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We show that if E is an ample vector bundle of rank at least two with some
curvature bound on OP(E∗)(1), then E∗ ⊗ det E is Kobayashi positive. The
proof relies on comparing the curvature of (det E∗)k and Sk E for large k
and using duality of convex Finsler metrics. Following the same thread of
thought, we show if E is ample with similar curvature bounds on OP(E∗)(1)

and OP(E⊗det E∗)(1), then E is Kobayashi positive. With additional assump-
tions, we can furthermore show that E∗ ⊗ det E and E are Griffiths positive.

1. Introduction

Let E be a holomorphic vector bundle of rank r over a compact complex manifold X
of dimension n. We denote the dual bundle by E∗ and its projectivized bundle
by P(E∗). The vector bundle E is said to be ample if the line bundle OP(E∗)(1)

over P(E∗) is ample. On the other hand, E is called Griffiths positive if E carries
a Griffiths positive Hermitian metric. Moreover, E is called Kobayashi positive
if E carries a strongly pseudoconvex Finsler metric whose Kobayashi curvature is
positive (we will give a quick review on Finsler metrics and Kobayashi curvature
in Section 2A; or see [Wu 2022, Section 2]).

There are two conjectures made by Griffiths [1969] and Kobayashi [1975]
regarding the equivalence of ampleness and positivity:

(1) If E is ample, then E is Griffiths positive.

(2) If E is ample, then E is Kobayashi positive.

These two conjectures are still open, save for n = 1, in [Umemura 1973; Campana
and Flenner 1990] (for recent progress, see [Berndtsson 2009a; Mourougane and
Takayama 2007; Hering et al. 2010; Liu et al. 2013; Liu and Yang 2015; Naumann
2021; Feng et al. 2020; Demailly 2021; Finski 2022; Pingali 2021; Ma and Zhang
2023]). Note that the converse of each conjecture is true [Feng et al. 2020; Wu 2022].

By Kodaira’s embedding theorem, ampleness of a line bundle is equivalent to
the existence of a positively curved metric on the line bundle. So, the conjectures
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of Griffiths and Kobayashi can be rephrased: Given a positively curved metric
on OP(E∗)(1), can we construct a positively curved Hermitian/Finsler metric on E?
In this paper, we show that it is so, by imposing curvature bounds on tautological
line bundles of P(E∗) and P(E). Since Hermitian metrics on OP(E∗)(1) are in
one-to-one correspondence with Finsler metrics on E∗, these curvature bounds can
also be written in terms of Kobayashi curvature.

We first consider a relevant case where the picture is clearer. It is known that,
for rank of E at least 2:

(1) If E is Griffiths positive, then E∗
⊗ det E with the induced metric is Griffiths

positive.

(2) If E is ample, then E∗
⊗ det E is ample.

The first fact can be found in [Demailly 2012, p. 346, Theorem 9.2] and the second
in [Hartshorne 1966, Corollary 5.3] together with the isomorphism (see Appendix)

r−1∧
E ≃ E∗

⊗ det E .

If we follow the guidance of Griffiths and Kobayashi, we would ask whether or
not the ampleness of E implies Griffiths/Kobayashi positivity of E∗

⊗ det E for
r ≥ 2. Our first result is that this can be achieved by imposing curvature bounds
on OP(E∗)(1).

Let q : P(E∗) → X be the projection. Let g be a metric on OP(E∗)(1) whose
curvature restricted to a fiber 2(g)|P(E∗

z ) is positive for all z ∈ X . For a tangent
vector η ∈ T 1,0

z X and a point [ζ ] ∈ P(E∗
z ), we consider tangent vectors η̃ to P(E∗)

at (z, [ζ ]) such that q∗(η̃) = η, namely the lifts of η to T 1,0
(z,[ζ ]) P(E∗). Then we

define the function

(1-1) (η, [ζ ]) 7→ inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) := m(η, [ζ ]),

where the infimum taken over all the lifts of η to T 1,0
(z,[ζ ]) P(E∗). This infimum is

actually a minimum, see (2-3). On the other hand, since such a metric g corresponds
to a strongly pseudoconvex Finsler metric on E∗, and if we denote its Kobayashi
curvature by θ(g) a (1, 1)-form on P(E∗), then

(1-2) m(η, [ζ ]) = −θ(g)(η̃, ¯̃η).

The term on the right is independent of the choice of lifts η̃ (we will prove (1-2) in
Section 2A).

Theorem 1. Assume r ≥ 2 and the line bundle OP(E∗)(1) has a positively curved
metric h and a metric g with 2(g)|P(E∗

z ) > 0 for all z ∈ X. If there exist a Hermitian
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metric � on X and a constant M ∈ [1, r) such that the following inequalities of
(1, 1)-forms hold:

Mq∗� ≥ −θ(g),(1-3)

q∗� ≤ −θ(h),(1-4)

then E∗
⊗ det E is Kobayashi positive.

We can of course choose g to be h in Theorem 1, but having two different metrics
seems more flexible. The proof of Theorem 1 relies on two observations. First,
starting with g and h on OP(E∗)(1), we construct two Hermitian metrics on Sk E
and det E respectively. The curvature of the induced metric on Sk E ⊗(det E∗)k can
be shown to be Griffiths negative for k large (see Section 3 for details). The second
observation (see [Wu 2022]) is that since the induced metric on Sk E ⊗ (det E∗)k

is basically an L2-metric, its k-th root is a convex Finsler metric on E ⊗ det E∗

which is also strongly plurisubharmonic on the total space minus the zero section.
After perturbing this Finsler metric and taking duality, we get a convex and strongly
pseudoconvex Finsler metric on E∗

⊗ det E whose Kobayashi curvature is positive.
So the bundle E∗

⊗ det E is Kobayashi positive. Notice that the Finsler metric we
find is actually convex.

The reason why we impose �, M and inequalities (1-3) and (1-4) in Theorem 1
is the following. On the bundle Sk E ⊗ (det E∗)k , the curvature of the induced
metric is roughly bounded above by k

∑
m am cm − rk

∑
m bm cm where am and bm

are some positive integrals with
∑

m am =
∑

m bm = 1, and cm are positive numbers
related to the curvature of h. It does not seem possible to us that the upper bound
k

∑
m am cm − rk

∑
m bm cm can be made negative without any assumption. So we

introduce � and M to control the upper bound.
With small changes on the proof, one can write down a variant of Theorem 1

where the conclusion is about the Kobayashi positivity of E∗
⊗ (det E)l (see the

end of Section 3).
Now let us go back to the original conjecture of Kobayashi and adapt the proof

of Theorem 1 to this case. Let p : P(E) → X be the projection. We recall under the
canonical isomorphism P(E ⊗ det E∗) ≃ P(E), the line bundle OP(E⊗det E∗)(1)

corresponds to the line bundle OP(E)(1) ⊗ p∗ det E (see [Kobayashi 1987, p. 86,
Proposition 3.6.21]). Let g be a metric on OP(E)(1)⊗ p∗ det E with 2(g)|P(Ez) > 0
for all z ∈ X . For a tangent vector η ∈ T 1,0

z X and a point [ξ ] ∈ P(Ez), we similarly
have

(η, [ξ ]) 7→ inf
p∗(η′)=η

2(g)(η′, η̄′),

where η′ are the lifts of η to T 1,0
(z,[ξ ]) P(E). Meanwhile, such a metric g corresponds to

a strongly pseudoconvex Finsler metric on E ⊗det E∗ and we denote its Kobayashi
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curvature by θ(g) a (1, 1)-form on P(E). As before,

(1-5) inf
p∗(η′)=η

2(g)(η′, η̄′) = −θ(g)(η′, η̄′).

Theorem 2. Assume r ≥ 2 and OP(E∗)(1) has a positively curved metric h and
OP(E)(1)⊗ p∗ det E has a metric g with 2(g)|P(Ez) > 0 for all z ∈ X. If there exist
a Hermitian metric � on X and a constant M ∈ [1, r) such that

Mp∗� ≥ −θ(g),(1-6)

q∗� ≤ −θ(h),(1-7)

then E is Kobayashi positive.

