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SPIN LEFSCHETZ FIBRATIONS ARE ABUNDANT

MIHAIL ARABADJI AND R. İNANÇ BAYKUR

We prove that any finitely presented group can be realized as the fundamental
group of a spin Lefschetz fibration over the 2-sphere. We also show that any
admissible lattice point in the symplectic geography plane below the Noether
line can be realized by a simply connected spin Lefschetz fibration.

1. Introduction

Explicit constructions of Lefschetz fibrations with prescribed fundamental groups
were given by Amorós, Bogomolov, Katzarkov and Pantev [1] and by Korkmaz [14];
also see [12]. We show that the same result holds for a much smaller family of
Lefschetz fibrations:

Theorem A. Given any finitely presented group G, there exists a spin symplectic
Lefschetz fibration X → S2 with π1(X)∼= G.

These results were inspired by the pioneering work of Gompf, who proved that
any finitely presented group G is the fundamental group of a closed symplectic
4-manifold [9], which can be assumed to be spin. By the existence of Lefschetz
pencils on any symplectic 4-manifold due to Donaldson [6], it follows a priori that,
after blowing up the base points of the pencil, one can realize G as the fundamental
group of a symplectic Lefschetz fibration; however, these are never spin.

On the other hand, unlike Kähler surfaces, there are minimal symplectic 4-
manifolds of general type violating the Noether inequality, which was shown again
by Gompf [9]. More recently, Korkmaz, Simone, and Baykur showed that all the
lattice points in the symplectic geography plane below the Noether line can be
further realized by simply connected symplectic Lefschetz fibrations [4]. We prove
that a similar result holds in the spin case:

Theorem B. For any pair of nonnegative integers (m, n) satisfying the inequalities
n ≥ 0, n ≡ 8m (mod 16), n ≤ 8(m−6) and n ≤ 16

3 m, there exists a simply connected
spin symplectic Lefschetz fibration X → S2 such that χh(X) = m and c2

1(X) = n.
In particular, any admissible point in the symplectic geography plane below the
Noether line is realized by a simply connected spin Lefschetz fibration.

MSC2020: 57K20, 57K43, 57R15.
Keywords: Lefschetz fibration, symplectic 4-manifold, spin structure, mapping class groups.
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Among the hypotheses in the theorem, the first inequality is due to a theorem
of Taubes, who showed that c2

1(X) ≥ 0 for any nonruled minimal symplectic 4-
manifold X , whereas the second equality follows from Rokhlin’s theorem. A pair
(m, n) ∈ N2 satisfying this condition is called admissible. The first systematic
production of spin symplectic 4-manifolds realizing the above admissible lattice
points, but without the Lefschetz fibration structure we get, was first obtained by
J. Park in [15].

Our examples are produced explicitly via positive Dehn twist factorizations in
the mapping class group. The spin Lefschetz fibrations for Theorems A and B are
obtained by adapting the strategies of [14] and [4], respectively, together with a
subtle use of the breeding technique [2; 3] for the latter. The main challenge in
producing the examples in either theorem is due to the fact that the monodromy
of a spin Lefschetz fibration lies in a proper subgroup of the mapping class group
(fixing a spin structure on the fiber), so throughout our work, we restrain ourselves
to algebraic manipulations in this smaller mapping class group.

2. Preliminaries

We begin with a review of the concepts and background results underlying the
rest of our article, along with our conventions. We refer the reader to [10] for
more details and comprehensive references on Lefschetz fibrations, symplectic
4-manifolds, and monodromy factorizations, and to [3] for their interplay with spin
structures.

2.1. Lefschetz fibrations and positive factorizations. A Lefschetz fibration on a
closed smooth oriented 4-manifold X is a smooth surjective map f : X → S2, a
submersion on the complement of finitely many points {pi } ̸= ∅ all in distinct
fibers, around which f conforms (compatibly with fixed global orientations on X
and S2) to the local complex model of a nodal singularity (z1, z2) 7→ z1z2. We
assume that there are no exceptional spheres contained in the fibers. Each nodal
fiber of the Lefschetz fibration (X, f ) is obtained by crashing a simple closed curve,
called a vanishing cycle, on a reference regular fiber F .

We denote by 6b
g a compact connected oriented surface of genus g with b

boundary components. Let Diff+(6b
g) denote the group of orientation-preserving

diffeomorphisms of6b
g compactly supported away from the boundary. The mapping

class group of6b
g is defined as Mod(6b

g) :=π0(Diff+(6b
g)). When b =0, we simply

drop b from the above notation. Unless mentioned otherwise, by a curve c on 6b
g

we mean a smooth simple closed curve.
We denote by tc ∈Mod(6b

g) the positive (right-handed) Dehn twist along the curve
c ⊂6b

g . For anyψ, φ ∈Mod(6b
g)we write the conjugate ofψ by φ asψφ =φψφ−1.

We act on any curve c in the order (ϕφ)(c)= ϕ(φ(c)). An elementary but crucial
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point is that tφc = tφ(c). For any product of Dehn twists W = ∏ℓ
i=1 tki

ci and φ in
Mod(6b

g), we denote the conjugated product by W φ = ∏ℓ
i=1 tki

φ(ci )
.

Let {ci } be a nonempty collection of curves on 6b
g which do not become null-

homotopic after an embedding 6b
g ↪→ 6g. Let {δ j } be a collection of b curves

parallel to distinct boundary components of 6b
g . A relation of the form

(1) tc1 tc2 · · · tcl = tk1
δ1

· · · tkb
δb

in Mod(6b
g)

corresponds to a genus-g Lefschetz fibration (X, f ) with a reference regular fiber F
identified with 6g, with vanishing cycles {ci } and b disjoint sections {S j } of self-
intersections S j · S j = −k j .

The product on the left-hand side of the equality (1), the word P in positive Dehn
twists, is called a positive factorization of the mapping class on the right-hand side
that maps to the trivial word under the homomorphism induced by an embedding
6b

g ↪→6g. We will often denote the corresponding Lefschetz fibration as X P .
As shown by Gompf, every Lefschetz fibration (X, f ) admits a Thurston-type

symplectic form with respect to which the fibers are symplectic.

2.2. Fiber sums and fundamental groups. A Lefschetz fibration X P corresponding
to a positive factorization P := tc1 tc2 · · · tcl in Mod(61

g) (of some power of the
boundary twist) has π1(X P)∼= π1(6g)/N ({ci }), where N ({ci }) is the subgroup of
π1(6g) generated normally by collection of the vanishing cycles ci .

Given P1 := tc1 tc2 · · · tcl = tk1
δ and P2 := td1 td2 · · · tdl = tk2

δ , and any φ ∈ Mod(61
g),

we can always derive another positive factorization P1 Pφ2 = tk1+k2
δ in Mod(61

g),
prescribing a new Lefschetz fibration X P1 Pφ2

with a section of self-intersection
−(k1 +k2). This coincides with the well-known twisted fiber sum operation applied
to the Lefschetz fibrations X P1 and X P2 . We have

π1(X P1 Pφ2
)∼= π1(6g)/N

({ci } ∪ {φ(d j )}
)
.

A neat trick of Korkmaz, applicable in the more special setting described in the
next proposition, will come in handy for our arguments to follow:

Proposition 1 (Korkmaz [14]). Let P = tc1 tc2 · · · tcℓ be a positive factorization of
(some power of) a boundary twist in Mod(61

g). Let d be a curve on 6g intersecting
at least one ci transversally at one point. Then π1(X P P td )∼= π1(6g)/N ({ci }∪ {d}).
2.3. Spin monodromies and fibrations. A spin structure s on 6g is a cohomology
class s ∈ H 1(U T (6g); Z2) evaluating to 1 on a fiber of the unit tangent bundle
U T (6g). There is a bijection between the set of spin structures on 6g, which we
denote by Spin(6g), and the set of quadratic forms on H1(6g; Z2) with respect to
the intersection pairing. Recall that q : H1(6g; Z2)→ Z2 is such a quadratic form
if q(a + b)= q(a)+ q(b)+ a · b for every a, b ∈ H1(6g; Z2).
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For a fixed spin structure s on 6g, the spin mapping class group Mod(6g, s) is
the stabilizer group of s, or equivalently that of the corresponding quadratic form q ,
in Mod(6g). For any nonseparating curve c ⊂6g, we have tc ∈ Mod(6g, s) if and
only if q(c)= 1.

The following, which is a reformulation of a theorem of Stipsicz, provides us
with a criterion for the existence of a spin structure on a Lefschetz fibration:

Theorem 2 (Stipsicz [16]). Let X P be the Lefschetz fibration prescribed by a
positive factorization

P := tc1 tc2 · · · tcl = tk
δ in Mod(61

g),

and let us denote the images of the twist curves under the embedding 61
g ↪→6g

also by {ci }. Then, X P admits a spin structure with a quadratic form q if and only
if k is even and q(ci )= 1 for all i .

3. Spin Lefschetz fibrations with prescribed fundamental group

We prove Theorem A, adapting the strategy in [14], where Korkmaz takes twisted
fiber sums of many copies of the same Lefschetz fibration (the building block)
to obtain a new Lefschetz fibration whose fundamental group is the prescribed
finitely presented group. To accomplish the same with spin fibrations, there are two
essential refinements we will need to make. First is to identify a building block X P

where the monodromy curves in the positive factorization P will satisfy the spin
condition for some quadratic form we will describe. That is, we will show that
P := tc1 tc2 · · · tcℓ in Mod(6g, s) for a carefully chosen spin structure s. Second
is to make sure that when taking the twisted fiber sums to land on the desired
fundamental group, in the corresponding positive factorization PPφ1 · · · Pφm , we
only use conjugations φi ∈ Mod(6g, s).

3.1. The building block. A generalization of the monodromy factorization of the
well-known genus-1 Lefschetz fibration on CP2#9 CP2 ∼= S2 × S2 #8 CP2 to any
odd genus g = 2n+1 Lefschetz fibration on S2 ×6n #8 CP2 was given by Korkmaz
in [13], and by Cadavid in [5]. It has the monodromy factorization

(tB0 · · · tBg t2
a t2

b )
2 = tδ in Mod(61

g),

where the curves Bi , a, b are shown in the Figure 1. Capping off the boundary
component of 61

g , we will regard the same curves also in 6g. Let us denote the
above positive factorization by Pg := (tB0 · · · tBg t2

a t2
b )

2.
Clearly, π1(X Pg )

∼= π1(6n) will have larger number of generators we can work
with as we increase g = 2n + 1. Let us first review the presentation for π1(X Pg ).
Consider the geometric basis {ai , bi }g

i=1 for π1(6g), where the based oriented curves
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δ B0 B1 B2 Bg a

b

Figure 1. The vanishing cycles Bi , a, b of X Pg in 61
g ⊂6g.

ai , bi are as shown in Figure 2. We have

π1(X)∼= ⟨a1, . . . , ag, b1, . . . , bg | Cg a, b, B0, . . . , Bg⟩,
where1

(2)



B0 = b1 · · · bg,

B2k−1 = akbk · · · bg+1−kCg+1−kag+1−k, 1 ≤ k,≤ n + 1,
B2k = akbk+1 · · · bg−kCg−kag+1−k, 1 ≤ k,≤ n,
a = an+1,

b = Cnan+1,

C1 = b−1
1 a1b1a−1

1 ,

Ci = b−1
i Ci−1ai bi a−1

i , 2 ≤ i ≤ g.

Next, we will describe a spin structure for which the vanishing cycles of this
Lefschetz fibration satisfy the monodromy condition.2 Forgetting the base point,
the geometric basis {a j , b j } for π1(6g) in Figure 2 becomes freely homotopic to
a standard symplectic basis on 6g. We can then describe a quadratic form with
respect to this basis and evaluate it on the mod-2 homology classes of the vanishing
cycles described in this basis. The latter is easily derived from (2):

B0 = b1 + · · · + bg,

B2k−1 = ak + (bk + · · · + bg+1−k)+ ag+1−k, 1 ≤ k ≤ n + 1,
B2k = ak + (bk+1 + · · · + bg−k)+ ag+1−k, 1 ≤ k ≤ n,
a = an+1,

b = an+1.

1Here we adopted Korkmaz’s generating set to make our calculations comparable to his work
in [14], which yields a nonstandard expression for the surface relator as iterated conjugates, resulting
in Cg = 1.

2It may be worth noting that this is not a trial and error process. By the heuristic arguments of [3],
we are proceeding with an educated guess, since these fibrations are known to come from pencils on
the spin manifolds S2 ×6n ; see [11].
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a1 ai ag

b1 bi bg

c1 ci cg−1

Figure 2. The generators for π1(6g) and the Ci curves.

Set q : H1(6g,Z/2)→ Z/2 as q(ai )= q(bi )= 1. (There are in fact 2n different
spin structures that would work here; we are picking the one that will serve our needs
the most in the next stages of the proof.) Note that for any ordered set of curves
{d j } we have q

(∑n
i=1 di

) = ∑n
i=1 q(di )+ ∑

i< j di · d j . Thus, for each k as above,

q(B0)=
g∑

i=1
q(bi )= g = 1,

q(B2k−1)= q(ak)+
g+1−k∑

i=k
q(bi )+ q(ag+1−k)+ ak · bk + bg+1−k · ag+1−k

= 1 + (g + 1 − k − k + 1)+ 1 + 1 + 1 = 1,

q(B2k)= q(ak)+
g−k∑

i=k+1
q(bi )+ q(ag+1−k)

= 1 + (g − k − k)+ 1 = 1,

q(a)= q(an+1)= 1,

q(b)= q(an+1)= 1.

Hence all the monodromy curves of X Pg satisfy the spin condition, which is all we
needed at this point.3 To sum up, we have the following:

Lemma 3. Let s ∈ Spin(6g) correspond to the quadratic form q that satisfies
q(ai )= q(bi )= 1, for i = 1, . . ., g, on the symplectic basis {ai , bi } above. We have

(tB0 · · · tBg t2
a t2

b )
2 = 1 in Mod(6g, s),

where Bi , a, b are the curves on 61
g ⊂6g in Figure 1.

3.2. The construction. In anticipation of a forthcoming issue, here we deviate a bit
from Korkmaz’s steps. In order to guarantee that we can represent the relators by
embedded curves on 6g, we change the given presentation. Instead of reinventing
the wheel here, we invoke the following result (cf. [8, Lemma 6.2]):

3Recall that tδ has odd power in Section 3.1, so X Pg is not a spin Lefschetz fibration, as it shouldn’t

be, remembering that X Pg
∼= S2 ×6n # 8CP2.
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R1

R2

x1 x2 x3 x4

Figure 3. Relator curves on 6g.

Lemma 4 (Ghiggini, Golla and Plamanevskaya [8]). For any finitely presented
group G, there exists a presentation G ∼= ⟨x1, . . . , xn | r1, . . . , rm⟩ such that

(i) each r j is a positive (no inverses) word in x1, . . . , xn;

(ii) each generator xi appears at most once in each r j ;

(iii) the cyclic order (by index) of the generators x1, . . . , xn is preserved in each r j .

This means that if our generating set consists of only the curves {bi }, we can assume
that all the relators in the generating set can be nicely represented by the embedded
curves as in Figure 3, where R1 represents x2x3, R2 represents x1x2x4, and so on.

We are now ready to present our construction.

Proof of Theorem A. Given a finitely presented group G, take a (new) presentation
of G ∼= ⟨x1, . . . , xn | r1, . . . , rm⟩ as in Lemma 4. Set g = 2n + 1.

Let Pg := (tB0 · · · tBg t2
a t2

b )
2 be the positive factorization in Mod(6g, s) given in

Lemma 3. Because q(ai )= 1, we have tai ∈ Mod(6g, s) for all i . So we get a new
spin factorization

Pg P
ta1
g P

ta2
g · · · P

tag
g = 1 in Mod(6g, s)

for each odd g ∈ Z+, which lifts to a positive factorization of tg+1
δ in Mod(61

g).
From the expression of the monodromy curves of Pg in the π1(6g) basis {ai , bi }

given in (2), one easily deduces that

⟨a1, . . . , ag, b1, . . . , bg | Cg , a, b, B0, . . . , Bg, a1, . . . , ag⟩,
∼= ⟨b1, . . . , b2n+1 | b1 · · · b2n+1, b2 · · · b2n, . . . , bnbn+1bn+2, bn+1⟩
∼= ⟨b1, . . . , bn⟩,

that is, we get a free group on n generators. For the first step, simply note that all
a j and C j we had in (2) are trivial in this group.

Now, identifying each generator xi with bi , for i = 1, . . . , n, we can represent
each relator r j by an embedded curve on R j on 6g. (This is why we switched to
this special presentation.) All {R j } can be contained on 61

n ⊂6g bounded by cn .
It is possible that some q(R j ) = 0. If that is the case, we replace this R j with
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an embedded curve R′
j representing R j an+1 in π1(6g). Such an embedded curve

always exists; R j can be isotoped to meet an+1 only at the base point and one
can then resolve the intersection point compatibly with the orientations. So now
q(R′

j ) = 1. Otherwise we just take R′
j := R j . We have tR′

j
∈ Mod(6g, s) for all

j = 1, . . . ,m.
It follows that we have a spin positive factorization

Pg P
ta1
g P

ta2
g · · · P

tag
g P

R′
1

g P
R′

2
g · · · P R′

m
g = 1 in Mod(6g, s),

which now lifts to a positive factorization of tg+m+1
δ in Mod(61

g). If m is odd,
we add one more Pg factor to the positive factorization above, so then its lift is a
positive factorization of tg+m+2

δ . If m is even, leave it as it is. In either case let us
denote this final positive factorization in Mod(6g, s) simply by P . Let X P denote
the corresponding Lefschetz fibration. By Theorem 2, X P is spin. By Proposition 1,
and the above discussion, we have

π1(X P)∼= ⟨a1, . . . ,ag,b1, . . . ,bg | Cg,a,b, B0, . . . , Bg,a1, . . . ,ag, R′
1, . . . , R′

m⟩
∼= ⟨b1,b2, . . . ,bn | R1, . . . , Rm⟩,

which is the presentation we had for G. □

4. Geography of spin Lefschetz fibrations

We prove Theorem B by a direct construction of a family of spin Lefschetz
fibrations Zg,k populating the region below the Noether line in the geography
plane. We prescribe these fibrations via new positive factorizations via algebraic
manipulations in the mapping class group corresponding to twisted fiber sums and
breedings [2; 3]. We then verify how our careful choice of building blocks out
of monodromy factorizations for Lefschetz pencils and fibrations indeed yields
positive factorizations in spin mapping class groups. A somewhat longer calculation
will show that our choices also guarantee that Zg,k are simply connected. We will
then conclude by describing the portion of the geography plane spanned by our
spin fibrations.

While some of the particular choices we will make in the construction of Zg,k

may look arbitrary at first, they are to achieve two somewhat competing properties
simultaneously: the existence of a spin structure on Zg,k and the simple-connectivity
of Zg,k . The latter calculation implies that the spin structure we describe on Zg,k is
in fact unique.

4.1. The construction. Our first building block is a positive factorization for a
Lefschetz fibration on CP2#(4g + 5)CP2 given in [4]. Taking p = q = 2g + 2 in
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c1 c3 c2g+1

c2 c4 c2g

Figure 4. Dehn twist curves ci on 6g.

Lemma 4 of [4], we obtain

(3) U := t2g+2
1 t2g+2

3 (t t2
1 t t3

2 · · · t t2g+1
2g )(t t2g

2g+1 · · · t t3
4 )(t

tq
3 t2

3 t
tq
3 t1

2 )= 1 in Mod(6g),

which is in fact Hurwitz equivalent to the square of the positive factorization of the
hyperelliptic involution h := (t1 · · · t2gt2

2g+1t2g · · · t1) in Mod(6g). Here ti denotes
a Dehn twist along the curve ci shown in Figure 4. We also assume that g ≥ 5 and
is odd. Let also V be the following conjugate of U :

(4) V :=(t t2
1 t t3

2 · · · t t2g+1
2g )(t t2g

2g+1 · · · t t3
4 )(t

t2g+2
3 t2

3 t
t2g+2
3 t1

2 )t2g+2
1 t2g+2

3 =1 in Mod(6g).

Consider the two mapping classes

φ := (t8t7t6ta)(t5t6t7t8)(t4t5t6t7)(t3t4t5t6)(t2t3t4t5)(t1t2t3t4),

ψ := (t8t9t10td)(t7t8t9t10)(t6t7t8t9) · · · (t1t2t3t4).

We claim that φ(c1)= a, φ(c3)= b and ψ(c1)= c, ψ(c3)= d; see Figure 6. This
can be easily verified because of the following elementary observation: whenever
we have a k-chain of curves u1, . . . uk ,

tu1 tu2 · · · tuk (ui )= ui+1 for every 1 ≤ i ≤ k − 1.

Let us denote by Zg the Lefschetz fibration corresponding to the positive factor-
ization P := V φUψ in Mod(6g), a twisted fiber sum of the Lefschetz fibration on
CP2#(4g + 5)CP2 with itself. Note that we have

(5) P = V φUψ = V1 t2g+2
a t2g+2

b · t2g+2
c t2g+2

d U1

= V1 (tatbtctd)2g+2U1

= 1 in Mod(6g),

where V1,U1 are the products of positive Dehn twists

U1 := ((t t2
1 t t3

2 · · · t t2g+1
2g )(t t2g

2g+1 · · · t t3
4 )(t

tq
3 t2

3 t
tq
3 t1

2 ))ψ ,

V1 := ((t t2
1 t t3

2 · · · t t2g+1
2g )(t t2g

2g+1 · · · t t3
4 )(t

t2g+2
3 t2

3 t
t2g+2
3 t1

2 ))φ.
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B0 B1 B2 C

B ′
2B ′

1B ′
0 C ′

Figure 5. Vanishing cycles of the genus-2 pencil.

Our second building block is the following positive factorization by Hamada:

(6) Q := tB0 tB1 tB2 tC tC ′ tB ′
2
tB ′

1
tB ′

0
= tδ1 tδ2 tδ3 tδ4 in Mod(64

2)

for a genus-2 Lefschetz pencil on S2 × T 2, where the twist curves are as shown in
Figure 5; see [3; 11].

Since the curves {a, b, c, d} cobound a subsurface 64
2 of 6g, we can breed (see

[2; 3]) the genus-2 pencil prescribed by (6) into the Lefschetz fibration prescribed
by (5) for k times, for any k ≤ 2g + 2, and get a new positive factorization

(7) Pg,k := V1(tatbtctd)2g+2−k RkU1 = 1 in Mod(6g),

x1

y1

x2

y2

x3 x4

y4

x5

y5

xg

yga

b c

d

x1 x2

x ′
3 x ′

4 x ′
5

y1 y2
a

b c

d

a
b c

d

a

b c

d
x1 x2

x ′
3 x ′

4
x ′

5

y1
y2

Figure 6. Embedding of 64
2
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where R is the image of the positive factorization Q under the homomorphism
induced by a specific embedding 64

2 ↪→6g we describe below. We let Zg,k denote
the Lefschetz fibration corresponding to the positive factorization Pg,k .

