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DESINGULARIZATIONS OF QUIVER GRASSMANNIANS
FOR THE EQUIORIENTED CYCLE QUIVER

ALEXANDER PÜTZ AND MARKUS REINEKE

We construct torus equivariant desingularizations of quiver Grassmannians
for arbitrary nilpotent representations of an equioriented cycle quiver. We
apply this to the computation of their torus equivariant cohomology.

1. Introduction

Quiver Grassmannians are projective varieties parametrizing subrepresentations of
quiver representations. Originating in the geometric study of quiver representations
[Schofield 1992] and in cluster algebra theory [Caldero and Chapoton 2006], they
have been applied extensively in recent years in a Lie-theoretic context, namely as
a fruitful source for degenerations of (affine) flag varieties [Cerulli Irelli et al. 2013;
2017; Feigin et al. 2017; Pütz 2022]. This approach allows for an application of
homological methods from the representation theory of quivers to the study of such
degenerate structures.

The resulting varieties being typically singular, a construction of natural desingu-
larizations is very desirable. For quiver Grassmannians of representations of Dynkin
quivers this was accomplished in [Cerulli Irelli et al. 2013] building on [Feigin and
Finkelberg 2013], and for Grassmannians of subrepresentations of loop quivers
in [Feigin et al. 2017] (in other directions, this construction was generalized to
representations of large classes of finite dimensional algebras in [Crawley-Boevey
and Sauter 2017; Keller and Scherotzke 2014; Leclerc and Plamondon 2013]).

In the present paper, we synthesize the approaches of [Cerulli Irelli et al. 2013;
Feigin et al. 2017] and construct desingularizations of quiver Grassmannians for
nilpotent representations of equioriented cycle quivers, thereby, in particular, desin-
gularizing degenerate affine flag varieties [Pütz 2022].

As an important application, this allows us to describe the equivariant cohomology
of degenerate affine flag varieties and more general quiver Grassmannians, in
continuation of the program started in [Lanini and Pütz 2023a; 2023b].

In the first section, we recall some background material on quiver Grassmannians
for nilpotent representations of the equioriented cycle quiver. In Section 3 we give
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an explicit construction for desingularizations of quiver Grassmannians for nilpotent
representations of the equioriented cycle, along the lines of [Cerulli Irelli et al. 2013].
We prove that the desingularization has a particularly favorable geometric structure,
namely it is isomorphic to a tower of Grassmann bundle. Consequently, it, admits a
cellular decomposition which is compatible with the cellular decomposition of the
singular quiver Grassmannian. In Section 4, we recall the definition of certain torus
actions on cyclic quiver Grassmannians, together with the necessary framework
to compute torus equivariant cohomology. Finally, in Section 5 we prove that the
desingularization is equivariant with respect to the torus action as introduced in
[Lanini and Pütz 2023a]. This allows to use the construction from that paper for
the computation of torus equivariant cohomology to all quiver Grassmannians for
nilpotent representations of the equioriented cycle.

2. Quiver Grassmannians for the equioriented cycle

In this section we recall some definitions concerning quiver Grassmannians and
representations of the equioriented cycle. We refer to [Kirillov Jr. 2016; Schiffler
2014] for general representation theoretic properties, and to [Cerulli Irelli et al.
2012] for basic properties of quiver Grassmannians.

Generalities on quiver representations. Let Q be a quiver, consisting of a set of
vertices Q0 and a set of arrows Q1 between the vertices. A Q-representation M
consists of a tuple of C-vector spaces M (i) for i ∈ Q0 and tuple of linear maps
Mα : M (i)

→ M ( j) for (α : i → j)∈ Q1. We denote the category of finite dimensional
Q-representations by repC(Q). The morphisms between two objects M and N are
tuples of linear maps ϕi : M (i)

→ N (i) for i ∈ Q0 such that ϕj ◦ Mα = Nα ◦ϕi holds
for all (α : i → j) ∈ Q1.

Definition 2.1. For M ∈ repC(Q) and e ∈ NQ0 , the quiver Grassmannian Gre(M)
is the closed subvariety of

∏
i∈Q0

Grei (M
(i)) of all subrepresentations U of M such

that dimC U (i)
= ei for i ∈ Q0.

For an isomorphism class [N ] of Q-representations, the stratum S[N ] is defined
as the set of all points (that is, subrepresentations) U ∈ Gre(M) such that U is
isomorphic to N . By [Cerulli Irelli et al. 2012, Lemma 2.4], S[N ] is locally closed
and irreducible. If there are only finitely many isomorphism classes of subrepre-
sentations of M , as will be the case in the following, the S[N ] thus define a finite
stratification of the quiver Grassmannians.

Every basis B of M ∈ repC(Q) consists of bases

B(i) = {v
(i)
k : k ∈ [mi ]}
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for each vector space M (i) of the Q-representation M , where mi := dimC M (i)

for all i ∈ Q0, and [m] := {1, . . . ,m}.

Definition 2.2. Let M ∈ repC(Q) and B a basis of M . The coefficient quiver
Q(M, B) consists of:

(QM0) The vertex set Q(M, B)0 = B.

(QM1) The set of arrows Q(M, B)1, containing (α̃ : v
(i)
k → v

( j)
ℓ ) if and only if

(α : i → j) ∈ Q1 and the coefficient of v( j)
ℓ in Mαv

(i)
k is nonzero.

Representations of the equioriented cycle. For n ∈ N, by 1n we denote the equior-
iented cycle quiver on n vertices. Hence the set of arrows and the sets of vertices are
in bijection with Zn := Z/nZ; more precisely, we have (1n)0 = Z/nZ and arrows
αi : i → i + 1 for all i ∈ Z/nZ. Here and in the following, we consider all indices
modulo n unless specified differently.

A 1n-representation M is called N -nilpotent for N ∈ N if

Mαi+N−1 ◦ Mαi+N−2 ◦ · · · ◦ Mαi+1 ◦ Mαi = 0

for all i ∈ Zn , i.e., all concatenations of the maps of M along the arrows of 1n

vanish after at most N steps. M is called nilpotent if it is N -nilpotent for some N .
From now on we use the short hand notation Mi for the map along the arrow αi .

Example 2.3. Let i ∈ Zn and let ℓ∈ Z≥1. Consider the C-vector space V with basis
B = {b1, . . . , bℓ} equipped with the Zn-grading given by deg(bk)= i + k − 1 ∈ Zn .
Take the operator A ∈ End(V ) uniquely determined by setting Abk = bk+1 for any
k < ℓ and Awℓ = 0. The vector space of the corresponding 1n-representation over
the j-th vertex is spanned by the elements of B of degree j . Let m j be the number
of these basis elements. In this basis, the map from vertex j to j + 1 is given by
a m j × m j+1 matrix with ones on the diagonal below the main diagonal and all
other entries equal to zero. It is immediate to check that this 1n-representation is
nilpotent. We denote this representation by Ui (ℓ).