Since the ampleness of E implies ampleness of E∗
⊗ det E , one choice for g in

Theorem 2 is a positively curved metric on OP(E)(1)⊗ p∗ det E , but how much this
choice helps is unknown to us. The proof of Theorem 2 follows the same scheme
as in Theorem 1. We first use h and g to construct Hermitian metrics on det E and
Sk E∗

⊗(det E)k respectively. The induced metric on [Sk E∗
⊗(det E)k

]⊗(det E∗)k

is Griffiths negative for k large (see Section 4). Then by taking k-th root, perturbing,
and taking duality, we obtain a convex, strongly pseudoconvex, and Kobayashi
positive Finsler metric on E .

1A. Griffiths positivity. The conclusions in Theorems 1 and 2 are about Finsler
metrics. For their Hermitian counterpart, we need additional assumptions. The
reason is that in Theorems 1 and 2, taking large tensor power of various bundles helps
us eliminate the curvature of the relative canonical bundles K P(E∗)/X and K P(E)/X ,
and after getting the desired estimates we take k-th root to produce Finsler metrics.
However, the step of taking k-th root produces only Finsler, not Hermitian metrics.
So the first step of taking large tensor power is not allowed if one wants Hermitian
metrics.

Let us be more precise. For a metric g on OP(E∗)(1) with 2(g)|P(E∗
z ) > 0 for all

z ∈ X , we denote 2(g)|P(E∗
z ) by ωz for the moment. The relative canonical bundle

K P(E∗)/X has a metric induced from {ωr−1
z }z∈X and we denote the corresponding

curvature by γg, a (1, 1)-form on P(E∗). For η ∈ T 1,0
z X and [ζ ] ∈ P(E∗

z ), we
consider

(η, [ζ ]) 7→ sup
q∗(η̃)=η

γg(η̃, ¯̃η),

where the supremum taken over all the lifts of η to T 1,0
(z,[ζ ]) P(E∗). The supremum is

a maximum under a suitable assumption, see (2-9). Moreover, for z ∈ X , the restric-
tion γg|P(E∗

z ) is actually the negative of Ricci curvature −Ricωz of the metric ωz

on P(E∗
z ).

Any Hermitian metric G on E∗ will induce a metric g on OP(E∗)(1) with
2(g)|P(E∗

z ) > 0 and γg|P(E∗
z ) < 0 for all z ∈ X . Indeed, in this case, 2(g)|P(E∗

z )
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is the Fubini–Study metric and its Ricci curvature is positive, so γg|P(E∗
z ) < 0.

Furthermore, for any η ∈ T 1,0
z X and any [ζ ] ∈ P(E∗

z ),

(1-8) sup
q∗(η̃)=η

γg(η̃, ¯̃η) = rθ(g)(η̃, ¯̃η) − q∗2(det G)(η̃, ¯̃η)

(we will prove (1-8) in Section 2B).

Theorem 3. Assume r ≥ 2 and the line bundle OP(E∗)(1) has a positively curved
metric h and a metric g induced from a Hermitian metric G on E∗. If there exist a
Hermitian metric � on X and a constant M ∈ [1, r) such that

Mq∗� ≥ −(r + 1) θ(g) + q∗2(det G),(1-9)

q∗� ≤ −θ(h),(1-10)

then E∗
⊗ det E is Griffiths positive.

Theorem 3 could be seen as a Hermitian analogue of Theorem 1. To state
a Hermitian analogue of Theorem 2, we use again the isomorphism between
OP(E⊗det E∗)(1) → P(E ⊗ det E∗) and OP(E)(1) ⊗ p∗ det E → P(E).

Theorem 4. Suppose that r ≥ 2 and OP(E∗)(1) has a positively curved metric h
and OP(E)(1) ⊗ p∗ det E has a metric g induced from a Hermitian metric G on
E ⊗ det E∗. If there exist a Hermitian metric � on X and a constant M ∈ [1, r)

such that

Mp∗� ≥ −(r + 1) θ(g) + p∗2(det G),(1-11)

q∗� ≤ −θ(h),(1-12)

then E is Griffiths positive.

In all the theorems above, the existence of the metric h comes from ampleness
of E . So the real assumptions lie in (g, �, M) and the inequalities they have to
satisfy. To weaken or remove these inequalities, one possible direction is to use
geometric flows as in [Naumann 2021; Wan 2022; Ustinovskiy 2019; Li et al. 2021].
Another possible direction is to use the interplay between the optimal L2-estimates
and the positivity of curvature (see [Guan and Zhou 2015; Berndtsson and Lempert
2016; Lempert 2017; Hacon et al. 2018; Zhou and Zhu 2018]).

One example where the assumptions of all the theorems above are satisfied is
given by E = L9

⊕ L8
⊕ L7 with L a positive line bundle. The triple (9, 8, 7)

or the rank r = 3 is not that important; the point is to make sure the eigenvalues
of the curvature with respect to some positive (1, 1)-form do not spread out too
far. This example also indicates that a reasonable choice for � is probably related
to c1(det E).
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A more sophisticated example, related to approximate Hermitian–Yang–Mills
metrics [Jacob 2014; Misra and Ray 2021; Li et al. 2021], is semistable ample
vector bundles over Riemann surfaces (see Section 7 for details of the examples).

The proof of Theorem 1 is given in Section 3 and almost as a corollary we prove
Theorem 2 in Section 4. The proof of Theorem 3 in Section 5 is a modification
of Theorem 1 but we still write out the details. In Section 6, we prove Theorem 4
based on Section 5.

2. Preliminaries

2A. Finsler metrics. We will use some facts about Finsler metrics on vector bundles
which can be found in [Kobayashi 1975; 1996; Cao and Wong 2003; Aikou 2004;
Wu 2022]. First, we recall the definition of Finsler metrics. Let E∗ be a holomorphic
vector bundle of rank r over a compact complex manifold X . For a vector ζ ∈ E∗

z ,
we symbolically write (z, ζ )∈ E∗. A Finsler metric G on the vector bundle E∗

→ X
is a real-valued function on E∗ such that:

(1) G is smooth away from the zero section of E∗.

(2) For (z, ζ ) ∈ E∗, G(z, ζ ) ≥ 0, and equality holds if and only if ζ = 0.

(3) G(z, λζ ) = |λ|
2 G(z, ζ ) for λ ∈ C.

A Finsler metric G on E∗ is said to be:

(1) Strongly pseudoconvex if the fiberwise complex Hessian of G is positive
definite on E∗

\ {zero section}, namely (
√

−1∂∂̄G)|E∗
z
> 0 for all z ∈ X .

(2) Convex if G1/2 restricted to each fiber E∗
z is convex.

Let g be a Hermitian metric on OP(E∗)(1) with 2(g)|P(E∗
z ) > 0 for all z ∈ X .

Such a g corresponds to a strongly pseudoconvex Finsler metric G on E∗. Since
(
√

−1∂∂̄G)|E∗
z

> 0, we can define a Hermitian metric G̃ on the pull-back bun-
dle q∗E∗, where q : P(E∗) → X is the projection, as follows. For a vector Z in
the fiber q∗E∗

(z,[ζ ]), we define

G̃(z,[ζ ])(Z , Z) = (
√

−1∂∂̄G)|E∗
z
(Z , Z̄),

where the Z on the right-hand side is viewed as a tangent vector to E∗
z at ζ by

the identification of vector spaces q∗E∗

(z,[ζ ]) = E∗
z and E∗

z = Tζ E∗
z (see [Wu 2022,

Section 2.2] for a local coordinate description).
Now (q∗E∗, G̃) is a Hermitian holomorphic vector bundle, so we can talk about

its Chern curvature 2, an End q∗E∗-valued (1, 1)-form on P(E∗). With respect to
the metric G̃, the bundle q∗E∗ has a fiberwise orthogonal decomposition

OP(E∗)(−1) ⊕ OP(E∗)(−1)⊥,
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and so 2 can be written as a block matrix. Let 2|OP(E∗)(−1) denote the block in the
matrix 2 corresponding to End(OP(E∗)(−1)). Since OP(E∗)(−1) is a line bundle,
2|OP(E∗)(−1) is a (1, 1)-form on P(E∗), and it is called the Kobayashi curvature of
the Finsler metric G. We will use θ(g) to denote the Kobayashi curvature

(2-1) θ(g) := 2|OP(E∗)(−1).