The embedding 64
2 ↪→6g is described in Figure 6. Brown curves indicate where

the boundary curves {δi } of 64
2 in the positive factorization (6) are mapped to. Blue

arrows illustrate how we isotope the boundaries of64
2 ⊂ R3 before embedding it into

6g ⊂R3. Red curves constitute a geometric generating set for H1(6g; Z2). Red arcs
are the parts of these curves contained in the image of the embedding 64

2 ↪→6g.

4.2. The spin structure on Zg,k. We are going to invoke Theorem 2 to confirm
that Zg,k admits a spin structure. The curves {xi , yi } in Figure 6 constitute a
symplectic basis for H1(6g; Z2). Consider the quadratic form q for a spin structure
s ∈ Spin(6g), where for any 1 ≤ i ≤ g,

q(xi )= 1 for all i,

q(yi )= 1 for i odd,

q(yi )= 0 for i even.

First of all, c2i = xi , c1 = y1, c2g+1 = yg and c2i+1 = yi − yi+1. This means that
q(ci ) = 1 for each i . Therefore, ti := tci ∈ Mod(6g, s) for all i and the positive
factorizations given in (3) and (4) are in fact factorizations in Mod(6g, s).

Secondly, a = y3 and d = y5 in H1(6g; Z2), so q(a) = 1 = q(d), in addition
to ti ∈ Mod(6g, s), so φ,ψ ∈ Mod(6g, s). It follows that P := V φUψ = 1 is a
positive factorization in Mod(6g, s).

Thirdly, to check the spin condition for the new monodromy curves in R, we
would like to express these curves in terms of the generators {xi , yi }.4 We get in
H1(6g,Z/2) the expressions

B0 = x1 + x2 + y3 + y4, B ′
0 = x1 + x2 + y4 + y5,

B1 = x1 + x2 + y1 + y2 + y3 + y4 + y5, B ′
1 = x1 + x2 + y1 + y2 + y4,

B2 = y1 + y2 + y3 + y4 + y5, B ′
2 = y1 + y2 + y4,

C = y3, C ′ = y5.

So we have

q(B0)= q(x1+x2+y3+y4)= q(x1)+q(x2)+q(y3)+q(y4)= 1+1+1+0 = 1,

q(B ′
0)= q(x1+x2+y4+y5)= q(x1)+q(x2)+q(y4)+q(y5)= 1+1+0+1 = 1,

4Let F denote the embedding 64
2 ↪→6g and let v j be a Dehn twist curve in R. Instead of

F(v j ) · xi and F(v j ) · yi we can look at v j · F−1(xi ) and v j · F−1(yi ) to run the calculation here.
Note that if xi or yi is only partially contained in the image of F , then we denote the arc in its
preimage by x ′

i or y′
i .
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q(B1)= q(x1)+q(x2)+q(y1)+q(y2)+q(y3)+q(y4)+q(y5)+2

= 1+1+1+0+1+0+1 = 1,

q(B ′
1)= q(x1)+q(x2)+q(y1)+q(y2)+q(y4)+2 = 1+1+1+0+0 = 1,

q(B2)= q(y1)+q(y2)+q(y3)+q(y4)+q(y5)= 1+0+1+0+1 = 1,

q(B ′
2)= q(y1)+q(y2)+q(y4)= 1+0+0 = 1,

q(C)= q(y3)= 1,

q(C ′)= q(y5)= 1.

Hence, all the vanishing cycles of the Lefschetz fibration Zg,k satisfy the spin
condition.

It is well known that the Lefschetz fibration with positive factorization U admits
a (−1)-section; in fact this fibration is Hurwitz equivalent to a Lefschetz fibration
obtained by blowing up all 4g + 4 base points of a genus-g pencil on S2 × S2 [17].
Therefore U, V , and in turn Uψ , V φ , all lift to a positive factorization of tδ in
Mod(61

g), where δ is a boundary parallel curve on 61
g . We can pick a (−1)-section

so that in the lift of U (and V ), the lifts of tc1, tc3 are still along disjoint curves in
61

g .5 The same goes for ta, tb of V φ and tc, td of Uψ . Let us continue denoting
the twist curves in their lifts by a, b and c, d. After an isotopy, we can assume
that P = V φUψ = 1 lifts to a positive factorization of t2

δ in Mod(61
g) so that the

boundary component is not contained in the subsurface 64
2 ⊂6g cobounded by

{a, b, c, d}.
Therefore, for any k ≤ 2g + 2 we have a spin positive factorization

Pg,k = V1(tatbtctd)2g+2−k RkU1 = 1 in Mod(6g, s),

which lifts to a positive factorization

P̃g,k = Ṽ1(tatbtctd)2g+2−k R̃kŨ1 = t2
δ in Mod(61

g).

Hence every Zg,k admits a spin structure by Theorem 2.

4.3. The fundamental group. Let {xi , yi } be a geometric basis for π1(6g) as shown
in Figure 7. Since Zg,k has a section, we have G := π1(Zg,k)∼= π1(6g)/N ({v j }),
where v j are the Dehn twist curves in the positive factorization Pg,k of Zg,k .

Set
S := (t t2

1 t t3
2 · · · t t2g+1

2g )(t t2g
2g+1 · · · t t3

4 )(t
t2g+2
3 t2

3 t
t2g+2
3 t1

2 ).

So Uψ = t2g+2
c t2g+2

d U1 with U1 = Sψ , and V φ = V1t2g+2
a t2g+2

b with V1 = Sφ .
While the fundamental group of Zg,k can be calculated from the factorization

5The Dehn twist curves may get entangled when we take lifts, but for just one section we are after,
this is not a problem for our positive factorization; see, e.g., [17] for many possible choices.
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y1 yi yg

x1 xi xg

Figure 7. The generators xi , yi for π1(6g).

Pg,k = Sφ(tatbtctd)2g+2−k Rk Sψ , it can also be calculated from the factorization
Pφ

−1 = S(t1t3tφ−1(c)tφ−1(d))
2g+2−k(Rφ

−1
)k Sφ

−1ψ . We will run our calculations for
the latter.

For k < 2g + 2 the Dehn twist curves of the latter factorization contain all the
vanishing cycles {ci } in U , which we know kill all the generators of π1(6g) to yield
trivial the fundamental group, as PU has total space CP2#(4g + 5)CP2, a simply
connected space. Thus, π1(Zg,k)= 1 for any k < 2g + 2.

For k = 2g + 2, first note that we can connect the vanishing cycles {ci } of U
or V to the basepoint (where any two different paths connecting them to the base
point will yield the same normal generating set) so that in π1(6g) we have c2i = xi ,
c1 = y1, c2g+1 = yg and c2i+1 = xi x−1

i+1 for each i . It follows that π1(6g) is generated
by {ci }. To get G we quotient π1(6g) by normally generated subgroup by relators
coming from the Dehn twist curves in S (and not U ), which are of the form ti (ci−1)

with 2 ≤ i ≤ 2g + 1 and t3(c4), along with several other relations. We may assume
that ci are oriented so that ci−1 · ci = +1 for all i . Then ti (ci−1)= ci−1ci = 1 and
t3(c4)= c4c−1

3 . These relations imply that

c1 = c−1
2 = c3 = c−1

4 = · · · = c−1
2g = c2g+1

and

c3 = c4.

We thus see that

G ∼= ⟨c1 | c2
1, rest of the relators coming from other vanishing cycles⟩

for our positive factorization S(Rφ
−1
)2g+2Sφ

−1ψ .
At this point G is a quotient of the abelian group Z2 generated by c1, so it is

certainly an abelian group, and it suffices to show that H1(Zg,2g+2)= 0.
We will argue this by observing that the vanishing cycle coming from tφ−1(B2)

induces a relator killing the homology class of c1. This is because it is homologous
to an odd factor of c1. For this reason, it is in fact enough to consider tφ−1(B2) in
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H1(Zg,2g+2; Z2). By the previous computations, we have

B2 = (c1)+ (c1 + c3)+ · · · + (c1 + c3 + · · · c9)= c1 + c5 + c9.

Let’s apply φ−1. Then

c1+c5+c9
t−1
87−→ c1+c5+c8+c9

t−1
77−→ c1+c5+c7+c8+c9

t−1
67−→ c1+c5+c7+c8+c9

t−1
a7−→ c1+c5+c7+c8+c9

t−1
57−→ c1+c5+c7+c8+c9

t−1
67−→ c1+c5+c7+c8+c9

t−1
77−→ c1+c5+c8+c9

t−1
87−→ c1+c5+c9

t−1
47−→ c1+c4+c5+c9

t−1
57−→ c1+c4+c9

t−1
67−→ c1+c4+c9

t−1
77−→ c1+c4+c9

t−1
37−→ c1+c3+c4+c9

t−1
47−→ c1+c3+c9

t−1
57−→ c1+c3+c9

t−1
67−→ c1+c3+c9

t−1
27−→ c1+c3+c9

t−1
37−→ c1+c3+c9

t−1
47−→ c1+c3+c4+c9

t−1
57−→ c1+c3+c4+c5+c9

t−1
17−→ c1+c3+c4+c5+c9

t−1
27−→ c1+c3+c4+c5+c9

t−1
37−→ c1+c4+c5+c9

t−1
47−→ c1+c5+c9,

which gives c1 in G (after killing all other ci ). Hence G ∼= 1.

4.4. The geography. We are left with determining the portion of the geography
plane populated by our simply connected spin Lefschetz fibrations

{Zg,k | g ≥ 5 and odd, k ≤ 2g + 2 and nonnegative}.
The Euler characteristic of Zg,k is given by the formula

e(Zg,k)= 4 − 4g + ℓ= 4 − 4g + (16g + 8 + 4k)= 12(g + 1)+ 4k,

where ℓ is the number of Dehn twist curves in Pg,k .
Since the positive factorization U commutes with a hyperelliptic involution on

6g (after all, it is Hurwitz equivalent to the positive factorization of a hyperelliptic
involution itself), by Endo’s signature formula for hyperelliptic fibrations [7], it has
signature −4g − 4 (as expected, since the total space is CP2#(4g + 5)CP2). By
the Novikov additivity, we then get σ(Zg)= −8g − 8. Breeding the signature zero
genus-2 Lefschetz pencil into this fibration (any number of times) does not change
the signature [2] and we get

σ(Zg,k)= −8(g + 1).

We thus have

χh(Zg,k)= 1
4(e(Zg,k)+ σ(Zg,k))= g + 1 + k
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c2
1

χh6 8 10 12

8
16

c2
1 = 16

3 χhc2
1 = 8χh − 48

Figure 8. The region populated by spin Zg,k .

and
c2

1(Zg,k)= 2e(Zg,k)+ 3σ(Zg,k)= 8k.

Thus, setting g = 2r + 5, we see that {(χh, c2
1)(Zg,k)} populate the region

R = {(6, 0)+ r(2, 0)+ k(1, 8) | (r, k) ∈ N × N with k ≤ 4(r + 3)}
of the geography plane, or equivalently,

R = {
(m, n) ∈ N2 | n ≥ 0, n ≤ 8(m − 6), n ≤ 16

3 m and n ≡ 8m (mod 16)
};

see Figure 8. In particular, one can easily see from the first description of R above
that we cover all of the admissible lattice points in N2 under the Noether line.
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SOME ARITHMETICAL PROPERTIES OF CONVERGENTS
TO ALGEBRAIC NUMBERS

YANN BUGEAUD AND KHOA D. NGUYEN

Let ξ be an irrational algebraic real number and let ( pk/qk)k≥1 denote the
sequence of its convergents. Let (un)n≥1 be a nondegenerate linear recurrence
sequence of integers, which is not a polynomial sequence. We show that if
the intersection of the sequences (qk)k≥1 and (un)n≥1 is infinite, then ξ is a
quadratic number. This extends an earlier work of Lenstra and Shallit (1993).
We also discuss several arithmetical properties of the base-b representation
of the integers qk, k ≥ 1, where b ≥ 2 is an integer. Finally, when ξ is a
(possibly transcendental) non-Liouville number, we prove a result implying
the existence of a large prime factor of qk−1 qk qk+1 for large k. This is related
to earlier results of Erdős and Mahler (1939), Shorey and Stewart (1983),
and Shparlinskii (1987).

1. introduction

Let θ be an arbitrary irrational real number and (pk(θ)/qk(θ))k≥1 (we will use
the shorter notation pk/qk when no confusion is possible and ξ instead of θ if the
number is known to be algebraic) denote the sequence of its convergents.

Let N be an infinite set of positive integers. It follows from a result of Borosh
and Fraenkel [6] that the set

K(N ) = {θ ∈ R : qk(θ) is in N for arbitrarily large k}

has always Hausdorff dimension at least 1
2 and its Lebesgue measure is zero if there

is some positive δ such that the series
∑

q∈N q−1+δ converges. Examples of sets N
(or integer sequences (un)n≥1) with the latter property include nondegenerate linear
recurrence sequences, the set of integers having a bounded number of nonzero digits
in their base-10 representation, sets of positive values taken at integer values by a
given integer polynomial of degree at least 2, and sets of positive integers divisible
only by prime numbers from a given, finite set.
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Our main purpose is to discuss whether K(N ) contains algebraic numbers for
some special sets N for which K(N ) has zero Lebesgue measure. Said differently,
for an arbitrary irrational real algebraic number ξ , we investigate various arithmetical
properties of the sequence (qk(ξ))k≥1. We consider the following questions:

A. Does the greatest prime factor of qk(ξ) tends to infinity with k? If yes, how
rapidly?

B. Does the number of nonzero digits in the base-10 representation of qk(ξ) tends
to infinity with k? If yes, how rapidly?

C. Are there infinitely many squares (cubes, perfect powers) in (qk(ξ))k≥1?

D. Is the intersection of (qk(ξ))k≥1 with a given linear recurrence sequence of
integers finite or infinite?

First, let us recall that very few is known on the continued fraction expansion of
an algebraic number of degree at least 3, while the continued fraction expansion of
a quadratic real number ξ is ultimately periodic and takes the form

ξ = [a0; a1, . . . , ar , ar+1, . . . , ar+s].

Consequently, we have qk+2s = tqk+s − (−1)s qk for k > r , where t is the trace of(
ar+1 1

1 0

) (
ar+2 1

1 0

)
. . .

(
ar+s 1

1 0

)
;

see [18; 19]. This shows that (qk(ξ))k≥1 is the union of s binary recurrences whose
roots are the roots of the polynomial X2

− t X + (−1)s , that is, the real numbers
1
2(t ±

√
t2 − 4(−1)s). Thus, for a quadratic real number ξ , we immediately derive

Diophantine results on (qk(ξ))k≥1 from results on binary recurrences of the above
form.

Question A has already been discussed in [7] and earlier works. Let us mention
that it easily follows from Ridout’s theorem [23] that the greatest prime factor
of qk(ξ) tends to infinity with n, but we have no estimate of the rate of growth,
except when ξ is quadratic (by known effective results on binary recurrences,
see [28]). Furthermore, the theory of linear forms in logarithms gives a lower bound
for the greatest prime factor of the product pk(ξ) qk(ξ), which tends to infinity at
least as fast as some constant times log2 qk(ξ) log3 qk(ξ)/log4 qk(ξ), where log j
denotes the j -th iterated logarithm function. Although we have no new contribution
to Question A as stated for algebraic numbers ξ , we obtain new results on prime
factors of qk(θ) for a transcendental number θ . In 1939, Erdős and Mahler [16]
proved that the greatest prime factor of qk−1(θ) qk(θ) qk+1(θ) tends to infinity as k
tends to infinity. In this paper, we obtain a more explicit result involving the
irrationality exponent of θ .
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We give a partial answer to Question B, which has not been investigated up to
now. Question C is solved when ξ is quadratic: there are only finitely many
perfect powers in the sequence (qk(ξ))k≥1 thanks to results of Pethő [22] and
Shorey and Stewart [25] stating that there are only finitely many perfect powers
in binary recurrence sequences of integers. This result is effective. When ξ has
degree at least 3, Question C appears to be very difficult. Since (nd)n≥1 is a linear
recurrence sequence for any given positive integer d , a large part of Question C is
contained in Question D.

Question D is interesting for several reasons. First, some assumption on the linear
recurrence must be added, since the linear recurrence (n)n≥1 has infinite intersection
with the sequence (qk(ξ))k≥1. Second, as already mentioned, when ξ is quadratic,
its continued fraction expansion is ultimately periodic and the sequence (qk(ξ))k≥1

is the union of a finite set of binary recurrences. Among our results, we show that
if a “nonsingular” linear recurrence has an infinite intersection with (qk(ξ))k≥1,
then ξ must be quadratic. Unfortunately we must exclude linear recurrences of the
form (nd)n≥1, and hence we do not have any contribution to Question C.

Recall that any nonzero linear recurrence sequence (un)n≥1 of complex numbers
can be expressed as

un = P1(n) αn
1 + · · · + Pr (n) αn

r for n ≥ 1,

where r ≥ 1, α1, . . . , αr are distinct nonzero complex numbers (called the roots of
the recurrence), and P1, . . . , Pr are nonzero polynomials with complex coefficients.
This expression is unique up to rearranging the terms. The sequence (un)n≥1 is
called nondegenerate if αi/α j is not a root of unity for 1 ≤ i ̸= j ≤ r . For most
problems about linear recurrence sequences, it is harmless to assume that (un)n≥1 is
nondegenerate. Indeed, if (un)n≥1 is degenerate and L denotes the lcm of the orders
of the roots of unity of the form αi/α j , then each of the subsequences (unL+m)n≥1

with m ∈ {0, . . . , L − 1} is either identically zero or nondegenerate.
The proofs of our results rest on the p-adic Schmidt subspace theorem. This

powerful tool was first applied to the study of continued fraction expansions of
algebraic numbers by Corvaja and Zannier in [13; 14]. They proved in [13] that,
for any positive real quadratic irrational α which is neither the square root of a
rational number, nor a unit in the ring of integers of Q(α), the period length of the
continued fraction for αn tends to infinity with n. They established in [14] that
if α(n) and β(n) are power sums over the rationals satisfying suitable necessary
assumptions, then the length of the continued fraction for α(n)/β(n) tends to infinity
with n; see also [12; 17; 24] for related questions. The Schmidt subspace theorem
has also been used by Adamczewski and Bugeaud in [1; 2; 3; 9] to prove that the
continued fraction expansion of an algebraic number of degree at least 3 cannot
have arbitrary long repetitions nor quasipalindromes close to its start.
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Let (un)n≥1 be a nonconstant linear recurrence sequence with integral roots
greater than 1 and rational coefficients. It follows from [15, Theorem 4.16] that the
intersection of the sequences (un)n≥1 and (qk)k≥1 is finite. This gives a first partial
result toward Question D. For a real number θ , we let ∥θ∥ denote the distance from θ

to the nearest integer. Our first main result gives a full answer to Question D. Its
proof uses results of Kulkarni, Mavraki, and Nguyen [20], which extend a seminal
work of Corvaja and Zannier [13], who showed that, if a real algebraic number
α > 1 and ℓ in (0, 1) are such that ∥αn

∥ < ℓn for infinitely many positive integers n,
then there is a positive integer d such that αd is a Pisot number (observe that this
conclusion is best possible).

Theorem 1.1. Let (pk/qk)k≥1 be the sequence of convergents to an irrational real
algebraic number ξ of degree d. Let ε > 0. Let (un)n≥1 be a nondegenerate linear
recurrence sequence of integers, which is not a polynomial sequence. Then the set{

n ∈ N : un ̸= 0 and ∥un ξ∥ <
1

|un|
(1/(d−1))+ε

}
is finite. In particular, if d ≥ 3, then there are only finitely many pairs (n, k) such
that un = qk .

The case d = 2 of Theorem 1.1 is immediate, since quadratic real numbers
have bounded partial quotients in their continued fraction expansion. Consequently,
we restrict our attention to the case d ≥ 3. Theorem 1.1 is a special case of
Theorem 3.6, which deals with a larger class of integer sequences than that of
recurrence sequences.

When d = 3, the exponent 1
d−1 =

1
2 is best possible, as can be seen with the

following example. Let K ⊂ R be a cubic field with a pair of complex-conjugate
embeddings. Let ξ ∈ K with |ξ | > 1 be a unit of the ring of integers. Let α and ᾱ

denote the remaining Galois conjugates of ξ . We have |α| = |ξ |
−1/2 and, setting

un = ξ n
+ αn

+ ᾱn for n ≥ 1, we check that

|un ξ − un+1| ≪ξ |αn
| ≪ξ |un|

−1/2 for n ≥ 1,

where ≪ξ means that the implicit constant is positive and depends only on ξ . When
d ≥ 4, we do not know if Theorem 1.1 remains valid with a smaller exponent
than 1

d−1 .
Theorem 1.1 allows us to complement the result of Lenstra and Shallit [21]:

Theorem 1.2 (Lenstra and Shallit [21]). Let θ be an irrational real number, whose
continued fraction expansion is given by θ = [a0; a1, a2, . . . ], and let (pk)k≥1

and (qk)k≥1 be the sequence of numerators and denominators of the convergents
to θ . Then the following four conditions are equivalent:
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(i) The sequence (pk)k≥1 satisfies a linear recurrence with constant complex
coefficients.

(ii) The sequence (qk)k≥1 satisfies a linear recurrence with constant complex
coefficients.

(iii) The sequence (an)n≥0 is ultimately periodic.

(iv) θ is a quadratic irrational.

The proof of Theorem 1.2 rests on the Hadamard quotient theorem. A simpler
proof of a more general statement has been given by Bézivin [4], who instead
of (ii) only assumes that (qk)k≥1 satisfies a linear recurrence with coefficients being
polynomials in k and that the series

∑
k≥1 qk zk has a nonzero convergence radius.

We strengthen Theorem 1.2 for convergents of algebraic numbers as follows.

Corollary 1.3. Let ξ = [a0; a1, a2, . . . ] be an irrational real algebraic number,
and let (pk)k≥1 and (qk)k≥1 be the sequence of numerators and denominators of the
convergents to ξ . Then the following four conditions are equivalent:

(i) The sequence (pk)k≥1 has an infinite intersection with some nondegenerate
linear recurrence sequence that is not a polynomial sequence.

(ii) The sequence (qk)k≥1 has an infinite intersection with some nondegenerate
linear recurrence sequence that is not a polynomial sequence.

(iii) The sequence (an)n≥0 is ultimately periodic.

(iv) ξ is a quadratic irrational.

Now we present our results concerning Question B. Let b ≥ 2 be an integer.
Every positive integer N can be written uniquely as

N = dk bk
+ · · · + d1 b + b0,

where
d0, d1, . . . , dk ∈ {0, 1, . . . , b − 1}, dk ̸= 0.

We define the length
L(N , b) = Card{0 ≤ j ≤ k : d j ̸= 0}

of the b-ary representation of N . We also define the number of digit changes by

DC(N , b) = Card{2 ≤ j ≤ k : d j ̸= d j−1}.