Proposition 2.4 [Kirillov Jr. 2016, Theorem 7.6.(1)]. Every indecomposable nilpo-
tent representation of 1n is isomorphic to some Ui (ℓ).

Example 2.5. Observe that the basis B from Example 2.3 can be obviously rear-
ranged into the union of ordered bases

B(i) = {v(i)r : r ∈ [ki ]} for i ∈ Zn,

where ki is the number of elements b ∈ B with deg(b)= i . With respect to B, the
coefficient quiver of Ui (ℓ) has the form:
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v
(i)
1

v
( j)
kj

By [Kirillov Jr. 2016, Theorem 1.11], every nilpotent 1n-representation is iso-
morphic to a 1n-representation of the form

M :=

⊕
i∈Zn

⊕
ℓ∈[N ]

Ui (ℓ)⊗ Cdi,ℓ,

with di,ℓ ∈ Z≥0 for all i ∈ Zn and ℓ ∈ [N ]. Here N is the nilpotence parameter
of the representation and the tensor product with the C-vector spaces counts the
multiplicities of the indecomposable summands.

Let C1n be the path algebra of 1n and define the path

pi (N ) := (i + N |αi+N−1 ◦αi+N−2 ◦ · · · ◦αi+1 ◦αi | i)

for all i ∈ Zn and some fixed N ∈ N. We define the path algebra ideal

IN := ⟨pi (N ) : i ∈ Zn⟩ ⊂ C1n,

generated by all paths of length N , and we denote the truncated path algebra
C1n/IN by A(N )n . The following is a special case of [Schiffler 2014, Theorem 5.4].

Proposition 2.6. The category repC(1n, IN ) of bounded quiver representations is
equivalent to the category modC(A

(N )
n ) of modules over the truncated path algebra.

Remark 2.7. The Ui (N ) for i ∈ Zn are the longest indecomposable nilpotent
representations in repC(1n, IN ).

Let Pi ∈ repC(1n, IN ) be the 1n-representation starting at vertex i ∈ Zn corre-
sponding to the projective indecomposable A(N )n -module, and let Ij ∈ repC(1n, IN )

be the1n-representation ending at vertex j ∈ Zn corresponding to the injective inde-
composable A(N )n -representation. We can identify bounded projective and bounded
injective representations of the cycle, via indecomposable nilpotent representations
(see [Pütz 2022, Proposition 4.2]):
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Proposition 2.8. For n, N ∈ N and all i, j ∈ Zn the projective and injective repre-
sentations Pi and Ij of the bound quiver (1n, IN ) satisfy

Pi ∼= Ui (N )∼= Ii+N−1 and Ij ∼= U j−N+1(N )∼= Pj−N+1.

Remark 2.9. In particular, Ui (N ) is projective and injective in repC(1n, IN ). If
we want to emphasize the injective nature of an indecomposable 1n-representation
we sometimes use the notation U ( j; ℓ) := U j−ℓ+1(ℓ).

Parametrization of irreducible components. In Section 3 we will construct desingu-
larizations of all quiver Grassmannians associated to nilpotent representations of the
equioriented cycle, which requires knowledge of their irreducible components. Let
us first recall the approach: since there are only finitely many isomorphism classes
of nilpotent 1n-representations in any fixed dimension, the stratification of every
quiver Grassmannian into strata S[N ] is finite. Since the strata are irreducible, the
irreducible components of quiver Grassmannians are therefore of the form S[N ] for
certain isomorphism classes [N ], which provide a natural labeling (and a canonical
representative) of the components.

For arbitrary nilpotent representations of the equioriented cycle the structure of the
irreducible components of the associated quiver Grassmannians is not known. In the
special case that all indecomposable direct summands of the 1n-representation M
have length N = ωn (for ω ∈ N) and e = (ωk, . . . , ωk) ∈ Zn , we have an explicit
description of the irreducible components of the quiver Grassmannian Gre(M) [Pütz
2022, Lemma 4.10]:

Lemma 2.10. Let M denote the1n-representation ⊕i∈Zn U (i;ωn)⊗Cdi with ω∈ N

and di ∈ Z≥0 for all i ∈ Zn , define m :=
∑

i∈Zn
di and e := (ωk, . . . , ωk) ∈ Zn . The

irreducible components of Gre(M) are in bijection with the set

Ck(d) :=

{
p ∈ Zn

≥0 : pi ≤ di for all i ∈ Zn,
∑
i∈Zn

pi = k
}

and they all have dimension ωk(m − k).

Remark 2.11. A representative of the open dense stratum in the irreducible com-
ponent corresponding to p ∈ Ck(d) is

U p :=

⊕
i∈Zn

U (i;ωn)⊗ Cpi .

Example 2.12. Let di = 1 for all i ∈ Zn . Then by Lemma 2.10 the irreducible com-
ponents are parametrized by the k-element subsets of [n] and the representatives are⊕

j∈I

U ( j;ωn)

for I ∈
(
[n]

k

)
. The dimension of the irreducible components is ωk(n − k).
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3. Construction of the desingularization

The approach to the construction of desingularizations of quiver Grassmannians for
the equioriented cycle quiver carried out in this section is a synthesis of the approach
of Cerulli Irelli et al. [2013] for Dynkin quivers and the approach of Feigin et al.
[2017] for the loop quiver. We will construct another quiver for which certain quiver
Grassmannians yield desingularizations, which relies on certain favorable homolog-
ical properties similar to those in [Cerulli Irelli et al. 2013, Section 4]. Note that the
present case is not immediately covered by the generalizations [Crawley-Boevey
and Sauter 2017; Keller and Scherotzke 2014; Leclerc and Plamondon 2013], and
our construction has the advantage of being of a very explicit linear algebra nature.

Bounded representations of the equioriented cylinder. In this subsection we intro-
duce a map 3 : repC(1n, IN )→ repC(Q, I) for some bound quiver (Q, I) such that
each quiver Grassmannian associated to 3(M) is smooth for all M ∈ repC(1n, IN ).
We start with the definition of Q and the ideal I. Let 1̂n,N be the quiver with
vertices (1̂n,N )0 = {(i, k) : i ∈ Zn, k ∈ [N ]} and arrows(
1̂n,N

)
1 =

{
αi,k : (i, k)→ (i, k + 1) such that i ∈ Zn, k ∈ [N − 1]

}
∪

{
βi,k : (i, k)→ (i + 1, k − 1) such that i ∈ Zn, k ∈ [N ] \ {1}

}
,

which we call an equioriented cylinder quiver. We define În,N as the ideal in the
path algebra C1̂n,N generated by the relations

βi,k+1 ◦αi,k ≡ αi+1,k−1 ◦βi,k and αi+1,N−1 ◦βi,N ≡ 0

for all i ∈ Zn and all k ∈ [N − 1] \ {1}.