In order to relate the Kobayashi curvature θ(g) to the curvature 2(g) of g, we
consider coordinates normal at one point. Given a point (z0, [ζ0]) ∈ P(E∗), there
exists a holomorphic frame {si } for E∗ around z0 ∈ X such that

(2-2)
Gζi ζ̄j

(z0, ζ0) = δi j ,

Gζi ζ̄j zα
(z0, ζ0) = Gζi ζ̄j z̄β

(z0, ζ0) = G ζ̄j zα
(z0, ζ0) = Gzα

(z0, ζ0) = 0,

where we use {ζi } for the fiber coordinates on E∗ with respect to the frame {si }

and {zα} for the local coordinates on X (such a frame can be obtained by (5.11)
in [Kobayashi 1996]). Moreover if � is a Hermitian metric on X , then by a linear
transformation in the z-coordinates, we can make

�

(
∂

∂zα

,
∂

∂ z̄β

)
(z0) = δαβ

without affecting (2-2). We will call this coordinate system normal at the point
(z0, [ζ0]) ∈ P(E∗).

Around the point (z0, [ζ0]) ∈ P(E∗), we assume the local coordinates

(z1, . . . , zn, w1, . . . , wr−1)

are given by wi = ζi/ζr for i = 1 ∼ r − 1. So

e :=
ζ1 s1 + · · · + ζr sr

ζr
= w1 s1 + · · · +wr−1 sr−1 + sr

is a holomorphic frame for OP(E∗)(−1). Let e∗ be the dual frame of OP(E∗)(1)

around (z0, [ζ0]) ∈ P(E∗) and g(e∗, e∗) = e−φ . Then, the curvature 2(g) can be
written locally as∑
α,β

∂2φ

∂zα ∂ z̄β

dzα ∧ dz̄β +

∑
α, j

∂2φ

∂zα ∂wj
dzα ∧ dwj

+

∑
i,β

∂2φ

∂wi ∂ z̄β

dwi ∧ dz̄β +

∑
i, j

∂2φ

∂wi ∂wj
dwi ∧ dwj .

Note that the terms ∂2φ
∂zα ∂wj

:= φα j̄ vanish at (z0, [ζ0]) by (2-2) and the fact

eφ
=

1
g(e∗, e∗)

= G(w1 s1 + · · · +wr−1 sr−1 + sr ).
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For a tangent vector η ∈ T 1,0
z0

X , we can write η =
∑

α ηα
∂

∂zα
. For the lifts η̃ of η to

T 1,0
(z0,[ζ0])

P(E∗), we have

(2-3) inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) =

∑
α,β

φαβ̄ |(z0,[ζ0])ηα η̄β

because φα j̄ = 0 at (z0, [ζ0]) and the matrix (φi j̄ ) is positive. On the other hand,
using the same coordinate system, the curvature 2 of G̃ can be written as

2=

∑
α,β

Rαβ̄ dzα∧dz̄β+

∑
α,l

Pαl̄ dzα∧dwl+
∑
k,β

Pkβ̄ dwk∧dz̄β+

∑
k,l

Qkl̄ dwk∧dwl,

where Rαβ̄, Pαl̄, Pkβ̄ , and Qkl̄ are endomorphisms of q∗E∗. By [Wu 2022, (2.4)],
for any lift η̃ of η to T 1,0

(z0,[ζ0])
P(E∗), we have

(2-4) θ(g)(η̃, ¯̃η)

= 2|OP(E∗)(−1)(η̃, ¯̃η) =

∑
α,β

G̃(Rαβ̄ ζ0, ζ0)

G̃(ζ0, ζ0)
ηα η̄β = −

∑
α,β

φαβ̄ |(z0,[ζ0])ηα η̄β,

where the last equality is by [Kobayashi 1996, (5.16)].
From (2-3) and (2-4), we see

inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) = −θ(g)(η̃, ¯̃η),

which is formula (1-2) we claim in the introduction, and when evaluated using
normal coordinates they are

∑
α,β φαβ̄ |(z0,[ζ0])ηα η̄β .

2B. Hermitian metrics. This subsection is a special case of Section 2A and it will
be used in the proofs of Theorems 3 and 4. Let G be a Hermitian metric on the
bundle E∗. The pull-back bundle q∗E∗

→ P(E∗) with the pull-back metric q∗G
induces a metric g∗ on the subbundle OP(E∗)(−1). We denote the dual metric
on OP(E∗)(1) by g.

Let � be a Hermitian metric on X and z0 a point in X with local coordinates {zα}

such that
�

(
∂

∂zα

,
∂

∂ z̄β

)
(z0) = δαβ .

There exists a holomorphic frame {si } for E∗ around z0 such that

G(si , sj ) = δi j + O(|z|2),

where z0 corresponds to the origin in the local coordinates. We use {ζi } for the
fiber coordinates with respect to the frame {si }. For a point (z0, [ζ0]) ∈ P(E∗),
we assume the local coordinates (z1, . . . , zn, w1, . . . , wr−1) around (z0, [ζ0]) are
given by wi = ζi/ζr for i = 1 ∼ r − 1. So

e :=
ζ1 s1 + · · · + ζr sr

ζr
= w1 s1 + · · · +wr−1 sr−1 + sr
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is a holomorphic frame for OP(E∗)(−1) and

g∗(e, e) = q∗G(w1 s1 + · · · +wr−1 sr−1 + sr , w1 s1 + · · · +wr−1 sr−1 + sr )

= 1 + O(|z|2) + O(|w|
2) + O(|w| |z|2) + O(|w|

2
|z|2).

The zα-derivative of g∗(e, e) is g∗(e, e)zα
= O((1 + |w| + |w|

2)|z|), and hence the
wi -derivatives of g∗(e, e)zα

of any order are zero when evaluated at z0. Therefore,
if we denote g∗(e, e) by eφ , then at z0

(2-5) φα j̄ = φαi j̄ = φαi j̄ k̄ = 0 and (log det(φi j̄ ))αk̄ = 0.

In this coordinate system, the curvature 2(g) is∑
α,β

∂2φ

∂zα ∂ z̄β

dzα ∧ dz̄β +

∑
α, j

∂2φ

∂zα ∂wj
dzα ∧ dwj

+

∑
i,β

∂2φ

∂wi ∂ z̄β

dwi ∧ dz̄β +

∑
i, j

∂2φ

∂wi ∂wj
dwi ∧ dwj .

For a tangent vector η ∈ T 1,0
z0

X , we can write η =
∑

α ηα
∂

∂zα
. For the lifts η̃ of η to

T 1,0
(z0,[ζ0])

P(E∗), we have

(2-6) inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) =

∑
α,β

φαβ̄ |(z0,[ζ0])ηα η̄β

because φα j̄ = 0 at z0 and the matrix (φi j̄ ) is positive. Since G is a Hermitian
metric, the corresponding Kobayashi curvature is

(2-7) θ(g) = q∗2(G)|OP(E∗)(−1),

which is equal to the negative of (2-6) by Section 2A.
Using the same coordinate system, the restriction 2(g)|P(E∗

z ) is
∑

φi j̄ dwi ∧dwj ,
so the metric on K P(E∗)/X induced from {(2(g)|P(E∗

z ))
r−1

}z∈X has its curvature γg

equal to

(2-8)
∑
α,β

(log det(φi j̄ ))αβ̄ dzα ∧ dz̄β +

∑
α, j

(log det(φi j̄ ))α j̄ dzα ∧ dwj

+

∑
i,β

(log det(φi j̄ ))i β̄ dwi ∧ dz̄β +

∑
i, j

(log det(φi j̄ ))i j̄ dwi ∧ dwj .

