χ,c → τ ′

|WEζ
by Frobenius reciprocity. This is a contradiction. □

Proposition 10.8. The representation τζ,χ,c is irreducible of Swan conductor 1.

Proof. This follows from Lemmas 10.6 and 10.7. □

11. Epsilon factor

11A. Reduction to special cases. In this subsection, we show the equality

ε(τζ,χ,c, ψK )= ε(πζ,χ,c, ψK )

of epsilon factors assuming some results in the special case where n = pe, ch K = p
and f = 1. The results in the special case will be proved in the next subsection.

Lemma 11.1. We have

λ(Eζ/K , ψK )=

{( q
n′

)
if n′ is odd,

−
(
−ϵ(p)

( 2n′

p

)(
−1
p

)(n′/2)−1) f if n′ is even,

λ(T u
ζ /Eζ , ψEζ )=

{
−(−1)

1
4 (p−1) f N if p ̸= 2,( q

pe+1

)
if p = 2.

Proof. We have

λ(T u
ζ /Eζ , ψEζ )= λ(T u

ζ /Eu
ζ , ψEu

ζ
) λ(Eu

ζ /Eζ , ψEζ )
pe

+1
= λ(T u

ζ /Eu
ζ , ψEu

ζ
).

If p ̸= 2, then we have

λ(T u
ζ /Eu

ζ , ψEu
ζ
)= −

(
−ϵ(p)

(
2n′

p

)(
−1
p

)(pe
−1)/2 )f N

= −(−1)
1
4 (p−1) f N

by Lemma 8.4, since f N is even. The other assertions immediately follow from
Lemma 8.4. □
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Lemma 11.2. We have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)=

{
( − 1) f if p = 2 and e ≤ 2,( r

kN

)
, otherwise.

Proof. Let K(0) and K(p) be nonarchimedean local fields of characteristic 0 and p
respectively. Assume that the residue fields of K(0) and K(p) are isomorphic to k.
We take uniformizers ϖ(0) and ϖ(p) of K(0) and K(p) respectively. We define T u

ζ,(0)
similarly as T u

ζ starting from K(0). We use similar notations also for other objects
in the characteristic zero side and the positive characteristic side. We have the
isomorphism

OT u
ζ,(p)
/p2

T u
ζ,(p)

−→∼ OT u
ζ,(0)
/p2

T u
ζ,(0)
, ξ0 + ξ1ϖT u

ζ,(p)
7→ ξ̂0 + ξ̂1ϖT u

ζ,(0)

of algebras, where ξ0, ξ1 ∈ k. Hence, it suffices to show the claim in one of
the characteristic zero side and the positive characteristic side by [Deligne 1984,
Proposition 3.7.1], since Gal(M ′u

ζ,(p)/T u
ζ,(p))

2
= 1 and Gal(M ′u

ζ,(0)/T u
ζ,(0))

2
= 1,

where we use upper numbering filtration of Galois groups.
First, we consider the case where p ̸= 2 and ch K = p. Then, we have dM ′u

ζ /T u
ζ
= r̂

by Proposition 6.2 and the fact that f N is even. Hence, δM ′u
ζ /T u

ζ
is unramified

by (6-1). Hence, we have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(δM ′u

ζ /T u
ζ
, ψT u

ζ
)pe

=

(
r

kN

)
by [Henniart 1984, Proposition 2; Bushnell and Henniart 2006, Proposition 23.5]
and (6-1).

We consider the case where p = 2. Assume that e ≥ 3 and ch K = 0. We have
D = 2eδ2e

−1
ζ + 1 in the notation of Proposition 6.2 with (L , K , a)= (M ′u

ζ , T u
ζ , δζ ).

Then, we have D ∈ (M ′u
ζ

×
)2. Hence, we have κD = 1, dM ′u

ζ /T u
ζ

= 1 and

w2(IndM ′u
ζ /T u

ζ
1)= 1

by Proposition 6.2 and
(pe

4

)
≡ 0 mod 2. Therefore we have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(IndM ′u

ζ /T u
ζ

1, ψT u
ζ
)= ε(1⊕pe

, ψT u
ζ
)= 1

by Theorem 6.1.
Assume that e = 2 and ch K = 2. Then we see that d+

M ′u
ζ /T u

ζ
= 1 by Definition 6.3.

