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VARIETIES OF CHORD DIAGRAMS,
BRAID GROUP COHOMOLOGY

AND DEGENERATION OF EQUALITY CONDITIONS

VICTOR A. VASSILIEV

For any finite-dimensional vector space F of continuous functions f :

R1 → R1 we consider subspaces in F defined by systems of equality condi-
tions f (ai ) = f (bi ), where {ai, bi }, i = 1, . . . , n, are some pairs of points
in R1. It is proven that if dimF < 2n − I (n), where I (n) is the number of
ones in the binary notation of n, then there necessarily exist independent
systems of n equality conditions defining the subspaces of codimension
greater than n in F . We also prove lower estimates of the sizes of the
inevitable drops of the codimensions of some of these subspaces.

Next, we apply these estimates to knot theory (in which systems of
equality conditions are known as chord diagrams) and prove the inevitable
presence of complicated nonstable terms in sequences of spectral sequences
computing cohomology groups of spaces of knots.

1. Main results

Let FN be an N -dimensional vector subspace of the space C0(R1, R1) of continuous
functions R1

→ R1. Typically, a collection of n independent conditions of the form

(1) f (ai ) = f (bi ),

where ai ̸= bi , i = 1, . . . , n, defines a subspace of codimension n in FN if n ≤ N
and only the trivial subspace if n ≥ N . However, for exceptional sets of such
conditions, the codimensions of these subspaces can drop.

For example, if FN is the space PN of all polynomials of the form

(2) α1 x N
+ α2 x N−1

+ · · · +αN x

in the variable x , then all subspaces defined by arbitrarily many conditions

f (ai ) = f (−ai )
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contain the
[ N

2

]
-dimensional subspace of even polynomials. Of course, the case of

polynomials is very specific, but the situation when the dimensions of subspaces
in FN defined by some n independent conditions (1) are greater than max(N −n, 0)

can be unavoidable by a choice of space FN .

Definition 1. An unordered pair {a, b} of distinct points in R1 is called a chord.
An unordered collection of n pairwise distinct chords is called an n-chord diagram.

The subalgebra of C0(R1, R1) corresponding to the n-chord diagram

(3) {{a1, b1}, . . . , {an, bn}}

consists of all functions satisfying n conditions (1) with these ai , bi . These n con-
ditions (and the corresponding n chords) are independent if the codimension of this
subalgebra in C0(R1, R1) is equal to n. (We say that an affine or vector subspace T
of a function space K has codimension n if for any point ϕ ∈ T there exist n-
dimensional affine subspaces in K intersecting T at this point only, and all affine
subspaces of higher dimensions passing through ϕ intersect T along subspaces
of positive dimensions.) Two independent n-chord diagrams are equivalent if the
corresponding subalgebras in C0(R1, R1) coincide. A resonance of a chord diagram
is a cyclic sequence of k ≥ 3 its pairwise different chords such that one point of
each chord also belongs to the preceding chord in this sequence, and the other its
point also belongs to the next chord.

For example, two chord diagrams are equivalent if one of them contains the
chords {a, b} and {b, c}, the other contains the chords {a, b} and {a, c}, and all
other chords in them are common.

Proposition 2. An n-chord diagram is independent if and only if it does not contain
resonances. Two independent n-chord diagrams are equivalent if and only if they
can be connected by a chain of elementary flips described in the previous paragraph.
The space of independent n-chord diagrams is a smooth connected 2n-dimensional
manifold.

Proof. The proof is elementary. □

1.1. Results for the case of N ≥ n.

Proposition 3. If N ≥ 2n−1, then the codimension of the subspace in the space PN

of polynomials (2), defined by n conditions (1) of an arbitrary independent n-chord
diagram (3), is equal to n.

Proof. First, the assertion of our proposition will be true if we replace in it the
space PN by the (N + 1)-dimensional space P̂N of all polynomials of degree N .
Indeed, any n-chord diagram has at most 2n distinct endpoints ai , bi , therefore by
interpolation theorem the evaluation morphism from the space of such polynomials
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to the space of real-valued functions on the set of these endpoints is epimorphic,
and hence the preimage of any subspace of codimension n of the latter space also
has codimension n in P̂N . However, adding the constant functions preserves the
subspace of P̂N defined by any chord diagram, therefore the codimension of the
considered subspace in PN is also equal to n. □

Denote by I (n) the number of ones in the binary notation of n.

Theorem 4. If n ≤ N < 2n − I (n), then for any N-dimensional vector subspace
FN

⊂ C0(R1, R1) there exist independent n-chord diagrams (3) such that the
codimension of the subspace in FN consisting of functions satisfying all the corre-
sponding conditions (1) is less than n. The dimension of the set of such exceptional
n-chord diagrams is at least 3n − N − 1 in the following exact sense: there exists
a nontrivial element of the (N − n + 1)-dimensional homology group of the 2n-
dimensional manifold of all independent n-chord diagrams, such that each cycle
representing this element necessarily intersects our set.

In particular, if n is a power of 2 then the minimal dimension of the func-
tion spaces FN in which any independent n-chord diagram defines a subspace of
codimension exactly n is equal to 2n − 1.

A more general result can be formulated in terms of configuration spaces; see,
e.g., [1] for the current state of the theory of these spaces.

Definition 5. The n-th configuration space B(X, n) of a topological space X is
the (naturally topologized) space of unordered subsets of cardinality n in X . The
regular bundle ξn with base B(X, n) is the vector bundle, whose fiber over an
n-point configuration is the space of real-valued functions on the corresponding set
of points.

Theorem 6. Suppose that N ≥ n and for some natural r the cohomological product

(4)
r∏

i=1

wN−n+2i−1(ξn)

of Stiefel–Whitney classes of the regular bundle ξn is not equal to 0 in the ring
H∗(B(R2, n), Z2). Then for any N-dimensional vector subspace FN of the space
C0(R1, R1) there exists an independent system of n conditions (1) such that the
subspace of FN defined by this system has codimension ≤ n − r in FN .

The first statement of Theorem 4 follows immediately from this theorem (the
case r = 1) and statement 5.3 of [3] asserting that the classes

wk ∈ H k(B(R2, n), Z2)

are nontrivial for all k ≤ n − I (n); see also Proposition 30 in Section 6 below. The
second statement of Theorem 4 will be proven at the end of Section 3.
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Corollary 7. A. If two natural numbers n and N satisfy one of the following pairs
of conditions:

(1) n ≥ 6, N = n,

(2) n ≥ 10, N = n + 1,

(3) n ≥ 14, N = n + 2 or n + 3,

(4) n ≥ 16, N = n + 4,

(5) n ≥ 18, N = n + 5,

(6) n ≥ 20, N = n + 6,

(7) n ≥ 24, N = n + 7,

(8) n ≥ 28, N = n + 8 or n + 9,

(9) n ≥ 32, N = n + 10 or n + 11,

then for any N-dimensional vector subspace FN
⊂ C0(R1, R1) there exists a system

of n independent conditions (1) defining a subspace of codimension ≤ n − 2 in FN .

B. If n and N satisfy one of the following pairs of conditions:

(1) n ≥ 18, N = n or n + 1,

(2) n ≥ 22, N = n + 2,

(3) n ≥ 26, N = n + 3,

(4) n ≥ 30, N = n + 4,

(5) n ≥ 36, N = n + 5,

(6) n ≥ 40, N = n + 6 or n + 7,

(7) n ≥ 44, N = n + 8 or n + 9,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 3 in FN .