The matrix
(
(log det(φi j̄ ))i j̄

)
is negative because it represents the negative of

the Ricci curvature of the Fubini–Study metric on P(E∗
z ). Moreover, the terms

(log det(φi j̄ ))α j̄ = 0 at z0 by (2-5). As a result, for a tangent vector η ∈ T 1,0
z0

X with
η =

∑
ηα

∂
∂zα

in this coordinate system, we have

(2-9) sup
q∗(η̃)=η

γg(η̃, ¯̃η) =

∑
α,β

(log det(φi j̄ ))αβ̄ |(z0,[ζ0])ηα η̄β,

where η̃ are the lifts of η to T 1,0
(z0,[ζ0])

P(E∗).
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Finally, the metric on K P(E∗)/X induced from {(2(g)|P(E∗
z ))

r−1
}z∈X can be

identified with the metric (g∗)r
⊗ q∗(det G∗) under the isomorphism

K P(E∗)/X ≃ OP(E∗)(−r) ⊗ q∗ det E

(see [Kobayashi 1987, p. 85, Proposition 3.6.20]). This fact can be verified at one
point using the normal coordinates above. Therefore,

(2-10) γg = −r2(g) − q∗2(det G).

So, for any η ∈ T 1,0
z X and any [ζ ] ∈ P(E∗

z ),

sup
q∗(η̃)=η

γg(η̃, ¯̃η) = −r inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) − 2(det G)(η, η̄)

= rθ(g)(η̃, ¯̃η) − 2(det G)(η, η̄).

This is formula (1-8) that we promise to prove in the introduction.

2C. Convexity. Let E be a holomorphic vector bundle of rank r over a compact
complex manifold X . Given a Hermitian metric Hk on the symmetric power Sk E ,
we can define a Finsler metric on E by assigning to u ∈ E length Hk(uk, uk)1/2k .
We will denote this Finsler metric by H 1/2k

k , namely H 1/2k
k (u) = Hk(uk, uk)1/2k .

Lemma 5. Let F1 be a vector bundle and F2 a line bundle over X. Assume
F2 carries a Hermitian metric H. We also assume, for some k, Sk F1 carries a
Hermitian metric Hk such that the induced Finsler metric H 1/2k

k on F1 is convex:

H 1/2k
k (u + v) ≤ H 1/2k

k (u) + H 1/2k
k (v) for u, v ∈ F1.

Then the Finsler metric (Hk ⊗ H k)1/2k on F1 ⊗ F2 is convex.

Since F2 is a line bundle, there is a canonical isomorphism between the bundles
Sk(F1 ⊗ F2) and Sk F1 ⊗ Fk

2 which we use implicitly in the statement of Lemma 5.
Roughly speaking, Lemma 5 indicates that convexity is not affected by tensoring
with a line bundle.

Proof. Fix p ∈ X . The fiber F2|p is a one dimensional vector space and we let e
be a basis. For x and y ∈ F1 ⊗ F2|p, we can write x = x̃ ⊗ e and y = ỹ ⊗ e where
x̃, ỹ ∈ F1|p. By definition,

(Hk ⊗ H k)1/2k(x + y) = Hk ⊗ H k((x + y)k, (x + y)k)1/2k

= Hk ⊗ H k((x̃ + ỹ)k
⊗ ek, (x̃ + ỹ)k

⊗ ek)1/2k

= Hk((x̃ + ỹ)k, (x̃ + ỹ)k)1/2k H k(ek, ek)1/2k

≤ [Hk(x̃k, x̃k)1/2k
+ Hk(ỹk, ỹk)1/2k

] H k(ek, ek)1/2k

= (Hk ⊗ H k)1/2k(x) + (Hk ⊗ H k)1/2k(y).

Therefore the Finsler metric (Hk ⊗ H k)1/2k is convex. □
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2D. Direct image bundles. We recall how to construct Hermitian metrics on direct
image bundles and compute their curvature. Let g be a Hermitian metric on
OP(E∗)(1) with curvature 2(g). Denote the restriction of the curvature to a fiber,
2(g)|P(E∗

z ) by ωz for z ∈ X , and assume ωz > 0 for all z ∈ X . With the canonical
isomorphism

8k,z : Sk Ez → H 0(P(E∗

z ), OP(E∗
z )(k)) for k ≥ 0

(see [Demailly 2012, p. 278, Theorem 15.5]), we define a Hermitian metric Hk

on Sk E by

(2-11) Hk(u, v) :=

∫
P(E∗

z )

gk(8k,z(u), 8k,z(v)) ωr−1
z for u and v ∈ Sk Ez.

Let us denote by 2k the curvature of Hk . Fixing z ∈ X and u ∈ Sk Ez , in order
to estimate the (1, 1)-form Hk(2k u, u), we first extend the vector u to a local
holomorphic section ũ whose covariant derivative at z with respect to Hk equals
zero. A straightforward computation shows

∂∂̄ Hk(ũ, ũ)|z = −Hk(2k u, u).

But Hk(ũ, ũ)(z) for z near z can also be written as the push-forward

q∗

(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1),

where q : P(E∗) → X is the projection, so

(2-12) −Hk(2k u, u) = ∂∂̄ Hk(ũ, ũ)|z = q∗ ∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1)

|z.

Similarly, we can use a metric on OP(E)(1) ⊗ p∗ det E to construct Hermitian
metrics on Sk E∗

⊗ (det E)k . The formula is similar to (2-11), and we use bold
symbols to highlight the change. Let g be a metric on OP(E)(1) ⊗ p∗ det E with
curvature 2(g). Denote the restriction of the curvature to a fiber 2(g)|P(Ez) by ωz

for z ∈ X . Assume ωz > 0 for all z ∈ X . With the canonical isomorphism

8k,z : Sk E∗

z ⊗ (det Ez)
k
→ H 0(P(Ez), OP(Ez)(k) ⊗ (p∗ det Ez)

k) for k ≥ 0,

we define a Hermitian metric Hk on Sk E∗
⊗ (det E)k by

(2-13) Hk(u, v) :=

∫
P(Ez)

gk(8k,z(u), 8k,z(v)) ωr−1
z

for u and v ∈ Sk E∗
z ⊗ (det Ez)

k . We also have a curvature formula similar to (2-12).
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2E. Berndtsson’s positivity theorem. Let h be a metric on OP(E∗)(1) with curvature
2(h) > 0. Denote 2(h)|P(E∗

z ) by ωz for z ∈ X . We are going to define a Hermitian
metric on det E using the metric h. The relative canonical bundle K P(E∗)/X has
a metric induced from {ωr−1

z }z∈X . With hr on OP(E∗)(r) and the isomorphism
K P(E∗)/X ⊗ OP(E∗)(r) ≃ q∗ det E , there is an induced metric ρ on q∗ det E . Using
the canonical isomorphism

9z : det Ez → H 0(P(E∗

z ), q∗ det Ez),

we define a Hermitian metric H on det E by

(2-14) H(u, v) :=

∫
P(E∗

z )

ρ(9z(u), 9z(v)) ωr−1
z for u and v ∈ det Ez.

By Berndtsson’s theorem [Berndtsson 2009a], this metric H is Griffiths positive, but
it is the inequality that leads to this fact we will use. We follow the presentation in
[Liu et al. 2013, Section 4.1] (see also [Berndtsson 2009b, Section 2]). Denote the
curvature of H by 2. Fix z ∈ X , v ∈ det Ez and η ∈ T 1,0

z X . For a local holomorphic
frame of E∗ around z, we denote by {ζi } the fiber coordinates with respect to
this frame, and by {zα} the local coordinates on X . Around P(E∗

z ) in P(E∗),
we have homogeneous coordinates [ζ1, . . . , ζr ] which induce local coordinates
(w1, . . . , wr−1). For a local frame e∗ of OP(E∗)(1), we denote h(e∗, e∗) by e−φ

and write the tangent vector η =
∑

ηα
∂

∂zα
. The inequality that leads to Berndtsson’s

theorem is

(2-15) −H(2v, v)(η, η̄)

≤

∫
P(E∗

z )

ρ(9z(v), 9z(v)) r
∑
α,β

(∑
i, j

φα j̄ φi j̄ φi β̄ − φαβ̄

)
ηα η̄β ωr−1

z ,

where

φi j̄ :=
∂2φ

∂wi ∂wj
, φα j̄ :=

∂2φ

∂zα ∂wj
, φαβ̄ :=

∂2φ

∂zα ∂ z̄β

,

and (φi j̄ ) is the inverse matrix of (φi j̄ ). Since det E is a line bundle, the curvature 2

is a (1, 1)-form, and so H(2v, v)(η, η̄) = H(v, v)2(η, η̄). If we further assume
H(v, v) = 1, then the left-hand side of (2-15) becomes −2(η, η̄).