Hence, δM ′u
ζ /T u

ζ
is the unramified character satisfying

δM ′u
ζ /T u

ζ
(ϖT u

ζ
)= (−1) f

by Theorem 6.4. Then we see that

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(IndM ′u

ζ /T u
ζ

1, ψT u
ζ
)= ε(δM ′u

ζ /T u
ζ

⊕ 1⊕3, ψT u
ζ
)= (−1) f ,

where we use Theorem 6.1 at the second equality.
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Assume that e =1 and ch K =2. Let κM ′u
ζ /T u

ζ
be the quadratic character associated

to the extension M ′u
ζ over T u

ζ . Then we have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(κM ′u

ζ /T u
ζ
, ψT u

ζ
)

by Theorem 6.1 similarly as above. We can check that the norm map NrM ′u
ζ /T u

ζ

induces
U 1

M ′u
ζ
/U 2

M ′u
ζ

→ U 1
T u
ζ
/U 2

T u
ζ
, 1 + uδ−1

ζ 7→ 1 + (u2
− u) αζ .

Then, by Lemma 5.5, we have

(11-1) κM ′u
ζ /T u

ζ
(1 +αζ x)= ψ0

(
ArtT u

ζ
(1 +αζ x)(δζ )− δζ

)
= ψ0

(
pM ′u

ζ ,δ
−1
ζ

(ArtT u
ζ
(1 +αζ x)(δ−1

ζ )

δ−1
ζ

))
= ψ0(Trk/Fp(x̄))

for x ∈ OT u
ζ

noting that kN = k. Hence, we have rsw(κM ′u
ζ /T u

ζ
, ψT u

ζ
) = αζ by

Proposition 5.3(1). By Proposition 5.3(2), we have

ε(κM ′u
ζ /T u

ζ
, ψT u

ζ
)= κM ′u

ζ /T u
ζ
(αζ )= κM ′u

ζ /T u
ζ
(1 +αζ )= (−1) f ,

where we use NrM ′u
ζ /T u

ζ
(δζ )= α−1

ζ + 1 and (11-1) at the last equality. □

Lemma 11.3. We have

TrM ′u
ζ /T u

ζ
(δi
ζ )=

{
0 if 1 ≤ i ≤ pe

− 2,
r̂−1(pe

− 1) if i = pe
− 1.

Proof. Vanishing for 1 ≤ i ≤ pe
− 2 follows from (9-9). We have also

TrM ′u
ζ /T u

ζ
(δ

pe
−1

ζ )= TrM ′u
ζ /T u

ζ
(r̂−1

+ δ−1
ζ (−α−1

ζ + ϵ1))= r̂−1(pe
− 1)

by (9-9). □

Lemma 11.4. We have

δT u
ζ /Eζ (rsw(τn,ζ , ψEζ ))=

{
1 if p ̸= 2,( q

pe+1

)
if p = 2.

Proof. If p = 2, the claim follows from Lemmas 8.3(1) and 10.4, since T u
ζ is totally

ramified over Eζ .
Assume that p ̸= 2. Then we have dT u

ζ /Eu
ζ
= (−1)(p

e
+1)/2ϕ′

ζ by Proposition 6.2.
Hence, we have δT u

ζ /Eu
ζ
((−1)(p

e
−1)/2ϕ′

ζ )= 1 by Lemma 8.3(2). Therefore, we have

δT u
ζ /Eζ (rsw(τn,ζ , ψEζ ))= δT u

ζ /Eu
ζ
(n′ϕ′

ζ )

= δT u
ζ /Eu

ζ
(n′(−1)(p

e
−1)/2)=

(
n′(−1)(p

e
−1)/2

q N

)
= 1

by [Gallagher 1965, (1)], Lemmas 8.3(2), 10.4 and the fact that f N is even. □
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Lemma 11.5. Assume that n = pe. Then we have ε(τζ,χ,c, ψK ) ≡ ε(πζ,χ,c, ψK )

mod µpe(C).