Example 3.1. 1̂4,4 is the following quiver:

(1, 1)
α1,1

(2, 1)

α2,1

(3, 1)
α3,1

(4, 1)

α4,1

(1, 2)

β1,2

(2, 2)
β2,2

(3, 2)

β3,2

(4, 2)
β4,2 α1,2

β1,3

β3,3

α3,2

β4,3

α2,2β2,3

α4,2

(4, 3)
α4,3

(1, 3)

α1,3

(2, 3)
α2,3

(3, 3)

α3,3

(4, 4)

β4,4

(1, 4)
β1,4

(2, 4)

β2,4

(3, 4)
β3,4
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We define a functor 3 : repC(1n, IN )→ repC(1̂n,N , În,N ) on objects by

3(M) := M̂ =
(
(M̂ (i,k))i∈Zn,k∈[N ], (M̂αi,k , M̂βi,k+1)i∈Zn,k∈[N−1]

)
,

with
M̂ (i,1)

:= M (i) for k = 1,

M̂ (i,k)
:= Mi+k−2 ◦ Mi+k−3 ◦ · · · ◦ Mi+1 ◦ Mi (M (i)) for k ≥ 2,

M̂αi,k := Mi+k−1|M̂ (i,k) for k ≥ 1,

M̂βi,k := ι : M̂ (i,k) ↪→ M̂ (i+1,k−1) for k ≥ 2,

where the inclusions in the last row arise naturally from the definition of the vector
spaces of the representation M̂ . Here Mi denotes the map along the arrow αi .

Example 3.2. Let n = N = 2 and M = U (1; 2)⊕U (2; 2). The 1̂2,2-representation
3(M) is

C

C2

C

C2

(0
1

)

(10)
(0

1

)
(10)

Proposition 3.3. 3 : repC(1n, IN )→ repC(1̂n,N , În,N ) as defined above induces a
bijection 3N ,M : Hom1n (N ,M)→ Hom1̂n,N

(N̂ , M̂) for all N ,M ∈ repC(1n, IN )

and hence is a fully faithful functor.

Proof. By construction of 3, the vector spaces constituting M̂ ∈ repC(1̂n,N , În,N )

are subspaces of the corresponding vector spaces constituting M . Hence each
morphism in Hom1n (N ,M) induces a morphism in Hom1̂n,N

(N̂ , M̂) whose com-
ponents at the additional vertices are obtained by restriction. It is immediate to
check that this induces the desired bijection 3N ,M , 3N ,M(idM) = idM̂ and that
3N ,M(φ) ◦3N ,M(ψ)=3N ,M(φ ◦ψ) holds for all φ,ψ ∈ Hom1n (N ,M) and all
N ,M ∈ repC(1n, IN ). □

Now we want to describe the image of the indecomposable Ui (ℓ) under 3. Let
A∞×N be the infinite band quiver of height N , that is, the quiver with vertices (i, k)
for i ∈Z and k ∈[N ] and arrows αi,k :(i, k)→(i, k+1) and βi,k :(i, k)→(i+1, k−1)
whenever both vertices exist. Define a map of quivers φ : A∞×N → 1̂n,N , induced
by sending each index i ∈ Z to its equivalence class i ∈ Zn . This extends to a
push-down functor 8 : repC(A∞×N )→ repC(1̂n,N ) with

(8(V ))(i,k)=
⊕
r∈Z

V (i+rn,k), (8(V ))αi,k =

⊕
r∈Z

Vαi+rn,k , (8(V ))βi,k =

⊕
r∈Z

Vβi+rn,k

for all V ∈ repC(A∞×N ). Consider the A∞×N -representation V (i; ℓ) with vector
spaces V (i; ℓ)( j,k)

=C for ( j, k)∈(A∞×N )0 with i ≤ j ≤ i+ℓ−1 and 1≤k ≤ i+ℓ− j



116 ALEXANDER PÜTZ AND MARKUS REINEKE

and zero otherwise. The maps along the arrows of A∞×N are identities if both
the source and target space are one-dimensional and zero otherwise. Using the
explicit definitions of the functors 3 and 8, and the explicit descriptions of the
representations Ui (ℓ) and V (i; ℓ), we can now directly verify that

3(Ui (ℓ))=8(V (i; ℓ)).

Analogously, we define A∞×N -representations V (i, k; ℓ) consisting of vector
spaces V (i, k; ℓ)( j,r)

=C for ( j, r)∈ (A∞×N )0 with j ≥ i and i+k ≤ j+r ≤ i+k+ℓ

and W (i, k; ℓ) with vector spaces W (i, k; ℓ)( j,r)
= C for ( j, r) ∈ (A∞×N )0 with

j ≤ i and i − ℓ≤ j + r ≤ i + k.

Example 3.4. For N = 4 the quiver A∞×N is

. . . (−4, 1) (−3, 1) (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) (4, 1) . . .

. . . (−4, 2) (−3, 2) (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) (3, 2) (4, 2) . . .

. . . (−5, 3) (−4, 3) (−3, 3) (−2, 3) (−1, 3) (0, 3) (1, 3) (2, 3) (3, 3) . . .

. . . (−5, 4) (−4, 4) (−3, 4) (−2, 4) (−1, 4) (0, 4) (1, 4) (2, 4) (3, 4) . . .

Its representation V (1, 3) is of the form

. . . 0 0 0 0 C C C 0 0 . . .

. . . 0 0 0 0 C C 0 0 0 . . .

. . . 0 0 0 0 0 C 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 0 . . .

From now on we erase all zeros and arrows connected to zeros from the picture.
Hence we obtain

V (i, 2, 2)=

C C

C C

C

and W (i, 3, 2)=

C C

C C

C C

C
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Homological properties of the category of cylinder representations. In this section,
we follow closely the approach of Cerulli Irelli et al. [2013] to establish certain
favorable homological properties of the image of the functor 3.

Proposition 3.5. The simple, projective and injective objects in repC(1̂n,N , În,N )

are given by

Si,k :=8(V (i, k; 0)), Pi,k :=8(V (i, k; N − k)), Ii,k :=8(W (i, k; N − k)),

respectively, for all (i, k) ∈ (1̂n,N )0.

Proof. For the simple objects this is immediate. The parametrization of the projective
and injective representations is a direct computation using the formula based on
paths in the quiver 1̂n,N (see [Schiffler 2014, Definition 5.3]) and their relations
from În,N as described in the beginning of this section. □

Theorem 3.6. The category repC(1̂n,N , În,N ) has global dimension at most two.