3. Proof of Theorem 1

Recall that h and g are metrics on OP(E∗)(1) that satisfy the assumptions in
Theorem 1 and the inequalities (1-3) and (1-4). We use the metric h to construct a
Hermitian metric H on det E as in (2-14), and the metric g to construct Hermitian
metrics Hk on Sk E as in (2-11). The number k is yet to be determined.
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We start with the metric g. Given a point (z0, [ζ0]) ∈ P(E∗), we have the normal
coordinate system from Section 2A. In this coordinate system, let us introduce the
following n-by-n matrix-valued function:

Bk = ((Bk)αβ) :=
(
kφαβ̄ − (log det(φi j̄ ))αβ̄

)
,

where g(e∗, e∗) = e−φ . By continuity, there is a neighborhood U of (z0, [ζ0])

in P(E∗) such that in U

(3-1) (φαβ̄)|(z0,[ζ0]) +
r −M

4
Idn×n ≥ (φαβ̄).

For this U , there is a positive integer k0 such that for k ≥ k0 and in U

(3-2) (φαβ̄) +
r −M

4
Idn×n ≥

Bk

k
.

Let us summarize what we have done so far:

Lemma 6. Given a point (z0, [ζ0]) ∈ P(E∗), there exist a coordinate neighbor-
hood U of (z0, [ζ0]) in P(E∗) and a positive integer k0 such that in U and for
k ≥ k0

(3-3) (φαβ̄)|(z0,[ζ0]) +
r −M

2
Idn×n ≥

Bk

k
.

By Lemma 6, since P(E∗
z0

) is compact, we can find on P(E∗
z0

) finitely many
points {(z0, [ζl])}l each of which corresponds to a coordinate neighborhood Ul

in P(E∗) and a positive integer kl such that the corresponding (3-3) holds, and
P(E∗

z0
) ⊂

⋃
l Ul . Denote maxl kl by kmax. The point z0 has a neighborhood W in X

such that for z ∈ W , the fiber P(E∗
z ) can be partitioned as

⋃
m Vm with each Vm

in Ul for some l. By shrinking W , we can assume that for each Ul the corresponding
�

(
∂

∂zα
, ∂

∂ z̄β

)
:= �αβ̄ satisfies

(3-4) −εδαβ < �αβ̄(z) − δαβ < εδαβ for z ∈ W,

where ε :=
r−M

5(r+M)
.

Recall the Hermitian metrics Hk on Sk E in (2-11) constructed using the metric g.
Denote by 2k the curvature of Hk . We claim the following lemma (one can also
use the asymptotic expansion in [Ma and Zhang 2023] to deduce the lemma).

Lemma 7. For k ≥ kmax, z ∈ W , 0 ̸= η ∈ T 1,0
z X , and u ∈ Sk Ez with Hk(u, u) = 1,

we have

(3-5) Hk(2k u, u)(η, η̄) ≤

(
M +

r −M
2

)
k �(η, η̄)

(1−ε)
.
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Proof. As in Section 2D, we extend the vector u ∈ Sk Ez to a local holomorphic
section ũ whose covariant derivative at z equals zero, and we have

−Hk(2k u, u) = ∂∂̄ Hk(ũ, ũ)|z =

∫
P(E∗

z )

∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1).

In the last equality, we partition the fiber P(E∗
z ) as

⋃
m Vm with each Vm in Ul for

some l. In a fixed Vm ⊂ Ul , using the coordinate system of Ul , we can write 8k,z(ũ)

as f (e∗)k with f a scalar-valued holomorphic function and e∗ a local frame for
OP(E∗)(1). So, gk(8k,z(ũ), 8k,z(ũ)) = | f |

2 e−kφ . Meanwhile, recall the curvature
2(g) = ∂∂̄φ. By Stokes’ theorem and a count on degrees, we have∑

m

∫
Vm

∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−kφ det(φi j̄ )

∂zα∂ z̄β

dzα ∧ dz̄β

∧
j

dwj ∧ dwj .

So, if the tangent vector η =
∑

α ηα
∂

∂zα
in the coordinate neighborhood Ul , then

(3-6) −Hk(2k u, u)(η, η̄)

=

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−kφ det(φi j̄ )

∂zα ∂ z̄β

ηα η̄β

∧
j

dwj ∧ dwj .

Note that the integrands in (3-6) are written in the local coordinates of correspond-
ing Ul . A direct computation shows∑
α,β

∂2
| f |

2 e−kφ det(φi j̄ )

∂zα∂ z̄β

ηα η̄β

= e−kφ det(φi j̄ )

∣∣∣∑
α

∂ f
∂zα

ηα − f
∑
α

(
kφα − (log det φi j̄ )α

)
ηα

∣∣∣2

− | f |
2 e−kφ det(φi j̄ )

∑
α,β

(
kφαβ̄ − (log det φi j̄ )αβ̄

)
ηα η̄β

≥ −| f |
2 e−kφ det(φi j̄ )

∑
α,β

(Bk)αβ ηα η̄β .

By (3-3),

(3-7)
1
k

∑
α,β

(Bk)αβ ηα η̄β ≤

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β +
r − M

2

∑
α

|ηα|
2.

Using the coordinate system of Ul , the tangent vector η =
∑

α ηα
∂

∂zα
at z induces

a tangent vector ηl =
∑

α ηα
∂

∂zα
|z0 at z0. Denote the lifts of ηl to T 1,0

(z0,[ζl ])
P(E∗)
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by η̃l . According to (1-2), (1-3), and (2-3), we see

(3-8) M
∑
α

|ηα|
2
≥ −θ(g)(η̃l, ¯̃ηl) = inf

q∗(η̃l )=ηl
2(g)(η̃l, ¯̃ηl) =

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β .

Therefore, (3-7) becomes

(3-9)
1
k

∑
α,β

(Bk)αβ ηα η̄β ≤

(
M +

r − M
2

) ∑
α

|ηα|
2
≤

(
M +

r − M
2

)
�(η, η̄)

(1 − ε)
,

where we use (3-4) in the second inequality. So, (3-6) becomes

(3-10) −Hk(2k u, u)(η, η̄)

≥

∑
m

∫
Vm

−| f |
2 e−kφ det(φi j̄ )

∧
j

dwj ∧ dwj

(
M +

r − M
2

)
k
�(η, η̄)

(1 − ε)

= −

(
M +

r − M
2

)
k
�(η, η̄)

(1 − ε)

since Hk(u, u) = 1. □

We turn now to the metric h. The argument about h is similar to that about g,
and it will be used in Theorems 2, 3, and 4. Given a point (z0, [ζ0]) ∈ P(E∗), we
have the normal coordinate system from Section 2A with respect to the metric h.
In this coordinate system, let us introduce the n-by-n matrix-valued function

A = (Aαβ) :=

(
φαβ̄ −

∑
i, j

φα j̄ φi j̄ φi β̄

)
,

where h(e∗, e∗) = e−φ and (φi j̄ ) is the inverse matrix of (φi j̄ ). By continuity, there
is a neighborhood U of (z0, [ζ0]) in P(E∗) such that in U

(3-11) r A +
r − M

4
Idn×n ≥ r A|(z0,[ζ0]).

In summary:

Lemma 8. Given a point (z0, [ζ0]) ∈ P(E∗), there exists a coordinate neighbor-
hood U of (z0, [ζ0]) in P(E∗) such that in U

(3-12) r A +
r − M

4
Idn×n ≥ r(φαβ̄)|(z0,[ζ0]).

By Lemma 8, since P(E∗
z0

) is compact, we can find on P(E∗
z0

) finitely many
points {(z0, [ζl])}l each of which corresponds to a coordinate neighborhood Ul

in P(E∗) such that the corresponding (3-12) holds, and P(E∗
z0

) ⊂
⋃

l Ul . The
point z0 has a neighborhood W ′ in X such that for z ∈ W ′, the fiber P(E∗

z ) can
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be partitioned as
⋃

m Vm with each Vm in Ul for some l. By shrinking W ′, we can
assume that for each Ul the corresponding �

(
∂

∂zα
, ∂

∂ z̄β

)
:= �αβ̄ satisfies

(3-13) −εδαβ < �αβ̄(z) − δαβ < εδαβ for z ∈ W ′,

where ε :=
r−M

5(r+M)
.