Proof. Let π be the representation of GLn(K ) corresponding to τζ,χ,c by the
local Langlands correspondence. By the proof of [Bushnell and Henniart 2014,
Proposition 2.2], Propositions 8.6 and 10.5, we have

π ≃ c-IndGLn(K )
L×

ζ U 1
I

3

for a character 3 : L×

ζ U 1
I → C× which coincides with 3ζ,χ,c on K ×U 1

I . Then,
the claim follows from [Bushnell and Henniart 2014, Lemma 2.2(1)], because
L×

ζ U 1
I/(K

×U 1
I ) is the cyclic group of order pe. □

Proposition 11.6. We have ε(τζ,χ,c, ψK )= ε(πζ,χ,c, ψK ).

Proof. By Proposition 3.2 and τζ,χ,c ≃ IndEζ /K τn,ζ,χ,c, it suffices to show that

λ(Eζ/K , ψK )
pe
ε(τn,ζ,χ,c, ψEζ )= (−1)n−1+ϵ0 f χ(n′) c.

By Lemma 10.4, we may assume χ = 1 and c = 1. Hence, it suffices to show

(11-2) λ(Eζ/K , ψK )
pe
ε(τn,ζ , ψEζ )= (−1)n−1+ϵ0 f .

Assuming that (11-2) is proved for n = pe, we show (11-2) for general n. Let
τ ′

n,ζ denote the representation of WEζ given by 2ζ in (2-12) and τpe . We put
ψ ′

Eζ = n′−1ψEζ . Applying the result for n = pe to Eζ , ϕ′

ζ in place of K ,ϖ , we
have

ε(τ ′

n,ζ , ψ
′

Eζ )= (−1)pe
−1+ϵ′

0 f ,

where ϵ′

0 denotes ϵ0 for n = pe. Since det τ ′

n,ζ is unramified as in the proof of
Proposition 8.6, we have

(11-3) ε(τ ′

n,ζ , ψEζ )= det τ ′

n,ζ (n
′) ε(τ ′

n,ζ , ψ
′

Eζ )= (−1)pe
−1+ϵ′

0 f .

We note that the inflation of the character in (2-9) by 2ζ factors through

WEζ → {±1} × Z, σ 7→ (a(p
e
+1)/2

σ , f nσ ).

If p ̸= 2, then we have (n′ϕ′

ζ ,−ϕ
′

ζ )Eζ =
( n′

q

)
, where

( , )Eζ : E×

ζ /(E
×

ζ )
2
× E×

ζ /(E
×

ζ )
2
→ {±1}

denotes the Hilbert symbol. Hence, we have

(11-4)
ε(τn,ζ , ψEζ )

ε(τ ′

n,ζ , ψEζ )
=

{( n′

q

)n−pe(( n′

p

)n(
−ϵ(p)

(
−2
p

))n−pe) f if p ̸= 2,

(−1)(
1
8 n(n−2)− 1

8 2e(2e
−2)) f if p = 2

by (2-9), Lemmas 4.2 and 10.4. Then we have (11-2) by Lemma 11.1, equa-
tions (11-3) and (11-4).
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Therefore, we may assume that n = pe. By Lemmas 11.1 and 11.5, it suffices to
show that

ε(τn,ζ , ψEζ )
N (pe

+1)
=

{
1 if p ̸= 2,
(−1)1+ϵ0 f if p = 2.

By Proposition 5.1, we have

ε(τn,ζ , ψEζ )
N (pe

+1)
= δT u

ζ /Eζ (rsw(τn,ζ , ψEζ ))
−1λ(T u

ζ /Eζ , ψEζ )
pe
ε(τn,ζ |WT u

ζ
, ψT u

ζ
).

By this, Lemmas 11.1 and 11.4, it suffices to show that

ε(τn,ζ |WT u
ζ
, ψT u

ζ
)=

{
−(−1)

1
4 (p−1) f N if p ̸= 2,

(−1)1+ϵ0 f
( q

pe+1

)
if p = 2.

This follows from Lemma 11.2 and Proposition 11.7. □

We set ϖM ′u
ζ

= δ−1
ζ .

Proposition 11.7. Assume that n = pe. Then we have

ε(ξn,ζ , ψM ′u
ζ
)=

{
−(−1)

1
4 (p−1) f N ( r

kN

)
if p ̸= 2,

( − 1)1+ϵ0 f if p = 2.