C. If n and N satisfy one of the following conditions:

(1) n ≥ 30 and N = n or n + 1,

(2) n ≥ 44 and N = n + 2 or n + 3,

(3) n ≥ 52 and N = n + 4 or n + 5,

(4) n ≥ 56 and N = n + 6 or n + 7,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 4 in FN .

D. If n and N satisfy one of the following conditions:

(1) n ≥ 48 and N = n or n + 1,
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(2) n ≥ 60 and N = n + 2 or n + 3,

(3) n ≥ 68 and N = n + 4 or n + 5,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 5 in FN .

E. If n and N satisfy one of the following conditions:

(1) n ≥ 64 and N = n or n + 1,

(2) n ≥ 76 and N = n + 2 or n + 3,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 6 in FN .

F. If we have n ≥ 80 and N = n or n + 1, then for any N-dimensional subspace
FN

⊂ C0(R1, R1) there exists a system of n independent conditions (1) defining a
subspace of codimension ≤ n − 7 in FN .

See Section 6 for the proof of this corollary. Its lists can easily be continued and
the corresponding calculations can be programmed.

Remark. The first statement of Theorem 4 looks very similar (and is closely related)
to the result of [2] estimating the dimensions of spaces of functions R2

→ R1

realizing n-regular embeddings of the plane. The main effort of our proof of
Theorem 6 is a comparison of the configuration spaces used in these two problems,
see Lemma 16 below.

1.2. Results for the case of N ≤ n.

Theorem 8. If N ≤ n and for some natural r the product

(5)
r∏

i=1

wn−N+2i−1(ξn)

of Stiefel–Whitney classes of the bundle ξn is not equal to 0 in the ring

H∗(B(R2, n), Z2),

then for any N-dimensional vector subspace FN
⊂ C0(R1, R1) there exists an

independent n-chord diagram, such that the subspace of FN consisting of functions
satisfying the corresponding system of equality conditions is at least r-dimensional.

If N = n, then Theorems 6 and 8 coincide tautologically.

Corollary 9. If N ≥2, then for any N-dimensional vector subspace FN
⊂C0(R1,R1)

there exist independent n-chord diagrams with arbitrarily large n such that the
corresponding systems of equality conditions have nontrivial solutions in FN .
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Indeed, it is enough to prove this for N = 2 and numbers n equal to powers of 2.
In this case wn−N+1(ξn) ̸= 0 by the previously mentioned result in [3]. □

Remark. This corollary has also an elementary proof. Indeed, any 2-dimensional
subspace of C0(R1, R1) contains a nonzero function taking equal values at some
two different points a, b ∈ R1. Then this function necessarily satisfies the equality
conditions f (ã) = f (b̃) for a continuum of different pairs {ã, b̃} ⊂ [a, b].

Corollary 10. All statements of Corollary 7 will remain valid if in each of its
conditions we replace the value of N by 2n − N (e.g., N = n +4 by N = n −4) and
simultaneously the corresponding conclusion “there exists a system of n independent
conditions (1) defining a subspace of codimension ≤ n − r in FN” by “there exists
a system of n independent conditions (1) defining a subspace of dimension ≥ r
in FN”.

Remark. In terms of [6], the subspaces of anomalous codimensions defined by
chord diagrams in finite-dimensional function spaces are responsible for the nonsta-
ble regions of the (p, q)-planes of the spectral sequences converging to cohomology
groups of spaces of long knots R1

→ R3 defined by functions from these function
spaces. These domains are the only possible sources of cohomology classes of the
knot space (including 0-dimensional classes, i.e., knot invariants) not of finite-type.
In Section 7 below, we prove some facts about filtrations of simplicial resolutions
of discriminant spaces in finite-dimensional knot spaces, estimating the deviation
of the corresponding spectral sequences from stable ones.

2. Scheme of proof of Theorem 6

Denote by CDn the set of equivalence classes of independent n-chord diagrams. It
has a natural topology induced by the topology of the variety of subalgebras of codi-
mension n in C0(R1, R1). To describe this topology without infinite-dimensional
considerations, let A be a sufficiently large finite-dimensional vector subspace of
C0(R, R), such that all subspaces of A defined by independent n-chord diagrams
(that is, the intersections of A with subalgebras of C0(R1, R1) corresponding to
these chord diagrams) have codimension exactly n in A, and the nonequivalent
n-chord diagrams define different subspaces. (For reasons similar to the proof
of Proposition 3 we can take for such a space A the space PM , M ≥ 2n + 1,
or any space containing it; taking P2n−1 is not enough because nonequivalent
n-chord diagrams can define equal subspaces in it). We can and will assume that A
contains FN , because otherwise we can replace A by its sum with FN .

The set CDn is embedded into the Grassmann manifold G(A, −n) of subspaces
of codimension n in A, and inherits a topology from this manifold. It is easy to see
that this definition of a topology on CDn does not depend on the choice of A.
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Suppose that N ≥ n. Let 1r (FN ) ⊂ G(A, −n) be the set of all subspaces of
codimension n in A whose sums with FN have codimension at least r in A.

Proposition 11. The class in H∗(G(A, −n), Z2) Poincaré dual to the homology
class of the algebraic variety 1r (FN ) is equal to r × r determinant:

(6)

∣∣∣∣∣∣∣∣∣∣∣∣∣

wN−n+r wN−n+r+1 wN−n+r+2 . . . wN−n+2r−2 wN−n+2r−1

wN−n+r−1 wN−n+r wN−n+r+1 . . . wN−n+2r−3 wN−n+2r−2

wN−n+r−2 wN−n+r−1 wN−n+r . . . wN−n+2r−4 wN−n+2r−3

. . . . . . . . . . . . . . . . . .

wN−n+2 wN−n+3 wN−n+4 . . . wN−n+r wN−n+r+1

wN−n+1 wN−n+2 wN−n+3 . . . wN−n+r−1 wN−n+r

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where wi are the Stiefel–Whitney classes of the tautological bundle on G(A, −n).

Proof. Let τn be the vector bundle on G(A, −n) whose fiber over the point {L}

corresponding to the subspace L ⊂A is the space of linear functions on A vanishing
on L . Consider the morphism of this bundle to the constant bundle with fiber (FN )∗,
sending any such linear form to its restriction to FN . The variety 1r (FN ) can
be redefined as the set of points {L} such that the rank of this morphism does not
exceed n − r . By the real version of the Thom–Porteous formula (the proof of
which literally repeats its complex analog given in [4, Section 14.4], after standard
replacements of Chern classes by Stiefel–Whitney classes, Z by Z2, etc.) the class
in H∗(G(A, −n), Z2) Poincaré dual to this variety is equal to the determinant of
the form (6) in which all the symbols wi are the Stiefel–Whitney classes of the
virtual bundle −τn .

The constant bundle on G(A, −n) with the fiber A∗ is obviously isomorphic to
the direct sum of τn and the bundle dual (and hence isomorphic) to the tautological
bundle. Therefore −τn and this tautological bundle belong to the same class of the
group K̃ (G(A, −n)), in particular have the same Stiefel–Whitney classes. □

These Stiefel–Whitney classes wi (−τn) are equal to the i-dimensional compo-
nents wi (τn) ∈ H i (G(A, −n), Z2) of the class w−1(τn), where

w(τn) = 1 + w1(τn) + . . .

is the total Stiefel–Whitney class of the bundle τn , see Section 4 in [5]. If the inter-
section of the subset CDn ⊂ G(A, −n) with 1r (FN ) is empty, then the restriction
homomorphism H∗(G(A, −n), Z2) → H∗(CDn, Z2) maps the class (6) to zero.
Theorem 6 therefore reduces to the following lemma.