Proof. It suffices to construct projective resolutions of length at most two for all
simple representations in repC(1̂n,N , În,N ). These representations are denoted by
Si,k and consist of a single copy of C at vertex (i, k) and all other vector spaces and
the maps are zero. The projective resolutions of Si,1 are of the form

0 → Pi,2 → Pi,1 → Si,1 → 0

and for Si,k with k ≥ 2 this generalizes to

0 → Pi+1,k → Pi+1,k−1 ⊕ Pi,k+1 → Pi,k → Si,k → 0. □

Example 3.7. For N = 4 and Si,3 we obtain the following projective resolution:

C C

C C

C C

C

C C2 C C C

C C2 C C C

C2 C C C C

C C C

Si,3Pi,3P1+1,2 ⊕ Pi,4Pi+1,3

Lemma 3.8. For M ∈ repC(1n, IN ) the injective and projective dimension of M̂ is
at most one and Ext1

1̂n,N ,În,N
(M̂, M̂)= 0.

Proof. It suffices to compute the projective and injective dimension of the image of
all indecomposable representations Ui (ℓ) ∈ repC(1n, IN ), by exhibiting projective
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resp. injective resolutions, namely

0 → Pi,ℓ+1 → Pi,1 → Ûi (ℓ)→ 0, 0 → Û ( j; ℓ)→ I j,1 → I j−ℓ,ℓ+1 → 0,

where j := i + ℓ− 1 and hence U ( j; ℓ)= Ui (ℓ).
It remains to prove vanishing of all

Ext1
1̂n,N ,În,N

(Ûi (ℓ), Ûj (ℓ
′)).

We apply the functor
Hom

1̂n,N ,În,N
(_, Ûj (ℓ

′))

to the above projective resolution of Ûi (ℓ), simplify the terms involving projectives,
and obtain the exact sequence

0→Hom(Ûi (ℓ),Ûj (ℓ
′))→ Ûj (ℓ

′)(i,1)
α

−→ Ûj (ℓ
′)(i,ℓ+1)

→Ext1(Ûi (ℓ),Ûj (ℓ
′))→0.

By definition of 3, the map α is the canonical surjection

Uj (ℓ
′)(i) →

(
Uj (ℓ

′)i+ℓ−1 ◦ · · · ◦ Uj (ℓ
′)i

)
(Uj (ℓ

′)(i)),

proving the desired Ext1-vanishing. □

Example 3.9. For N =4 we obtain the following projective and injective resolutions
of Ui (3)= U (i − 2; 3):

Pi,4

C

C

C

C

Pi,1

C C C C

C C C

C C

C

Ûi (3)

C C C

C C

C

Û (i − 2; 3)

C C C

C C

C

Ii−2,1

C C C C

C C C

C C

C

Ii−5,4

C

C

C

C
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The restriction functor. For each W ∈ repC(1̂n,N , În,N ) we define the representa-
tion res W ∈ repC(1n, IN ) by

res W :=
(
(W (i,1))i∈Zn , (Wβi,2 ◦ Wαi,1)i∈Zn

)
.

This induces maps resV,W : Hom1̂n,N
(V,W )→ Hom1n (res V, res W ), by forgetting

the components of the morphisms at the vertices (i, k) with k ≥ 2. Hence we
obtain a functor res : repC(1̂n,N , În,N )→ repC(1n, IN ). The proof of the following
proposition is immediate by the construction of 3 and res.

Proposition 3.10. res ◦3(M)= M holds for all M ∈ repC(1n, IN ).

The desingularization map. In this subsection we provide the construction of the
desingularization map, again closely following [Cerulli Irelli et al. 2013]. An
example is given below.

Definition 3.11. An isomorphism class [N ] of 1n-representations is called a
generic subrepresentation type of M ∈ repC(1n, IN ) to dimension vector e, if
the stratum S[N ] is open in Gre(M). The set of generic subrepresentation types is
denoted by gsube(M).

Remark 3.12. By construction, for some [N ] ∈ gsube(M) the closure of the stra-
tum S[N ] is an irreducible component of Gre(M), and all irreducible components
are obtained in this way.

Remark 3.13. In general, there is no explicit description of the gsube(M). But
if the indecomposable summands of M are all of length ωn for n, ω ∈ N, we can
apply Lemma 2.10.

Example 3.14. Let n = 3, N = 2 and consider the quiver Grassmannian for
M = U1(2)2 ⊕ U2(2)3 ⊕ U3(2) and e = (1, 2, 3). It has eight isomorphism classes
of subrepresentations but only two irreducible components. Namely S[N1,2] for
N1 = U2(2)2 ⊕ U3(2) and N2 = U1(2)⊕ U2(2)⊕ U3(1)2. The stratum of N1 is
seven-dimensional whereas the stratum of N2 is only five-dimensional.

For [N ] ∈ gsube(M) we define a map from a quiver Grassmannian of the cylinder
quiver to a quiver Grassmannian of the cycle quiver

πN : Grdim N̂ (M̂)→ Gre(M)

by πN (U ) := res U for all U ∈ Grdim N̂ (M̂).

Proposition 3.15. For each [N ] ∈ gsube(M) the map

πN : Grdim N̂ (M̂)→ Gre(M)

is injective over S[N ].
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Proof. Let U ∈ S[N ] ⊆ Gre(M), then dim Û = dim N̂ and

π−1
N (U )=

{
V ∈ Grdim N̂ (M̂) : V (i,1)

= U (i) for all i ∈ Zn
}
.

In particular Û is contained in π−1
N (U ) ⊂ Grdim N̂ (M̂). It remains to show that

π−1
N (U ) = {Û }: By construction of res and 3 it follows that Û (i,2)

⊂ V (i,2) and
dimC Û (i,2)

= dimC V (i,2) holds for all V ∈ π−1
N (U ) since U and N are isomorphic.

This implies that Û (i,2)
= V (i,2) holds for all i ∈ Zn . Inductively, it follows that

V = Û . □

Proposition 3.16. For each [N ] ∈ gsube(M) the fiber of πN over U ∈ Gre(M) is

π−1
N (U )= FU :=

{
F ∈ Grdim N̂ (M̂) : Û ⊆ F

}
∼= Grdim N̂−dim Û (M̂/Û ).