Proof. First, we reduce the problem to the positive characteristic case. Assume
that ch K = 0. Take a positive characteristic local field K(p) whose residue field
is isomorphic to k. We define M ′u

ζ,(p) similarly as M ′u
ζ starting from K(p). We use

similar notations also for other objects in the positive characteristic side. Then we
have the isomorphism

OM ′u
ζ,(p)
/p3

M ′u
ζ,(p)

−→∼ OM ′u
ζ
/p3

M ′u
ζ
, ξ0+ξ1ϖM ′u

ζ,(p)
+ξ2ϖ

2
M ′u
ζ,(p)

7→ ξ̂0+ξ̂1ϖM ′u
ζ
+ξ̂2ϖ

2
M ′u
ζ

of algebras, where ξ1, ξ2, ξ3 ∈ k. Hence, the problem is reduced to the positive
characteristic case by [Deligne 1984, Proposition 3.7.1].

We may assume K = Fq((t)). We put K⟨1⟩ = Fp((t)). We define M ′u
ζ,⟨1⟩

similarly
as M ′u

ζ starting from K⟨1⟩. We use similar notations also for other objects in the
K⟨1⟩-case. We put f ′

= [M ′u
ζ : M ′u

ζ,⟨1⟩
]. We have

δM ′u
ζ /M ′u

ζ,⟨1⟩
(rsw(ξn,ζ,⟨1⟩, ψM ′u

ζ,⟨1⟩
))= (−1) f ′

−1

by Lemma 10.3. We have λ(M ′u
ζ /M ′u

ζ,⟨1⟩
, ψM ′u

ζ,⟨1⟩
) = 1, since the level of ψM ′u

ζ,⟨1⟩
is

2 − pe by Lemma 11.3. Then, we obtain

(11-5) ε(ξn,ζ , ψM ′u
ζ
)= (−1) f ′

−1ε(ξn,ζ,⟨1⟩, ψM ′u
ζ,(1)
) f ′

by Proposition 5.1. By (11-5), the problem is reduced to the case where f = 1. In
this case, the claim follows from Lemmas 11.11 and 11.16. □

11B. Special cases. We assume that n = pe, ch K = p and f =1 in this subsection.
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11B1. Odd case. Assume that p ̸= 2.

Lemma 11.8. We have ψM ′u
ζ
(−δ

pe
+1

ζ (1 + xϖM ′u
ζ
))= 1 for x ∈ kN .

Proof. For x ∈ kN , we have

ψM ′u
ζ
(−δ

pe
+1

ζ (1 + xϖM ′u
ζ
))= ψM ′u

ζ
(−(r−1δζ −α−1

ζ )(δζ + x))= ψM ′u
ζ
(−r−1δ2

ζ ),

because TrM ′u
ζ /T u

ζ
(δζ )= 0 and [M ′u

ζ : T u
ζ ] = pe. If pe

̸= 3, then we have the claim,
because TrM ′u

ζ /T u
ζ
(δ2
ζ )= 0.

We assume that pe
= 3. Then we have

ψM ′u
ζ
(−r−1δ2

ζ )=ψT u
ζ
(−2r−2)=ψ0(TrkN /Fp(−2r−2))=ψ0(−N TrFp2/Fp(r

−2))= 1

by TrM ′u
ζ /T u

ζ
(δ2
ζ )= 2r−1 and r4

= −1. □

Let θζ be as in (9-10).

Lemma 11.9. We have

NrN ′u
ζ /M ′u

ζ
(1 + xθ (p−1)/2

ζ ϖM ′u
ζ
)≡ 1 + (−2r)(1−p)/2 x pϖM ′u

ζ
+

x2

2
ϖ 2

M ′u
ζ

mod p3
M ′u
ζ

for x ∈ kN .

Proof. We put T = 1+ xθ (p−1)/2
ζ ϖM ′u

ζ
. By θ p

ζ −θζ = (−2r)−1δ2
ζ in (9-11), we have

θζ = −
1
2r
δ2
ζ

(
(x−1(T − 1)δζ )2 − 1

)−1
.