Lemma 12. If the class (4) is not equal to 0, then the restriction of the class (6) to
the subvariety CDn ⊂ G(A, −n) is a nontrivial element of the group

H r(N−n+r)(CDn, Z2).
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3. Proof of Lemma 12

Let R2
+

⊂ R2 be the half-plane {(a, b) | a < b} ⊂ R2. Any point (a, b) of R2
+

can be
identified with the chord {a, b}, and any element of the configuration space B(R2

+
, n)

with an n-chord diagram. Let us denote by 4 ⊂ B(R2
+
, n) the set of dependent

(that is, containing resonances) n-chord diagrams. Consider the diagram

(7)
B(R2, n) B(R2

+
, n) \ 4

CDn G(A, −n)

⊃

π

⊂

where π is the map sending any chord diagram to its equivalence class.

Lemma 13. The restriction of the regular vector bundle ξn (see Definition 5) to
the subset B(R2

+
, n) \4 ⊂ B(R2, n) is isomorphic to the bundle pulled back by the

map π from the bundle τn over CDn .

Proof. The bundle τn is isomorphic to its dual bundle τ ∗
n , i.e., to the quotient of the

trivial bundle with fiber A by the tautological bundle over G(A, −n).
Consider the following homomorphism from the trivial bundle with the fiber A

over B(R2
+
, n) \ 4 to ξn: over any n-chord diagram 0 it sends any function

f ∈ A ⊂ C0(R1, R1) to the function on the set of chords of this chord diagram,
whose value on any chord {ai , bi } is equal to the difference f (bi ) − f (ai ). By the
first characteristic property of the space A this morphism is surjective; by definition
of inclusion CDn ⊂ G(A, −n) its kernel is equal to the fiber of the tautological
bundle over the point π(0) ∈ CDn . Therefore our homomorphism induces an
isomorphism between the bundles π∗(τ ∗

n ) ∼ π∗(τn) and ξn . □

Lemma 14 (see [3] or Proposition 31). The square of any positive-dimensional ele-
ment of the ring H∗(B(R2, n), Z2) is equal to zero, in particular w−1(ξn) = w(ξn)

and wi (ξn) = wi (ξn) for any i . □

Lemma 15. The determinant of the form (6) in which all classes wi are replaced
by wi (ξn) is equal to the product (4) in H∗(B(R2, n), Z2).

Proof. The matrix (6) is symmetrical with respect to the southwest/northeast
diagonal, hence calculating its determinant mod 2 it suffices to count only those
products of r matrix elements which are self-symmetric with respect to this diagonal.
By Lemma 14 such products, not all factors of which lie in this diagonal, are also
trivial. □

Lemma 16. The inclusion B(R2
+
, n) \4 → B(R2, n) induces a monomorphism of

cohomology groups H∗(B(R2, n), Z2) → H∗(B(R2
+
, n) \ 4, Z2).
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Lemma 16 will be proved in Section 5. Lemma 12 follows from Lemmas
13–16 and the functoriality of Stiefel–Whitney classes. Namely, by Lemma 16
if the product (4) is nontrivial in H∗(B(R2, n), Z2), then it is nontrivial also in
H∗(B(R2

+
, n)\4, Z2). By the Lemmas 13–15 this element of H∗(B(R2

+
, n)\4, Z2)

is equal to the class induced by the map π from the determinant (6), so this
determinant is also nontrivial.

Proof of the last statement of Theorem 4. By Lemma 16 and statement 5.3 of [3],
under the conditions of this theorem the class wN−n+1(ξn) is not trivial. We can
then take an arbitrary element of the group HN−n+1(B(R2

+
, n) \ 4, Z2) on which

this class takes nonzero value: any cycle realizing such an element intersects the
set π−1(11(FN )). □

4. Proof of Theorem 8

Now suppose that N ≤ n. Let 3r (FN ) be the subset of G(A, −n) consisting of
planes whose intersection with FN is at least r -dimensional.

Proposition 17. The class in H∗(G(A,−n), Z2) Poincaré dual to the variety
3r (FN ) is equal to r × r determinant similar to (6), in which N − n in all lower
indices is replaced by n − N , and wi are Stiefel–Whitney classes of the bundle τn .

Proof. The projection along the fibers of the tautological bundle over G(A, −n)

defines a morphism from the constant bundle with fiber FN and base G(A, −n) to
the bundle dual (and hence isomorphic) to τn , i.e., to the quotient of the constant
bundle with fiber A by the tautological bundle. The set 3r (FN ) can be defined as
the set of points at which the rank of this morphism does not exceed N − r . Our
proposition follows from the real version of Thom–Porteous formula applied to this
morphism. □

The rest of the reduction of Theorem 8 to Lemma 16 repeats that of Theorem 6; the
Stiefel–Whitney classes of the bundles −τn and τn participating in the corresponding
Thom–Porteous formulas are the same by Lemma 14.

5. Proof of Lemma 16

5.1. Generators of Hopf algebra. We will prove the dual statement: the map
H∗(B(R2

+
, n) \ 4, Z2) → H∗(B(R2, n), Z2) induced by the identical embedding is

epimorphic.
According to [3], all stabilization maps

H∗(B(R2, n), Z2) → H∗(B(R2, n + m), Z2)

induced by the standard inclusions B(R2, n) ↪→ B(R2, n + m) are injective. There-
fore, all elements of the group H∗(B(R2, n), Z2) are given by polynomials in the
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multiplicative generators of the Hopf algebra H∗(B(R2, ∞), Z2), and it suffices to
prove that all these generators and their products participating in the construction
of these elements can be realized by cycles lying in B(R2

+
, n) \ 4.

These generators [Mj ] ∈ H2 j −1(B(R2, 2 j ), Z2) were defined in Section 8 of [3]
by the following cycles Mj ⊂ B(R2, 2 j ). Arbitrarily choose two opposite points of
the circle of radius 1 centered at the origin in R2. Take two circles of small radius
ε with centers at these points and arbitrarily choose a pair of opposite points in
each of them. Take circles of radius ε2 centered at all obtained four points and
choose a pair of opposite points in all of them. Continuing, after the j-th step we
obtain a 2 j -configuration in R2. This construction involves 1 + 2 + 4 + · · ·+ 2 j−1

choices of opposite points in some circles, hence the set Mj of all possible 2 j -
configurations that can be obtained in this way is (2 j

− 1)-dimensional. It is easy
to see that this set is a closed submanifold in B(R2, 2 j ), and therefore it defines
an element [Mj ] of the group H2 j −1(B(R2, 2 j ), Z2), j ≥ 1. Finally, define the
element [M0] ∈ H0(B(R2, 1), Z2) as the class of a single point.

Unfortunately, these cycles with j > 1 contain configurations with resonances,
and, moreover, all configurations of class Mj do not lie in R2

+
. To avoid these

problems, we modify the previous construction by (1) replacing the circles with
squares, (2) taking these squares of the same level (i.e., arising on the same stage
of the construction) of varying sizes depending on their centers, and (3) shifting the
resulting configurations into the half-plane R2

+
⊂ R2; see Section 5.4 below.

5.2. Preparation for the construction.

Definition 18. A segment in the plane R2 with coordinates a and b is called vertical
(respectively, horizontal) if the coordinate a (respectively, b) is constant along it. A
straight resonance of an n-point configuration in R2 is a closed chain of strictly
alternating vertical and horizontal segments, all whose endpoints belong to our
configuration.

Proposition 19. Let ā and b̄ be two real numbers such that b̄ − ā > 8. If all points
{ai , bi }, i = 1, . . . , n, of an n-chord diagram (3) satisfy the conditions

(8) |ai − ā| < 2, |bi − b̄| < 2,

and the corresponding n-configuration {(ai , bi )} ⊂ B(R2
+
, n) has a resonance, then

it has a straight resonance.