Theorem 1.4. Let ξ be an irrational real algebraic number and let b ≥ 2 be an
integer. Let (un)n≥1 be a strictly increasing sequence of positive integers and
λ ∈ (0, 1] such that for every ε > 0, the inequality

∥un ξ∥ < u−λ+ε
n

holds for all but finitely many n. We have:
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(i) Let k be a positive integer and let ε > 0. For all sufficiently large n, if δ is a
divisor of un with L(δ, b) ≤ k then δ < u(k−λ)/k+ε

n .

(ii) Let k be a nonnegative integer and let ε > 0. For all sufficiently large n, if δ is
a divisor of un with DC(δ, b) ≤ k then δ < u(k+2−λ)/(k+2)+ε

n .

Consequently, let (pk/qk)k≥1 denote the sequence of convergents to ξ then each
one of the limits limk→+∞ L(qk, b), limk→+∞ DC(qk, b), limk→+∞ L(pk, b), and
limk→+∞ DC(pk, b) is infinite.

Except for certain quadratic numbers, it seems to be a very difficult problem to get
an effective version of the last assertion of Theorem 1.4. Stewart [27, Theorem 2]
established that if (un)n≥1 is a binary sequence of integers, whose roots ξ, ξ ′ are
quadratic numbers with |ξ |>max{1, |ξ ′

|}, then there exists a positive real number C
such that

L(un, b) >
log n

log log n + C
− 1, n ≥ 5.

Consequently, if (pk/qk)k≥1 denote the sequence of convergents to a quadratic real
algebraic number, then for k ≥ 4 we have

L(qk, b) >
log k

log log k + C
− 1 and DC(qk, b) >

log k
log log k + C

− 1.

A similar question can be asked for the Zeckendorf representation [30] of qk .
Let (Fn)n≥0 denote the Fibonacci sequence defined by

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for n ≥ 0.

Every positive integer N can be written uniquely as a sum:

N = εℓFℓ + εℓ−1 Fℓ−1 + · · · + ε2 F2 + ε1 F1,

with εℓ = 1, ε j in {0, 1}, and ε jε j+1 = 0 for j = 1, . . . , ℓ − 1. This representation
of N is called its Zeckendorf representation. The number of digits of N in its
Zeckendorf representation is the number of positive integers j for which ε j is equal
to 1. By using the Schmidt subspace theorem we can in a similar way prove that the
number of digits of qk(ξ) in its Zeckendorf representation tends to infinity with k,
we omit the details (but see [10]).

Our last result is motivated by a theorem of Erdős and Mahler [16] on convergents
to real numbers. Let S be a set of prime numbers. For a nonzero integer N , let [N ]S

denote the largest divisor of N composed solely of primes from S. Set [0]S = 0.
Recall that the irrationality exponent µ(θ) of an irrational real number θ is the
supremum of the real numbers µ such that there exist infinitely many rational
numbers r/s with s ≥ 1 and |θ − r/s| < 1/sµ. It is always at least equal to 2
and, by definition, θ is called a Liouville number when µ(θ) is infinite. Erdős and
Mahler [16] established that, when θ is irrational and not a Liouville number, then



ARITHMETICAL PROPERTIES OF CONVERGENTS TO ALGEBRAIC NUMBERS 23

the greatest prime factor of qk−1 qk qk+1 tends to infinity with k. We obtain the
following more precise version of their result.

Theorem 1.5. Let θ be an irrational real number and µ its irrationality exponent.
Let (pk/qk)k≥1 denote the sequence of convergents to θ . Let S be a finite set of
prime numbers. If µ is finite, then, for every ε > 0 and every k sufficiently large
(depending on ε), we have

(1-1) [qk−1 qk qk+1]S < (qk−1 qk qk+1)
µ/(µ+1)+ε.

The same conclusion holds when the sequence (qk)k≥1 is replaced by (|pk |)k≥1.

When θ is algebraic irrational and ε > 0, we have [qk]S < qε
k for all large k by

Ridout’s theorem. The interesting feature of Theorem 1.5 is that it holds for all
transcendental non-Liouville numbers.

Theorem 1.5 is ineffective. Under its assumption, it is proved in [11] that there
exists a (large) positive, effectively computable c = c(S) such that

[qk−1 qk qk+1]S < (qk−1 qk qk+1)
1−1/(cµ log µ), k ≥ 2.

For µ = 2 (that is, for almost all θ), the exponent in (1-1) becomes 2
3 + ε. It is

an interesting question to determine whether it is best possible. It cannot be smaller
than 1

3 . Indeed, the Folding lemma (see, e.g., [8, Section 7.6]) allows one, for any
given integer b ≥ 2, to construct explicitly real numbers θ with µ(θ) = 2 and having
infinitely many convergents whose denominator is a power of b.

Furthermore, there exist irrational real numbers θ = [a0; a1, a2, . . . ] with con-
vergents pk/qk such that the qk’s are alternating among powers of 2 and 3. Indeed,
let k ≥ 2 and assume that qk−1 = 2c and qk = 3d for positive integers c, d. Then,
we have to find a positive integer ak+1 such that 2c

+ak+1 3d is a power of 2. To do
this, it is sufficient to take for m the smallest integer greater than c such that 2m−c

is congruent to 1 modulo 3d and then define ak+1 = (2m−c
− 1)/3d . The sequence

(ak)k≥1 increases very fast and θ is a Liouville number.
We are grateful to Professor Igor Shparlinskii for bringing our attention to [26].

Suppose the irrational number θ has the property that log qn ≪ n for every n; the
set of all such θ ’s is strictly smaller than the set of all non-Liouville numbers. Then
[26, Theorem 5] implies P[q1 · · · qn] ≫ n for all sufficiently large n where P[ · ]

denotes the largest prime factor. It seems possible to relax the condition log qn ≪ n
at the expense of a weaker lower bound for P[q1 · · · qn] in order to allow θ to
be certain Liouville numbers. On the other hand, it seems possible to extend the
proof of Theorem 1.5 to get a lower bound for P[q1 · · · qn] in terms of n and the
irrationality exponent of θ . We leave this further discussion for future work.
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The outline of this paper is as follows. The proof of Theorem 1.5 and additional
remarks on [16] are given in Section 4. Theorem 1.4 is established in Section 2 and
the other results are proved in Section 3.

2. Proof of Theorem 1.4

For a prime number ℓ, we let vℓ : Q → Z ∪ {∞} be the additive ℓ-adic valuation
and let | · |ℓ = ℓ−vℓ( · ) be the ℓ-adic absolute value.

Proof of Theorem 1.4. First, we prove part (i). Let N1 be the set of tuples
(m, n1, . . . , na) such that:

• 1 ≤ a ≤ k and n1 < n2 < · · · < na are nonnegative integers.

• There exist d1, . . . , da in {1, . . . , b − 1} such that δ := da bna + · · ·+ d1 bn1 is
a divisor of um and δ ≥ u(k−λ)/k+ε

m .

Assume that N1 is infinite. Then, there exist an integer h with 1 ≤ h ≤ k, positive
integers D1, . . . , Dh , an infinite set N2 of (h + 1)-tuples (mi , n1,i , . . . , nh,i ) for
i ≥ 1 such that:

• n1,i < · · · < nh,i are nonnegative integers.

• For i ≥ 1, we have a divisor of umi :

δmi := Dh bnh,i + · · · + D1 bn1,i ,

with δmi ≥ u(k−λ)/k+ε
mi .

• We have

(2-1) lim
i→+∞

(n j,i − n j−1,i ) = +∞, j = 2, . . . , h.

For i ≥ 1, let wmi denote the nearest integer to umi ξ and let

(2-2) vmi := umi /δmi ≤ uλ/k−ε
m .

When mi is sufficiently large, we have

(2-3) |ξ Dh vmi bnh,i + · · · + ξ D1 vmi bn1,i − wmi | = ∥ξumi ∥ < |umi |
−λ+ε/2,

thanks to the given properties of (um)m≥1 and λ. We are in position to apply the
Schmidt subspace theorem.

Let S denote the set of prime divisors of b. Consider the linear forms in

X = (X0, X1, . . . , Xh)

given by

L j,∞(X) := X j , j = 1, . . . , h,

L0,∞(X) := ξ Dh Xh + · · · + ξ D1 X1 − X0,
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and, for every prime number ℓ in S,

L j,ℓ(X) := X j , j = 0, . . . , h.

For the tuple
bi = (wmi , vmi bnh,i , . . . , vmi bn2,i , vmi bn1,i ),

with a sufficiently large mi , we use (2-2) and (2-3) to obtain
h∏

j=0

|L j,∞(bi )| ×
∏
ℓ∈S

h∏
j=0

|L j,ℓ(bi )|ℓ ≤ ∥ξumi ∥ · |vmi |
h

< |umi |
−(h−1/2) ε

≪ H(bi )
−(h−1/2) ε,

where the implied constant is independent of i and H(bi ) is the Weil height of the
projective point [wmi : vmi bnh,i : · · · : vmi bn1,i ].

The subspace theorem [5, Corollary 7.2.5] implies that there exist integers
t0, t1, . . . , th , not all zero, and an infinite subset N3 of N2 such that

(2-4) vmi (th bnh,i + · · · + t1 bn1,i ) + t0 wmi = 0 for (wmi , nh,i , . . . , n1,i ) ∈ N3.

Dividing the above equation by umi and letting i tend to infinity, we deduce that
th
Dh

+ t0 ξ = 0.

Since ξ is irrational, we must have t0 = th = 0. Then, we use (2-1) and (2-4) to
derive that t1 = · · · = th−1 = 0, a contradiction. This finishes the proof of (i).

We now prove part (ii) using a similar method. Let s ≥ 0 and let x be a positive
integer such that DC(x, b) = s. If s = 0, we can write

x = d + db + · · · + dbn
=

dbn+1
− d

b − 1
,

with n ≥ 0 and d ∈ {1, . . . , b − 1}. If s > 0, let 0 < c1 < c2 < · · · < cs denote the
exponents of b where digit changes take place:

x = d0(1 + · · · + bc1−1) + d1(bc1 + · · · + bc2−1) + · · · + ds(bcs + · · · + bn)

=
−d0 + (d0 − d1) bc1 + (d1 − d2) bc2 + · · · + (ds−1 − ds) bcs + ds bn+1

b − 1
,

with n ≥ cs , d0, . . . , ds ∈ {0, . . . , b − 1}, and di+1 ̸= di for 0 ≤ i ≤ s − 1.
Let N4 be the set of tuples (m, n0, n1, . . . , na) such that:

• 0 ≤ a ≤ k + 1 and n0 < . . . < na are nonnegative integers.

• There exist integers e0, . . . , ea in [−(b − 1), b − 1] such that

δ :=
e0 bn0 + · · · + ek+1 bnk+1

b − 1

is a divisor of um and δ ≥ u(k+2−λ)/(k+2)+ε
m .
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Assume that N4 is infinite. Then, there exist an integer h with 0 ≤ h ≤ k + 1,
nonzero integers E0, . . . , Eh , an infinite set N5 of (h+2)-tuples (mi , nh,i , . . . , n0,i )

for i ≥ 1 such that:

• n0,i < . . . < nh,i are nonnegative integers.

• For i ≥ 1,
δmi :=

Eh bnh,i + · · · + E0 bn0,i

b − 1

is a divisor of umi with δmi ≥ u(k+2−λ)/(k+2)+ε
mi .

• We have

lim
i→+∞

(n j,i − n j−1,i ) = +∞, j = 1, . . . , h.

We can now apply the subspace theorem in essentially the same way as before to
finish the proof. □

3. Proof of Theorem 1.1 and Corollary 1.3

In Corollary 1.3, the equivalence (iii) ⇔ (iv) and the implications (iv) ⇒ (i)
and (iv) ⇒ (ii) are well known and have already appeared in Theorem 1.2. The
implication (ii) ⇒ (iv) is essentially the last assertion of Theorem 1.1 while the
remaining implication (i) ⇒ (iv) follows from the inequality ∥pk/ξ∥ ≪ξ |pk |

−1

and Theorem 1.1 again. We spend the rest of this section to discuss Theorem 1.1.
From now on N is the set of positive integers, N0 = N ∪ {0}, µ is the group of

roots of unity, and GQ = Gal(Q/Q). Let h denote the absolute logarithmic Weil
height on Q. Let k ∈ N, a tuple (α1, . . . , αk) of nonzero complex numbers is called
nondegenerate if αi/α j /∈ µ for 1 ≤ i ̸= j ≤ k. We consider the following more
general family of sequences than (nondegenerate) linear recurrence sequences:

Definition 3.1. Let K be a number field. Let S (K ) be the set of all sequences
(un)n≥1 of complex numbers with the following property. There exist k ∈ N0

together with a nondegenerate tuple (α1, . . . , αk) ∈ (K ∗)k such that, when n is
sufficiently large, we can express

(3-1) un = qn,1 αn
1 + · · · + qn,k αn

k

for qn,1, . . . , qn,k ∈ K ∗ and max1≤i≤k h(qn,i ) = o(n).

In Definition 3.1, we allow k = 0 for which the empty sum in the right-hand side
of (3-1) means 0. Any sequence (un)n≥1 that is eventually 0 is in S (K ).

Example 3.2. Consider a linear recurrence sequence (vn)n≥1 of the form

vn = P1(n) rn
1 + · · · + Pk(n) rn

k ,
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with k ∈ N, distinct r1, . . . , rk ∈ K ∗, and nonzero P1, . . . , Pk ∈ K [X ]. Let L be the
lcm of the order of the roots of unity that appear among the ri/r j for 1 ≤ i, j ≤ k.
Then each one of the L sequences (vnL+r )n≥1 for r = 0, . . . , L − 1 is a member
of S (K ).

As an explicit example, consider vn = 2n
+ (−2)n

+ n for n ∈ N. The sequence
(v2n = 2·4n

+2n)n≥1 is in S (Q) and a tuple (α1, . . . , αk) satisfying the requirement
in Definition 3.1 is (α1 = 4, α2 = 1). The sequence (v2n+1 = 2n +1)n≥1 is in S (Q)

and a tuple (α1, . . . , αk) satisfying the requirement in Definition 3.1 is (α1 = 1).

Lemma 3.3. Let K be a number field and let (un)n≥1 be an element of S (K ). Let
k, ℓ ∈ N0 and let (α1, . . . , αk) and (β1, . . . , βℓ) be nondegenerate tuples of nonzero
elements of K . Suppose that when n is sufficiently large, we can express

un = qn,1 αn
1 + · · · + qn,k αn

k = rn,1 βn
1 + · · · + rn,ℓ βn

ℓ

for qn,1, . . . , rn,ℓ ∈ K ∗ such that

max{h(qn,i ), h(rn, j ) : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} = o(n)

as n tends to infinity. Then k = ℓ and there exist a permutation σ of {1, . . . , k}

together with roots of unity ζ1, . . . , ζk in K such that αi = ζi βσ(i) for 1 ≤ i ≤ k
and qn,i ζ

n
i = rn,σ (i) for every sufficiently large n and for every 1 ≤ i ≤ k.

Proof. This follows from [20, Proposition 2.2]. □

Definition 3.4. Let K be a number field and let (un)n≥1 be in S (K ). Let (α1, . . . ,αk)

satisfy the requirement in Definition 3.1. We call k the number of S (K )-roots
of (un)n≥1; this is well defined, thanks to Lemma 3.3. We call (α1, . . . , αk) a
tuple of S (K )-roots of (un)n≥1; this is well defined up to permuting the αi ’s and
multiplying each αi by a root of unity in K .

Here is the reason why we use the strange terminology “S (K )-roots” instead of
the usual “characteristic roots”. In the theory of linear recurrence sequences, we
have the well defined notion of characteristic roots. For example, the characteristic
roots of (un = 2n

+ 1)n≥1 are 2 and 1. When regarding (un)n≥1 as an element
of S (K ), we may say that any tuple (2ζ, ζ ′) where ζ and ζ ′ are roots of unity in K
is a tuple of S (K )-roots of (un)n≥1.

Definition 3.5. Let K be a number field. Let (un)n≥1 be an element of S (K ) and
let k ∈ N0 be its number of S (K )-roots. We say that (un)n≥1 is admissible if

• either k = 0, i.e., (un)n≥1 is eventually 0,

• or k > 0 and at least one entry in a tuple of S (K )-roots of (un)n≥1 is not a
root of unity.
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Since every nondegenerate linear recurrence sequence of algebraic numbers that
is not a polynomial sequence is an admissible element of S (K ) for some number
field K , Theorem 1.1 follows from the below theorem.

Theorem 3.6. Let ξ be an algebraic number of degree d ≥ 3. Let ε > 0 and let K
be a number field. Let (un)n≥1 be a sequence of integers that is also an admissible
element of S (K ). Then the set{

n ∈ N : un ̸= 0 and ∥un ξ∥ <
1

|un|
(1/(d−1))+ε

}
is finite.

The proof of Theorem 3.6 relies on a result of Kulkarni et al. [20], which extends
a seminal work of Corvaja and Zannier [13]. By a sublinear function, we mean a
function f : N → (0, ∞) such that limn→∞ f (n)/n = 0, that is, f (n) = o(n). We
need the following slightly more flexible version of [20, Theorem 1.4]:

Theorem 3.7. Let C ∈ (0, 1]. Let K be a number field, let k ∈ N, let (α1, . . . , αk)

be a nondegenerate tuple of algebraic numbers satisfying |αi | ≥ C for 1 ≤ i ≤ k,
and let f be a sublinear function. Assume that for some θ ∈ (0, C), the set M of
(n, q1, . . . , qk) ∈ N × (K ∗)k satisfying∥∥∥ k∑

i=1

qi αn
i

∥∥∥ < θn and max
1≤i≤k

h(qi ) < f (n)

is infinite. Then:

(i) αi is an algebraic integer for i = 1, . . . , k.

(ii) For each σ ∈ GQ and i = 1, . . . , k such that σ(αi )
α j

/∈ µ for j = 1, . . . , k, we
have |σ(αi )| < C.

Moreover, for all but finitely many (n, q1, . . . , qk) ∈ M we have

for (σ, i, j) ∈ GQ × {1, . . . , k}
2, σ (qi αn

i ) = q j αn
j if and only if

σ(αi )

α j
∈ µ.

Remark 3.8. Theorem 3.7 in the case C = 1 is exactly [20, Theorem 1.4].

Proof of Theorem 3.7. When n is fixed, there are only finitely many tuples
(n, q1, . . . , qk) in M, thanks to the upper bound on max h(qi ) and Northcott’s
property. In the following, for (n, q1, . . . , qk) in M, we tacitly assume that n is
sufficiently large.

For N large enough, we have 1/θ N > 3/C N and the interval [1/C N , 1/θ N )

contains a prime number D which does not divide the denominator of αi for
i = 1, . . . , k. We have

Dθ N < 1 ≤ DC N .
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Fix θ ′
∈ (Dθ N , 1). Let βi = DαN

i for 1 ≤ i ≤ k. We now define the set M′ as
follows. Consider (n, q1, . . . , qk) ∈ M with n ≡ r mod N , write n = m N + r with
r ∈ {0, . . . , N − 1}, then we have∥∥∥ k∑

i=1

qi αr
i β

m
i

∥∥∥ =

∥∥∥ k∑
i=1

qi αr
i (DαN

i )m
∥∥∥ < Dm θn

= θr (Dθ N )m < θ ′m,

assuming n and hence m are sufficiently large so that the last inequality holds,
thanks to the choice θ ′

∈ (Dθn, 1). We include the tuple (m, q1 αr
1, . . . , qk αr

k)

in M′. Finally, consider the sublinear function

g(n) = f (n) + (N − 1) max
1≤i≤k

h(αi ),

so that max1≤i≤k h(qi αr
i ) < g(n).

We apply [20, Theorem 1.4] for the tuple (β1, . . . , βk), the function g, the
number θ ′, and the set M′ to conclude that:

• DαN
i is an algebraic integer for 1 ≤ i ≤ k. Our choice of D implies that αi is

an algebraic integer for 1 ≤ i ≤ k.

• For each σ ∈ GQ and i ∈ {1, . . . , k} such that σ(αi )
σ (α j )

/∈µ for every j ∈ {1, . . . , k},
we have σ(DαN

i ) < 1 consequently σ(αi ) < 1/D1/N
≤ C .

• The last assertion of Theorem 3.7 holds.

This finishes the proof. □

Proof of Theorem 3.6. Let k denote the number of S (K )-roots of (un)n≥1. The case
k = 0 (i.e., (un)n≥1 is eventually 0) is obvious. Assume k > 0 and let (α1, . . . , αk)

be a tuple of S (K )-roots of (un)n≥1. For L ∈ N and r ∈ {0, . . . , L − 1}, each
sequence (unL+r )n≥1 is an admissible element of S (K ) and admits (αL

1 , . . . , αL
k )

as a tuple of S (K )-roots. Let L be the lcm of the order of roots of unity among the
σ(αi )/τ(α j ) for σ, τ ∈ GQ and 1≤ i, j ≤ k and replace (un)n≥1 by each (unL+r )n≥1,
we may assume

(3-2) for σ, τ ∈ GQ and 1 ≤ i, j ≤ k,
σ (αi )

τ (α j )
∈µ if and only if σ(αi )= τ(α j ).

We first prove that the set {α1, . . . , αk} is Galois invariant.
For sufficiently large n, express

un = qn,1 αn
1 + · · · + qn,k αn

k

as in Definition 3.1. Let σ ∈ GQ, since un ∈ Z we have

qn,1 αn
1 + · · · + qn,k αn

k = σ(qn,1) σ (α1)
n
+ · · · + σ(qn,k) σ (αk)

n for all large n.
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From [20, Proposition 2.2], we have that for every i ∈ {1, . . . , k} there exists
j ∈ {1, . . . , k} such that σ(αi )/α j ∈ µ and this gives σ(αi ) = α j , thanks to (3-2).
Theorem 3.7 implies that the αi ’s are algebraic integers and for every sufficiently
large n, for (σ, i, j) ∈ GQ × {1, . . . , k}

2 we have

(3-3) σ(qn,i ) = qn, j , whenever σ(αi ) = α j .

Since (un)n≥1 is admissible, at least one of the αi ’s is not a root of unity and hence

(3-4) M := max
1≤i≤k

|αi | > 1.

Suppose the set

T :=

{
n ∈ N : un ̸= 0 and ∥un ξ∥ <

1
|un|

(1/(d−1))+ε

}
is infinite, then we will arrive at a contradiction. Let δ denote a sufficiently small
positive real number that will be specified later. By [20, Section 2], we have

(3-5) |un| > M (1−δ) n

for all large n. Therefore

(3-6) ∥ξ qn,1 αn
1 + · · · + ξ qn,k αn

k ∥ <
1

M (1−δ)(1/(d−1)+ε) n

for all large n in T .
We relabel the αi ’s and let m ≤ ℓ ≤ k such that

(i) |α1| = M .