Substituting this to x−1(T − 1)δζ = θ
(p−1)/2
ζ , we have

(T 2
− 2T + 1 − x2ϖ 2

M ′u
ζ
)(p−1)/2(T − 1)− (−2r)(1−p)/2 x pϖM ′u

ζ
= 0.

The claim follows from this. □

Lemma 11.10. We have∑
x∈kN

ξn,ζ (1 + xϖM ′u
ζ
)−1

= −((−1)(p−1)/2 p)e0
(

r
kN

)
.

Proof. Let ξ ′

n,ζ be as in Section 9C. We note that the left-hand side of the claim
does not change even if we replace ξn,ζ by ξ ′

n,ζ . We have

(11-6)
∑
x∈kN

ξ ′

n,ζ (1 + xϖM ′u
ζ
)−1

=

∑
x∈kN

ξ ′

n,ζ
(
1 + (−2r)(1−p)/2 x pϖM ′u

ζ

)−1

=

∑
x∈kN

ξ ′

n,ζ

(
1 −

x2

2
ϖ 2

M ′u
ζ

)−1

=

∑
x∈kN

ψM ′u
ζ

(
−

x2

2
δ

pe
−1

ζ

)
,
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where we use Lemmas 9.7 and 11.9 at the second equality and (10-4) at the last
equality. The last expression in (11-6) is equal to∑
x∈kN

ψT u
ζ
(−(2r)−1(pe

−1) x2)=
∑
x∈kN

ψ0(TrkN /Fp(r x2))= −((−1)(p−1)/2 p)e0
(

r
kN

)
by (2-16), (8-2), Lemma 11.3 and N = 2e0. □

Lemma 11.11. We have ε(ξn,ζ , ψM ′u
ζ
)= −(−1)

1
2 ((p−1) e0)

( r
kN

)
.

Proof. We have

ε(ξn,ζ , ψM ′u
ζ
)= p−e0

∑
x∈kN

ξn,ζ (−δ
pe

+1
ζ (1 + xϖM ′u

ζ
))−1ψM ′u

ζ
(−δ

pe
+1

ζ (1 + xϖM ′u
ζ
))

= −(−1)
1
2 ((p−1) e0)

(
r

kN

)
ξn,ζ (−δ

pe
+1

ζ )−1

by Proposition 5.3(2), Lemmas 11.8 and 11.10. We have

ξn,ζ (−δ
pe

+1
ζ )= ξ ′

n,ζ (−δ
pe

+1
ζ )(−1)

1
2 (p−1) 1

2 (p
e
+1)N

= ξ ′

n,ζ (−δ
pe

+1
ζ )= ξ ′

n,ζ (−(−2r)(p
e
+1) 1

2 (1−p))= 1,

where we use

NrN ′u
ζ /M ′u

ζ
(θ
(p−1)/2
ζ ϖM ′u

ζ
)= (−2r)(1−p)/2ϖM ′u

ζ

at the third equality and k×

N ⊂ NrN ′u
ζ /M ′u

ζ
((N ′u

ζ )
×) at the last equality. Thus, we have

the claim. □

11B2. Even case. Assume that p = 2.

Lemma 11.12. We have TrM ′u
ζ /K (δ

2e
+1

ζ )= 0 and

TrM ′u
ζ /K (δ

2e

ζ )=

{
1 if e = 1,
0 if e ≥ 2.

Proof. These follow from δ2e

ζ − δζ = α−1
ζ + 1. □

Lemma 11.13. We have NrN ′u
ζ /M ′u

ζ
(θζ δ

−1
ζ )= δ−1

ζ .

Proof. We have NrN ′u
ζ /M ′u

ζ
(θζ )= δ3

ζ by θ2
ζ − θζ = δζηζ and η2

ζ −ηζ = δζ . The claim
follows from this. □

Let σ0 ∈ Gal(N ′u
ζ /M ′u

ζ ) be a generator of Gal(N ′u
ζ /M ′u

ζ ) determined by

σ0(ηζ )− ηζ = 1 and σ0(θζ )− θζ = ηζ .