Indeed, if two chords {ai , bi } and {ak, bk} satisfying the conditions (8) have
common points, then either ai = ak or bi = bk , but not ai = bk . □

We will construct our basic cycles in the set of configurations satisfying the
condition of Proposition 19 for some ā and b̄, and prove that they do not have
configurations with straight resonances.
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Figure 1. 8-configuration of the class M̃3.

Let us fix a very small number ε > 0. Define the basic square □ ⊂ R2 as the
union of four segments consecutively connecting the points

(−1, −1), (−1, 1), (1, 1), (1, −1)

and again (−1, −1). Fix an arbitrary continuous function χ : □ → [ε, 1] equal
identically to 1 on segments

(9) [(−1 + ε, 1), (1, 1)] and [(1, −1 + ε), (1, 1)],

equal to ε on segments

(10) [(−1, −1), (−1, 1 − ε)] and [(−1, −1), (1 − ε, −1)],

and taking some intermediate values in the remaining ε-neighborhoods of corners
(−1, 1) and (1, −1), see Figure 1.

5.3. First example. Let n = 4. Arbitrarily choose two opposite points A and −A
of the basic square. Consider two squares of the second level obtained from the
basic square by the affine maps

X 7→ A + εχ(A)X and X 7→ −A + εχ(−A)X

(in particular, centered at the points A and −A), and arbitrarily choose two opposite
points in each of these squares.
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None of the 4-configurations thus obtained can have a straight resonance (i.e., to
be the set of corners of a rectangle with vertical and horizontal sides). Indeed, two
points of different squares of second level can be joined by a vertical (respectively,
horizontal) segment only if the centers A and −A of these squares are very close
to the centers of the opposite horizontal (respectively, vertical) sides of the basic
square. But in this case the values of the function χ at the points A and −A are
different, our two squares of second level have different sizes, and the segments
connecting two opposite points in one of them and two opposite points in the other
cannot be opposite sides of the same rectangle.

Therefore shifting all obtained 4-configurations by a fixed vector (ā, b̄) ∈ R2

with b̄ − ā > 8, we get a 3-dimensional cycle in space B(R2
+
, 4) \ 4.

5.4. Construction of cycles M̃ j (see Figure 1). The general construction is an
iteration of the previous one.

Namely, define two sequences of natural numbers u j and Tj , j ≥ 2, by recursion

(11) u2 =1, T2 =2, u j =u j−1+Tj−1+2, Tj =u j +Tj−1+1 for j >2.

Define the subset M̃1 ⊂ B(R2, 2) as the space of all choices of two opposite
points in the basic square □. Suppose we have defined the (2 j−1

− 1)-dimensional
subvariety M̃j−1 ⊂ B(R2, 2 j−1), j ≥ 2. Then the (2 j

− 1)-dimensional subvariety
M̃j ⊂ B(R2, 2 j ) is defined as the space of all 2 j -configurations consisting of

(i) a 2 j−1-configuration obtained from some configuration of the class M̃j−1 by
the affine map R2

→ R2 given by

(12) {X 7→ A + εχuj (A)X},

where A is some point of the basic square □;

(ii) a 2 j−1-configuration obtained from some configuration of the class M̃j−1 by
the map

(13) {X 7→ −A + εχuj (−A)X},

with the same A, see Figure 1.

Any 2 j -configuration of the class M̃j uniquely determines the set of 2 j
− 1

squares participating in its construction: it consists of the basic square □ and the
images under maps (12), (13) of two collections of 2 j−1

− 1 squares participating
in the construction of two 2 j−1-configurations of class M̃j−1. This set is obviously
organized into (the set of vertices of) an oriented binary tree. Namely, it has two
squares of the second level, four squares of the third level, etc. Every square of the
l-th level is centered at a point of some square of (l − 1)-st level; we connect the
two corresponding vertices by an edge of the tree oriented towards the vertex of
level l. Any point of our configuration belongs to a square of the j-th level, i.e.,
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to a leaf of the tree. We say that a point of the configuration is subordinate to this
square of level j containing it, and also to all squares of lower levels connected
with it by an oriented path in our binary tree. Conversely, we say that all these
squares dominate such a point of the configuration; in particular, any square of
level l dominates exactly 2 j−l+1 points.

Lemma 20. The length of the sides of the smallest square participating in the
construction of a 2 j -configuration of class M̃j is not less than 2εTj .

Proof. This follows by induction from the last condition (11) because both subsets
constituting our 2 j -configuration are obtained from certain 2 j−1-configurations of
the class M̃j−1 by homotheties (12), (13) with coefficients ≥ εuj +1. □

Lemma 21. The absolute values of the coordinates a, b of all points of configura-
tions of class M̃j do not exceed 1 + ε + ε2

+ · · · + ε j−1 < 1
1−ε

.

Lemma 22. If a square of level l participating in the construction of a configuration
of the class M̃j has sides of length d , then all 2 j−l+1 points of this configuration
subordinate to this square lie in the εd

√
2(1−ε)

-neighborhood of this square.

Proof. Proofs of these two lemmas follow directly from the construction. □

Finally, we move the obtained subvariety M̃j ⊂ B(R2, 2 j ) into B(R2
+
, 2 j ) shifting

all its 2 j -configurations to R2
+

by some translation {X 7→ X+(ā, b̄)}, where b̄−ā ≥8.
Denote by ∇j the resulting cycle in B(R2

+
, 2 j ).

It is easy to see that ∇j is the image of an embedding Mj → B(R2, 2 j ) (where
the manifold Mj was defined in Section 5.1), which is homotopic to the identical
embedding; in particular, it defines the same homology class in H∗(B(R2, 2 j ), Z2).
Indeed, such a homotopy is defined by (1) a family of functions connecting the
function χ with the function equal identically to 1 in the space of positive functions
□ → R1, (2) a deformation of all circles to squares, and (3) the continuous shift of
the plane by the vector (ā, b̄). Therefore, to realize the homology class [Mj ] by a
cycle from B(R2

+
) \ 4 it remains to prove the following statement.

Theorem 23. The variety ∇j does not contain 2 j -chord diagrams with straight
resonances.

The proof of this theorem for arbitrary j is not as simple as for j = 2, it uses the
following generalization of straight resonances.

Definition 24. For any positive number δ, a segment in R2 is called δ-horizontal
(respectively, δ-vertical) if the tangent of the angle between this segment and a hor-
izontal (respectively, vertical) line belongs to the interval [0, δ). An n-configuration
in R2 is δ-resonant if there exists a closed chain of strictly alternating δ-vertical and
δ-horizontal segments in R2 such that the endpoints of any of its segments belong
to our configuration.
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-� 2ε □

□

Figure 2. Discrepancy preventing resonances.

Theorem 23 now follows from the following statement.

Theorem 25. If the number ε participating in the construction of the cycle M̃j is
sufficiently small, then the set M̃j does not contain εuj +1-resonant 2 j -configurations.