Proof. Observe that dim U = dim N , so that dimC Û (i,1)
= dimC N̂ (i,1) for all i ∈ Zn

and the first nontrivial choice of a subspace F (i,k) is over vertices (i, k) with k ≥ 2.
The inclusion FU ⊆ π−1

N (U ) holds since πN (F)= U is clear by definition of FU

and the construction of the restriction functor. The other inclusion follows since
every point V of the fiber π−1

N (U ) has to contain the vector spaces of Û in its
vector spaces V (i,k) over each vertex (i, k) of 1̂n,N , in order to map to U . The
isomorphism between FU and the quiver Grassmannian is a direct consequence of
the explicit description of the fiber. □

We are now ready to state the main result of the paper, which is proved after the
next proposition.

Theorem 3.17. Let M ∈ repC(1n, IN ). The map

π :=

⊔
[N ]∈gsube(M)

πN :

⊔
[N ]∈gsube(M)

Grdim N̂ (M̂)→ Gre(M)

is a desingularization of Gre(M).

Remark 3.18. Using Proposition 3.16, we can compute the fiber dimensions for
the desingularization to examine whether it is small, in the spirit of [Feigin and
Finkelberg 2013, Section 2]. This is the case for the quiver Grassmannian Gr2(M)
from [Lanini and Pütz 2023b, Example 3.13] where Q =11 and M = U1(2)⊕ S2

1 .
In general, desingularizations of quiver Grassmannians for the cycle are not small.
It already fails for the loop quiver (i.e., 11) and the quiver Grassmannian Gr2(N )
where N = U1(2)2.

For the proof of Theorem 3.17 we recollect the main properties of the maps πN :

Proposition 3.19. Let M ∈ repC(1n, IN ) and [N ] ∈ gsube(M). Then:

(i) The variety Grdim N̂(M̂) is smooth with irreducible equidimensional connected
components.
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(ii) The map πN is one-to-one over S[N ].

(iii) The image of πN is closed in Gre(M) and contains S[N ].

(iv) The map πN is projective.

Proof. By Theorem 3.6 and Lemma 3.8 we can apply [Cerulli Irelli et al. 2013,
Proposition 7.1] to each quiver Grassmannian Grdim N̂(M̂) and obtain the properties
stated in (i). Proposition 3.15 is exactly part (ii). The remaining parts are proven
analogous to [Cerulli Irelli et al. 2013, Theorem 7.5] since the functor 3 is fully
faithful by Proposition 3.3. □

Proof of Theorem 3.17. By [Cerulli Irelli et al. 2021, Proposition 37], we obtain
that

Grdim N̂ (M̂)= S
[N̂ ]

since M̂ is rigid by Lemma 3.8. With the properties of 1̂n,N -representations from
Theorem 3.6 and Lemma 3.8, the maps πN as in Proposition 3.19 and 3 as in
Proposition 3.3, the rest of the proof is the same as for [Cerulli Irelli et al. 2013,
Corollary 7.7]. □

Remark 3.20. In particular, Cerulli Irelli et al. [2021, Proposition 37] proves the
conjecture from [Cerulli Irelli et al. 2013, Remark 7.8], about the irreducibility of
Gre(M̂) in [Cerulli Irelli et al. 2013, Corollary 7.7] for arbitrary representations M
of a Dynkin quiver.

The following result generalizes [Feigin et al. 2023b, Theorem 7.10].

Theorem 3.21. For each [N ] ∈ gsube(M) the quiver Grassmannian Grdim N̂ (M̂) is
isomorphic to a tower of fibrations

Grdim N̂ (M̂)= X1 → X2 → · · · → X N =

∏
i∈Zn

Grn̂(i,N )(C
m̂(i,N )

),

where n̂ := dim N̂ and m̂ := dim M̂ and each map Xk → Xk + 1 for k ∈ [N − 1]

is a fibration with fiber isomorphic to a product of ordinary Grassmannians of
subspaces.

Proof. Every point U of the quiver Grassmannian Grdim N̂ (M̂) is parametrized by a
collection of subspaces U (i,k)

⊆ M (i,k) for i ∈ Zn and k ∈ [N ]. In particular it is a
point in

Grn̂(C
m̂) :=

∏
i∈Zn

∏
k∈[N ]

Grn̂(i,k)(C
m̂(i,k)

).

Define Xk as the image of Grdim N̂ (M̂) in the variety Grn̂(m̂)(k) which is defined
analogous to Grn̂(C

m̂), with the only difference that the second product runs over
{k, k +1, . . . , N } instead of [N ]. Hence Grdim N̂ (M̂)= X1 follows by construction.
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We proceed by decreasing induction starting from k = N . Every point in the
product of Grassmannians of subspaces Grn̂(m̂)(N ) can be extended to an element
of Grdim N̂ (M̂) since the upper vector spaces of an element in the quiver Grassman-
nian are not related. This implies X N = Grn̂(m̂)(N ) as desired.

Now assume that the vector spaces U (i,k′) are fixed for all i ∈ Zn and k ′ > k.
Since U has to be contained in the quiver Grassmannian it has to satisfy the relations

M̂αi+1,k ◦ M̂βi,k+1 U (i,k+1)
⊆ U (i+1,k+1) for all i ∈ Zn.

Hence the next layer of vector spaces U (i,k) requires

M̂βi−1,k+1 U (i−1,k+1)
⊆ U (i,k) and M̂αi,k U (i,k)

⊆ U (i,k+1) for all i ∈ Zn.

This is equivalent to the choice of a point in the Grassmannian

Grn̂(i,k)−n̂(i−1,k+1)(U (i,k)/M̂βi−1,k+1 U (i−1,k+1))

because every map M̂αi,k is a projection where the last m̂(i,k)
− m̂(i,k+1) coordinates

are sent to zero and each M̂βi,k is an inclusion. □

Remark 3.22. The explicit description of the desingularization in Theorem 3.21
allows to construct a cellular decomposition of Grdim N̂ (M̂) (see Theorem 5.5). In
particular, it implies that Grdim N̂ (M̂) is smooth.

4. Torus equivariant cohomology and equivariant Euler classes

In this section we briefly recall definitions and constructions concerning torus actions
on quiver Grassmannians, torus equivariant cohomology and torus equivariant Euler
classes. More details on the general theory is found in [Arabia 1998; Brion 1998;
Goresky et al. 1998; Gonzales 2014]. The application to quiver Grassmannians is
introduced in [Lanini and Pütz 2023a; 2023b]. In Section 5 we provide examples
and apply our desingularizations to the computation of equivariant cohomology of
quiver Grassmannians for the equioriented cycle.

Moment graph and torus equivariant cohomology. Let X be a projective algebraic
variety over C. The action of an algebraic torus T ∼= (C∗)r on X is skeletal if the
number of T -fixed points and the number of one-dimensional T -orbits in X is finite.
We call a cocharacter χ ∈ X∗(T ) generic for the T -action on X if X T

= Xχ(C∗).
By X∗(T ) we denote the character lattice of T . The T -equivariant cohomology
of X with rational coefficients is denoted by H•

T (X).