Lemma 11.14. Let ιn,ζ : Gal(N ′u
ζ /M ′u

ζ ) → C× be the homomorphism induced
by ξ ′

n,ζ (see Lemma 9.9). Then we have ιn,ζ (σ0)= −
√

−1.
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Proof. Let s, t be as in (9-4). We take σ ∈ IM ′u
ζ

such that 2ζ (σ ) = ((1, t, s2), 0).
Recall that

φ′((1, t, s2))= ḡ
(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

)
∈ R′′

0

is a generator. Then it suffices to show that σ(ηζ )− ηζ = 1 and σ(θζ )− θζ = ηζ .
We can check the first equality easily. To show the second equality, it suffices to
show that σ(θ ′

ζ )− θ
′

ζ = η2e−1

ζ . By (2-11), we have

σ(γζ )− γζ ≡ s2
+

e−1∑
i=0

(tβζ + t2)2
i

mod pN ′u
ζ
.

By t = σ(βζ )−βζ , TrF2e/F2(t)= 1 and (9-14), we have

σ(γ ′

ζ )− γ
′

ζ = ηζ − b1 + s2
+

∑
0≤i≤ j≤e−1

t2i
+2 j

mod pN ′u
ζ
.

Hence, by (9-15) and (9-19), we have

σ(θ ′

ζ )− θ
′

ζ ≡

2e−1∑
i=0

di η
i
ζ mod pN ′u

ζ

with some di ∈ kac. By (9-19), we have

e−1∑
i=0

(t (σ (γ ′

ζ )− γ
′

ζ ))
2i

= σ(γ ′

ζ )− γ
′

ζ +

∑
1≤i≤ j≤e−1

t2i
+2 j

+

∑
0≤i< j≤e−1

t2 j
(δζ − s)2

i
.

Therefore, again by (9-15) and (9-19), we have

d0 = b1 + s2
+

∑
0≤i≤ j≤e−1

t2i
+2 j

+

∑
1≤i≤ j≤e−1

t2i
+2 j

+ b2
1 = s + s2

+ t = 0.

This implies σ(θ ′

ζ )− θ ′

ζ = η2e−1

ζ , since we know that σ(θ ′

ζ )− θ ′

ζ − η2e−1

ζ ∈ F2 by
Lemma 9.8 and σ(ηζ )− ηζ = 1. □

Lemma 11.15. We have

ε(ξ ′

n,ζ , ψM ′u
ζ
)=

{ 1+
√

−1
√

2
if e = 1,

1−
√

−1
√

2
if e ≥ 2.

Proof. By Proposition 5.3, equation (10-4), Lemmas 11.3, 11.12 and 11.13, we
have

(11-7) ε(ξ ′

n,ζ , ψM ′u
ζ
)= 2−1/2

∑
x∈F2

ξ ′

n,ζ (δ
2e

+1
ζ (1+xδ−1

ζ ))−1ψM ′u
ζ
(δ2e

+1
ζ (1+xδ−1

ζ ))

=

{
2−1/2(1−ξ ′

n,ζ (1+δ−1
ζ )−1) if e = 1,

2−1/2(1+ξ ′

n,ζ (1+δ−1
ζ )−1) if e ≥ 2.
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First assume that e = 1. Then we know the equality in the claim modulo µ2(C) by
Lemma 11.5. Hence it suffices to show the equality of the real parts. This follows
from (11-7). In particular, we have ξ ′

2,ζ (1 + δ−1
ζ )=

√
−1.

Next, we consider the general case. We put α′

1 = 1/(δ2
ζ − δζ + 1) and ϖ ′

= α′3
1 .

Let ξ ′

2,1,ζ denote ξ ′

2,1 in the case where K and ϖ are replaced by F2((ϖ
′)) and ϖ ′.

By applying Lemma 11.14 to ξ ′

n,ζ and ξ ′

2,1,ζ , we have ξ ′

n,ζ = ξ ′

2,1,ζ . We know
that ξ ′

2,1,ζ (1 + δ−1
ζ ) =

√
−1 by the result in the case e = 1. Hence, we have

ξ ′

n,ζ (1 + δ−1
ζ )=

√
−1, which shows the claim. □

Lemma 11.16. We have

ε(ξn,ζ , ψM ′u
ζ
)= (−1)1+ϵ0 .