5.5. Example and idea of the proof of Theorem 25. Let us again consider the
case j = 2. If a 4-configuration of the class M̃2 is ε2-resonant, then some points of
opposite squares of second level participating in its construction are connected by
segments almost parallel (up to angles with tangent ≤ ε2) to a vertical or horizontal
segment. Let us assume for certainty that these are almost vertical segments. Then
the centers A and −A of these squares are very close to the centers of the opposite
horizontal sides of the basic square, in particular the function χ takes the value 1 at
one of them and the value ε at the other. The a-coordinates of two points of our
ε2-resonant 4-configuration, placed in the bigger square of second level, differ by 2ε,
see Figure 2 (left). On the other hand, these two points are connected by a chain of
three segments of our ε2-resonance passing through the smaller square, therefore
this difference is estimated from above by the sum of (a) the length of the sides of
the small square and (b) twice the maximal possible difference of a-coordinates of
endpoints of the ε2-vertical segments of our ε2-resonance. The last difference is
estimated from above by the maximal difference of b-coordinates of points of our
configuration (which is at most 2 + ε + ε2) multiplied by the allowed bending ε2 of
the segments of our ε2-resonance. This sum is of order ε2, a contradiction.

Further, let j be arbitrary; suppose that our configuration of class M̃j is εuj +1-
resonant, and two squares of second level participating in its construction are located
near the centers of horizontal sides of the basic square. Our exponents (11) are
chosen in such a way that the upper endpoints of any two εuj +1-vertical segments
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connecting the points subordinate to different squares of the second level cannot
lie too close to the opposite vertical sides of an arbitrary square subordinate to the
bigger (upper) square of second level: indeed, by an estimate similar to that from
the previous paragraph the difference of the a-coordinates of these endpoints is
much smaller than the minimal distance between these vertical sides.

If j > 2, then there remains a possibility that these two endpoints lie in neigh-
borhoods of opposite horizontal sides of such a square (see Figure 2, right) and are
connected by some εuj +1-resonant chain inside the upper square of second level.
In this case, let us connect directly these two endpoints by a segment and forget
about the part of our εuj +1-resonance involving the points from the lower square.
The exponents (11) are chosen so that the tangent of this segment with a vertical
line is estimated from above by εuj−1+1, and we obtain a εuj−1+1-resonance inside
the upper square only, which is prohibited by the induction hypothesis.

5.6. Proof of Theorem 25. Let us support this reasoning with strict estimates.
Suppose that Theorem 25 is proved for all cycles M̃i , i < j . By the construction,

any 2 j -configuration 0 ∈ M̃j splits into two subsets of cardinality 2 j−1 with mass
centers at some opposite points A and −A of the basic square □, any of these
subsets lying in the

√
2ε/(1−ε)-neighborhood of the corresponding point A or −A.

Suppose that our configuration 0 ∈ M̃j is εuj +1-resonant. If the entire chain of its
points participating in this resonance is located in only one of these two subsets of 0,
then we get a contradiction with the induction hypothesis for i = j − 1, because
this subset is homothetic to a configuration of the class M̃j−1, and εuj +1 < εuj−1+1.

So, our chain should contain εuj +1-vertical or εuj +1-horizontal segments, which
connect some points from these two subsets. Therefore, the corresponding points
A and −A are very close to either the center points of opposite horizontal sides of
the basic square □, or to the center points of its vertical sides. These two situations
can be reduced to each other by the reflection in the diagonal {a = b} of R2, it is
therefore sufficient to consider only the first of them.

Consider a εuj +1-vertical segment of our resonance chain which has endpoints
in both these subsets; let A0 be its endpoint in the upper subset. Starting from A0,
our chain somehow travels inside this upper subset and finally leaves it along some
other εuj +1-vertical segment; let B0 be the upper point of the latter segment.

Lemma 26. (1) The difference between the a-coordinates of points A0 and B0 is
estimated from above by 7εuj +1.

(2) The difference between the b-coordinates of A0 and B0 is estimated from below
by εTj−1+1.

Proof. (1) This difference is estimated from above by the sum of (a) the maximal
difference of the a-coordinates of the points of the lower 2 j−1-subconfiguration
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of our 2 j -configuration 0, (b) the difference of the a-coordinates of the point A0

and the other endpoint of the segment of our chain connecting A0 with this lower
subconfiguration, and (c) the similar difference for the point B0. By Lemma 21,
formulas (12)–(13) and the definition of the function χ , the first of these differences
is estimated from above by 2εuj +1(1 + O(ε)); the other two are estimated by the
heights of these two segments (which by Lemma 21 are smaller than 2

1−ε
) multiplied

by their tangents with the vertical direction (which are estimated by εuj +1 since
these segments are εuj +1-vertical). Thus, the entire sum is estimated from above by
εuj +1(6 + O(ε)) < 7εuj +1.

(2) Let us consider two paths in the binary tree of squares participating in the
construction of our configuration 0 ∈ M̃j , starting from the basic square and
consisting of all squares dominating the point A0 (respectively, B0). Let □k be
the last (of highest level) common square of these two sequences. By Lemma 20,
the length of its sides is at least 2εTj−1+1: indeed, this square is obtained from
a square participating in the construction of a 2 j−1-configuration of class M̃j−1

by a homothety with coefficient εχ(A) for some point A from the central part
of the upper side of the basic square (where χ ≡ 1). The next two squares in
these sequences (or their final points A0 and B0 if □k is a square of the last j-th
level) are different, therefore these next squares (or points) are centered at (or
coincide with) some points of opposite sides of □k . These cannot be vertical
sides: indeed, in this case by Lemma 22 the a-coordinates of our points A0 and B0

would differ by 2εTj−1+1(1 + O(ε)), which contradicts statement (1) of our lemma,
because by (11) εTj−1+1

≫ εuj +1. Therefore, these are horizontal opposite sides,
and hence the difference of their b-coordinates is estimated from below by the
number 2εTj−1+1(1 + O(ε)) > εTj−1+1. Moreover, by Lemma 22 the last estimate is
also valid for the difference of the b-coordinates of the points A0 and B0 subordinate
to some squares centered at points of these sides. □

Corollary 27. The segment [A0, B0] is εuj−1+1-vertical.

Proof. By the previous lemma, the absolute value of the tangent of the angle between
this segment and the vertical direction is estimated from above by 7εuj −Tj−1 , which
by (11) is less than εuj−1+1 (since we can assume that ε < 1

7 ). □

In particular, this segment [A0, B0] is not εuj +1-horizontal, so A0 and B0 cannot
be neighboring points in our εuj +1-resonance chain. Now consider the closed chain
of segments in the upper subset of our M̃j -configuration 0, which consists of the
segment [A0, B0] and the part of our initial εuj +1-resonance chain connecting these
two points inside this upper subset of 0. This closed chain is a εuj−1+1-resonance,
which contradicts the induction hypothesis over j . This contradiction finishes the
proof of Theorem 25, and hence also of Theorem 23. □
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Finally, every product [Mj1] · [Mj2] · · · [Mjq ] of multiplicative generators of the
Hopf algebra H∗(B(R2, ∞), Z2) such that 2 j1 +2 j2 +· · ·+2 jq = n can be realized
by the set of all n-configurations, some 2 j1 points of which form a configuration
of type M̃j1 shifted to R2

+
along the vector (0, 8), some other 2 j2 points form a

configuration of type M̃j2 shifted along the vector (56, 64). . . and the last 2 jq

points form a configuration of type M̃jq shifted along the vector (8q
− 8, 8q). The

values of both coordinates of the points of any of these groups are very far from the
coordinates of the points from any other group, thus all obtained n-configurations
do not contain resonances. This finishes the proof of Lemma 16 and hence also of
Theorems 6 and 8. □

6. Proof of Corollaries 7 and 10

Proposition 28. All the statements of Corollary 7 (respectively, Corollary 10) are
monotonic on N : if for a triplet of numbers (n, N , r), n < N (respectively, n > N ),
it is true that for any N-dimensional subspace FN

⊂ C0(R1, R1) there exist systems
of n independent equality conditions defining subspaces of codimension ≤ n − r
(respectively, of dimension r ) in FN , then the same is true for the triplet (n, N−1, r)

(respectively, (n, N + 1, r)).