Definition 4.1. The pair (X, T ) is a GKM-variety if the T -action on X is skeletal
and the rational cohomology of X vanishes in odd degrees.

Remark 4.2. By [Brion 2000, Lemma 2] this is equivalent to [Lanini and Pütz
2023a, Definition 1.4].
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The closure E of every one-dimensional T -orbit E in a projective GKM-variety
admits an T -equivariant isomorphism to CP1. Thus each one-dimensional T -orbit
connects two distinct T -fixed points of X .

Definition 4.3. Let (X, T ) be a GKM-variety, and let χ ∈ X∗(T ) be a generic
cocharacter. The corresponding moment graph G = G(X, T, χ) of a GKM-variety
is given by the following data:

(MG0) The T -fixed points as vertices, i.e., G0 = X T .

(MG1) The closures of one-dimensional T -orbits E = E ∪ {x, y} as edges in G1,
oriented from x to y if limλ→0 χ(λ).p = x for p ∈ E .

(MG2) Every E is labeled by αE ∈ X∗(T ) describing the T -action on E .

Theorem 4.4 [Goresky et al. 1998, Theorem 1.2.2]. Let (X, T ) be a GKM-variety
with moment graph G = G(X, T, χ) and set R := H•

T (pt). Then

H•

T (X)∼=

{
( fx) ∈

⊕
x∈G0

R
∣∣∣ fxE − fyE ∈ αE R for any E = E ∪ {xE , yE } ∈ G1

}
.

Remark 4.5. The characters from (MG2) are only unique up to a sign. This sign
does not play a role in Theorem 4.4. Hence we can fix our favorite convention.

BB-filterable varieties. In this subsection we describe a class of varieties which
admit an explicit formula for the computation of their equivariant cohomology.
Let X be a C∗-variety. By XC∗

we denote its fixed point set and X1, . . . , Xm denote
the connected components of XC∗

. This induces a decomposition

(4.6) X =

⋃
i∈[m]

Wi , with Wi :=

{
x ∈ X : lim

z→0
z.x ∈ X i

}
,

where Wi is called attracting set of X i . Since decompositions of this type were first
studied by Bialynicki-Birula [1973], we call it a BB-decomposition.

Definition 4.7. We say that Wi from (4.6) is a rational cell if it is rationally smooth
at all w ∈ Wi . This in turn holds if

H 2 dimC(Wi )(Wi ,Wi \ {w})≃ Q and H m(Wi ,Wi \ {w})= 0

for any m ̸= 2 dimC(Wi ) (see [Gonzales 2014, p. 292, Definition 3.4]).

Definition 4.8. A projective T -variety X is BB-filterable if:

(BB1) The fixed point set X T is finite.

(BB2) There exists a generic cocharacter χ : C∗
→ T , i.e., Xχ(C∗)

= X T , such that
the associated BB-decomposition consists of rational cells.
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Theorem 4.9 (see [Lanini and Pütz 2023a, Theorem 1.15]). Let X be a BB-filterable
projective T -variety. Then:

(1) X admits a filtration into T -stable closed subvarieties Zi such that

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm−1 ⊂ Zm = X.

(2) Each Wi = Zi \ Zi−1 is a rational cell, for all i ∈ [m].

(3) The singular rational cohomology of Zi vanishes in odd degrees, for i ∈ [m].

(4) If , additionally, the T -action on X is skeletal, each Zi is a GKM-variety.

Euler classes and cohomology module bases. For the precise definition of Euler
classes we refer the reader to [Arabia 1998, Section 2.2.1]. Instead we give three
properties which are enough to determine the equivariant Euler classes in our setting.

Lemma 4.10 (see [Brion 1998, Corollary 15, Lemma 16, Theorem 18]). Let Y be
a T -variety and y ∈ Y T .

(1) If Y is smooth at y then EuT (y, Y ) = (−1)dim(Y ) det TyY , where det TyY is
the product of the characters by which T acts on the tangent space TyY .

(2) If Y is rationally smooth at y then EuT (y, Y )= z ·det TyY , for some z ∈ Q\{0}.

(3) If π : Y → X is a T -equivariant resolution of singularities and |Y T
| < ∞,

then
EuT (x, X)−1

=

∑
y∈Y T ,π(y)=x

EuT (y, Y )−1.

Remark 4.11. Lemma 4.10 differs from [Brion 1998] by using Euler classes instead
of equivariant multiplicities which are inverse to each other up to a sign.

Definition 4.12 (see [Gonzales 2014, Lemma 6.7]). Let X T
= {x1, . . . , xm}. For

i ∈ [m], the local index of f ∈ H•

T (X) at xi ∈ X T is

Ii ( f )=

∑
j∈[m]:xj ∈Zi

fxj

EuT (xj , Zi )
.

The next theorem gives an explicit formula to compute a basis for H•

T (X) as free
module over H•

T (pt). Observe that everything depends on the order of the fixed
points which is in general not unique.

Theorem 4.13 (see [Lanini and Pütz 2023a, Theorem 2.12]). Let (X, T ) be a
BB-filterable GKM-variety with filtration

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm = X

as in Theorem 4.9. Let X T
= {x1, . . . , xm} with xi ∈ Wi = Zi \ Zi−1. There exists

a unique basis {θ (i)}i∈[m] of H•

T (X) as free module over H•

T (pt), such that for any
i ∈ [m] the following properties hold:
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(1) θ (i)xj = 0 for all j < i .

(2) θ (i)xi = EuT (xi , Zi ).

(3) Ij (θ
(i))= 0 for all j ̸= i .

Remark 4.14. Observe that (1) and (2) imply Ii (θ
(i))= 1 by Definition 4.12.

Torus action on cyclic quiver Grassmannians. We briefly recall torus actions
on quiver Grassmannians for the equioriented cycle (see [Lanini and Pütz 2023a,
Section 5]).

Remark 4.15. From now on we assume the choice of a basis B of M such that
the connected components of Q(M, B) are in bijection with the indecomposable
direct summands of M . Such a choice is always possible by [Kirillov Jr. 2016,
Theorem 1.11].

A grading of M ∈ repC(1n) with respect to a fixed basis is a map wt : B → ZB .
This induces an action of λ ∈ C∗ by

λ.b := λwt(b)
· b.

Remark 4.16. Combining several weight functions wt1, . . . ,wtD : B → ZB , we
can define the action of λ= (λj ) j∈[D] ∈ (C∗)D by

λ.b :=

∏
j∈[D]

λ
wtj (b)
j · b = λ

wt1(b)
1 · · · · · λ

wtD(b)
D · b.

Observe that this action extends to the quiver Grassmannian Gre(M) only un-
der some additional assumptions about the grading (see [Lanini and Pütz 2023a,
Lemma 5.12]).