Recall the Hermitian metric H on det E in (2-14) constructed using the metric h.
Denote by 2 the curvature of H . We claim:

Lemma 9. For z ∈ W ′ and η ∈ T 1,0
z X , we have

(3-14) −2(η, η̄) ≤ −

(
r −

r − M
4

)
�(η, η̄)

(1 + ε)
.

Proof. Using (2-15) and assuming H(v, v) = 1, we get

(3-15) −2(η, η̄)

≤

∑
m

∫
Vm

ρ(9z(v), 9z(v)) r
∑
α,β

(∑
i, j

φα j̄ φi j̄ φi β̄ − φαβ̄

)
ηα η̄β ωr−1

z ,

where we again partition P(E∗
z ) as

⋃
m Vm with each Vm in Ul for some l. Note that

the integrands in (3-15) are written in the local coordinates of corresponding Ul . In
a fixed Vm ⊂ Ul , we have η =

∑
α ηα

∂
∂zα

, and by (3-12) we see

(3-16) r
∑
α,β

Aαβ ηα η̄β +
r − M

4

∑
α

|ηα|
2
≥ r

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β .

In Ul , the tangent vector

η =

∑
α

ηα

∂

∂zα

at z

induces a tangent vector

ηl =

∑
α

ηα

∂

∂zα

∣∣∣
z0

at z0.

Denote the lifts of ηl to T 1,0
(z0,[ζl ])

P(E∗) by η̃l . By (1-2), (1-4), and (2-3), we see

(3-17)
∑
α

|ηα|
2
≤ −θ(h)(η̃l, ¯̃ηl) = inf

q∗(η̃l )=ηl
2(h)(η̃l, ¯̃ηl) =

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β .

Therefore, (3-16) becomes

r
∑
α,β

Aαβ ηα η̄β ≥

(
r −

r − M
4

) ∑
α

|ηα|
2
≥

(
r −

r − M
4

)
�(η, η̄)

1 + ε
,
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where we use (3-13) in the second inequality. So, (3-15) becomes

−2(η, η̄) ≤ −

∑
m

∫
Vm

ρ(9z(v), 9z(v)) ωr−1
z

(
r −

r − M
4

)
�(η, η̄)

1 + ε

= −

(
r −

r − M
4

)
�(η, η̄)

(1 + ε)

because H(v, v) = 1. □

Now we put together the L2-metrics Hk on Sk E in (2-11), and H on det E
in (2-14). Since (det E∗)k is a line bundle, we can identify End(Sk E ⊗ (det E∗)k)

with End(Sk E), and the curvature of the metric Hk ⊗ (H∗)k on Sk E ⊗ (det E∗)k

can be written as
2k − k2 ⊗ IdSk E ,

where 2k and 2 are the curvature of Hk and H respectively. We claim that for
k ≥ kmax and in W ∩ W ′ a neighborhood of z0, the metric Hk ⊗ (H∗)k is Griffiths
negative. Indeed, as a result of Lemmas 7 and 9, for k ≥ kmax, z ∈ W ∩ W ′,
0 ̸= η ∈ T 1,0

z X , and u ∈ Sk Ez with Hk(u, u) = 1, we see

Hk(2k u, u)(η, η̄)−k2(η, η̄)≤k
(

M+
r − M

2

)
�(η, η̄)

(1 − ε)
−k

(
r−

r − M
4

)
�(η, η̄)

(1 + ε)
.

The term on the right is negative after some computation using ε =
r−M

5(r+M)
. So, we

have proved the claim that for k ≥ kmax and in W ∩ W ′
⊂ X , the metric Hk ⊗ (H∗)k

is Griffiths negative. Since X is compact, Hk ⊗ (H∗)k is Griffiths negative on the
entire X for k large enough.

Now we fix k such that the Hermitian metric Hk ⊗ (H∗)k on the bundle

Sk E ⊗ (det E∗)k

is Griffiths negative on X . The Hermitian metric Hk by construction is an L2-
integral, so its k-th root is a convex Finsler metric on E (see [Wu 2022, proof of
Theorem 1] for details). By Lemma 5, the k-th root of Hk⊗(H∗)k is a convex Finsler
metric on E ⊗ det E∗ which we denote by F . Moreover, this Finsler metric F is
strongly plurisubharmonic on E ⊗det E∗

\{zero section} due to Griffiths negativity
of Hk ⊗ (H∗)k . By adding a small Hermitian metric, we can assume F is strongly
convex and strongly plurisubharmonic.

In general, the Kobayashi curvature of Finsler metrics do not behave well under
duality [Demailly 1999, Remark 2.7]. But since our Finsler metric F is strongly
convex, the dual Finsler metric of F is in fact strongly pseudoconvex and Kobayashi
positive (this duality result is originally due to Sommese [1978] and Demailly [1999,
Theorem 2.5]. See also [Wu 2022, proof of Theorem 1 and Lemma 6]). In summary,
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the dual Finsler metric of F is a convex, strongly pseudoconvex, and Kobayashi
positive Finsler metric on E∗

⊗ det E . Hence the proof of Theorem 1 is complete.
With slight modification on the proof, one has the following variant of Theorem 1.

Theorem 10. Assume r ≥ 2 and the line bundle OP(E∗)(1) has a positively curved
metric h and a metric g with 2(g)|P(E∗

z ) > 0 for all z ∈ X. If there exist a Hermitian
metric � on X and a constant M ≥ 1 such that the following inequalities of (1, 1)-
forms hold

Mq∗� ≥ −θ(g),(3-18)

q∗� ≤ −θ(h),(3-19)

then for any positive integer l > M/r , the bundle E∗
⊗(det E)l is Kobayashi positive.

4. Proof of Theorem 2

The proof is similar to what we do in Section 3 except that we are dealing with not
only P(E∗) but P(E) here. The metric h is used to define a Hermitian metric H
on det E as in (2-14). The metric g is used to define Hermitian metrics Hk on
Sk E∗

⊗ (det E)k as in (2-13).
Fix z0 in X . For the metric h on OP(E∗)(1), we follow the path that leads to

Lemma 9 in Section 3 to deduce a neighborhood W ′ of z0 in X such that for z ∈ W ′

and η ∈ T 1,0
z X , the curvature 2 of H satisfies

(4-1) −2(η, η̄) ≤ −

(
r −

r − M
4

)
�(η, η̄)

(1 + ε)
,

with ε =
r−M

5(r+M)
.

For the metric g on OP(E)(1) ⊗ p∗ det E , we replace OP(E∗)(1) → P(E∗) in
Section 3 with OP(E⊗det E∗)(1)→ P(E⊗det E∗) and use the canonical isomorphism
between OP(E⊗det E∗)(1)→ P(E⊗det E∗) and OP(E)(1)⊗ p∗ det E → P(E). Then
following the argument leading to Lemma 7, we obtain a positive integer kmax and
a neighborhood W of z0 in X such that for k ≥ kmax, z ∈ W , η ∈ T 1,0

z X , and
u ∈ Sk E∗

z ⊗ (det Ez)
k with Hk(u, u) = 1, the curvature 2k of Hk satisfies

(4-2) Hk(2k u, u)(η, η̄) ≤

(
M +

r − M
2

)
k
�(η, η̄)

(1 − ε)
.