(ii) |αi | ≥
1

M1/(d−1)+δ for 1 ≤ i ≤ ℓ while |αi | < 1
M1/(d−1)+δ for ℓ + 1 ≤ i ≤ k.

(iii) Among the α1, . . . , αℓ, we have that α1, . . . , αm are exactly the Galois conju-
gates of α1. When combining with (ii), this means that α1, . . . , αm are precisely
the Galois conjugates of α1 with modulus at least M−(1/(d−1)+δ).

We require δ small enough so that

(3-7) 1
d−1

+ δ < (1 − δ)
(

1
d−1

+ ε
)
.

Choose the real number c such that:

(3-8) 1
d−1

+ δ < c < (1 − δ)
(

1
d−1

+ ε
)

and |αi | <
1

Mc
for ℓ + 1 ≤ i ≤ k.

Thanks to this choice of c and the assumption that h(qn,i ) = o(n) for 1 ≤ i ≤ k,
we have

(3-9) |ξ qn,ℓ+1 αn
ℓ+1 + · · · + ξ qn,k αn

k | <
1

2Mcn
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for all sufficiently large n. From (3-6) and (3-8), we have

(3-10) ∥ξ qn,1 αn
1 + · · · + ξ qn,k αn

k ∥ <
1

2Mcn

for all large n in T . Combining the above inequalities, we have

(3-11) ∥ξ qn,1 αn
1 + · · · + ξ qn,ℓ αn

ℓ∥ <
1

Mcn

for all large n in T .
Let F be the Galois closure of K (ξ). We apply Theorem 3.7 for the tuple

(α1, . . . , αℓ), C = M−(1/(d−1)+δ), θ = M−c, and the inequality (3-11) then use
(3-2) and (3-3) to have that for every large n in T , σ ∈ Gal(F/Q), and 1 ≤ i, j ≤ ℓ,

(3-12) if σ(αi ) = α j , then σ(ξ qn,i αn
i ) = ξ qn, j αn

j and hence σ(ξ) = ξ.

Since α1, . . . , αm are exactly the Galois conjugates of α1 among the α1, . . . , αℓ,
equation (3-12) implies that ξ is fixed by at least m| Gal(F/Q(α1))|= m[F : Q(α1)]

many automorphisms in Gal(F/Q). Put d ′
= [Q(α1) : Q], we have

(3-13) [F : Q(ξ)] = | Gal(F/Q(ξ))| ≥ m[F : Q(α1)] =
m
d ′

[F : Q].

Since [Q(ξ) : Q] = d, equation (3-13) implies m ≤ d ′/d. This means α1 has at
least d ′(d − 1)/d many Galois conjugates with modulus less than M−(1/(d−1)+δ).
Combining with the fact that all Galois conjugates of α1 have modulus at most M ,
we have

| NQ(α1)/Q(α1)| ≤ Md ′/d M−(1/(d−1)+δ) d ′(d−1)/d < 1,

since M > 1 and δ > 0. This contradicts the fact that α1 is a nonzero algebraic
integer and we finish the proof. □

4. Proof of Theorem 1.5 and further discussion on Erdős and Mahler [16]

Proof of Theorem 1.5. We assume that θ is not a Liouville number, that is, we
assume that µ is finite. Define

Qk = qk−1 qk qk+1, k ≥ 2.

Let S be a finite set of prime numbers. Write θ = [a0; a1, a2, . . . ] and recall that

qk+1 = ak+1 qk + qk−1, k ≥ 2.

Let k ≥ 2 and set dk = gcd(qk−1, qk+1). Since qk−1 and qk are coprime, we see that
dk divides ak+1. Define

q∗

k−1 = qk−1/dk, q∗

k+1 = qk+1/dk, a∗

k+1 = ak+1/dk .
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Then, we have
q∗

k+1 = a∗

k+1 qk + q∗

k−1, k ≥ 2.

Let ε > 0. By the Schmidt subspace theorem, the set of points (q∗

k−1, q∗

k+1) such
that

q∗

k−1 q∗

k+1

∏
p∈S

|q∗

k−1 q∗

k+1(q
∗

k+1 − q∗

k−1)|p < (q∗

k+1)
−ε

is contained in a union of finitely many proper subspaces. Since q∗

k−1 and q∗

k+1 are
coprime, this set is finite. We deduce that, for k large enough, we get∏

p∈S

|q∗

k−1 q∗

k+1(q
∗

k+1 − q∗

k−1)|p > (q∗

k−1 q∗

k+1)
−1(q∗

k+1)
−ε,

thus ∏
p∈S

|qk−1 qk+1(a∗

k+1 qk)|p > (qk−1 qk+1)
−1(q∗

k+1)
−ε,

and hence ∏
p∈S

|qk−1 qk+1 qk |p > (qk−1 qk+1)
−1(qk+1)

−ε.

Recalling that qk−1 < qk and qk+1 < qµ−1+ε
k for k large enough, we get

[Qk]S < qk−1 q1+ε
k+1 < qµ+ε

k Qε
k .

Since
Qk < q2

k qk+1 < qµ+1+ε
k ,

we get
[Qk]S < Q(µ+ε)/(µ+1+ε)

k Qε
k .

This proves (1-1). The last assertion can be proved in the same manner, thanks to
the identity pk+1 = ak+1 pk + pk−1 and the inequalities

|pk−1| < |pk | and |pk+1| < |pk |
µ−1+ε

for large k. □

The following was suggested at the end of [16]:

Question 4.1 (Erdős and Mahler [16]). Let θ be an irrational real number such
that the largest prime factor of pn(θ) qn(θ) is bounded for infinitely many n. Is it
true that θ is a Liouville number?

Without further details, Erdős and Mahler stated the existence of θ with the
given properties in Question 4.1. We provide a construction here for the sake of
completeness.

Let S and T be disjoint nonempty sets of prime numbers such that S has at least
two elements. We construct uncountably many θ such that for infinitely many n the
prime factors of pn(θ) belong to S while the prime factors of qn(θ) belong to T . To
simplify the notation, we consider the case S ={2, 3} and T ={5}. The construction
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for general S and T follows the same method. The constructed numbers θ have the
form

θ =

+∞∑
i=1

ai

53i .

Let 0 be the set of positive integers with only prime factors in {2, 3}. For every
positive integer m, let γ (m) denote the smallest element of 0 that is greater than m.
Let f (m) :=

γ (m)−m
m . By [29], we have

(4-1) lim
m→+∞

f (m) = 0.

First, we construct the sequence of positive integers s(1)< s(2)< . . . recursively:

• s(1) = 1.

• After having s(1), . . . , s(k), let Nk be a positive integer depending on s(k) such
that

(4-2) f (m) <
1

53s(k)+1 for m ≥ Nk .

Then we choose s(k + 1) so that

(4-3) 52·3s(k+1)−1
≥ Nk and s(k + 1) > s(k) + 1.

Now we construct the ai ’s:

• a1 = 1.

• Choose arbitrary ai ∈ {1, 2} for i /∈ {s(1), s(2), . . . }. Since s(k + 1) > s(k) + 1
for every k, the set N \ {s(1), s(2), . . . } is infinite. Hence there are uncountably
many choices here.

• Since s(1) = 1, we already had as(1). Suppose we have as(1), . . . , as(k) positive
integers with the following properties:

(i) For 1 ≤ j ≤ k, we have
∑s( j)

i=1
ai

53i =
us( j)

53s( j) with us( j) ∈ 0.

(ii) For 2 ≤ j ≤ k, we have as( j)

53s( j) < 1
53s( j−1)+1 .

We now define as(k+1) so that the above two properties continue to hold with j =k+1
as well. Thanks to property (ii) and the fact that ai ≤ 2 for i /∈ {s(1), s(2), . . . }, we
have the rough estimate

u
53s(k+1)−1 :=

s(k+1)−1∑
i=1

ai

53i ≤

s(k+1)−1∑
i=1

2
53i +

k−1∑
j=1

1
53s( j)+1 < 1,
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and hence, u < 53s(k+1)−1
. From

s(k+1)∑
i=1

ai

53i =
u

53s(k+1)−1 +
as(k+1)

53s(k+1)
=

u · 52·3s(k+1)−1
+ as(k+1)

53s(k+1)
,

we now define
as(k+1) = γ (u · 52·3s(k+1)−1

) − u · 52·3s(k+1)−1
.

Recall that γ (u · 52·3s(k+1)−1
) is the smallest element of 0 that is greater than

u · 52·3s(k+1)−1
. This verifies property (i) for j = k + 1. To verify (ii) for j = k + 1,

we have

as(k+1)

53s(k+1)
=

γ (u · 52·3s(k+1)−1
) − u · 52·3s(k+1)−1

u · 52·3s(k+1)−1 ·
u · 52·3s(k+1)−1

53s(k+1)

<
γ (u · 52·3s(k+1)−1

) − u · 52·3s(k+1)−1

u · 52·3s(k+1)−1 [since u < 53s(k+1)−1
]

= f (u · 52·3s(k+1)−1
)

<
1

53s(k)+1 by (4-2) and (4-3).

By the principle of recursive definition, we have ai for i ∈ {s(1), s(2), . . . } such
that property (i) holds for every j ≥ 1 and property (ii) holds for every j ≥ 2.

Write un/vn =
∑

i≤n
ai

53i with vn = 53n
. We have

|θ − us(k)/vs(k)| =

∞∑
i=s(k)+1

ai

53i <

∞∑
i=s(k)+1

2
53i +

∞∑
j=k

1
53s( j)+1 <

4
53s(k)+1 =

4
v3

s(k)

.

Therefore the us(k)/vs(k) are among the convergents to θ .
It is not clear to us whether the above numbers θ are always Liouville numbers.

However, we suspect that this is the case. In order to construct Liouville numbers,
we can use a similar method for numbers of the form

∑
i≥1

bi
5i ! .
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[22] A. Pethő, “Perfect powers in second order linear recurrences”, J. Number Theory 15:1 (1982),
5–13. MR Zbl

[23] D. Ridout, “Rational approximations to algebraic numbers”, Mathematika 4 (1957), 125–131.
MR Zbl

[24] A. Scremin, “On the period of the continued fraction for values of the square root of power
sums”, Acta Arith. 123:4 (2006), 297–312. MR Zbl

[25] T. N. Shorey and C. L. Stewart, “On the Diophantine equation ax2t
+ bx t y + cy2

= d and pure
powers in recurrence sequences”, Math. Scand. 52:1 (1983), 24–36. MR Zbl

[26] I. E. Shparlinskii, “The number of different prime divisors of recurrent sequences”, Mat. Zametki
42:4 (1987), 494–507. MR

http://msp.org/idx/mr/308060
http://msp.org/idx/zbl/0242.10014
http://msp.org/idx/mr/2508640
http://msp.org/idx/zbl/1234.11088
http://dx.doi.org/10.1017/CBO9781139017732
http://msp.org/idx/mr/2953186
http://msp.org/idx/zbl/1260.11001
http://dx.doi.org/10.24033/asens.2208
http://msp.org/idx/mr/3134686
http://msp.org/idx/zbl/1292.11080
http://dx.doi.org/10.17323/1609-4514-2021-21-1-31-42
http://msp.org/idx/mr/4219035
http://msp.org/idx/zbl/1491.11011
http://dx.doi.org/10.1016/S0019-3577(05)80012-6
http://msp.org/idx/mr/2138048
http://msp.org/idx/zbl/1135.11005
http://dx.doi.org/10.1007/BF02392563
http://dx.doi.org/10.1007/BF02392563
http://msp.org/idx/mr/2134865
http://msp.org/idx/zbl/1175.11036
http://dx.doi.org/10.5802/jtnb.517
http://dx.doi.org/10.5802/jtnb.517
http://msp.org/idx/mr/2212122
http://msp.org/idx/zbl/1159.11021
http://dx.doi.org/10.1017/9781108348096
http://dx.doi.org/10.1017/9781108348096
http://msp.org/idx/mr/3793125
http://msp.org/idx/zbl/1452.11004
http://dx.doi.org/10.1112/jlms/s1-14.1.12
http://msp.org/idx/mr/1574257
http://msp.org/idx/zbl/0020.29403
http://dx.doi.org/10.5802/jtnb.1247
http://dx.doi.org/10.5802/jtnb.1247
http://msp.org/idx/mr/4596523
http://msp.org/idx/zbl/07682954
http://msp.org/idx/mr/952514
http://msp.org/idx/zbl/0655.10045
http://msp.org/idx/mr/683809
http://msp.org/idx/zbl/0499.10010
http://dx.doi.org/10.1090/tran/7316
http://dx.doi.org/10.1090/tran/7316
http://msp.org/idx/mr/3917208
http://msp.org/idx/zbl/1426.11069
http://dx.doi.org/10.2307/2152958
http://msp.org/idx/mr/1192972
http://msp.org/idx/zbl/0797.11006
http://dx.doi.org/10.1016/0022-314X(82)90079-8
http://msp.org/idx/mr/666345
http://msp.org/idx/zbl/0488.10009
http://dx.doi.org/10.1112/S0025579300001182
http://msp.org/idx/mr/93508
http://msp.org/idx/zbl/0079.27401
http://dx.doi.org/10.4064/aa123-4-1
http://dx.doi.org/10.4064/aa123-4-1
http://msp.org/idx/mr/2262246
http://msp.org/idx/zbl/1170.11004
http://dx.doi.org/10.7146/math.scand.a-11990
http://dx.doi.org/10.7146/math.scand.a-11990
http://msp.org/idx/mr/697495
http://msp.org/idx/zbl/0491.10016
http://msp.org/idx/mr/917803


36 YANN BUGEAUD AND KHOA D. NGUYEN

[27] C. L. Stewart, “On the representation of an integer in two different bases”, J. Reine Angew. Math.
319 (1980), 63–72. MR Zbl

[28] C. L. Stewart, “On prime factors of terms of linear recurrence sequences”, pp. 341–359 in
Number theory and related fields, Springer Proc. Math. Stat. 43, Springer, New York, 2013. MR
Zbl

[29] R. Tijdeman, “On the maximal distance between integers composed of small primes”, Compositio
Math. 28 (1974), 159–162. MR Zbl

[30] E. Zeckendorf, “Représentation des nombres naturels par une somme de nombres de Fibonacci
ou de nombres de Lucas”, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182. MR Zbl

Received October 25, 2022. Revised January 6, 2023.

YANN BUGEAUD

Current address:
UNIVERSITÉ DE STRASBOURG

STRASBOURG

FRANCE

INSTITUT UNIVERSITAIRE DE FRANCE

bugeaud@math.unistra.fr

KHOA D. NGUYEN

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF CALGARY

CALGARY AB
CANADA

dangkhoa.nguyen@ucalgary.ca

http://dx.doi.org/10.1515/crll.1980.319.63
http://msp.org/idx/mr/586115
http://msp.org/idx/zbl/0426.10008
http://dx.doi.org/10.1007/978-1-4614-6642-0_18
http://msp.org/idx/mr/3081050
http://msp.org/idx/zbl/1315.11011
http://msp.org/idx/mr/345917
http://msp.org/idx/zbl/0283.10024
http://msp.org/idx/mr/308032
http://msp.org/idx/zbl/0252.10011
mailto:bugeaud@math.unistra.fr
mailto:dangkhoa.nguyen@ucalgary.ca


PACIFIC JOURNAL OF MATHEMATICS
Vol. 326, No. 1, 2023

https://doi.org/10.2140/pjm.2023.326.37

LOCAL GALOIS REPRESENTATIONS
OF SWAN CONDUCTOR ONE

NAOKI IMAI AND TAKAHIRO TSUSHIMA

We construct the local Galois representations over the complex field whose
Swan conductors are one by using étale cohomology of Artin–Schreier
sheaves on affine lines over finite fields. Then, we study the Galois representa-
tions, and give an explicit description of the local Langlands correspondences
for simple supercuspidal representations. We discuss also a more natural
realization of the Galois representations in the étale cohomology of Artin–
Schreier varieties.

Introduction

Let K be a nonarchimedean local field. Let n be a positive integer. The existence of
the local Langlands correspondence for GLn(K ), proved in [Laumon et al. 1993]
and [Harris and Taylor 2001], is one of the fundamental results in the Langlands
program. However, even in this fundamental case, an explicit construction of the
local Langlands correspondence has not yet been obtained. One of the most striking
results in this direction is the result of Bushnell and Henniart [2005a; 2005b; 2010]
for essentially tame representations. On the other hand, we don’t know much about
the explicit construction outside essentially tame representations.

We discuss this problem for representations of Swan conductor 1. The irreducible
supercuspidal representations of GLn(K ) of Swan conductor 1 are equivalent to
the simple supercuspidal representations in the sense of Adrian and Liu [2016] (see
[Gross and Reeder 2010; Reeder and Yu 2014]). Such representations are called
“epipelagic” in [Bushnell and Henniart 2014].

Let p be the characteristic of the residue field k of K . If n is prime to p, the simple
supercuspidal representations of GLn(K ) are essentially tame. Hence, this case is
covered by the work of Bushnell and Henniart. See also [Adrian and Liu 2016]. It
is discussed in [Kaletha 2015] to generalize the construction of the local Langlands
correspondence for essentially tame epipelagic representations to other reductive
groups.
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In this paper, we consider the case where p divides n. In this case, the simple
supercuspidal representations of GLn(K ) are not essentially tame. Moreover, if n
is a power of p, the irreducible representations of the Weil group WK of Swan
conductor 1, which correspond to the simple supercuspidal representations via the
local Langlands correspondence, cannot be induced from any proper subgroup. Such
representations are called primitive (see [Koch 1977]). For simple supercuspidal
representations, we have a straightforward characterization of the local Langlands
correspondence given in [Bushnell and Henniart 2014]. Further, Bushnell and Hen-
niart study the restriction to the wild inertia subgroup of the Langlands parameters
for the simple supercuspidal representations explicitly. Actually, the restriction to
the wild inertia subgroup already determines the original Langlands parameters
up to character twists, but we need additional data, which appear in Bushnell and
Henniart’s characterization, to pin down the correct Langlands parameters. On
the other hand, the construction of the irreducible representations of WK of Swan
conductor 1 is a nontrivial problem. What we will do in this paper is

• to construct the irreducible representations of WK of Swan conductor 1 without
appealing to the existence of the local Langlands correspondence, and

• to give a description of the Langlands parameters themselves for the simple
supercuspidal representations.

Let ℓ be a prime number different from p. For the construction of the irreducible
representations of WK of Swan conductor 1, we use étale cohomology of an Artin–
Schreier ℓ-adic sheaf on A1

kac , where kac is an algebraic closure of k. It will
be possible to avoid usage of geometry in the construction of the irreducible
representations of WK of Swan conductor 1. However, we prefer this approach,
because

• we can use geometric tools such as the Lefschetz trace formula and the product
formula of Deligne–Laumon to study the constructed representations, and

• the construction works also for ℓ-adic integral coefficients and mod ℓ coeffi-
cients.

A description of the local Langlands correspondence for the simple supercuspidal
representations is discussed in [Imai and Tsushima 2022] in the special case where
n = p = 2. Even in the special case, our method in this paper is totally different
from that in [Imai and Tsushima 2022].

We explain the main result. We write n = pen′, where n′ is prime to p. We fix a
uniformizer ϖ of K and an isomorphism ι : Qℓ ≃ C.

Let Lψ be the Artin–Schreier Qℓ-sheaf on A1
kac associated to a nontrivial charac-

ter ψ of Fp. Let π : A1
kac → A1

kac be the morphism defined by π(y) = y pe
+1. Let

ζ ∈µq−1(K ), where q = |k|. We put Eζ = K [X ]/(Xn′

−ζϖ). Then we can define
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a natural action of WEζ on H 1
c (A

1
kac, π

∗Lψ). Using this action, we can associate
a primitive representation τn,ζ,χ,c of WEζ to ζ ∈ µq−1(K ), a character χ of k×

and c ∈ C×. We construct an irreducible representation τζ,χ,c of Swan conductor 1
as the induction of τn,ζ,χ,c to WK .

We can associate a simple supercuspidal representation πζ,χ,c of GLn(K ) to the
same triple (ζ, χ, c) by type theory. Any simple supercuspidal representation can
be written in this form uniquely (see [Imai and Tsushima 2018, Proposition 1.3]).

Theorem. The representations τζ,χ,c and πζ,χ,c correspond via the local Langlands
correspondence.

In Section 1, we recall a general fact on representations of a semidirect product of
a Heisenberg group with a cyclic group. In Section 2, we give a construction of the
irreducible representations of WK of Swan conductor 1. To construct a representa-
tion of WK which naturally fits a description of the local Langlands correspondence,
we need a subtle character twist. Such a twist appears also in the essentially tame
case in [Bushnell and Henniart 2010], where it is called a rectifier. Our twist can be
considered as an analogue of the rectifier. We construct the representations of WK

using geometry, but we give also a representation theoretic characterization of the
constructed representations. In Section 3, we give a construction of the simple
supercuspidal representations of GLn(K ) using the type theory.

In Section 4, we state the main theorem and recall a characterization of the
local Langlands correspondence for simple supercuspidal representations given in
[Bushnell and Henniart 2014]. The characterization consists of the three equalities
of (i) the determinant and the central character, (ii) the refined Swan conductors,
and (iii) the epsilon factors.

In Section 5, we recall some general facts on epsilon factors. In Section 6, we
recall facts on Stiefel–Whitney classes, multiplicative discriminants and additive
discriminants. We use these facts to calculate Langlands constants of wildly ramified
extensions. In Section 7, we recall the product formula of Deligne–Laumon. In
Section 8, we show the equality of the determinant and the central character using
the product formula of Deligne–Laumon.

In Section 9, we construct a field extension T u
ζ of Eζ such that the restriction

of τn,ζ,χ,c to WT u
ζ

is an induction of a character and p ∤ [T u
ζ : Eζ ], which we call

an imprimitive field. In Section 10, we show the equality of the refined Swan
conductors. We see also that the constructed representations of WK are actually of
Swan conductor 1.

In Section 11, we show the equality of the epsilon factors. It is difficult to calculate
the epsilon factors of irreducible representations of WK of Swan conductor 1 directly,
because primitive representations are involved. However, we know the equality
of the epsilon factors up to pe-th roots of unity if n = pe, since we have already
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checked the conditions (i) and (ii) in the characterization. Using this fact and
p ∤ [T u

ζ : Eζ ], the problem is reduced to study an epsilon factor of a character. Next
we reduce the problem to the case where the characteristic of K is p and k = Fp.
At this stage, it is possible to calculate the epsilon factor if p ̸= 2. However, it is
still difficult if p = 2, because the direct calculation of the epsilon factor involves
an explicit study of the Artin reciprocity map for a wildly ramified extension with a
nontrivial ramification filtration. This is a special phenomenon in the case where
p = 2. We will avoid this difficulty by reducing the problem to the case where e = 1.
In this case, we have already known the equality up to sign. Hence, it suffices to
show the equality of nonzero real parts. This is easy, because the difficult study of
the Artin reciprocity map involves only the imaginary part of the equality.