Proof. The epsilon factor ε(ξn,ζ , ψM ′u
ζ
) equals ε(ξ ′

n,ζ , ψM ′u
ζ
) times{( 1+

√
−1

√
2

)−3(2e
+1) if e ̸= 2,

−
( 1+

√
−1

√
2

)−3(2e
+1) if e = 2

by Lemma 4.2, equation (9-12) and Lemma 10.3. Hence, the claim follows from
Lemma 11.15. □

Appendix: Realization in cohomology of Artin–Schreier variety

We realize τn in the cohomology of an Artin–Schreier variety. Let νn−2 be the
quadratic form on An−2

kac defined by

νn−2((yi )1≤i≤n−2)= −
1
n′

∑
1≤i≤ j≤n−2

yi y j .

Let X be the smooth affine variety over kac defined by

x p
− x = y pe

+1
+ νn−2((yi )1≤i≤n−2) in An

kac .

We define a right action of Q ⋊Z on X by

(x, y, (yi )1≤i≤n−2)((a, b, c), 0)

=

(
x +

e−1∑
i=0

(by)pi
+ c, a(y + bpe

), (a(p
e
+1)/2 yi )1≤i≤n−2

)
,

(x, y, (yi )1≤i≤n−2)Fr(1)= (x p, y p, (y p
i )1≤i≤n−2).

We consider the morphism

πn−2 : An−1
kac → A1

kac, (y, (yi )1≤i≤n−2) 7→ y pe
+1

+ νn−2((yi )1≤i≤n−2).
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Then we have a decomposition

(A-1) H n−1
c (X,Qℓ)∼=

⊕
ψ∈F∨

p \{1}

H n−1
c (An−1

kac , π
∗

n−2Lψ)

as Q ⋊Z representations. Let ρn be the representation over C of Q ⋊Z defined by

H n−1
c (An−1

kac , π
∗

n−2Lψ0)
(

n−1
2

)
and ι, where

( n−1
2

)
means the twist by the character ((a, b, c),m) 7→ pm(n−1)/2.

Lemma A.1. If p ̸= 2, then we have det νn−2 = −(−2n′)n ∈ F×
p /(F

×
p )

2.

Proof. This is an easy calculation. □

Proposition A.2. We have τn ≃ ρn .

Proof. Let Y be the smooth affine variety over kac defined by

x p
− x = νn−2((yi )1≤i≤n−2) in An−1

kac .

We define a right action of Q ⋊Z on Y by

(x, (yi )1≤i≤n−2)((a, b, c), 0)= (x, (a(p
e
+1)/2 yi )1≤i≤n−2),

(x, (yi )1≤i≤n−2)Fr(1)= (x p, (y p
i )1≤i≤n−2).

Using the action of Q ⋊Z on Y , we can define an action of Q ⋊Z on

H n−2
c (An−2

kac , ν
∗

n−2Lψ0).

Then we have

(A-2) H n−1
c (An−1

kac , π
∗

n−2Lψ0)
∼= H 1

c (A
1
kac, π

∗Lψ0)⊗ H n−2
c (An−2

kac , ν
∗

n−2Lψ0)

by the Künneth formula, where the isomorphism is compatible with the actions of
Q ⋊Z. By (A-2), it suffices to show the action of Q ⋊Z on

(A-3) H n−2
c (An−2

kac , ν
∗

n−2Lψ0)
(

n−1
2

)
is equal to the character (2-9) via ι.

First, consider the case where p ̸= 2. The equality of the actions of Q follows
from [Denef and Loeser 1998, Lemma 2.2.3]. We have

(A-4) (−1)n−2
∑

y∈Fn−2
p

ψ0(νn−2( y))=

(
−1
p

)(
−

(
−2n′

p

))n
(ϵ(p)

√
p)n−2

=

(
−ϵ(p)

(
−2n′

p

))n√
pn−2

by Lemma A.1. The equality of the actions of Fr(1) ∈ Q⋊Z follows from [Deligne
1977, Sommes trig. Scholie 1.9] and (A-4).

If p = 2, the equality follows from [Imai and Tsushima 2020, Proposition 4.5]
and

( 2
n−1

)
= (−1)

1
8 n(n−2). □
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