On the bundle [Sk E∗
⊗ (det E)k

] ⊗ (det E∗)k , there is a Hermitian metric
Hk ⊗(H∗)k with curvature 2k −k2⊗IdSk E∗⊗(det E)k . As a result of (4-1) and (4-2),
we deduce that, for k ≥ kmax, z ∈ W ∩ W ′, η ∈ T 1,0

z X , and u ∈ Sk E∗
z ⊗ (det Ez)

k

with Hk(u, u) = 1,

Hk(2k u, u)(η, η̄)−k2(η, η̄)≤k
(

M+
r − M

2

)
�(η, η̄)

(1 − ε)
−k

(
r−

r − M
4

)
�(η, η̄)

(1 + ε)
.
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Again, the term on the right is negative using ε =
r−M

5(r+M)
. So we have proved that

for k ≥ kmax and in W ∩ W ′, the metric Hk ⊗ (H∗)k is Griffiths negative. Since X
is compact, Hk ⊗ (H∗)k is Griffiths negative on X for k large.

Now we fix k such that Hk ⊗ (H∗)k on the bundle

[Sk E∗
⊗ (det E)k

] ⊗ (det E∗)k
≃ Sk E∗

is Griffiths negative. Using the same argument as those at the end of Section 3, we
obtain a convex, strongly pseudoconvex, Kobayashi positive Finsler metric on E .

5. Proof of Theorem 3

We use the metric h to construct a Hermitian metric H on det E as in (2-14), and
the metric g to construct a Hermitian metric H1 on S1 E = E as in (2-11).

We start with the metric g. For (z0, [ζ0]) in P(E∗), there is a special coordinate
system given in Section 2B. In this coordinate system, we define the following
n-by-n matrix-valued function:

B = (Bαβ) :=
(
φαβ̄ − (log det(φi j̄ ))αβ̄

)
,

where g(e∗, e∗) = e−φ . By continuity, there is a neighborhood U of (z0, [ζ0])

in P(E∗) such that in U

B|(z0,[ζ0]) +
r −M

4
Idn×n ≥ B.

In summary:

Lemma 11. Given a point (z0, [ζ0]) ∈ P(E∗), there exists a coordinate neighbor-
hood U of (z0, [ζ0]) in P(E∗) such that in U

(5-1) B|(z0,[ζ0]) +
r −M

4
Idn×n ≥ B.

By Lemma 11, since P(E∗
z0

) is compact, we can find finitely many points
{(z0, [ζl])}l on P(E∗

z0
) each of which corresponds to a coordinate neighborhood Ul

in P(E∗) such that the corresponding (5-1) holds, and P(E∗
z0

) ⊂
⋃

l Ul . The fiber
P(E∗

z0
) can be partitioned as

⋃
m Vm with each Vm in Ul for some l.

Recall the Hermitian metric H1 on E in (2-11) constructed using the metric g.
Denote by 21 the curvature of H1. We claim:

Lemma 12. For 0 ̸= η ∈ T 1,0
z0

X and u ∈ Ez0 with H1(u, u) = 1, we have

(5-2) H1(21u, u)(η, η̄) ≤

(
M +

r −M
4

)
�(η, η̄).

Proof. As in Section 2D, we extend the vector u ∈ Ez0 to a local holomorphic
section ũ whose covariant derivative at z0 equals zero, and we have
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−H1(21u, u) = ∂∂̄ H1(ũ, ũ)|z0 =

∫
P(E∗

z0
)

∂∂̄
(
g(81,z(ũ), 81,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∂∂̄
(
g(81,z(ũ), 81,z(ũ)) 2(g)r−1).

In a fixed Vm ⊂Ul , we can write 81,z(ũ) as f e∗ with f a scalar-valued holomorphic
function and e∗ a local frame for OP(E∗)(1). So,

g(81,z(ũ), 81,z(ũ)) = | f |
2 e−φ.

Meanwhile, recall the curvature 2(g) = ∂∂̄φ. By Stokes’ theorem and a count on
degrees, we have∑

m

∫
Vm

∂∂̄
(
g(81,z(ũ), 81,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−φ det(φi j̄ )

∂zα∂ z̄β

dzα ∧ dz̄β

∧
j

dwj ∧ dwj .

So,

(5-3) −H1(21u, u)(η, η̄) =

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−φ det(φi j̄ )

∂zα ∂ z̄β

ηα η̄β

∧
j

dwj ∧ dwj

for T 1,0
z0

X ∋ η =
∑

α ηα
∂

∂zα
. A direct computation shows

∑
α,β

∂2
| f |

2 e−φ det(φi j̄ )

∂zα∂ z̄β

ηα η̄β

= e−φ det(φi j̄ )

∣∣∣∑
α

∂ f
∂zα

ηα − f
∑
α

(
φα −(log det φi j̄ )α

)
ηα

∣∣∣2

− | f |
2 e−φ det(φi j̄ )

∑
α,β

(
φαβ̄ − (log det φi j̄ )αβ̄

)
ηα η̄β

≥ −| f |
2 e−φ det(φi j̄ )

∑
α,β

Bαβ ηα η̄β .

By (1-8), (1-9), (2-6), and (2-9), we see

M
∑
α

|ηα|
2
≥ −(r + 1) θ(g)(η̃, ¯̃η) + q∗2(det G)(η̃, ¯̃η)

= inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) − sup
q∗(η̃)=η

γg(η̃, ¯̃η)

=

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β −

∑
α,β

(log det(φi j̄ ))αβ̄ |(z0,[ζl ])ηα η̄β

=

∑
α,β

Bαβ |(z0,[ζl ])ηα η̄β .
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Therefore, (5-1) becomes

(5-4)
∑
α,β

Bαβ ηα η̄β ≤

(
M +

r −M
4

) ∑
α

|ηα|
2
=

(
M +

r −M
4

)
�(η, η̄).

So, (5-3) becomes

(5-5) −H1(21u, u)(η, η̄)

≥

∑
m

∫
Vm

−| f |
2e−φ det(φi j̄ )

∧
j

dwj ∧ dwj

(
M +

r −M
4

)
�(η, η̄)

= −

(
M +

r −M
4

)
�(η, η̄)

since H1(u, u) = 1. □

For the metric h on OP(E∗)(1), as in Lemma 9 from Section 3 with slight
modification, we deduce that for η ∈ T 1,0

z0
X , the curvature 2 of H satisfies

(5-6) −2(η, η̄) ≤ −

(
r −

r −M
4

)
�(η, η̄).

Finally, we consider the metric H1 ⊗ H∗ on E ⊗ det E∗. Since det E∗ is a line
bundle, we can identify End(E⊗det E∗) with End E , and the curvature of the metric
H1 ⊗ H∗ can be written as 21 −2⊗ IdE , where 21 and 2 are the curvature of H1

and H respectively. As a result of Lemma 12 and (5-6), we see for 0 ̸= η ∈ T 1,0
z0

X
and u ∈ Ez0 with H1(u, u) = 1,

H1(21u, u)(η, η̄) − 2(η, η̄) ≤

(
M +

r −M
4

)
�(η, η̄) −

(
r −

r −M
4

)
�(η, η̄),

the term on the right is negative. Hence we have proved that at z0 the metric
H1 ⊗ H∗ is Griffiths negative. The point z0 is arbitrary, so H1 ⊗ H∗ is Griffiths
negative on X . As a result, the dual bundle E∗

⊗ det E is Griffiths positive.

6. Proof of Theorem 4

The metric h is used to define a Hermitian metric H on det E as in (2-14). The
metric g is used to define Hermitian metric H1 on E∗

⊗ det E as in (2-13).
Given z0 in X . For the metric h on OP(E∗)(1), as in the formula (5-6) from

Section 5, for η ∈ T 1,0
z0

X we have

(6-1) −2(η, η̄) ≤ −

(
r −

r −M
4

)
�(η, η̄).