In Appendix, we discuss a construction of irreducible representations of WK of
Swan conductor 1 in the cohomology of Artin–Schreier varieties. This geometric
construction incorporates a twist by a “rectifier”. We see that the “rectifier” parts
come from the cohomology of Artin–Schreier varieties associated to quadratic forms.
The Artin–Schreier varieties which we use have origins in studies of Lubin–Tate
spaces in [Imai and Tsushima 2017; 2021].

Notation. Let A∨ denote the character group HomZ(A,C×) for a finite abelian
group A. For a nonarchimedean local field K , let

• OK denote the ring of integers of K ,

• pK denote the maximal ideal of OK ,

• vK denote the normalized valuation of K which sends a uniformizer of K to 1,

• ch K denote the characteristic of K ,

• G K denote the absolute Galois group of K ,

• WK denote the Weil group of K ,

• IK denote the inertia subgroup of WK ,

• PK denote the wild inertia subgroup of WK ,

and we put U m
K = 1 + pm

K for any positive integer m.

1. Representations of finite groups

First, we recall a fact on representations of Heisenberg groups. Let G be a finite
group with center Z . We assume:

(i) The group G/Z is an elementary abelian p-group.

(ii) For any g ∈ G \ Z , the map cg : G → Z , g′
7→ [g, g′

] is surjective.

Remark 1.1. The map cg in (ii) is a group homomorphism. Hence, Z is automati-
cally an elementary abelian p-group.
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Let ψ ∈ Z∨ be a nontrivial character.

Proposition 1.2. There is a unique irreducible representation ρψ of G such that
ρψ |Z contains ψ . Moreover, we have (dim ρψ)

2
= [G : Z ] and we can con-

struct ρψ as follows: Take an abelian subgroup G1 of G such that Z ⊂ G1

and 2 dimFp(G1/Z) = dimFp(G/Z). Extend ψ to a character ψ1 of G1. Then
ρψ = IndG

G1
ψ1.

Proof. The claims other than the construction of ρψ is Proposition 8.3.3 in [Bushnell
and Fröhlich 1983]. Note that if an abelian subgroup G1 of G satisfies the conditions
in the claim, then G1/Z is a maximal totally isotropic subspace of G/Z under the
pairing

(G/Z)× (G/Z)→ C×, (gZ , g′Z) 7→ ψ([g, g′
]).

Hence the construction follows from the proof of [Bushnell and Fröhlich 1983,
Proposition 8.3.3]. □

Next, we consider representations of a semidirect product of a Heisenberg group
with a cyclic group. Let A ⊂ Aut(G) be a cyclic subgroup of order pe

+ 1 where
e =

1
2(logp[G : Z ]). We assume:

(3) The group A acts on Z trivially.

(4) For any nontrivial element a ∈ A, the action of a on G/Z fixes only the unit
element.

We consider the semidirect product A⋉G by the action of A on G.

Lemma 1.3. There is a unique irreducible representation ρ ′

ψ of A ⋉ G such that
ρ ′

ψ |G ≃ ρψ and tr ρ ′

ψ(a)= −1 for every nontrivial element a ∈ A.

Proof. The claim is proved in the proof of Lemma 22.2 in [Bushnell and Henniart
2006] if Z is cyclic and ψ is a faithful character. In fact, the same proof works also
in our case. □

Corollary 1.4. There exists a unique representation ρ ′

ψ of A⋉G such that

ρ ′

ψ |Z ≃ ψ⊕pe
and tr ρ ′

ψ(a)= −1

for every nontrivial element a ∈ A. Further, the representation ρ ′

ψ |G is irreducible.

Proof. First we show the existence. We take the representation ρ ′

ψ in Lemma 1.3.
Then ρ ′

ψ has a central character equal to ψ by Proposition 1.2. This shows the
existence.

We show the uniqueness and the irreducibility of ρ ′

ψ |G . Assume that ρ ′

ψ satisfies
the condition in the claim. Take an irreducible subrepresentation ρψ of ρ ′

ψ |G . Then
ρψ satisfies the condition of Proposition 1.2. Hence, dim ρψ = pe. Then we have
ρψ = ρ ′

ψ |G and ρ ′

ψ |G is irreducible. Such ρψ is unique by Lemma 1.3. □
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2. Galois representations

2A. Swan conductor. Let K be a nonarchimedean local field with residue field k.
Let p be the characteristic of k. Let f be the extension degree of k over Fp. We
put q = p f .

Let
ArtK : K ×

−→∼ W ab
K

be the Artin reciprocity map, which sends a uniformizer to a lift of the geometric
Frobenius element.

Let τ be a finite dimensional irreducible continuous representation of WK over C.
Let 9 : K → C× be a nontrivial additive character. Let ε(τ, s, 9) denote the
Deligne–Langlands local constant of τ with respect to 9. We simply write ε(τ,9)
for ε

(
τ, 1

2 , 9
)
.

We define an unramified character ωs : K ×
→ C× by ωs(ϖ) = q−s for s ∈ R,

where ϖ is a uniformizer of K . We recall that

(2-1) ε(τ, s, 9)= ε(τ ⊗ωs, 0, 9)

(see [Tate 1979, (3.6.4)]).
Let ψ0 ∈ F∨

p by ψ0(1)= e2π
√

−1/p. We take an additive character ψK : K → C×

such that ψK (x) = ψ0(Trk/Fp(x̄)) for x ∈ OK . By [Bushnell and Henniart 2006,
Proposition 29.4], there exists an integer sw(τ ) such that

ε(τ, s, ψK )= q− sw(τ )sε(τ, 0, ψK ).

We put Sw(τ )= max{sw(τ ), 0}, which we call the Swan conductor of τ .

2B. Construction. We construct a group Q which acts on a curve C over an
algebraic closure of k. By using this action of Q and Frobenius action, we construct
a representation of a semidirect product Q ⋊Z in étale cohomology of C . Then we
use the representation of Q ⋊Z to construct a representation of a Weil group.

We fix an algebraic closure K ac of K . Let kac be the residue field of K ac. Let n
be a positive integer. We write n = pen′ with (p, n′)= 1. Throughout this paper,
we assume that e ≥ 1. Let

Q = {(a, b, c) | a ∈ µpe+1(kac), b, c ∈ kac, bp2e
+ b = 0, cp

− c + bpe
+1

= 0}

be the group whose multiplication is given by

(a1, b1, c1) · (a2, b2, c2)=

(
a1 a2, b1 + a1 b2, c1 + c2 +

e−1∑
i=0

(a1 bpe

1 b2)
pi
)
.

Remark 2.1. The construction of the group Q has its origin in a study of the
automorphism of a curve C defined below. We can check that the above multipli-
cation gives a group structure on Q directly, but it’s also possible to show this by
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checking that the inclusion from Q to the automorphism group of C defined below
is compatible with the multiplications.

Note that |Q| = p2e+1(pe
+1). Let Q⋊Z be a semidirect product, where m ∈ Z

acts on Q by (a, b, c) 7→ (a p−m
, bp−m

, cp−m
). We put

(2-2) Fr(m)= ((1, 0, 0),m) ∈ Q ⋊Z for m ∈ Z.

Let C be the smooth affine curve over kac defined by

x p
− x = y pe

+1 in A2
kac .

We define a right action of Q ⋊Z on C by

(x, y)((a, b, c), 0)=

(
x +

e−1∑
i=0

(by)pi
+ c, a(y + bpe

)

)
, (x, y)Fr(1)= (x p, y p).

We consider the morphisms

h : A1
kac → A1

kac, x 7→ x p
− x, π : A1

kac → A1
kac, y 7→ y pe

+1.

Then we have the fiber product

C h′

//

π ′

��

□

A1
kac

π

��

A1
kac

h
// A1

kac

where π ′ and h′ are the natural projections to the first and second coordinates
respectively. Let g = ((a, b, c),m) ∈ Q ⋊Z. We consider the morphism

g0 : A1
kac → A1

kac, y 7→ (a(y + bpe
))pm

.

Let ℓ be a prime number different from p. Then we have a natural isomorphism

cg : g∗

0 h′

∗
Qℓ −→∼ h′

∗
g∗ Qℓ −→∼ h′

∗
Qℓ.

We take an isomorphism ι : Qℓ ≃ C. We sometimes view a character over C as a
character over Qℓ by ι. Let ψ ∈ F∨

p . We write Lψ for the Artin–Schreier Qℓ-sheaf
on A1

kac associated to ψ , which is equal to F(ψ) in the notation of [Deligne 1977,
Sommes trig. 1.8(i)]. Then we have a decomposition h∗ Qℓ =

⊕
ψ∈F∨

p
Lψ . This

decomposition gives canonical isomorphisms

(2-3) h′

∗
Qℓ

∼= π∗ h∗ Qℓ
∼=

⊕
ψ∈F∨

p

π∗Lψ .
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The isomorphisms cg and (2-3) induce cg,ψ : g∗

0 π
∗Lψ → π∗Lψ . We define a left

action of Q ⋊Z on H 1
c (A

1
kac, π

∗Lψ) by

H 1
c (A

1
kac, π

∗Lψ)
g∗

0
−→ H 1

c (A
1
kac, g∗

0 π
∗Lψ)

cg,ψ
−−→ H 1

c (A
1
kac, π

∗Lψ) for g ∈ Q ⋊Z.

Let τψ be the representation of Q ⋊ Z over C defined by H 1
c (A

1
kac, π

∗Lψ) and ι.
For θ ∈ µpe+1(kac)∨, let Kθ be the smooth Kummer Qℓ-sheaf on Gm,kac associated
to θ . We view µpe+1(kac)× Fp as a subgroup of Q by (a, c) 7→ (a, 0, c).

Lemma 2.2. We have a natural isomorphism

H 1
c (A

1
kac, π

∗Lψ)≃

⊕
θ∈µpe+1(kac)∨\{1}

H 1
c (Gm,kac,Lψ ⊗Kθ ),

which is compatible with the actions of µpe+1(kac)× Fp where

(a, c) ∈ µpe+1(kac)× Fp

acts on H 1
c (Gm,kac,Lψ ⊗Kθ ) by θ(a)ψ(c). Further, we have

dim H 1
c (Gm,kac,Lψ ⊗Kθ )= 1

for any θ ∈ µpe+1(kac)∨ \ {1}.

Proof. By the projection formula, we have natural isomorphisms

π∗ π
∗Lψ ≃ π∗(π

∗Lψ ⊗ Qℓ)≃ Lψ ⊗π∗ Qℓ on A1
kac .

Further, we have
π∗ Qℓ ≃

⊕
θ∈µpe+1(kac)∨

Kθ on Gm,kac,

since π is a finite étale µpe+1(kac)-covering over Gm,kac . Therefore, we have

(2-4) π∗ π
∗Lψ ≃ Lψ ⊗π∗ Qℓ ≃

⊕
θ∈µpe+1(kac)∨

Lψ ⊗Kθ

on Gm,kac . Let {0} denote the origin of A1
kac . Let i : {0} → A1

kac and j : Gm,kac → A1
kac

be the natural immersions. From the exact sequence

0 → j! j∗π∗Lψ → π∗Lψ → i∗ i∗π∗Lψ → 0,

we have the exact sequence

(2-5) 0 → H 0({0}, i∗π∗Lψ)→ H 1
c (Gm,kac, π∗Lψ)→ H 1

c (A
1
kac, π

∗Lψ)→ 0,

since
H 0

c (A
1
kac, π

∗Lψ)= 0 and H 1({0}, i∗π∗Lψ)= 0.
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Note that H 0({0}, i∗π∗Lψ)≃ ψ . By (2-4), we have isomorphisms

(2-6) H 1
c (Gm,kac, π∗Lψ)≃ H 1

c (Gm,kac, π∗ π
∗Lψ)

≃

⊕
θ∈µpe+1(kac)∨

H 1
c (Gm,kac,Lψ ⊗Kθ ).

We know that

(2-7) dim H 1
c (Gm,kac,Lψ ⊗Kθ )= 1

for any θ ∈ µpe+1(kac)∨ by the proof of [Imai and Tsushima 2017, Lemma 7.1]
(see [Imai and Tsushima 2023, (2.3)]). Since the composition of

H 0({0}, i∗π∗Lψ)→ H 1
c (Gm,kac, π∗Lψ)

and (2-6) is compatible with the actions of µpe+1(kac)× Fp, it factors through an
isomorphism H 0({0}, i∗π∗Lψ)≃ H 1

c (Gm,kac,Lψ) by (2-7). Then the claim follows
from (2-5), (2-6) and (2-7). □

Let ϱ :µ2(k) ↪→ C× be the nontrivial group homomorphism if p ̸= 2. We define
a character θ0 ∈ µpe+1(kac)∨ by

(2-8) θ0(a)=

{
ϱ(a(p

e
+1)/2) if p ̸= 2,

1 if p = 2

for a ∈ µpe+1(kac). For an integer m and a positive odd integer m′, let
( m

m′

)
denote

the Jacobi symbol. For an odd prime p, we set

ϵ(p)=

{
1 if p ≡ 1 mod 4,
√

−1 if p ≡ 3 mod 4.

We have ϵ(p)2 =
(

−1
p

)
. We define a representation τn of Q ⋊Z as the twist of τψ0

by the character

(2-9)

Q ⋊Z → C×,

((a, b, c),m) 7→

{
θ0(a)n

((
−ϵ(p)

(
−2n′

p

))n p−
1
2
)m if p ̸= 2,

((−1)
n(n−2)

8 p−
1
2 )m if p = 2.

The value of this character is related to a quadratic Gauss sum. A geometric origin
of this character is given in (A-3). Let (ζ, χ, c) ∈µq−1(K )× (k×)∨ ×C×. We take
a uniformizer ϖ of K . We choose an element ϕ′

ζ ∈ K ac such that ϕ′n′

ζ = ζϖ and
set Eζ = K (ϕ′

ζ ). We choose elements αζ , βζ , γζ ∈ K ac such that

(2-10) α
pe

+1
ζ = −ϕ′

ζ , β
p2e

ζ +βζ = −α−1
ζ , γ

p
ζ − γζ = β

pe
+1

ζ .
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For σ ∈ WEζ , we set

aσ = σ(αζ )/(αζ ), bσ = aσσ(βζ )−βζ ,

cσ = σ(γζ )− γζ +

e−1∑
i=0

(bpe

σ (βζ + bσ ))pi
.

(2-11)

Then we have aσ , bσ , cσ ∈ OK ac . For σ ∈ WEζ , we put nσ = vEζ (Art−1
Eζ (σ )). We

have the homomorphism

(2-12) 2ζ : WEζ → Q ⋊Z, σ 7→ ((āσ , b̄σ , c̄σ ), f nσ ).

Lemma 2.3. The image of the homomorphism 2ζ is Q ⋊ ( f Z).

Proof. It suffices to show that the image of IEζ ⊂ WEζ under 2ζ is equal to
Q ⊂ Q ⋊ Z, since the homomorphism WEζ → f Z, σ 7→ f nσ is surjective. We
put Nζ = Eζ (αζ , βζ , γζ ). Then the kernel of 2ζ is equal to INζ by the definition.
Hence we have an injection IEζ /INζ ↪→ Q. This injection is actually a bijection,
since Nζ is a totally ramified extension over Eζ of degree p2e+1(pe

+ 1), which
equals to |Q|. Therefore, we obtain the claim. □

We write τn,ζ for the representation of WEζ given by 2ζ and τn . Recall that c
is an element of C×. Let φc : WEζ → C× be the character defined by φc(σ )= cnσ .
We have the isomorphism ϕ′Z

ζ × O×

Eζ ≃ Eζ× given by the multiplication. Let
Frobp : k×

→ k× be the inverse of the p-th power map. We consider the following
composition:

λζ : W ab
Eζ ≃ Eζ×

≃ ϕ′Z
ζ ×O×

Eζ
pr2
−→ O×

Eζ
can.
−−→ k× Frobe

p
−−−→ k×.

We put

(2-13) τn,ζ,χ,c = τn,ζ ⊗ (χ ◦ λζ )⊗φc and τζ,χ,c = IndEζ /K τn,ζ,χ,c.

We will see that τζ,χ,c is an irreducible representation of Swan conductor 1 in
Proposition 10.8. This Galois representation τζ,χ,c is our main object in this paper.
We will study several invariants associated to this, for example, its determinant and
epsilon factor.

2C. Characterization. We put

Q0 = {(1, b, c) ∈ Q}, F = {(1, 0, c) ∈ Q | c ∈ Fp}.

We identify Fp with F by c 7→ (1, 0, c).

Lemma 2.4. For any g = (1, b, c)∈ Q0 with b ̸= 0, the map Q0 → F , g′
7→ [g, g′

]

is surjective.



LOCAL GALOIS REPRESENTATIONS OF SWAN CONDUCTOR ONE 47

Proof. For (1, b1, c1), (1, b2, c2) ∈ Q0, we have

[(1, b1, c1), (1, b2, c2)] =

(
1, 0,

e−1∑
i=0

(bpe

1 b2 − b1 bpe

2 )
pi
)
.

If b1 ̸= 0, then

{b ∈ kac
| bp2e

+ b = 0} → Fpe , b2 → bpe

1 b2 − b1 bpe

2

is surjective. The claim follows from the surjectivity of TrFpe/Fp . □

By this lemma, we can apply the results from Section 1 to our situation with
G = Q0, Z = F and A = µpe+1(kac), where the action of µpe+1(kac) on Q0 is
given by the embedding

µpe+1(kac)→ Q, a 7→ (a, 0, 0)

and the conjugation. Let τ 0 denote the unique representation of Q characterized by

(2-14) τ 0
|F ≃ ψ

⊕pe

0 , Tr τ 0((a, 0, 0))= −1

for a ∈ µpe+1(kac) \ {1} (see Corollary 1.4).
We have a decomposition

(2-15) τ 0
=

⊕
θ∈µpe+1(kac)∨\{1}

Lθ

such that a ∈µpe+1(kac) acts on Lθ by θ(a), since the both sides of (2-15) have the
same character as representations of µpe+1(kac). For a positive integer m dividing
pe

+1, we considerµm(kac)∨ as a subset ofµpe+1(kac)∨ by the dual of the surjection

µpe+1(kac)→ µm(kac), x → x (p
e
+1)/m .

We simply write Q for the subgroup Q × {0} ⊂ Q ⋊Z.

Lemma 2.5. We have τψ0 |Q ≃ τ 0.

Proof. The representation τψ0 |Q satisfies the characterization (2-14) by Lemma 2.2.
Hence τψ0 |Q is isomorphic to τ 0. □

Corollary 2.6. The representation τψ0 |Q0 is irreducible.

Proof. This follows from Corollary 1.4, equation (2-14) and Lemma 2.5. □

For any odd prime p, we have

(2-16)
∑
x∈F×

p

ψ0(x2)=

∑
x∈F×

p

(
x
p

)
ψ0(x)= ϵ(p)

√
p

by Gauss.
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Lemma 2.7. We have

Tr τψ0(Fr(1))=

{
−ϵ(p)

√
p if p ̸= 2,

0 if p = 2.

Proof. By the Lefschetz trace formula, we have

∑
x∈A1(Fp)

Tr(Frp, (π
∗Lψ0)x)=

2∑
i=0

(−1)i Tr(Frp, H i
c (A

1
kac, π

∗Lψ)),

where Frp is the geometric p-th power Frobenius morphism. Since H i
c (A

1
kac, π

∗Lψ)
vanishes for i = 0, 2, we have

Tr τψ0(Fr(1))= −

∑
x∈A1(Fp)

Tr(Frp, (π
∗Lψ0)x)

= −

∑
x∈Fp

ψ0(x pe
+1)= −

∑
x∈Fp

ψ0(x2)=

{
−ϵ(p)

√
p if p ̸= 2,

0 if p = 2,

where we use (2-16) in the last equality. □

We assume p = 2 in this paragraph. We take b0 ∈ F22e such that TrF22e/F2(b0)= 1.
Further, we put

(2-17) c0 = b2e

0 +

∑
0≤i< j≤e−1

b2e+i
+2 j

0 .

Then we have

(2-18) c2
0 − c0 = b2e+1

0 + b2e

0 +

∑
0≤i< j≤e−1

b2e+i+1
+2 j+1

0 +

∑
0≤i< j≤e−1

b2e+i
+2 j

0

= b2e+1

0 + b2e

0 +

e−2∑
i=0

b2e+i+1
+2e

0 +

e−1∑
j=1

b2e
+2 j

0

= b2e+1

0 + b2e

0 + b2e

0 (1 + b0 + b2e

0 )= b2e
+1

0 ,

where we use TrF22e/F2(b0)= 1 at the third equality. We put

g = ((1, b0, c0),−1) ∈ Q ⋊Z.

Lemma 2.8. We assume that p = 2. Then we have Tr τψ0(g−1)= −2.

Proof. We note that

(2-19) g−1
= Fr(1)

((
1, b0, c0 +

e−1∑
i=0

(b2e
+1

0 )2
i
)
, 0

)
.
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For y ∈ kac satisfying y2
+ b2e

0 = y, we take xy ∈ kac such that x2
y − xy = y2e

+1.
We take y0 ∈ kac such that y2

0 + b2e

0 = y0. Then, by the Lefschetz trace formula
and (2-19), we have

Tr τψ0(g
−1)= −

∑
y2+b2e

0 =y

Tr(g−1, (π∗Lψ0)y)

= −

∑
y2+b2e

0 =y

ψ0

(
x2

y − xy +

e−1∑
i=0

(b0 y2)2
i
+ c0 +

e−1∑
i=0

(b2e
+1

0 )2
i
)

= −

∑
z∈F2

ψ0

(
(y0 + z)2

e
+1

+

e−1∑
i=0

(b0(y0 + z))2
i
+ c0

)
= −2,

where we change a variable by y = y0 + z at the second equality, and use

y2e
+1

0 +

e−1∑
i=0

(b0 y0)
2i

= y0

(
y0 +

e−1∑
i=0

b2e+i

0

)
+

e−1∑
i=0

b2i

0

(
y0 +

i−1∑
j=0

b2e+ j

0

)
= c0,

y2e

0 + y0 +

e−1∑
i=0

b2i

0 =

e−1∑
i=0

(y2
0 + y0)

2i
+

e−1∑
i=0

b2i

0 = TrF22e/F2(b0)= 1

at the last equality. □

Proposition 2.9. The representation τψ0 is characterized by τψ0 |Q ≃ τ 0 and{
Tr τψ0(Fr(1))= −ϵ(p)

√
p if p ̸= 2,

Tr τψ0(g−1)= −2 if p = 2.

In particular, τψ0 does not depend on the choice of ℓ and ι.