Proof. Apply the hypothesis of this proposition to an arbitrary N -dimensional space
containing FN−1 (respectively, contained in FN+1). □

Let us recall several results of [3] on mod 2 cohomology of spaces B(R2, n).

Proposition 29 (see [3, Section 4.8]). For any k, the group H k(B(R2,n),Z2) has a
canonical basis whose elements are in a one-to-one correspondence with unordered
decompositions of the number n into n − k powers of 2. In particular, this group is
nontrivial if and only if k ≤ n − I (n).

The standard notation for such a basis element is ⟨2l1, 2l2, . . . , 2lt ⟩, where
l1 ≥ l2 ≥ · · · ≥ lt ≥ 1, t ≤ n − k: this is the list (in nonincreasing order) of
all summands of such a decomposition which are strictly greater than 1.

Namely, such a basis element of H∗(B(R2, n), Z2) is defined by the intersection
index with the closure of the subvariety in B(R2, n) consisting of all n-configurations
such that there exist t distinct vertical lines in R2, one of which contains 2l1 points
of our configuration, some other one contains 2l2 of them, etc.

We will also use the abbreviated notation ⟨2s1
v1

, 2s2
v2

, . . . , 2sq
vq ⟩ for these basis

elements, where s1 > s2 > · · · > sq ≥ 1 and 2si
vi

means 2si repeated vi times; if
some vi is here equal to 1 then we write simply 2si instead of 2si

1 .

Proposition 30 (see [3, Section 5.2]). The class wk(ξn) ∈ H k(B(R2, n), Z2) for
any k < n is equal to the sum of all basic elements of this group described in the
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previous proposition. In particular, all classes wk(ξn) with k ≤ n − I (n) are not
equal to 0.

So we have

w1 = ⟨2⟩,(14)

w2 = ⟨22⟩,(15)

w3 = ⟨23⟩ + ⟨4⟩,(16)

w4 = ⟨24⟩ + ⟨4, 2⟩,(17)

w5 = ⟨25⟩ + ⟨4, 22⟩,(18)

w6 = ⟨26⟩ + ⟨4, 23⟩ + ⟨42⟩,(19)

w7 = ⟨27⟩ + ⟨4, 24⟩ + ⟨42, 2⟩ + ⟨8⟩,(20)

w8 = ⟨28⟩ + ⟨4, 25⟩ + ⟨42, 22⟩ + ⟨8, 2⟩,(21)

w9 = ⟨29⟩ + ⟨4, 26⟩ + ⟨42, 23⟩ + ⟨43⟩ + ⟨8, 22⟩,(22)

w10 = ⟨210⟩ + ⟨4, 27⟩ + ⟨42, 24⟩ + ⟨43, 2⟩ + ⟨8, 23⟩ + ⟨8, 4⟩,(23)

w11 = ⟨211⟩ + ⟨4, 28⟩ + ⟨42, 25⟩ + ⟨43, 22⟩ + ⟨8, 24⟩ + ⟨8, 4, 2⟩,(24)

w12 = ⟨212⟩ + ⟨4, 29⟩ + ⟨42, 26⟩ + ⟨43, 23⟩ + ⟨44⟩ + ⟨8, 25⟩ + ⟨8, 4, 22⟩.(25)

Proposition 31 (see [3, Sections 9 and 6]). The cohomological product of two basis
elements of the group H∗(B(R2, n), Z2) having the form

⟨2m, . . . , 2m, 2m−1, . . . , 2m−1, . . . , 2, . . . , 2⟩,

where any number 2i , i ∈ {1, 2, . . . , m}, occurs pi times in the first factor and
qi times in the second and some of numbers pi , qi can be equal to 0, is equal to

(26)
m∏

i=1

(
pi + qi

pi

)
⟨2m, . . . , 2m, 2m−1, . . . , 2m−1, . . . , 2, . . . , 2⟩,

where any symbol 2i in the angle brackets occurs pi + qi times, all binomial
coefficients are counted modulo 2, and the entire expression (26) is assumed to be
zero if (pm + qm)2m

+ (pm−1 + qm−1)2m−1
+ · · · + (p1 + q1)2 > n.

Now, all statements of Corollaries 7 and 10 follow immediately from Theo-
rems 6, 8 and the following calculations.

A(1) By (14), (16) and (26), w1w3 = ⟨4, 2⟩, which is nontrivial for n ≥ 6.

A(2) By (15), (17) and (26),

(27) w2 w4 = ⟨4, 23⟩ + ⟨26⟩,

which is nontrivial if n ≥ 10.
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A(3) By (16), (18) and (26), w3 w5 = ⟨4, 25⟩, which is nontrivial if n ≥ 14. By
(17), (19) and (26),

(28) w4 w6 = ⟨42, 24⟩ + ⟨43, 2⟩,

which is also nontrivial if n ≥ 14.

A(4) By (18), (20) and (26),

(29) w5 w7 = ⟨43, 23⟩ + ⟨8, 25⟩ + ⟨8, 4, 22⟩,

which is nontrivial for n ≥ 16.

A(5) By (19), (21) and (26),

(30) w6 w8 = ⟨214⟩ + ⟨4, 211⟩ + ⟨42, 28⟩ + ⟨43, 25⟩ + ⟨8, 27⟩ + ⟨8, 42, 2⟩,

which is nontrivial for n ≥ 18.

A(6) By (20), (22) and (26),

(31) w7 w9 = ⟨4, 213⟩ + ⟨43, 27⟩ + ⟨8, 29⟩ + ⟨8, 43⟩,

which is nontrivial for n ≥ 20.

A(7) By (21), (23) and (26),

(32) w8 w10 = ⟨42, 212⟩ + ⟨43, 29⟩ + ⟨8, 4, 28⟩ + ⟨8, 42, 25⟩ + ⟨8, 43, 22⟩,

which is nontrivial if n ≥ 24.

A(8) By (22), (24) and (26),

(33) w9 w11 = ⟨43, 211⟩ + ⟨8, 4, 210⟩ + ⟨8, 43, 24⟩,

which is nontrivial if n ≥ 28.
By (23), (25) and (26),

(34) w10 w12

= ⟨44, 210⟩+⟨45, 27⟩+⟨46, 24⟩+⟨47, 2⟩+⟨8, 4, 212⟩+⟨8, 44, 23⟩+⟨8, 45⟩,

which also is nontrivial if n ≥ 28.

A(9) The class w14 contains summand ⟨82⟩, therefore by (25) and (26) the product
w12 w14 contains summands ⟨82, 44⟩ and ⟨83, 4, 22⟩, each of which is nontrivial
if n ≥ 32.

B(1) By (15), (28) and (26),

(35) w2 w4 w6 = ⟨42, 26⟩ + ⟨43, 23⟩,
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which is nontrivial for n ≥ 18. By Theorem 6 this calculation proves the statement
B(1) of Corollary 7 (respectively, Corollary 10) for N = n + 1 (respectively, N =

n − 1), and the case N = n follows by monotonicity, see Proposition 28.

B(2) By (16), (29) and (26), w3 w5 w7 = ⟨8, 4, 25⟩, which is nontrivial for n ≥ 22.

B(3) By (28), (21) and (26),

(36) w4 w6 w8 = ⟨42, 212⟩ + ⟨43, 29⟩ + ⟨8, 42, 25⟩,

which is nontrivial for n ≥ 26.