Theorem 4.17 (see [Lanini and Pütz 2023a, Theorem 6.6]). Let M be a nilpo-
tent representation of 1n with d-many indecomposable direct summands, and let
e ≤ dim M be such that Gre(M) is nonempty. Let T := (C∗)d+1 act on Gre(M)
as in [Lanini and Pütz 2023a, Lemma 5.12]. Then (Gre(M), T ) is a projective
BB-filterable GKM-variety.

Remark 4.18. If the desingularizations constructed in Theorem 3.17 are T -equi-
variant, this theorem implies that we can compute the T -equivariant cohomology of
all quiver Grassmannians for nilpotent representations of 1n , using Theorem 4.13.

From now on we assume that T := (C∗)d+1 acts on Gre(M) as in [Lanini and Pütz
2023a, Lemma 5.12]. Here d is the number of connected components in Q(M, B)
and the additional parameter comes from cyclic symmetry. The weight functions of
the action are defined implicitly by the formula used in [Lanini and Pütz 2023a,
Section 5.2].
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5. Torus equivariant desingularization and application

In this section we apply the methods from the previous section to compute Euler
classes at singular points and torus equivariant cohomology of quiver Grassman-
nians for the equioriented cycle using their desingularizations as constructed in
Theorem 3.17. It remains to show that these desingularizations are torus equivariant.

Torus action on the desingularization. Let M ∈ repC(1n, IN ) be nilpotent with
d-many indecomposable direct summands, and let T := (C∗)d+1 act on Gre(M) as
in [Lanini and Pütz 2023a, Lemma 5.12].

Remark 5.1. A choice of basis B of M ∈ repC(1n, IN ) induces a basis B̂ of
M̂ ∈ repC(1̂n,N , În,N ) such that the connected components of Q(M̂, B̂) are in
bijection with the images of the indecomposable summands of M . In particular
the basis B̂(i,k) over the vertex (i, k) of 1̂n,N is a subset in the basis B(i+k−1) of
cardinality mi+k−1 −c where c is the corank of the map Mαi+k−2 ◦ · · · ◦ Mαi if k ≥ 2
and B̂(i,k) = B(i) for k = 1. This allows us to extend the T -action to the vector
spaces of M̂ by extending the weight functions according to the inclusions of the
basis described above. In other words, all basis vectors of B̂ which have the same
image in B get the same weight.

Proposition 5.2. The T -action on the vector spaces of M̂ as defined in Remark 5.1
extends to every quiver Grassmannian Grk(M̂).

Proof. We have to show that the T -action is compatible with the maps of the quiver
representation M̂ . By construction of the action and the representation M̂ , this
follows immediately from the compatibility of the T -action (on the vector spaces
of M) with the maps of M as shown in [Lanini and Pütz 2023a, Lemma 5.12]. □

Lemma 5.3. The desingularization of Theorem 3.17 is T -equivariant.

Proof. With Proposition 5.2, the statement follows immediately from the con-
struction of the grading as in Remark 5.1 together with the description of the
desingularization in Theorem 3.17. □

Remark 5.4. The T -equivariance of the desingularization allows us to use [Lanini
and Pütz 2023a, Lemma 2.1(3)] for the computation of equivariant Euler classes
at the singular points of Gre(M). This allows us to apply [Lanini and Pütz 2023a,
Theorem 2.12] about the construction of a basis for the T -equivariant cohomology
to all quiver Grassmannians for nilpotent representations of the cycle.

Cellular decomposition of the desingularization.

Theorem 5.5. For [N ] ∈ gsube(M) the T -fixed points of Grdim N̂ (M̂) are exactly
the preimages of the T -fixed points of S[N ] ⊂ Gre(M) under πN . The C∗-attracting
sets of these points provide a cellular decomposition of Grdim N̂ (M̂).
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Proof. The T -equivariance of πN from Lemma 5.3 gives the desired description of
the fixed points. Now we prove that the C∗-attracting sets of these fixed points from
the BB-decomposition are cells. By [Carrell 2002, Lemma 4.12], they provide an
α-partition, i.e., there exists a total order of the fixed points

Grdim N̂ (M̂)
C∗

= {p1, . . . , pr }

such that
⊔s

j=1Wi is closed in Grdim N̂ (M̂) for all s ∈ [r ]. It remains to show that
they are isomorphic to affine spaces. This is induced by the cellular decomposition
of Gre(M) and the T -equivariance of the desingularization:

Assume p ∈ Grdim N̂ (M̂) is a T -fixed point. The vector space p(i,k) over the
vertex (i, k) of 1̂n,N is a point in the Grassmannian of subspaces Grn̂(i,k)(C

m̂(i,k)
).

By construction of the C∗-action (as in Remark 5.1), the attracting set of p(i,k)

in Grn̂(i,k)(C
m̂(i,k)

) is a cell. The attracting set of p in the whole quiver Grassmannian
is the intersection of these cells along the maps of M̂ . We proceed by induction on k.
For k = 1 there is nothing to show because there are no maps between the vector
spaces. If k = 2, we have the original vector spaces of the representation M and one
additional layer of subspaces therein. The relations between the coordinates in the
attracting sets are the same as for Gre(M). Hence they are cells by [Lanini and Pütz
2023a, Theorem 5.7]. The maps of M̂ along the arrows βi,k of 1̂n,N are inclusions
and the maps along αi,k are projections where the last m(i,k)

− m(i,k+1) coordinates
are sent to zero (see [Lanini and Pütz 2023a, Proposition 4.8]). Thus we obtain that
the intersecting relations for each k ∈ [N ] are of the form as described in [Lanini
and Pütz 2023a, Theorem 5.7]. This implies the desired isomorphisms to affine
spaces. □

Remark 5.6. In the setting that

M =

⊕
i∈Zn

Ui (ωn) and e = (ωk, . . . , ωk) ∈ Zn

it is possible to strengthen the results concerning the desingularization (see [Feigin
et al. 2023a, Sections 2.5 and 2.6]). Namely, Gre(M) has

(n
k

)
explicitly described

irreducible components (see Example 2.12) and the cells of Grdim N̂ (M̂) are the
strata of the corresponding T -fixed points.

Example. Now, we provide an explicit example for the constructions from the
previous sections. Let M := U1(4)⊕U2(2)⊕U2(2) be a 12-representation and fix
the dimension vector e = (2, 2). The quiver Grassmannian Gre(M) has five strata
(i.e., isomorphism classes of subrepresentations) with the representatives:

V1 := U1(4), V2 := S2 ⊕ U1(3), V3 := U2(2)⊕ U2(2),

V4 := U1(2)⊕ U2(2), V5 := S1 ⊕ S2 ⊕ U2(2).
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The stratum of V2 is three-dimensional, the strata of V1, V3 and V4 are two-
dimensional and the stratum of V5 is one-dimensional. This is computed using
[Pütz 2022, Proposition 4.4] and [Cerulli Irelli et al. 2012, Lemma 2.4].