Proof. This follows from Lemmas 2.5, 2.7 and 2.8. □

3. Representations of general linear algebraic groups

3A. Simple supercuspidal representation. Let π be an irreducible supercuspidal
representation of GLn(K ) over C. Let ε(π, s, 9) denote the Godement–Jacquet
local constant of π with respect to the nontrivial character 9 : K → C×. We simply
write ε(π,9) for ε

(
π, 1

2 , 9
)
. By [Godement and Jacquet 1972, Theorem 3.3(4)],

there exists an integer sw(π) such that

ε(π, s, ψK )= q− sw(π)sε(π, 0, ψK ).

We put Sw(π)= max{sw(π), 0}, which we call the Swan conductor of π .

Definition 3.1. An irreducible supercuspidal representation π of GLn(K ) over C

is called simple supercuspidal if Sw(π)= 1.

This definition is equivalent to [Imai and Tsushima 2018, Definition 1.1] by
[Imai and Tsushima 2018, Proposition 1.3].
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3B. Construction. In the following, we construct a smooth representation πζ,χ,c
of GLn(K ) for each triple (ζ, χ, c) ∈ µq−1(K )× (k×)∨ × C×.

Let B ⊂ Mn(k) be the subring consisting of upper triangular matrices. Let
I⊂ Mn(OK ) be the inverse image of B under the reduction map Mn(OK )→ Mn(k).
Then I is a hereditary OK -order (see [Bushnell and Kutzko 1993, (1.1)]). Let P
denote the Jacobson radical of the order I. We put U 1

I = 1 +P ⊂ GLn(OK ). We
set

ϕζ =

(
0 In−1

ζϖ 0

)
∈ Mn(K ) and Lζ = K (ϕζ ).

Then, Lζ is a totally ramified extension of K of degree n.
We put ϕζ,n = n′ϕζ and

ϵ0 =

{ 1
2(n

′
+ 1) if pe

= 2,
0 if pe

̸= 2.

We define a character 3ζ,χ,c : L×

ζ U 1
I → C× by

3ζ,χ,c(ϕζ )= (−1)n−1+ϵ0 f c, 3ζ,χ,c(x)= χ(x̄) for x ∈ O×

K ,

3ζ,χ,c(x)= (ψK ◦ tr)(ϕ−1
ζ,n(x − 1)) for x ∈ U 1

I ,

where tr means the trace as an element of Mn(K ). We put

πζ,χ,c = c-IndGLn(K )
L×

ζ U 1
I

3ζ,χ,c.

Then, πζ,χ,c is a simple supercuspidal representation of GLn(K ), and every simple
supercuspidal representation is isomorphic to πζ,χ,c for a uniquely determined
(ζ, χ, c) ∈ µq−1(K )× (k×)∨ × C× by [Imai and Tsushima 2018, Proposition 1.3].
The representation πζ,χ,c contains the m-simple stratum [I, 1, 0, ϕ−1

ζ,n] in the sense
of [Bushnell and Henniart 2014, Section 2.1].

Proposition 3.2. ε(πζ,χ,c, ψK )= (−1)n−1+ϵ0 f χ(n′) c.

Proof. This follows from [Bushnell and Henniart 1999, Section 6.1, Lemma 2 and
Section 6.3, Proposition 1]. □

4. Local Langlands correspondence

Our main theorem is the following.

Theorem 4.1. The representations πζ,χ,c and τζ,χ,c correspond via the local Lang-
lands correspondence.

To prove this theorem, we recall a characterization of the local Langlands cor-
respondence for epipelagic representations due to Bushnell–Henniart. Recall that
9 : K → C× is a nontrivial character. The following lemma is a special case of
[Deligne and Henniart 1981, Proposition 4.13].
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Lemma 4.2 [Bushnell and Henniart 2014, Lemma 2.3]. Let τ be an irreducible
smooth representation of WK such that sw(τ ) ≥ 1. Then, there exists γτ,9 ∈ K ×

such that
ε(χ ⊗ τ, s, 9)= χ(γτ,9)

−1ε(τ, s, 9)

for any tamely ramified character χ of WK . This property determines the coset
γτ,9U 1

K uniquely.

Definition 4.3. Let τ be an irreducible smooth representation of WK such that
sw(τ )≥ 1. We take γτ,9 as in Lemma 4.2. We put

rsw(τ,9)= γ−1
τ,9 ∈ K ×/U 1

K ,

which we call the refined Swan conductor of τ with respect to 9.

Remark 4.4. By (2-1), we have vK (rsw(τ, ψK ))= Sw(τ ) in Definition 4.3.

Lemma 4.5. Let π be an irreducible supercuspidal representation of GLn(K ) such
that sw(π)≥ 1.

(1) There exists γπ,9 ∈ K × such that

ε(χ ⊗π, s, 9)= χ(γπ,9)
−1ε(π, s, 9)

for any tamely ramified character χ of K ×. This property determines the coset
γπ,9U 1

K uniquely.

(2) Let [A,m, 0, α] be a simple stratum contained in π . Then we have γπ,9 ≡

detα mod U 1
K .

Proof. The first statement is [Bushnell and Henniart 1999, Theorem 1.4(i)]. The
second statement follows from [Bushnell and Henniart 1999, Remark 1.4]. □

Definition 4.6. Let π be an irreducible supercuspidal representation of GLn(K )
such that sw(π)≥ 1. We take γπ,9 as in Lemma 4.5. Then we put

rsw(π,9)= γ−1
π,9 ∈ K ×/U 1

K ,

which we call the refined Swan conductor of π with respect to 9.

Remark 4.7. We have vK (rsw(π, ψK ))= Sw(π) in Definition 4.6.

For an irreducible supercuspidal representation π of GLn(K ), let ωπ denote the
central character of π .

Proposition 4.8 [Bushnell and Henniart 2014, Proposition 2.3]. Let π be a sim-
ple supercuspidal representation of GLn(K ). The Langlands parameter for π is
characterized as the n-dimensional irreducible smooth representation τ of WK

satisfying

det τ = ωπ , rsw(τ, ψK )= rsw(π, ψK ), ε(τ, ψK )= ε(π,ψK ).
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We will show that τζ,χ,c and πζ,χ,c satisfy the conditions of Proposition 4.8 in
Propositions 8.6, 10.5, Lemma 10.7 and Proposition 11.6.

5. General facts on epsilon factors

In this section, we recall some general facts on epsilon factors.
For a finite separable extension L over K , we put 9L =9 ◦ TrL/K and let

λ(L/K , 9)=
ε(IndL/K 1, s, 9)
ε(1, s, 9L)

denote the Langlands constant which is independent of s, where 1 is the trivial
representation of WL (see [Bushnell and Henniart 2006, Section 30.4]).

Proposition 5.1. Let τ be a finite dimensional smooth representation of WK such
that τ |PK is irreducible and nontrivial. Let L be a tamely ramified finite extension
of K . Then we have

ε(τ |WL , 9L)= λ(L/K , 9)− dim τ δL/K (rsw(τ,9)) ε(τ,9)[L:K ].

Proof. This is proved by the same arguments as in [Bushnell and Henniart 2006,
Proposition 48.3]. □

Proposition 5.2. Let τ be a finite dimensional smooth representation of WK such
that τ |PK does not contain the trivial character.

(1) If φ is a tamely ramified character of WK , then rsw(τ ⊗φ,9)= rsw(τ,9).

(2) Let L be a tamely ramified finite extension of K . Then we have

rsw(τ |WL , 9L)= rsw(τ,9) mod U 1
L .

Proof. This is [Bushnell and Henniart 2006, Theorem 48.1(2), (3)]. □

For a nontrivial character ξ of K ×, the level of ξ means the least integer m ≥ 0
such that ξ is trivial on U m+1

K .

Proposition 5.3. Let ξ be a character of K × of level m ≥ 1. Assume that γ ∈ K ×

satisfies
ξ(1 + x)=9(γ x) for x ∈ p

[m/2]+1
K .

(1) We have rsw(ξ,9)= γ−1.

(2) We have

ε(ξ,9)= q [(m+1)/2]−(m+1)/2
∑

y∈U [(m+1)/2]

K /U [m/2]+1
K

ξ(γ y)−19(γ y).

Proof. Claim (1) follows from [Bushnell and Henniart 2006, Stability theorem 23.8].
Claim (2) follows from [Bushnell and Henniart 2006, Section 23.5, Lemma 1,
(23.6.2) and Proposition 23.6]. □
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For a finite Galois extension L of K , let ψL/K denote the Herbrand function
of L/K and Gal(L/K )i denote the lower numbering i-th ramification subgroup of
Gal(L/K ) for i ≥ 0 (see [Serre 1968, Chapter IV]). We use the following lemmas
to calculate the refined Swan conductor of a character of a Weil group.

Lemma 5.4. Let m be a positive integer dividing f . Let h be a positive integer that
is prime to p and less than pmvK (p)/(pm

− 1). Let L be a Galois extension of K
defined by x pm

− x = 1/ϖ h . Then we have

Gal(L/K )i =

{
Gal(L/K ) if i ≤ h,
{1} if i > h

and
ψL/K (v)=

{
v if v ≤ h,
pm(v− h)+ h if v > h.

Proof. Take an integer l such that lh ≡ 1 mod pm . Then we have

vL

(
1

x lϖ (lh−1)/pm

)
= 1.

Hence, for σ ∈ Gal(L/K ) and i ≥ 0, we have σ ∈ Gal(L/K )i if and only if

(5-1) i +1 ≤ vL

(
σ

(
1

x lϖ (lh−1)/pm

)
−

1
x lϖ (lh−1)/pm

)
= vL(σ (x)l − x l)+hl +1.

The right-hand side of (5-1) is h + 1 if σ ̸= 1. Hence the first claim follows. The
second claim follows from the first claim. □

Lemma 5.5. Let L be a totally ramified finite abelian extension of K . Let m ≥ 1.

(1) We have

NrL/K (U
ψL/K (m)
L )⊂ U m

K , NrL/K (U
ψL/K (m)+1
L )⊂ U m+1

K ,

ArtK (U m
K )⊂ Gal(L/K )ψL/K (m).

(2) We take α ∈ K and β ∈ L such that vK (α)= m and vL(β)= ψL/K (m). We put
P(z)= z p

− z for z ∈ k. Assume that

UψL/K (m)
L

NrL/K
//

pL ,β

��

U m
K

pK ,α

��

k P
// k

is commutative, where

pK ,α : U m
K → k, 1 +αx 7→ x̄,

pL ,β : UψL/K (m)
L → k, 1 +βx 7→ x̄ .
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Let ϖL be a uniformizer of L. Then we have

pL ,β

(
ArtK (1 +αx)(ϖL)

ϖL

)
= Trk/Fp(x̄)

for x ∈ OK .

Proof. The first claim follows from [Serre 1968, Chapter V, Section 3, Proposition 4
and Chapter XV, Section 2, Corollaire 3 of Théorème 1]. We note that our normal-
ization of the Artin reciprocity map is inverse to that in [Serre 1968, Chapter XIII,
Section 4]. Let x ∈ OK . By [Serre 1968, Chapter XV, Section 3, Proposition 4]
and the construction of the isomorphism of [Serre 1968, Chapter XV, Section 2,
Proposition 3], we have

pL ,β

(
ArtK (1 +αx)(ϖL)

ϖL

)
= zq

x − zx ,

where we take zx ∈ kac such that z p
x − zx = x̄ . Then we have the second claim, since

zq
x − zx = Trk/Fp(z

p
x − zx)= Trk/Fp(x̄)

for such zx . □

6. Stiefel–Whitney class and discriminant

6A. Stiefel–Whitney class. Let R(WK ,R) be the Grothendieck group of finite-
dimensional representations of WK over R with finite images. For V ∈ R(WK ,R),
we put VC = V ⊗R C and define ε(VC, 9) by the additivity using the epsilon
factors in Section 2A. For V ∈ R(WK ,R), we define the i-th Stiefel–Whitney class
wi (V ) ∈ H i (G K ,Z/2Z) for i ≥ 0 as in [Deligne 1976, (1.3)]. Let

cl : H 2(G K ,Z/2Z)→ H 2(G K , K ac,×)−→∼ Q/Z,

where the first map is induced by Z/2Z → K ac,×, m 7→ (−1)m and the second
isomorphism is the invariant map.

Theorem 6.1 [Deligne 1976, Théorème 1.5]. Assume that V ∈ R(WK ,R) has
dimension 0 and determinant 1. Then we have

ε(VC, 9)= exp
(
2π

√
−1 cl(w2(V ))

)
.

In particular, we have ε(VC, 9)= 1 if ch K = 2.

6B. Discriminant. Let L be a finite separable extension of K . We put

δL/K = det(IndL/K 1).
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6B1. Multiplicative discriminant. Assume ch K ̸= 2. We define dL/K ∈ K ×/(K ×)2

as the discriminant of the quadratic form TrL/K (x2) on L . For a ∈ K ×/(K ×)2, let
{a} ∈ H 1(G K ,Z/2Z) and κa ∈ Hom(WK , {±1}) be the elements corresponding to
a under the natural isomorphisms

K ×/(K ×)2 ≃ H 1(G K ,Z/2Z)≃ Hom(WK , {±1}).

We have

(6-1) δL/K = κdL/K

by [Bourbaki 1981, Chapter V, Section 10, Example 2(6)] (see [Serre 1984, Sec-
tion 1.4]). For a, b ∈ K ×/(K ×)2, we put

{a, b} = {a} ∪ {b} ∈ H 2(G K ,Z/2Z).

Proposition 6.2 [Abbes and Saito 2010, Proposition 6.5]. Let m be the extension
degree of L over K . We take a generator a of L over K . Let f (x) ∈ K [x] be the
minimal polynomial of a. We put D = f ′(a) ∈ L. Then we have

dL/K = (−1)(
m
2)NrL/K (D) ∈ K ×/(K ×)2,

w2(IndL/K κD)=

(m
4

)
{−1,−1} + {dL/K , 2} ∈ H 2(G K ,Z/2Z).

6B2. Additive discriminant. We put Pm(x) = xm
− x for any positive integer m.

We assume that ch K = 2.

Definition 6.3 [Bergé and Martinet 1985, Définition 2.7]. Let m be the extension
degree of L over K . Let f (x) ∈ K [x] be the minimal polynomial of a generator
of L over K . We have a decomposition f (x) =

∏
1≤i≤m(x − ai ) over the Galois

closure of L over K . We put

d+

L/K =

∑
1≤i< j≤m

ai a j

(ai + a j )2
∈ K/P2(K ),

which we call the additive discriminant of L over K .

Theorem 6.4 [Bergé and Martinet 1985, Théorème 2.7]. Let L ′ be the subextension
of K ac over K corresponding to Ker δL/K . Then the extension L ′ over K corresponds
to d+

L/K ∈ K/P2(K ) by the Artin–Schreier theory.

7. Product formula of Deligne–Laumon

We recall a statement of the product formula of Deligne–Laumon. In this paper, we
need only the rank one case, which is proved in [Deligne 1973, Proposition 10.12.1],
but we follow the notation from [Laumon 1987].
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7A. Local factor. We consider a triple (T,F, ω) which consists of the following.

• The affine scheme T = SpecOKT where OKT is the ring of integers in a local
field KT of characteristic p whose residue field contains k.

• A constructible Qℓ-sheaf F on T .

• A nonzero meromorphic 1-form ω on T .

Then we can associate εψ0(T,F, ω)∈C× to the triple (T,F, ω) as in [Laumon 1987,
Théorème 3.1.5.4] using ι.

Assume that KT = k((t)). Let η= Spec k((t)) be the generic point of T with the
natural inclusion j : η→ T . We define a character 9ω : k((t))→ C× by

9ω(a)= (ψ0 ◦ Trk/Fp)(Res(aω)) for a ∈ k((t)).

Let l(9ω) be the level of 9ω in the sense of [Bushnell and Henniart 2006, Def-
inition 1.7]. We fix an algebraic closure k((t))ac of k((t)). For a rank 1 smooth
Qℓ-sheaf V on η corresponding to a character χ : Gk((t)) → C× via ι, we have

(7-1) εψ0(T, j∗ V, ω)= q−l(9ω)/2ε(χω−1/2, 9ω)

by [Laumon 1987, Théorème 3.1.5.4(v); Tate 1979, (3.6.2)] and [Bushnell and
Henniart 2006, Proposition 23.1(3)].

7B. Product formula. Let X be a geometrically connected proper smooth curve
over k of genus g. Let F be a constructible Qℓ-sheaf on X . Let Frobq ∈ Gk be the
geometric Frobenius element. We put

ε(X,F)= ι

( 2∏
i=0

det(− Frobq; H i (X ⊗k kac,F))(−1)i−1
)
.

Let rk(F) be the generic rank of F .

Theorem 7.1 [Laumon 1987, Théorème 3.2.1.1]. Let ω be a nonzero meromorphic
1-form on X. Then we have

ε(X,F)= q rk(F)(1−g)
∏

x∈|X |

εψ0(X(x),F |X(x), ω|X(x)),

where |X | is the set of closed points of X , and X(x) is the completion of X at x.

8. Determinant

In this section, we study det τψ0 to show the equality ωπζ,χ,c =det τζ,χ,c of the central
character and the determinant. We use the product formula of Deligne–Laumon to
study det τψ0(Fr(1)), where Fr(1) is defined in (2-2).

Lemma 8.1. We have Qab
= Q/Q0.
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Proof. By Lemma 2.4, we have Qab
= (Q/F)ab. For (a, b, c) ∈ Q, let (a, b) be the

image of (a, b, c) in Q/F . Then we have

(a, 0)(a, b)(a, 0)−1(a, b)−1
= (1, (a − 1)b).

Hence, we obtain the claim. □

We view θ0 defined in (2-8) as a character of Q by (a, b, c) 7→ θ0(a). Recall
that τ 0 is the representation of Q defined in (2-14).

Lemma 8.2. We have det τ 0
= θ0.

Proof. By Lemma 8.1, it suffices to show det τ 0
= θ0 on µpe+1(kac). By Lemma 2.2

and Lemma 2.5, we have

det τ 0(a)=

∏
χ∈µpe+1(kac)∨\{1}

χ(a)

for a ∈ µpe+1(kac). Hence, the claim follows. □

For a ∈ k×, let
(a

k

)
denote the quadratic residue symbol of k defined by(

a
k

)
=

{
1 if a is square in k,

−1 if a is not square in k.

Lemma 8.3. Let m be a positive integer that is prime to p. We take an m-th root
ϖ 1/m of ϖ , and put L = K (ϖ 1/m).

(1) If m is odd, then δL/K is the unramified character satisfying δL/K (ϖ)=
( q

m

)
.

(2) If m is even, we have δL/K (ϖ)=
(

−1
q

)m/2 and δL/K (x)=
( x̄

k

)
for x ∈ O×

K .

Proof. These are proved in [Bushnell and Fröhlich 1983, (10.1.6)] if ch K = 0.
Actually, the same proof works also in the positive characteristic case. □

Lemma 8.4. Let m,m′ be positive integers that are prime to p. We take an m-th
root ϖ 1/m of ϖ , and put L = K (ϖ 1/m). Let ψ ′

K : K → C× be a character such
that ψ ′

K (x)= ψ0(Trk/Fp(m
′ x̄)) for x ∈ OK . Then we have

λ(L/K , ψ ′

K )=

{( q
m

)
if m is odd,

−
(
−ϵ(p)

( 2mm′

p

)(
−1
p

)(m/2)−1) f if m is even.

Proof. If m is odd, we have

λ(L/K , ψ ′

K )= ε(δL/K , ψ
′

K )=

(
q
m

)
by [Henniart 1984, Proposition 2] and Lemma 8.3(1).

Assume that m is even. Note that p ̸= 2 in this case. Then we have

(8-1) dL/K = (−1)m/2 NrL/K (m(ϖ 1/m)m−1)= −(−1)m/2ϖ ∈ K ×/(K ×)2
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by Proposition 6.2. For χ ∈ (F×
q )

∨ and ψ ∈ F∨
q \ {1}, we set

τ(χ,ψ)= −

∑
x∈F×

q

χ−1(x)ψ(x)

and have the Hasse–Davenport formula

(8-2) τ(χ ◦ NrFqn /Fq , ψ ◦ TrFqn /Fq )= τ(χ,ψ)n.

Let
( , )K : K ×/(K ×)2 × K ×/(K ×)2 → {±1}

denote the Hilbert symbol. By (6-1) and (8-1), we have

δL/K (x)= κdL/K (x)= (x, dL/K )K = (x,ϖ)K =

(
x̄
k

)
for x ∈ O×

K . By [Bushnell and Henniart 2006, Theorem 23.5], we have

ε(δL/K , ψ
′

K )= q−1/2
∑

x∈O×

K/U 1
K

δL/K (x)ψ ′

K (x)= q−1/2
∑
x∈k×

( x
k

)
ψ0(Trk/Fp(m

′x)).

By applying (8-2) to the extension k over Fp and using (2-16), we have

q−1/2
∑
x∈k×

(
x
k

)
ψ0(Trk/Fp(m

′x))= −

(
−ϵ(p)

(
m ′

p

)) f
.

Hence, we have

λ(L/K , ψ ′

K )= ε(δL/K , ψ
′

K )
(

m
q

)(
−1
q

)(m/2)−1
(dL/K , 2)K

= −

(
−ϵ(p)

(
2mm ′

p

)(
−1
p

)(m/2)−1) f

by [Saito 1995, Theorem II.2B] and [Tate 1979, (3.6.1)]. □

Lemma 8.5. We have

det τψ0(Fr(1))=

{(
−ϵ(p)

( 2
p

)) f q pe/2 if p ̸= 2,
q2e−1

if p = 2.

Proof. Let x be the standard coordinate of A1
k . Let j be the open immersion A1

k ↪→P1
k .

We put t = 1/x . As in Section 7A, we put T = Spec k[[t]] and η = Spec k((t)) with
the open immersion j : η→ T .

We consider k((s)) as a subfield of k((t)) by s = t pe
+1. Let ξ̃ : Gk((s)) → C× be

the Artin–Schreier character associated to y p
− y = 1/s and ψ0, which means the

composite of
Gk((s)) → Fp, σ 7→ σ(y)− y

and ψ−1
0 where y is an element of k((t))ac such that y p

− y = 1/s.
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We use the notation in Lemma 5.5. Note that ψk((s))(y)/k((s))(1)= 1 by Lemma 5.4.
We can check that

Nrk((s))(y)/k((s))(1 + y−1x)= 1 + s(x p
− x)

for x ∈ k. For x ∈ Ok((s)), we have

ξ̃ (1 + sx)= ψ−1
0

(
Artk((s))(1 + sx)(y)− y

)
= ψ−1

0

(
−pk((s))(y),y−1

(
Artk((s))(1 + sx)(y−1)

y−1

))
= ψ0(Trk/Fp(x̄)),

where we use Lemma 5.5 with α = s, β = ϖk((s)) = y−1. Hence, we have
rsw(ξ̃ , 9s−1ds)= s by Proposition 5.3(1).

Let ξ : Gk((t))→ C× be the restriction of ξ̃ to Gk((t)). Then ξ is the Artin–Schreier
character associated to y p

− y = 1/t pe
+1 and ψ0.