B(4) By (18), (31) and (26),

(37) w5 w7 w9 = ⟨8, 4, 211⟩ + ⟨8, 43, 25⟩,

which is nontrivial if n ≥ 30.

B(5) By (19), (32) and (26),

(38) w6 w8 w10 = ⟨8, 4, 214⟩ + ⟨8, 43, 28⟩,

which is nontrivial for n ≥ 36.

B(6) By (32), (25) and (26),

(39) w8 w10 w12

= ⟨46, 212⟩ + ⟨47, 29⟩ + ⟨8, 43, 214⟩ + ⟨8, 45, 28⟩ + ⟨8, 46, 25⟩ + ⟨8, 47, 22⟩,

which is nontrivial for n ≥ 40. By Theorems 6 and 8, this implies statements B(6)
of Corollaries 7 and 10 for N = n + 7 (respectively, N = n − 7), and the cases
N = n +6 (respectively, N = n −6) follow by monotonicity. Notice that the routine
consideration for N = n + 6 based on

(40) w7 w9 w11 = ⟨43, 211⟩ + ⟨8, 43, 211⟩,

gives the same result in more restrictive conditions, n ≥ 42 only.

B(7) The class w14 contains the summand ⟨82⟩. Therefore by (34) and (26), the
product w10 w12 w14 contains the summand ⟨83, 45⟩, which is nontrivial if n ≥ 44.

C(1) By (15), (36) and (26),

(41) w2 w4 w6 w8 = ⟨42, 214⟩ + ⟨43, 211⟩ + ⟨8, 42, 27⟩,

which is nontrivial if n ≥ 30. By Theorem 6, this proves statements C(1) of
Corollaries 7 and 10 in the case N = n + 1 (respectively, N = n − 1), and the case
N = n follows by monotonicity.

C(2) By (17) and (38),

(42) w4 w6 w8 w10 = ⟨8, 43, 212⟩,
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which is nontrivial if n ≥ 44. This proves statement C(2) of Corollary 7 (respectively,
Corollary 10) for N = n + 3 (respectively, N = n − 3), which implies it also for
N = n + 2 (respectively, N = n − 2).

C(3) By (19) and (39),

(43) w6 w8 w10 w12 = ⟨8, 45, 214⟩ + ⟨8, 47, 28⟩,

which is nontrivial if n ≥52. This proves statements C(3) for N =n+5 (respectively,
N = n − 5) and hence also for N = n + 4 (respectively, N = n − 4).

C(4) The class w14 contains the summand ⟨82⟩. Therefore by (39) and (26) the class
w8 w10 w12 w14 contains the summand ⟨83, 47, 22⟩, which is nontrivial if n ≥ 56.
This proves statements C(4) for N = n+7 (N = n−7) and hence also for N = n+6
(N = n − 6).

D(1) By (41), (23) and (26), w2 w4 w6 w8 w10 = ⟨8, 43, 214⟩, which is nontrivial if
n ≥ 48.

D(2) By (17), (43) and (26), w4 w6 w8 w10 w12 = ⟨8, 47, 212⟩, which is nontrivial
if n ≥ 60.

D(3) Since w14 contains ⟨82⟩, by (43) and (26) the product w6 w8 w10 w12w14

contains the summand ⟨83, 47, 28⟩, which is nontrivial if n ≥ 68.

E(1) By D(1) and formulas (25) and (26), w2 w4 w6 w8 w10 w12 =⟨8, 47, 214⟩, which
is nontrivial if n ≥ 64.

E(2) Since w14 contains ⟨82⟩, by D(2) and (26) the product w4 w6 w8 w10 w12w14

contains the summand ⟨83, 47, 212⟩, which is nontrivial if n ≥ 76.

F. Since w14 contains the summand ⟨82⟩, by E(1) and formula (26) the class
w2 w4 w6 w8 w10 w12 w14 contains the summand ⟨83, 47, 214⟩, nontrivial if n ≥ 80.

□

7. Equality conditions and homology of knot spaces

Let us denote by K the affine space of all C∞-smooth maps R1
→ R3 coinciding

with a fixed linear embedding outside a compact set in R1. Let 6 be the discriminant
subvariety of K consisting of all maps which are not smooth embeddings, i.e., have
either self-intersections or points of vanishing derivative. The elements of the
set K \ 6 are called long knots. There is a natural one-to-one correspondence
between the connected components of this set and the isotopy classes of the usual
knots, i.e., of smooth embeddings S1

→ R3 or S1
→ S3.

The variety 6 is swept out by affine subspaces L(a, b) of codimension 3 in K
corresponding to all chords {a, b} in R1 (including degenerate chords with a =b) and
consisting of maps ϕ : R1

→ R3 such that ϕ(a)=ϕ(b) (or ϕ′(a)= 0 if a = b). Much
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of the topological structure of 6 can be described in terms of the order complex
of the (naturally topologized) partially ordered set, whose elements correspond to
these subspaces L(a, b) and their finite intersections (defined by chord diagrams),
and the order relation is the incidence of corresponding subspaces. For any n, the
subspaces in K defined in this way by independent n-chord diagrams form an affine
bundle over the space CDn of equivalence classes of such diagrams (including
degenerate ones, containing chords of type {a, a}). The fibers of this bundle have
codimension 3n in K, and its normal bundle is isomorphic to the sum of three
copies of the bundle τ ∗

n considered in Section 2 (and continued to degenerate chord
diagrams).

The topology of the space K \ 6 is related by a kind of Alexander duality to the
topology of the complementary space 6, in particular, the numerical knot invariants
can be realized as linking numbers with infinite-dimensional cycles of codimension 1
in K contained in 6. However, Alexander duality deals with finite-dimensional
spaces only, therefore to apply it properly we use finite-dimensional approximations
of the space K. Namely, we consider infinite sequences K1 ⊂ K2 ⊂ . . . of finite-
dimensional affine subspaces of K, such that any connected component of K \ 6 is
represented by elements of subspaces Kj \6 with sufficiently large j , and moreover
any homology class of K \6 is represented by cycles contained in such subspaces.
(The existence of such sequences of subspaces Kj follows easily from Weierstrass
approximation theorem). Then for any such subspace Kj of dimension dj we have
the Alexander isomorphisms

(44) H̃ k(Kj \ 6) ≃ H dj −k−1(Kj ∩ 6),

where H∗ denotes the Borel–Moore homology groups.
To study the left-hand groups in (44) (in particular, such a group with k = 0, i.e.,

the group of Z-valued invariants of knots realizable in Kj ) a simplicial resolution of
the space Kj ∩6 is used in [6]. It is a certain topological space σ( j) and a surjective
map σ( j) → Kj ∩6 inducing an isomorphism of Borel–Moore homology groups.
These groups H∗(σ ( j)) ≃ H∗(Kj ∩ 6) can be calculated by a spectral sequence
{Er

n,β} defined by a natural increasing filtration

(45) σ1( j) ⊂ σ2( j) ⊂ · · · ⊂ σ( j),

in particular, E1
n,β ≃ H n+β(σn( j) \ σn−1( j)).

This filtration is finite if the subspace Kj is not very degenerate. Namely, any
space σn( j) \ σn−1( j) is constructed starting from the intersection sets of Kj with
subspaces of codimension 3n in K defined by independent n-chord diagrams. Since
the family of all such planes is 2n-parametric, a generic dj -dimensional affine
subspace Kj meets only subspaces of this kind with n ≤ dj , so σdj ( j) = σ( j).
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Figure 3. Spectral sequence for H∗(Kj \ 6).