Let the basis B of M be the union of the standard basis for each indecomposable
summand of M . Then its coefficient quiver is

Q(M, B)=

where the arrows from left to right have α : 1 → 2 as underlying arrow in 12. The
arrows from right to left have β : 2 → 1 as underlying arrow. We define the action
of γ := (γ0, γ1, γ2, γ3) ∈ T := (C∗)3+1 and λ ∈ C∗ on B as

γ1γ0γ1

γ2γ1γ
2
0

γ3γ2γ0

γ1γ
3
0

γ3γ0

λ3λ

λ4λ5

λ5λ6

λ7λ7

These actions extend linearly to the vector spaces of M and to the whole quiver
Grassmannian by [Lanini and Pütz 2023a, Lemma 5.12]. Moreover,

χ : C∗
→ T, λ 7→ (λ2, λ, λ, λ)

is a generic cocharacter by [Lanini and Pütz 2023a, Theorem 5.14]. We apply
[Cerulli Irelli 2011, Theorem 1] to compute the fixed points of both actions:

p1 = p2 = p3 = p4 =

p5 = p6 = p7 = p8 =

Here the black vertices indicate the corresponding subrepresentation of M . The
pairs p1 and p2, p3 and p4, and p6, p7 are each isomorphic as subrepresentations
of M . The attracting sets of the fixed points are cells by [Pütz 2022, Theorem 4.13].
Their dimension equals the number of out going arrows in the following moment
graph which is computed using [Lanini and Pütz 2023a, Theorem 6.15].
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with labels
=̂ ϵ3 − ϵ2

=̂ ϵ2 − ϵ1 − δ

=̂ ϵ3 − ϵ1 − δ

=̂ ϵ1 − ϵ3 + 3δ
=̂ ϵ1 − ϵ2 + 3δ

p7

p8

p6 p4

p5

p3 p2

p1

The labels are expressed as linear combination of the characters

ϵi : T → C∗, (γ0, γ1, . . . , γd) 7→ γi for i ∈ [d],

δ : T → C∗, (γ0, γ1, . . . , γd) 7→ γ0.

Here the dashed lines were used to highlight the symmetries of the labeling and
avoid to write the labels in the picture.

There are four points which are not rationally smooth. Namely the tangent
spaces at p1, p2, p6 and p7 are four-dimensional, whereas Gre(M) itself is three-
dimensional. We can read this from the picture as follows: the number of edges
adjacent to a point is the dimension of its tangent space and the number of outgoing
edges is the cell dimension. The irreducible components are obtained as closure
of the strata of the points p8, p7 and p5, because their strata are not contained in
the closure of any other stratum. These are generic subrepresentation types of M
for dimension vector e = (2, 2). Hence the desingularization of Gre(M) consists of
three components.

The extended quiver 1̂2,4 is

(1, 2)

(2, 1)

(2, 2)

(1, 1)
β1,2

α2,1β2,2

α1,1

(2, 4)

(1, 3)

(1, 4)

(2, 3)

α1,2

β2,4

α2,2

β1,4

β2,3

α2,3

β1,3

α1,3
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For the basis induced by the basis B of M , the coefficient quiver of M̂ is

Here the separating lines between the vertices indicate if they live over the inner or
outer vertex of 1̂2,4 in that position. Representatives for the extended representations
of the generic subrepresentation types are

V̂1 = V̂2 =

V̂3 =

With the explicit description of the cellular decomposition of the quiver Grass-
mannians Grdim V̂1

(M̂), Grdim V̂2
(M̂) and Grdim V̂3

(M̂) from Theorem 5.5, it is a
straightforward computation that their moment graphs are

with labels
=̂ ϵ3 − ϵ2

=̂ ϵ2 − ϵ1 − δ

=̂ ϵ3 − ϵ1 − δ

=̂ ϵ1 − ϵ3 + 3δ
=̂ ϵ1 − ϵ2 + 3δ

p7,1

p8,1

p6,1

p7,2

p6,2 p4,2

p3,2 p2,2

p1,2

p5,3

p2,3

p1,3
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Here p̂i, j is the preimage of pi in Grdim V̂j
(M̂). Moreover, from the cellular decom-

positions we obtain the isomorphisms

Grdim V̂1
(M̂)∼= Gr1(C

3), Grdim V̂2
(M̂)∼= Fl(SL3), Grdim V̂3

(M̂)∼= Gr2(C
3).

With the moment graph of the desingularization as described above, it is possible
to compute the Euler classes at the singular points of Gre(M) using Lemma 4.10.
For example we obtain

EuT (p1, Z5)=
1

(ϵ3 − ϵ2)(ϵ2 − ϵ1 − δ)
+

1
(ϵ3 − ϵ2)(ϵ1 − ϵ2 + 3δ)

=
2δ

(ϵ3 − ϵ2)(ϵ2 − ϵ1 − δ)(ϵ1 − ϵ2 + 3δ)
,

where Z5 =
⋃5

i=1Wi .
We compute the following basis of H•

T (Gre(M)) as free module over H•

T (pt):

ϕ(1) = (1, 1, 1, 1, 1, 1, 1, 1),

ϕ(2) = (0, ϵ3 − ϵ2, 0, ϵ3 − ϵ2, ϵ1 − ϵ2 + 3δ, ϵ3 − ϵ1 − δ, ϵ3 − ϵ1 − δ, ϵ3 − ϵ1 − δ),

ϕ(3) = (0, 0, ϵ2 − ϵ1 − δ, ϵ3 − ϵ1 − δ, 0, ϵ2 − ϵ1 − δ, ϵ3 − ϵ2, ϵ3 − ϵ1 − δ),

ϕ(4) = (ϵ3 − ϵ2)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 1, 0, 0, 1, 0),

ϕ(5) = (ϵ1 − ϵ2 + 3δ)(ϵ1 − ϵ3 + 3δ) · (0, 0, 0, 0, 1, 0, 0, 0),

ϕ(6) = (ϵ2 − ϵ1 − δ)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 0, 0, 1, 1, 0),

ϕ(7) = (ϵ3 − ϵ2)(ϵ2 − ϵ1 − δ)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 0, 0, 0, 1, 0),

ϕ(8) = (ϵ2 − ϵ1 − δ)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 0, 0, 0, 0, 1).

Observe that the special role of p8 in this example allows to generate more zero-
entries as in the general setting of Theorem 4.13.
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