Let Vξ be the smooth Qℓ-sheaf on η corresponding to ξ via ι. Then we have
Vξ ≃ Lψ0 |η by [Deligne 1977, Définition 1.7 in Sommes trig.]. Let the notation be
as in Lemma 2.2. We write ω for the meromorphic 1-form dx on P1

k . By [Laumon
1987, Théorème 3.1.5.4(v)], we have

εψ0

(
X(x), ( j! π∗Lψ0)|X(x), ω|X(x)

)
= 1

for any x ∈ |A1
k | with X = P1

k in the notation of Theorem 7.1. We simply write ω
for ω|T . Then we have

det τψ0(Fr(1))= (−1)pe
ε(P1

k, j! π∗Lψ0)= (−1)pqεψ0(T, j! Vξ , ω)

by Theorem 7.1. Since ξ is a ramified character, we have j! Vξ ≃ j∗Vξ . Hence,

εψ0(T, j! Vξ , ω)= εψ0(T, j∗ Vξ , ω)= q−1ε(ξω−1/2, 9ω)

by (7-1). Since ω = −t−2dt on T , we have

ε(ξω−1/2, 9ω)= (ξω−1/2)(−t−1) ε(ξω−1/2, 9t−1dt)

by [Bushnell and Henniart 2006, 23.5 Lemma 1]. We have

ξ(−t−1)= ξ(−t pe
)= ξ(−t)pe

= 1,

since Nrk((t))(y)/k((t))(y)= 1/t pe
+1. Hence we obtain

(ξω−1/2)(−t−1) ε(ξω−1/2, 9t−1dt)= q pe/2ε(ξ,9t−1dt)

by Lemma 4.2, since rsw(ξ,9t−1dt)=s by rsw(ξ̃ , 9s−1ds)=s and Proposition 5.2(2).
By Proposition 5.3(2), we have ε(ξ̃ , 9s−1ds) = ξ̃ (s) = 1, since the level of ξ̃ is 1
and Nrk((s))(y)/k((s))(y−1)= s. Hence, we obtain

ε(ξ,9t−1dt)= λ
(
k((t))/k((s)),9s−1ds

)−1
δk((t))/k((s))(rsw(ξ̃ , 9s−1ds))
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by Proposition 5.1. By Lemmas 8.4 and 8.3, we respectively have

λ
(
k((t))/k((s)),9s−1ds

)
=

{
−

(
−ϵ(p)

( 2
p

)(
−1
p

)(pe
−1)/2) f if p ̸= 2,( q

pe+1

)
if p = 2

and

δk((t))/k((s))(rsw(ξ̃ , 9s−1ds))=

{(
−1
q

)(pe
+1)/2 if p ̸= 2,( q

pe+1

)
if p = 2.

The claim follows from the above equalities. □

We simply write τζ for τζ,1,1.

Proposition 8.6. We have ωπζ,χ,c = det τζ,χ,c.

Proof. By (2-13) and [Gallagher 1965, (1)], we have

(8-3) det τζ,χ,c = δ
pe

Eζ /K (det τn,ζ,χ,c)|K ×,

since δEζ /K = det(IndEζ /K 1) and the transfer homomorphism W ab
K → W ab

Eζ is
compatible with the natural inclusion K ×

→ E×

ζ under the Artin reciprocity maps.
Hence, we may assume χ = 1 and c = 1 by twist (see (2-13)). Then it suffices to
show det τζ = 1. We see that det τζ is unramified by (2-9), Lemmas 2.5, 8.2, 8.3
and equation (8-3).

If p and n′ are odd, then we have

det τζ (ϖ)=

(
q
n′

)pe(
−ϵ(p)

(
2
p

)
p pe/2

)f n′((
−ϵ(p)

(
−2n′

p

))n
p−

1
2

)f n′ pe

=

((
p
n′

)(
n′

p

)
ϵ(p)pen−1

)f n′

=

((
p
n′

)(
n′

p

)
(−1)

1
2 (p−1) 1

2 (n
′
−1)

)f n′

= 1

by (8-3), Lemmas 8.3(1) and 8.5. We see that det τζ (ϖ)= 1 similarly also in the
other case using (8-3), Lemmas 8.3 and 8.5. □

9. Imprimitive field

In this section, we construct a field extension T u
ζ of Eζ such that τn,ζ |WT u

ζ
is an

induction of a character. We call T u
ζ an imprimitive field of τn,ζ , since τn,ζ |WT u

ζ
is

not primitive.

9A. Construction of character. Here we construct subgroups R ⊂ Q′
⊂ Q ⋊Z

and a character φn of R. Later (see Section 9B) we will see that τn|Q′ ≃ IndQ′

R φn .
Our imprimitive field T u

ζ will correspond to the subgroup Q′
⊂ Q ⋊Z.

Let e0 be the positive integer such that e0 ∈ 2N and e/e0 is odd.

Lemma 9.1. Assume p ̸= 2. Then we have Tr τψ0(Fr(2e0))= pe0 .
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Proof. For a ∈ kac and b ∈ Fp2e0 such that a p
− a = bpe

+1, we have that

(9-1) a p2e0
− a = TrF

p2e0 /Fp(b
pe

+1).

By (9-1) and the Lefschetz trace formula, we see that

Tr τψ0(Fr(2e0))= −

∑
b∈F

p2e0

(ψ0 ◦ TrFpe0 /Fp)(TrF
p2e0 /Fpe0 (b

pe0+1))

= −1 − (pe0 + 1)
∑

x∈F×

pe0

(ψ0 ◦ TrFpe0 /Fp)(x)= pe0

using (pe
+ 1, p2e0 − 1)= pe0 + 1. □

Corollary 9.2. Assume p ̸= 2. Then we have Tr τn
(
Fr(2e0)

)
= (−1)ne0(p−1)/2.

Proof. This follows from (2-9) and Lemma 9.1. □

Let n0 be the biggest integer such that 2n0 divides pe0 + 1. We take r ∈ kac such
that r2n0

= −1. We define a subgroup R0 of Q0 by

R0 = {(1, b, c) ∈ Q0 | bpe
− rb = 0}.

Lemma 9.3. (1) If p ̸= 2, then the action of 2e0Z ⊂ Z on Q stabilizes R0.

(2) If p = 2, then the action of g on Q ⋊Z by conjugation stabilizes R0.

Proof. The first claim follows from r p2e0−1
= 1. We can see the second claim easily

using (2-19). □

We put

Q′
=

{
Q0 ⋊ (2e0Z) if p ̸= 2,
Q0 ⋊Z if p = 2,

R =

{
R0 ⋊ (2e0Z) if p ̸= 2,
R0 · ⟨g⟩ if p = 2

as subgroups of Q ⋊ Z, which are well-defined by Lemma 9.3. We are going
to construct a character φn of R in this subsection. Then, we will show that
τn|Q′ ≃ IndQ′

R φn in the next subsection.
First, we consider the case where p is odd. We define a homomorphism φn :

R → C× by

(9-2)
φn

(
((1, b, c), 0)

)
= ψ0

(
c −

1
2

e−1∑
i=0

(rb2)pi
)

for (1, b, c) ∈ R0,

φn(Fr(2e0))= (−1)ne0((p−1)/2).

Then φn extends the character ψ0 of F .
Next, we consider the case where p = 2. We define an abelian group R′

0 as

R′

0 = {(b, c) | b ∈ F2, c ∈ F22e , c2e
− c = b},
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with the multiplication given by

(b1, c1) · (b2, c2)= (b1 + b2, c1 + c2 + b1 b2).

We define φ : R0 → R′

0 by

φ((1, b, c))=

(
TrF2e/F2(b), c +

∑
0≤i< j≤e−1

b2i
+2 j

)
for (1, b, c) ∈ R0,

which is a homomorphism by

(9-3) TrF2e/F2(b)TrF2e/F2(b
′)= TrF2e/F2(bb′)+

∑
0≤i< j≤e−1

(b2i
b′2 j

+ b′2i
b2 j
)

for b, b′
∈ F2e . Let b0 ∈ F22e be as before Lemma 2.8. Let F ′ be the kernel of the

homomorphism
F2e → F2, c 7→ TrF2e/F2((b0 + b2e

0 ) c).

We put R′′

0 = R′

0/F
′, where we consider F ′ as a subgroup of R′

0 by c 7→ (0, c).
Then R′′

0 is a cyclic group of order 4. We write ḡ(b, c) for the image of (b, c) ∈ R′

0
under the projection R′

0 → R′′

0 . Let φ′
: R0 → R′′

0 be the composite of φ and the
projection R′

0 → R′′

0 . We put

(9-4) s =

e−1∑
i=0

b2i

0 , t = TrF22e/F2e (b0).

We have s2
+ s = t and TrF2e/F2(t)= TrF22e/F2(b0)= 1. We have(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

)
∈ R′

0,

which is of order 4. The element ḡ
(
1, s2

+
∑

0≤i< j≤e−1t2i
+2 j )

is a generator of R′′

0 ,
because

2ḡ
(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

)
= ḡ(0, 1) ̸= 0.

Let ψ̃0 : R′′

0 → C× be the faithful character satisfying

ψ̃0

(
ḡ
(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

))
= −

√
−1.

We define a homomorphism φn : R → C× by

(9-5)
φn

(
((1, b, c), 0)

)
= (ψ̃0 ◦φ′)((1, b, c)) for (1, b, c) ∈ R0,

φn(g)= (−1)
1
8 n(n−2)−1+

√
−1

√
2

,

which is a character of order 8. Then φn extends the character ψ0 of F .
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9B. Induction of character.

Lemma 9.4. We have τn|Q′ ≃ IndQ′

R φn .

Proof. We write ψ̃n for φn|R0 . We know that τn|Q0
∼= IndQ0

R0
ψ̃n by Proposition 1.2,

since R0 is an abelian group such that 2 dimFp(R0/F)= dimFp(Q0/F).
First, we consider the case where p is odd. The claim for general f follows

from the claim for f = 1 by the restriction. Hence, we may assume that f = 1.
If ψ̃ ∈ R∨

0 satisfies ψ̃ |F =ψ0, then we have τn|Q0
∼= IndQ0

R0
ψ̃ by Proposition 1.2,

and obtain an injective homomorphism ψ̃ ↪→ τn|R0 as representations of R0 by
Frobenius reciprocity. Hence we have a decomposition

(9-6) τn|R0 =

⊕
ψ̃∈R∨

0 , ψ̃ |F =ψ0

ψ̃,

since the number of ψ̃ ∈ R∨

0 such that ψ̃ |F = ψ0 is pe.
We put

R0 = {b ∈ kac
| bpe

− rb = 0}.

The ψ̃n-component in (9-6) is the unique component that is stable by the action of
((1, 0, 0), 2e0), since the homomorphism

R0 → R0, b 7→ bp2e0
− b

is an isomorphism. Hence, we have a nontrivial homomorphism φn → τn|R by
Corollary 9.2. Then we have a nontrivial homomorphism IndQ′

R φn → τn|Q′ by
Frobenius reciprocity. The representation τn|Q′ is irreducible by Corollary 2.6.
Then we obtain the claim, since [Q′

: R] = pe.
Next we consider the case where p = 2. Then it suffices to show that

Tr(IndQ′

R φn)(g−1)= −(−1)
1
8 n(n−2)

√
2

by (2-9) and Proposition 2.9. We have a decomposition

(9-7) (IndQ′

R φn)|R0 =

⊕
φ∈R∨

0 , φ|F =ψ0

φ.

Let ψ̃ ′
n be the twist of ψ̃n by the character

R0 → Q×

ℓ , (1, b, c) 7→ ψ0(TrF2e/F2(b)).

Then only the ψ̃n-component and the ψ̃ ′
n-component in (9-6) are stable by the action

of ((1, b0, c0), 1), since the image of the homomorphism

F2e → F2e , b 7→ b2
− b
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is equal to Ker TrF2e/F2 . The action of Fr(e) permutes the ψ̃n-component and the
ψ̃ ′

n-component. Hence, g acts on the ψ̃ ′
n-component by φn(g) times

φn(Fr(e)−1 g Fr(e)g−1)=φn

(((
1, t, c0+c2e

0 +

e−1∑
i=0

(b2e
+1

0 +b2e+1

0 )2
i
)
, 0

))
=

√
−1.

Hence we have

Tr(IndQ′

R φn)(g−1)= (1 −
√

−1) φn(g−1)= −(−1)
1
8 n(n−2)

√
2. □

We use the notations from equation (2-10). We set Tζ = Eζ (αζ ), Mζ = Tζ (βζ )
and Nζ = Mζ (γζ ). Let f0 be the positive integer such that f0 ∈ 2N and f/ f0 is odd.
We put

N =

{
2e0/ f0 if p ̸= 2 and f0|2e0,

1, otherwise.

Let K ur be the maximal unramified extension of K in K ac. Let K u
⊂ K ur be the

unramified extension of degree N over K . Let kN be the residue field of K u. For
a finite field extension L of K in K ac, we write Lu for the composite field of L
and K u in K ac. For a ∈ kac, we write â ∈OK ur for the Teichmüller lift of a. We put

(9-8) δ′ζ =

{
β

pe

ζ − r̂βζ if p ̸= 2,
β2e

ζ −βζ +
∑e−1

i=0 b̂2i

0 if p = 2,
ϵ1 =

{
0 if p ̸= 2,
1 if p = 2.

Then we have
δ
′pe

ζ − r̂−1δ′ζ ≡ −α−1
ζ + ϵ1 mod pT u

ζ (δ
′

ζ )
.

We take δζ ∈ T u
ζ (δ

′

ζ ) such that

(9-9) δ
pe

ζ − r̂−1δζ = −α−1
ζ + ϵ1, δζ ≡ δ′ζ mod pT u

ζ (δ
′

ζ )
.

We put M ′u
ζ =T u

ζ (δζ ). The image of2ζ |WM ′u
ζ

is contained in R. Let ξn,ζ :WM ′u
ζ

→C×

be the composite of the restrictions2ζ |WM ′u
ζ

and φn|R . By the local class field theory,

we regard ξn,ζ as a character of M ′u
ζ

×.

Proposition 9.5. We have τn,ζ |WT u
ζ

≃ IndM ′u
ζ /T u

ζ
ξn,ζ .

Proof. This follows from Lemma 9.4. □

Remark 9.6. Our imprimitive field is different from that in [Bushnell and Henniart
2014, Section 5.1]. In our case, T u

ζ need not be normal over K . This choice is
technically important in our proof of the main result.

9C. Study of character. Here we study the character ξn,ζ in detail.
Assume that ch K = p and f = 1 in this subsection. We will use results in this

subsection to compute the epsilon factor of ξn,ζ later after a reduction to the case
where ch K = p and f = 1. By (2-10), (9-8), (9-9) and ch K = p, we have that
δζ = δ′ζ .
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9C1. Odd case. Assume p ̸= 2. We put

(9-10) θζ = γζ +
1
2

e−1∑
i=0

(rβ2
ζ )

pi
.

Since r pe0+1
= −1 and (pe

+ 1)/(pe0 + 1) is an odd integer, we have r pe
+1

= −1.
Then we have

(9-11) θ
p
ζ − θζ = β

pe
+1

ζ −
1
2r
(β

2pe

ζ + r2β2
ζ )

= −
1
2r
(β

2pe

ζ − 2rβ pe
+1

ζ + r2β2
ζ )= −

1
2r
δ2
ζ .

We put N ′u
ζ = M ′u

ζ (θζ ). Let ξ ′

n,ζ be the twist of ξn,ζ by the unramified character

WM ′u
ζ

→ C×, σ 7→
√

−1
nnσ (p−1)/2

,

where nσ is as before (2-12).

Lemma 9.7. If p ̸= 2, then ξ ′

n,ζ factors through Gal(N ′u
ζ /M ′u

ζ ).

Proof. Let σ ∈ Ker ξ ′

n,ζ . Recall that aσ , bσ , cσ are defined in (2-11). Then we have
(āσ , b̄σ , c̄σ ) ∈ R0 and

c̄σ −
1
2

e−1∑
i=0

(r b̄2
σ )

pi
= 0

by (9-2). Hence, we see that

σ(θζ )− θζ = cσ −

e−1∑
i=0

(rbσ (βζ + bσ ))pi
+

1
2

e−1∑
i=0

(
r((βζ + bσ )2 −β2

ζ )
)pi

= cσ −
1
2

e−1∑
i=0

(rb2
σ )

pi
≡ 0 mod pN ′u

ζ

by (2-11). Therefore, we obtain the claim by σ(δζ )= δζ and (9-11). □

9C2. Even case. Assume p = 2. Let ξ ′

n,ζ be the twist of ξn,ζ by the character

(9-12) WM ′u
ζ

→ C×, σ 7→

(
(−1)

1
8 n(n−2)−1+

√
−1

√
2

)nσ
.

We take b1, b2 ∈ kac such that

(9-13) b2
1 − b1 = s, b2

2 − b2 = t
(

b2
1 +

e−1∑
i=0

(b1 s)2
i
)
.

We put

(9-14) ηζ =

e−1∑
i=0

β2i

ζ + b1, γ ′

ζ = γζ +

∑
0≤i< j≤e−1

β2i
+2 j

ζ ,
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and

(9-15) θ ′

ζ =

e−1∑
i=0

(tγ ′

ζ )
2i

+

∑
0≤i≤ j≤e−2

t2i
(δζηζ )

2 j

+

∑
0≤ j<i≤e−1

t2i
(b1δζ + sηζ )2

j
+ b2

1ηζ + b2.

Lemma 9.8. We have η2
ζ − ηζ = δζ and θ ′2

ζ − θ ′

ζ = (δζηζ )
2e−1

.

Proof. We can check the first claim easily. We show the second claim. We use Pm

in Section 6B2. We have

(9-16) P2(γ
′

ζ )= (β2e

ζ −βζ )

e−1∑
i=0

β2i

ζ +β2
ζ = (δζ − s)(ηζ − b1)+β

2
ζ .

Hence, we have

(9-17) P2e(γ ′

ζ )=

e−1∑
i=0

((δζ − s)(ηζ − b1))
2i

+ (ηζ − b1)
2.

By b4
1 + b1 = s2

+ s = t and η2
ζ − ηζ = δζ , we have

(b2
1ηζ )

2
+b2

1ηζ = tη2
ζ +b1η

2
ζ +b2

1ηζ = tη2
ζ +b1(η

2
ζ +ηζ )+sηζ = tη2

ζ +b1δζ +sηζ .

Hence, by using
∑e−1

i=1 t2i
= 1 − t and t ∈ F2e , we have

θ ′2
ζ − θ ′

ζ = t P2e(γ ′

ζ )+ t
e−1∑
i=0

(δζηζ + b1δζ + sηζ )2
i
+ (δζηζ )

2e−1
+ tη2

ζ + b2
2 − b2

= t
(e−1∑

i=0

(b1 s)2
i
+ η2

ζ + b2
1

)
+ (δζηζ )

2e−1
+ tη2

ζ + b2
2 − b2 = (δζηζ )

2e−1
,

where we use (9-17) at the second equality and (9-13) at the third one. □

We take θζ ∈ K ac such that θ ′

ζ = θ2e−1

ζ . Then we have θ2
ζ − θζ = δζηζ . We put

N ′u
ζ = M ′u

ζ (ηζ , θζ ), which is a cyclic extension of M ′u
ζ of order 4 by Lemma 9.8.

Lemma 9.9. The character ξ ′

n,ζ factors through Gal(N ′u
ζ /M ′u

ζ ).

Proof. Let σ ∈ Ker ξ ′

n,ζ . We take σ1, σ2 ∈ Ker ξ ′

n,ζ such that σ = σ1σ
−nσ
2 , σ1 ∈ IM ′u

ζ

and2ζ (σ2)= ((1, b0, c0),−1). Then we have (āσ1, b̄σ1, c̄σ1)∈ R0, TrF2e/F2(b̄σ1)=0
and

(9-18) TrF2e/F2

(
t
(

c̄σ1 +

∑
0≤i< j≤e−1

b̄2i
+2 j

σ1

))
= 0

by (9-5). It suffices to show that σi (ηζ )= ηζ and σi (θ
′

ζ )= θ ′

ζ for i = 1, 2.
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We have

σ1(ηζ )− ηζ ≡

e−1∑
i=0

b2i

σ1
≡ 0 mod pN ′u

ζ
,

σ2(ηζ )− ηζ ≡

e−1∑
i=0

b2i

0 + b2
1 − b1 ≡ 0 mod pN ′u

ζ

by TrF2e/F2(b̄σ1)= 0 and b2
1 − b1 = s. By Lemma 9.8, we have

σi (ηζ )− ηζ ∈ F2 for i = 1, 2.

Hence, we have σi (ηζ )= ηζ for i = 1, 2. We have

σ1(θ
′

ζ )− θ
′

ζ =

e−1∑
i=0

(
t (σ1(γ

′

ζ )− γ
′

ζ )

)2i

.

Further, we have

σ1(γ
′

ζ )− γ
′

ζ ≡ cσ1 +

e−1∑
i=0

(bσ1)
2i+1

+

e−1∑
i=0

b2i

σ1

e−1∑
i=0

β2i

ζ +

∑
0≤i< j≤e−1

b2i
+2 j

σ1

≡ cσ1 +

∑
0≤i< j≤e−1

b2i
+2 j

σ1
mod pN ′u

ζ
,

where we use (2-11) and b̄σ1 ∈ F2e at the first equality, and use TrF2e/F2(b̄σ1) = 0
at the second one. This implies σ1(θ

′

ζ ) ≡ θ ′

ζ mod pN ′u
ζ

by (9-18). By a similar
argument as above using Lemma 9.8, we obtain σ1(θ

′

ζ )= θ ′

ζ .
It remains to show σ2(θ

′

ζ )= θ ′

ζ . Using (9-16) and TrF2e/F2(t)= 1, we see that

(9-19)
e−1∑
i=0

(tγ ′

ζ )
2i

= γ ′

ζ +

∑
1≤i≤ j≤e−1

t2 j
β2i

ζ +

∑
0≤i< j≤e−1

t2 j
((δζ − s)(ηζ − b1))

2i
.

We put
γ ′′

ζ = γ ′

ζ +

∑
1≤i≤ j≤e−1

t2 j
β2i

ζ .

By c2
0 + c0 = b2e

+1
0 and t = b0 + b2e

0 (see (2-18), (9-4)), we have

σ2(γζ )− γζ ≡ c0 +

e−1∑
i=0

(b2e

0 (βζ + b0))
2i

≡ c2e

0 +

e−1∑
i=0

((b0 + t) βζ )2
i

mod pN ′u
ζ
.