The formal change E p,q
r ≡ Er

−p,dj −1−q turns the homological spectral sequence
defined by this filtration into a cohomological one, which by Alexander duality
converges to the left-hand groups of (44). All nontrivial groups E p,q

r , r ≥ 1, of the
last spectral sequence for a generic subspace Kj lie in the domain (see Figure 3)

{(p, q) : p ∈ [−dj , −1], p + q ≥ 0}.

If the approximating subspace Kj is generic and n is sufficiently small with
respect to dj (namely, n ≤

dj
5 ), then all subspaces of K defined by independent n-

chord diagrams intersect Kj transversally along nonempty planes. Indeed, if dj > 3n,
then the codimension of the set of dj -dimensional affine subspaces in K, which
are not generic with respect to a plane of codimension 3n, is equal to dj − 3n + 1;
therefore the 2n-parametric family of such sets corresponding to all subspaces
defined by n-chord diagrams sweeps out a subset of codimension at least dj −5n+1
(if this number is positive), and for dj ≥ 5n we can choose Kj not from this subset.

If Kj is generic in this sense, then these intersection sets in Kj form an affine
bundle of dimension dj − 3n with base CDn . By the construction of the simplicial
resolution, this implies that the topology of the sets σn( j) \ σn−1( j) essentially
stabilizes at this value of j : for all j ′ > j the space σn( j ′)\σn−1( j ′) is homeomorphic
to the direct product of spaces σn( j) \ σn−1( j) and Rdj ′−dj . In particular, we have
natural isomorphisms

E1
n,β( j) ≃ E1

n,β+(d ′

j −dj )
( j ′) for all j ′ > j , n ≤

dj
5 and arbitrary β.
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Substitutions (44) turn them into natural isomorphisms E p,q
1 ( j ′) ≃ E p,q

1 ( j) for all
p ≥ −

dj
5 . Moreover, these isomorphisms commute with all the further differentials

of our spectral sequence; the Borel–Moore homology groups of the spaces σn( j)
and σn( j ′) for all n ≤

dj
5 and j ′

≥ j are naturally isomorphic to each other up to the
shift of dimensions by dj ′ − dj . The cohomology classes of K \6 arising from this
area of the spectral sequence (i.e., the sequences of nontrivial cohomology classes
of the spaces Kj ′\6, j ′

≥ j , realizable by linking numbers with cycles located
in σn( j ′) for n ≤

dj
5 and corresponding to one another by these isomorphisms) are

known as finite-type cohomology classes of the space of long knots. Therefore, the
intriguing question about the completeness of the system of these classes in entire
cohomology groups of K \6 (in particular, about the existence of nonequivalent
knots not separated by finite-type invariants) depends on the groups E p,q

r ( j) in the
nonstable domains, on the deviation of these groups from stable ones, and on the
way in which the nonstable groups E p,q

∞ ( j) for different j correspond to the same
cohomology classes of spaces Kj \ 6 with different j .

The arguments of the previous sections of this article allow us to say something
about the nontriviality of this problem.

Proposition 32. If 4n− I (n)>dj ≥3n, then for any dj -dimensional affine subspace
Kj ⊂K there exist independent n-chord diagrams such that the corresponding affine
subspaces of K have nongeneric (i.e., either nontransversal or empty) intersections
with the space Kj .

Proposition 33. If 2n + I (n) ≤ dj ≤ 3n, then for almost any dj -dimensional affine
subspace Kj ⊂ K (that is, for any subspace from a residual subset in the space
of all such subspaces) there exist independent n-chord diagrams such that the
corresponding affine subspaces of K have nonempty intersection with Kj .

Definition 34. Let L denote the affine bundle over the space B(R2
+
, n) \ 4 of

independent n-chord diagrams, whose fiber over any such diagram is the subspace
of codimension 3n in K consisting of maps ϕ : R1

→ R3 taking the same values
at endpoints of each chord of this diagram. For an affine subspace Kj ⊂ K denote
by ∥(Kj ) the subset in B(R2

+
, n) \ 4 consisting of n-chord diagrams such that the

corresponding fiber of bundle L contains lines parallel to some lines contained in
the space Kj .

Proof of Proposition 32. The normal bundle L⊥ of L in K is isomorphic to the
direct sum of three copies of the regular bundle ξn . By Lemmas 13 and 14, its
total Stiefel–Whitney class is then equal to (w(ξn))

3
≡ w(ξn), in particular, its

i-dimensional component wi is not trivial if i ≤ n − I (n).
Make Kj a vector space by arbitrarily choosing the “origin” point in it. If all

fibers of the bundle L are in general position with respect to Kj , then a (dj − 3n)-
dimensional vector bundle with the same base is defined, the fiber of which over a
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chord diagram is obtained from the intersection set of Kj and the corresponding
fiber of the bundle L by a parallel translation, after which it passes through the
origin point of Kj . The total Stiefel–Whitney class of this bundle is equal to
w(L⊥)−1

≡ w(ξn)
−1, which by Lemma 14 is equal to w(ξn). If dj −3n < n − I (n),

then this implies that wn−I (n)(ξn) = 0, a contradiction. □

Lemma 35. If dj ≤ 3n, then for almost any dj -dimensional affine subspace Kj ⊂ K
the codimension of the set ∥(Kj ) in B(R2

+
, n) \ 4 is at least 3n − dj + 1.

Proof. Consider the space

(46) G̃(K, dj ) × (B(R2
+
, 2) \ 4)

of all pairs {Kj , 0} where K j is a dj -dimensional affine subspace of K and 0 is
an independent n-chord diagram. Denote by 3 the subset of this space consisting
of pairs {Kj , 0} such that 0 ∈ ∥(K j ). The space (46) and its subset 3 are both
fibered over the space B(R2

+
, 2) \ 4 of independent n-chord diagrams, and for any

such diagram 0 the corresponding fiber of the latter fiber bundle has codimension
3n − dj + 1 in the fiber of the former. Therefore, the codimension of 3 in the
space (46) is equal to 3n −dj +1, and the typical fiber of the projection of 3 to the
first factor of (46) has codimension at least 3n − dj + 1 in the corresponding fiber
of the projection of entire space (46). □

Proof of Proposition 33. Let us fix a subspace Kj for which the condition of the
previous lemma is satisfied. The complement of the set ∥(Kj ) in the manifold
B(R2

+
, n)\4 has then the same homology groups up to dimension 3n −dj as entire

B(R2
+
, n) \ 4.

Consider the affine bundle (L⊥)∗ over the manifold B(R2
+
, n)\4: its fibers consist

of linear functions on K vanishing on the corresponding fibers of the bundle L.
Over the set (B(R2

+
, n) \ 4) \ ∥(K j ) a (3n − dj )-dimensional subbundle of (L⊥)∗

is defined, consisting of functions constant on Kj . This subbundle has the same
Stiefel–Whitney class (equal to w(ξn)) as the whole (L⊥)∗, since its normal bundle
is isomorphic to the trivial bundle with fiber (Kj )

∗. If no fibers of the bundle L
intersect the space Kj , then this subbundle has a nowhere vanishing cross-section:
indeed, we can define an arbitrary Euclidean structure on this subbundle, and choose
in each fiber the linear function of unit norm taking the maximal value on Kj . If
3n−dj ≤ n− I (n), then this contradicts the nontriviality of the class wn−I (n)(ξn). □

Remark. I hope that the further study of the characteristic classes of the bundle L
(and of its analog defined on the space CDn of equivalence classes of chord diagrams,
rather than on the resolution B(R2

+
, n) \4 of this space) will provide not only the

proofs of the inevitable troubles in the calculation of the cohomology classes of
knot spaces, but also the construction of some such classes not reducible to classes
of finite-type.
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