For the metric g on OP(E)(1) ⊗ p∗ det E , we replace OP(E∗)(1) → P(E∗) in
Section 5 with OP(E⊗det E∗)(1)→ P(E⊗det E∗) and use the canonical isomorphism
between OP(E⊗det E∗)(1)→ P(E⊗det E∗) and OP(E)(1)⊗ p∗ det E → P(E). Then
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as in Lemma 12, we get for η ∈ T 1,0
z0

X , and u ∈ E∗
z0

⊗ (det Ez0) with H1(u, u) = 1,
the curvature 21 of H1 satisfies

(6-2) H1(21u, u)(η, η̄) ≤

(
M +

r −M
4

)
�(η, η̄).

On the bundle (E∗
⊗ det E)⊗ det E∗, there is a Hermitian metric H1 ⊗ H∗ with

curvature 21 − 2 ⊗ IdE∗⊗det E . As a result of (6-1) and (6-2), we deduce that for
η ∈ T 1,0

z0
X , and u ∈ E∗

z0
⊗ (det Ez0) with H1(u, u) = 1,

(6-3) H1(21u, u)(η, η̄) − 2(η, η̄)

≤

(
M +

r −M
4

)
�(η, η̄) −

(
r −

r −M
4

)
�(η, η̄),

the term on the right is negative. So the Hermitian metric H1 ⊗ H∗ is Griffiths
negative at z0 an arbitrary point. Hence H1 ⊗ H∗ is Griffiths negative on X , and
the bundle E is Griffiths positive.

7. Examples

Example 13. We provide here an example where the assumptions in Theorems
1, 2, 3, and 4 are satisfied. Let L be a line bundle with a metric H whose curvature
2 > 0. Let E = L9

⊕ L8
⊕ L7 a vector bundle of rank r = 3. The induced metric

(H∗)9
⊕ (H∗)8

⊕ (H∗)7 on the dual bundle E∗ has curvature

2(E∗) = (−92) ⊕ (−82) ⊕ (−72),

which is Griffiths negative, so the corresponding metric h on OP(E∗)(1) is positively
curved. According to (2-7), we see

−θ(h) = −q∗2(E∗)|OP(E∗)(−1).

Hence we have

(7-1) 7q∗2 ≤ −θ(h) ≤ 9q∗2.

For all four theorems, we will use this metric h on OP(E∗)(1) and take � to be 72.
So q∗� ≤ −θ(h) always holds. The choice of g will be different from case to case.

For Theorem 1, we choose g to be h, and hence by (7-1) and � = 72 we get

(7-2) q∗� ≤ −θ(h) = −θ(g) ≤
9
7q∗�.

To fulfill the assumption of Theorem 1, we can choose M =
9
7 which is in the

interval [1, 3).
For Theorem 2, since E⊗det E∗

= (L∗)15
⊕(L∗)16

⊕(L∗)17 has induced curvature
(−152)⊕(−162)⊕(−172) which is Griffiths negative, the corresponding metric g
on OP(E)(1) ⊗ p∗ det E is positively curved and satisfies

(7-3) 15p∗2 ≤ −θ(g) ≤ 17p∗2.
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Together with (7-1) and � = 72, we have

(7-4) 17
7 p∗� ≥ −θ(g) and q∗� ≤ −θ(h).

We can choose M =
17
7 which is in [1, 3).

For Theorem 3, notice that h is induced from (H∗)9
⊕(H∗)8

⊕(H∗)7 on E∗, so if
we use (H∗)9

⊕(H∗)8
⊕(H∗)7 for the Hermitian metric G, then the corresponding g

is actually h. Since 2(det G) = −242, by using (7-1) we have

(7-5) −(r + 1) θ(g) + q∗2(det G) = −4θ(h) − 24q∗2 ≤ 12q∗2 =
12
7 q∗�.

We choose M =
12
7 which is in [1, 3).

Finally for Theorem 4, on E ⊗ det E∗
= (L∗)15

⊕ (L∗)16
⊕ (L∗)17, we will use

the metric (H∗)15
⊕ (H∗)16

⊕ (H∗)17 for G, so 2(det G) = −482. Moreover, the
corresponding metric g on OP(E)(1) ⊗ p∗ det E satisfies

(7-6) 15p∗2 ≤ −θ(g) ≤ 17p∗2,

so we get

(7-7) −(r + 1) θ(g) + p∗2(det G) ≤ 20p∗2 =
20
7 p∗�.

We choose M =
20
7 which is in [1, 3).

Example 14. Let X be a compact Riemann surface with a Hermitian metric ω.
Let E be an ω-semistable ample vector bundle of rank r over X . The assumptions
in Theorems 1, 2, 3, and 4 are all satisfied in this case. We will explain for only
Theorems 2 and 4. Theorems 1 and 3 can be verified similarly. By [Li et al. 2021,
Theorem 1.7, Remark 1.8, and Theorem 1.11], there exists a constant c > 0 such
that for any δ > 0, there exists a Hermitian metric Hδ on E satisfying

(7-8) (c − δ) IdE ≤
√

−13ω 2(Hδ) ≤ (c + δ) IdE ,

where 3ω is the contraction with respect to ω. Since X is a Riemann surface, 3ω

locally is multiplication by a positive function.
For Theorem 2, we choose δ =

c
5r . The Hermitian metric H∗

δ on E∗ induces a
metric h on OP(E∗)(1). Due to (2-7), we see

(7-9) −θ(h) = −q∗2(H∗

δ )|OP(E∗)(−1);

combining with (7-8), we have

(7-10) (c − δ) q∗ω ≤ −θ(h) ≤ (c + δ) q∗ω.

The Hermitian metric Hδ ⊗ det H∗

δ on E ⊗ det E∗ induces on OP(E)(1)⊗ p∗ det E
a metric g. Similar to (7-10), we have

(7-11) −θ(g) ≤ [−(c − δ) + r(c + δ)] p∗ω.
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If we choose � = (c − δ) ω and M = r −
1
2 , then

[−(c − δ) + r(c + δ)] p∗ω ≤ Mp∗�.

As a result, we achieve the assumption in Theorem 2:

q∗� ≤ −θ(h) and − θ(g) ≤ Mp∗�.

For Theorem 4, we choose δ =
c

9r . We still have (7-10). The Hermitian metric G
on E ⊗ det E∗ is taken to be Hδ ⊗ det H∗

δ , so we get

−(r + 1) θ(g) + p∗2(det G)

= −(r + 1)[p∗2(Hδ)|OP(E)(−1) − p∗2(det Hδ)] − (r − 1)p∗2(det Hδ)

≤ [−(r + 1)(c − δ) + 2r(c + δ)] p∗ω.

If we choose � = (c − δ) ω and M = r −
1
2 , then

[−(r + 1)(c − δ) + 2r(c + δ)] p∗ω ≤ Mp∗�.

So the assumption of Theorem 4 is satisfied.
In light of [Li et al. 2021, Theorem 1.7], it is possible to modify our theorems so

that semistability is not needed in this example.

Appendix

Here we prove the isomorphism
∧r−1 E ≃ E∗

⊗ det E where r is the rank of E .

Proof. Let {e1, . . . , er } and { f1, . . . , fr } be two sets of local frames for E with
the transition matrix g = (gi j ); namely, on the intersection of the two frames, we
have fi =

∑
j gi j ej . On the bundle

∧r−1 E , we have the induced local frame
{ê1, . . . , êr } where êk is e1 ∧ · · · ∧ er with ek removed. Similarly, we have another
frame { f̂1, . . . , f̂r }. Let ĝ = (ĝi j ) be the corresponding transition matrix for the
bundle

∧r−1 E , namely, f̂i =
∑

j ĝi j êj . It is not hard to verify that ĝi j is the
determinant of the matrix g with the i-th row and j-th column removed.

For the dual bundle E∗, the corresponding transition matrix for the dual frames
{e∗

1, . . . , e∗
r } and { f ∗

1 , . . . , f ∗
r } is the transpose of g−1. Therefore, the transition

matrix for the bundle E∗
⊗ det E is c = (ci j ) where ci j = (−1)i+ j ĝi j .

Now, let us denote by A the diagonal matrix whose i-th diagonal entry is (−1)i .
Notice that the inverse of A is still A. Also, after a straightforward computation, we
have AcA−1

= ĝ. So, the two bundles
∧r−1 E and E∗

⊗ det E are isomorphic. □
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