Then we have

σ2(γ
′

ζ )− γ
′

ζ ≡ c2e

0 + s(ηζ − b1)+

e−1∑
i=0

(tβζ )2
i
+

∑
0≤i< j≤e−1

b2i
+2 j

0 mod pN ′u
ζ
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by (9-4) and (9-14). Hence, we have

σ2(γ
′′

ζ )− γ
′′

ζ ≡ σ2(γ
′

ζ )− γ
′

ζ +

∑
1≤i≤ j≤e−1

t2 j+1
(βζ + b0)

2i
−

∑
1≤i≤ j≤e−1

t2 j
β2i

ζ

≡ σ2(γ
′

ζ )− γ
′

ζ + t (ηζ − b1)+

e−1∑
i=0

(tβζ )2
i
+

∑
1≤i< j≤e

b2i

0 t2 j

≡ c2e

0 + s2(ηζ − b1)+
∑

0≤i< j≤e−1

b2i
+2 j

0 +

∑
1≤i< j≤e

b2i

0 t2 j
mod pN ′u

ζ
,

where we use (9-14) and t ∈ F2e at the second equality and s2
+ s = t at the last

equality. We can check that

c2e

0 +

∑
0≤i< j≤e−1

b2i
+2 j

0 +

∑
1≤i< j≤e

b2i

0 t2 j
= st

by (2-17), (9-4) and TrF22e/F2(b0)= 1. As a result, we obtain

σ2(γ
′′

ζ )− γ
′′

ζ ≡ s2ηζ + b1 s2
+ st mod pN ′u

ζ
.

Hence, by (9-15) and (9-19), we have

σ2(θ
′

ζ )− θ
′

ζ ≡

2e−1
+2e−2∑

i=0

di η
i
ζ mod pN ′u

ζ

for some di ∈ kac. We have

d0 = b1 s2
+ st + t

e−1∑
j=1

(b1 s)2
j
+ b1 s

e−1∑
l=1

t2l
+ b2

2 − b2 = 0.

This implies σ2(θ
′

ζ )= θ ′

ζ , since we know that σ2(θ
′

ζ )− θ
′

ζ ∈ F2 by Lemma 9.8. □

10. Refined Swan conductor

Let K̃ ⊂ K ur be the unramified extension of K u generated by µp4pe−1(K ur). For a
finite field extension L of K in K ac, we write L̃ for the composite field of L and K̃
in K ac. We write M̃ ′

ζ for M̃ ′u
ζ . Then Ñζ is a Galois extension of M̃ ′

ζ . By equations
(9-8) and (9-9), we can take β ′

ζ ∈ M̃ζ such that

(10-1) β
′pe

ζ − r̂β ′

ζ = δζ , β ′

ζ ≡ βζ mod pM̃ζ
,

since there is x ∈ F24e such that x2e
− x =

∑e−1
i=0 b2i

0 if p = 2. Then we have
M̃ζ = M̃ ′

ζ (β
′

ζ ) by Krasner’s lemma.

Lemma 10.1. (1) We have

(10-2) ψÑζ /M̃ ′

ζ
(v)=


v if v ≤ 1,
pe(v− 1)+ 1 if 1< v ≤ 2,
pe+1(v− 2)+ pe

+ 1 if 2< v.
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(2) We have

Gal(Ñζ/M̃ ′

ζ )i =


Gal(Ñζ/M̃ ′

ζ ) if i ≤ 1,
Gal(Ñζ/M̃ζ ) if 2 ≤ i ≤ pe

+ 1,
{1} if pe

+ 2 ≤ i.

Proof. We have

ψM̃ζ /M̃ ′

ζ
(v)=

{
v if v ≤ 1,
pe(v− 1)+ 1 if v > 1,

ψÑζ /M̃ζ
(v)=

{
v if v ≤ pe

+ 1,
p(v− pe

− 1)+ pe
+ 1 if v > pe

+ 1

by (2-10), (10-1) and Lemma 5.4 noting that r̂ has a (pe
− 1)-st root in M̃ ′

ζ . Hence,
claim (1) follows fromψÑζ /M̃ ′

ζ
=ψÑζ /M̃ζ

◦ψM̃ζ /M̃ ′

ζ
. Claim (2) follows from claim (1)

and
Gal(Ñζ/M̃ ′

ζ )pe+1 ⊃ Gal(Ñζ/M̃ζ )pe+1 = Gal(Ñζ/M̃ζ ). □

We set

ϖM̃ ′

ζ
= δ−1

ζ , ϖM̃ζ
= β−1

ζ and ϖÑζ = (γζϖ
pe−1

M̃ζ
)−1.

Then the elements ϖM̃ ′

ζ
, ϖM̃ζ

and ϖÑζ are uniformizers of M̃ ′

ζ , M̃ζ and Ñζ respec-
tively. Let k̃ be the residue field of K̃ .

Lemma 10.2. We have a commutative diagram

U pe
+1

Ñζ

NrÑζ /M̃ ′
ζ
//

��

U 2
M̃ ′

ζ

��

k̃ P
// k̃

where the map P is given by x 7→ x p
− x and the vertical maps are given by

pÑζ ,−γ−1
ζ

: U pe
+1

Ñζ
→ k̃, 1 − xγ−1

ζ 7→ x̄,

pM̃ ′

ζ ,r̂ϖ
2
M̃ ′
ζ

: U 2
M̃ ′

ζ

→ k̃, 1 + xr̂ϖ 2
M̃ ′

ζ

7→ x̄ .

Proof. The norm maps NrÑζ /M̃ζ
and NrM̃ζ /M̃ ′

ζ
induce

U pe
+1

Ñζ
/U pe

+2
Ñζ

→ U pe
+1

M̃ζ
/U pe

+2
M̃ζ

, 1 − uγ−1
ζ 7→ 1 − (u p

− u)ϖ pe
+1

M̃ζ
,

U pe
+1

M̃ζ
/U pe

+2
M̃ζ

→ U 2
M̃ ′

ζ

/U 3
M̃ ′

ζ

, 1 − uϖ pe
+1

M̃ζ
= 1 − uβ ′−1

ζ ϖM̃ ′

ζ
7→ 1 + ur̂ϖ 2

M̃ ′

ζ

respectively by Lemma 5.5(1) and calculations of the norms. Hence, the claim
follows. □
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For any finite extension M of K , we write ψM for the composite ψK ◦ TrM/K .

Lemma 10.3. We have rsw(ξn,ζ |WM ′u
ζ

, ψM ′u
ζ
)= −n′δ

−(pe
+1)

ζ mod U 1
M ′u
ζ

.

Proof. We put ξ̃n,ζ = ξn,ζ |WM̃ ′
ζ

, and regard it as a character of M̃ ′×

ζ . By (2-12),

Lemmas 5.5(1) and Lemma 10.1, the restriction of ξ̃n,ζ to U 2
M̃ ′

ζ

is given by the
composition

U 2
M̃ ′

ζ

ArtM̃ ′
ζ

−−−→ Gal(Ñζ/M̃ζ )≃ Fp
ψ0
−→ Q×

ℓ ,

where the isomorphism Gal(Ñζ/M̃ζ )≃ Fp is given by σ 7→ σ(γζ )− γζ . We define
pÑζ ,−γ−1

ζ
as in Lemma 10.2. For u ∈ OM̃ ′

ζ
, we put σu = ArtM̃ ′

ζ
(1 + ur̂ϖ 2

M̃ ′

ζ

) and

then have

(10-3) ξ̃n,ζ (1 + ur̂ϖ 2
M̃ ′

ζ

)= ψ0(σu(γζ )− γζ )

= ψ0

(
pÑζ ,−γ−1

ζ

(
γζ

σu(γζ )

))
= ψ0

(
pÑζ ,−γ−1

ζ

(
σu(ϖÑζ )

ϖÑζ

))
= ψ0 ◦ Trk̃/Fp

(ū),

where we use Lemmas 5.5(2) and 10.2 at the last equality. Since we have

TrM̃ ′

ζ /T̃ζ (δ
pe−1
ζ u)= −r−1ū

for u ∈ OM̃ ′

ζ
, we obtain

ξ̃n,ζ (1 + x)= ψM̃ ′

ζ
(−n′−1δ

pe
+1

ζ x)

for x ∈ p2
M̃ ′

ζ

by (10-3). This implies

(10-4) ξn,ζ (1 + x)= ψM ′u
ζ
(−n′−1δ

pe
+1

ζ x)

for x ∈ p2
M ′u
ζ

, because Trk̃/kN
: k̃ → kN is surjective. The claim follows from (10-4)

and Proposition 5.3(1). □

Lemma 10.4. We have rsw(τn,ζ,χ,c, ψEζ )= n′ϕ′

ζ mod U 1
Eζ .

Proof. By Proposition 5.2(1), we may assume that χ = 1, c = 1. By Proposition 9.5
and Lemma 10.3, we have

(10-5) rsw(τn,ζ |WT u
ζ
, ψT u

ζ
)= NrM ′u

ζ /T u
ζ
(rsw(ξn,ζ , ψM ′u

ζ
))= n′ϕ′

ζ mod U 1
T u
ζ
.

Since T u
ζ is a tamely ramified extension of Eζ , we have

(10-6) rsw(τn,ζ , ψEζ )= rsw(τn,ζ |WT u
ζ
, ψT u

ζ
) mod U 1

T u
ζ

by Proposition 5.2(2). The claim follows from (10-5) and (10-6). □
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Proposition 10.5. We have rsw(τζ,χ,c, ψK )= rsw(πζ,χ,c, ψK ).

Proof. By τζ,χ,c = IndEζ /K τn,ζ,χ,c, we have

(10-7) rsw(τζ,χ,c, ψK )= NrEζ /K (rsw(τn,ζ,χ,c, ψEζ )).

Hence, the claim follows from Lemmas 4.5 and 10.4. □

Lemma 10.6. We have Sw(τζ,χ,c)= 1.

Proof. This follows from Lemma 10.4 and (10-7). □

Lemma 10.7. The representation τζ,χ,c is irreducible.

Proof. We know that the restriction of τn,ζ,χ,c to the wild inertia subgroup of WEζ
is irreducible by Corollary 2.6. Assume that τζ,χ,c is not irreducible. Then we have
an irreducible factor τ ′ of τζ,χ,c such that Sw(τ ′) = 0, by Lemma 10.6 and the
additivity of Sw. Then, the restriction of τ ′ to the wild inertia subgroup of WK

is trivial by Sw(τ ′)= 0. On the other hand, we have an injective homomorphism
τn,ζ,χ,c → τ ′

|WEζ
by Frobenius reciprocity. This is a contradiction. □

Proposition 10.8. The representation τζ,χ,c is irreducible of Swan conductor 1.

Proof. This follows from Lemmas 10.6 and 10.7. □

11. Epsilon factor

11A. Reduction to special cases. In this subsection, we show the equality

ε(τζ,χ,c, ψK )= ε(πζ,χ,c, ψK )

of epsilon factors assuming some results in the special case where n = pe, ch K = p
and f = 1. The results in the special case will be proved in the next subsection.

Lemma 11.1. We have

λ(Eζ/K , ψK )=

{( q
n′

)
if n′ is odd,

−
(
−ϵ(p)

( 2n′

p

)(
−1
p

)(n′/2)−1) f if n′ is even,

λ(T u
ζ /Eζ , ψEζ )=

{
−(−1)

1
4 (p−1) f N if p ̸= 2,( q

pe+1

)
if p = 2.

Proof. We have

λ(T u
ζ /Eζ , ψEζ )= λ(T u

ζ /Eu
ζ , ψEu

ζ
) λ(Eu

ζ /Eζ , ψEζ )
pe

+1
= λ(T u

ζ /Eu
ζ , ψEu

ζ
).

If p ̸= 2, then we have

λ(T u
ζ /Eu

ζ , ψEu
ζ
)= −

(
−ϵ(p)

(
2n′

p

)(
−1
p

)(pe
−1)/2 )f N

= −(−1)
1
4 (p−1) f N

by Lemma 8.4, since f N is even. The other assertions immediately follow from
Lemma 8.4. □
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Lemma 11.2. We have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)=

{
( − 1) f if p = 2 and e ≤ 2,( r

kN

)
, otherwise.

Proof. Let K(0) and K(p) be nonarchimedean local fields of characteristic 0 and p
respectively. Assume that the residue fields of K(0) and K(p) are isomorphic to k.
We take uniformizers ϖ(0) and ϖ(p) of K(0) and K(p) respectively. We define T u

ζ,(0)
similarly as T u

ζ starting from K(0). We use similar notations also for other objects
in the characteristic zero side and the positive characteristic side. We have the
isomorphism

OT u
ζ,(p)
/p2

T u
ζ,(p)

−→∼ OT u
ζ,(0)
/p2

T u
ζ,(0)
, ξ0 + ξ1ϖT u

ζ,(p)
7→ ξ̂0 + ξ̂1ϖT u

ζ,(0)

of algebras, where ξ0, ξ1 ∈ k. Hence, it suffices to show the claim in one of
the characteristic zero side and the positive characteristic side by [Deligne 1984,
Proposition 3.7.1], since Gal(M ′u

ζ,(p)/T u
ζ,(p))

2
= 1 and Gal(M ′u

ζ,(0)/T u
ζ,(0))

2
= 1,

where we use upper numbering filtration of Galois groups.
First, we consider the case where p ̸= 2 and ch K = p. Then, we have dM ′u

ζ /T u
ζ
= r̂

by Proposition 6.2 and the fact that f N is even. Hence, δM ′u
ζ /T u

ζ
is unramified

by (6-1). Hence, we have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(δM ′u

ζ /T u
ζ
, ψT u

ζ
)pe

=

(
r

kN

)
by [Henniart 1984, Proposition 2; Bushnell and Henniart 2006, Proposition 23.5]
and (6-1).

We consider the case where p = 2. Assume that e ≥ 3 and ch K = 0. We have
D = 2eδ2e

−1
ζ + 1 in the notation of Proposition 6.2 with (L , K , a)= (M ′u

ζ , T u
ζ , δζ ).

Then, we have D ∈ (M ′u
ζ

×
)2. Hence, we have κD = 1, dM ′u

ζ /T u
ζ

= 1 and

w2(IndM ′u
ζ /T u

ζ
1)= 1

by Proposition 6.2 and
(pe

4

)
≡ 0 mod 2. Therefore we have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(IndM ′u

ζ /T u
ζ

1, ψT u
ζ
)= ε(1⊕pe

, ψT u
ζ
)= 1

by Theorem 6.1.
Assume that e = 2 and ch K = 2. Then we see that d+

M ′u
ζ /T u

ζ
= 1 by Definition 6.3.

Hence, δM ′u
ζ /T u

ζ
is the unramified character satisfying

δM ′u
ζ /T u

ζ
(ϖT u

ζ
)= (−1) f

by Theorem 6.4. Then we see that

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(IndM ′u

ζ /T u
ζ

1, ψT u
ζ
)= ε(δM ′u

ζ /T u
ζ

⊕ 1⊕3, ψT u
ζ
)= (−1) f ,

where we use Theorem 6.1 at the second equality.
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Assume that e =1 and ch K =2. Let κM ′u
ζ /T u

ζ
be the quadratic character associated

to the extension M ′u
ζ over T u

ζ . Then we have

λ(M ′u
ζ /T u

ζ , ψT u
ζ
)= ε(κM ′u

ζ /T u
ζ
, ψT u

ζ
)

by Theorem 6.1 similarly as above. We can check that the norm map NrM ′u
ζ /T u

ζ

induces
U 1

M ′u
ζ
/U 2

M ′u
ζ

→ U 1
T u
ζ
/U 2

T u
ζ
, 1 + uδ−1

ζ 7→ 1 + (u2
− u) αζ .

Then, by Lemma 5.5, we have

(11-1) κM ′u
ζ /T u

ζ
(1 +αζ x)= ψ0

(
ArtT u

ζ
(1 +αζ x)(δζ )− δζ

)
= ψ0

(
pM ′u

ζ ,δ
−1
ζ

(ArtT u
ζ
(1 +αζ x)(δ−1

ζ )

δ−1
ζ

))
= ψ0(Trk/Fp(x̄))

for x ∈ OT u
ζ

noting that kN = k. Hence, we have rsw(κM ′u
ζ /T u

ζ
, ψT u

ζ
) = αζ by

Proposition 5.3(1). By Proposition 5.3(2), we have

ε(κM ′u
ζ /T u

ζ
, ψT u

ζ
)= κM ′u

ζ /T u
ζ
(αζ )= κM ′u

ζ /T u
ζ
(1 +αζ )= (−1) f ,

where we use NrM ′u
ζ /T u

ζ
(δζ )= α−1

ζ + 1 and (11-1) at the last equality. □

Lemma 11.3. We have

TrM ′u
ζ /T u

ζ
(δi
ζ )=

{
0 if 1 ≤ i ≤ pe

− 2,
r̂−1(pe

− 1) if i = pe
− 1.

Proof. Vanishing for 1 ≤ i ≤ pe
− 2 follows from (9-9). We have also

TrM ′u
ζ /T u

ζ
(δ

pe
−1

ζ )= TrM ′u
ζ /T u

ζ
(r̂−1

+ δ−1
ζ (−α−1

ζ + ϵ1))= r̂−1(pe
− 1)

by (9-9). □

Lemma 11.4. We have

δT u
ζ /Eζ (rsw(τn,ζ , ψEζ ))=

{
1 if p ̸= 2,( q

pe+1

)
if p = 2.

Proof. If p = 2, the claim follows from Lemmas 8.3(1) and 10.4, since T u
ζ is totally

ramified over Eζ .
Assume that p ̸= 2. Then we have dT u

ζ /Eu
ζ
= (−1)(p

e
+1)/2ϕ′

ζ by Proposition 6.2.
Hence, we have δT u

ζ /Eu
ζ
((−1)(p

e
−1)/2ϕ′

ζ )= 1 by Lemma 8.3(2). Therefore, we have

δT u
ζ /Eζ (rsw(τn,ζ , ψEζ ))= δT u

ζ /Eu
ζ
(n′ϕ′

ζ )

= δT u
ζ /Eu

ζ
(n′(−1)(p

e
−1)/2)=

(
n′(−1)(p

e
−1)/2

q N

)
= 1

by [Gallagher 1965, (1)], Lemmas 8.3(2), 10.4 and the fact that f N is even. □
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Lemma 11.5. Assume that n = pe. Then we have ε(τζ,χ,c, ψK ) ≡ ε(πζ,χ,c, ψK )

mod µpe(C).

Proof. Let π be the representation of GLn(K ) corresponding to τζ,χ,c by the
local Langlands correspondence. By the proof of [Bushnell and Henniart 2014,
Proposition 2.2], Propositions 8.6 and 10.5, we have

π ≃ c-IndGLn(K )
L×

ζ U 1
I

3

for a character 3 : L×

ζ U 1
I → C× which coincides with 3ζ,χ,c on K ×U 1

I . Then,
the claim follows from [Bushnell and Henniart 2014, Lemma 2.2(1)], because
L×

ζ U 1
I/(K

×U 1
I ) is the cyclic group of order pe. □

Proposition 11.6. We have ε(τζ,χ,c, ψK )= ε(πζ,χ,c, ψK ).

Proof. By Proposition 3.2 and τζ,χ,c ≃ IndEζ /K τn,ζ,χ,c, it suffices to show that

λ(Eζ/K , ψK )
pe
ε(τn,ζ,χ,c, ψEζ )= (−1)n−1+ϵ0 f χ(n′) c.

By Lemma 10.4, we may assume χ = 1 and c = 1. Hence, it suffices to show

(11-2) λ(Eζ/K , ψK )
pe
ε(τn,ζ , ψEζ )= (−1)n−1+ϵ0 f .

Assuming that (11-2) is proved for n = pe, we show (11-2) for general n. Let
τ ′

n,ζ denote the representation of WEζ given by 2ζ in (2-12) and τpe . We put
ψ ′

Eζ = n′−1ψEζ . Applying the result for n = pe to Eζ , ϕ′

ζ in place of K ,ϖ , we
have

ε(τ ′

n,ζ , ψ
′

Eζ )= (−1)pe
−1+ϵ′

0 f ,

where ϵ′

0 denotes ϵ0 for n = pe. Since det τ ′

n,ζ is unramified as in the proof of
Proposition 8.6, we have

(11-3) ε(τ ′

n,ζ , ψEζ )= det τ ′

n,ζ (n
′) ε(τ ′

n,ζ , ψ
′

Eζ )= (−1)pe
−1+ϵ′

0 f .

We note that the inflation of the character in (2-9) by 2ζ factors through

WEζ → {±1} × Z, σ 7→ (a(p
e
+1)/2

σ , f nσ ).

If p ̸= 2, then we have (n′ϕ′

ζ ,−ϕ
′

ζ )Eζ =
( n′

q

)
, where

( , )Eζ : E×

ζ /(E
×

ζ )
2
× E×

ζ /(E
×

ζ )
2
→ {±1}

denotes the Hilbert symbol. Hence, we have

(11-4)
ε(τn,ζ , ψEζ )

ε(τ ′

n,ζ , ψEζ )
=

{( n′

q

)n−pe(( n′

p

)n(
−ϵ(p)

(
−2
p

))n−pe) f if p ̸= 2,

(−1)(
1
8 n(n−2)− 1

8 2e(2e
−2)) f if p = 2

by (2-9), Lemmas 4.2 and 10.4. Then we have (11-2) by Lemma 11.1, equa-
tions (11-3) and (11-4).
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Therefore, we may assume that n = pe. By Lemmas 11.1 and 11.5, it suffices to
show that

ε(τn,ζ , ψEζ )
N (pe

+1)
=

{
1 if p ̸= 2,
(−1)1+ϵ0 f if p = 2.

By Proposition 5.1, we have

ε(τn,ζ , ψEζ )
N (pe

+1)
= δT u

ζ /Eζ (rsw(τn,ζ , ψEζ ))
−1λ(T u

ζ /Eζ , ψEζ )
pe
ε(τn,ζ |WT u

ζ
, ψT u

ζ
).

By this, Lemmas 11.1 and 11.4, it suffices to show that

ε(τn,ζ |WT u
ζ
, ψT u

ζ
)=

{
−(−1)

1
4 (p−1) f N if p ̸= 2,

(−1)1+ϵ0 f
( q

pe+1

)
if p = 2.

This follows from Lemma 11.2 and Proposition 11.7. □

We set ϖM ′u
ζ

= δ−1
ζ .

Proposition 11.7. Assume that n = pe. Then we have

ε(ξn,ζ , ψM ′u
ζ
)=

{
−(−1)

1
4 (p−1) f N ( r

kN

)
if p ̸= 2,

( − 1)1+ϵ0 f if p = 2.

Proof. First, we reduce the problem to the positive characteristic case. Assume
that ch K = 0. Take a positive characteristic local field K(p) whose residue field
is isomorphic to k. We define M ′u

ζ,(p) similarly as M ′u
ζ starting from K(p). We use

similar notations also for other objects in the positive characteristic side. Then we
have the isomorphism

OM ′u
ζ,(p)
/p3

M ′u
ζ,(p)

−→∼ OM ′u
ζ
/p3

M ′u
ζ
, ξ0+ξ1ϖM ′u

ζ,(p)
+ξ2ϖ

2
M ′u
ζ,(p)

7→ ξ̂0+ξ̂1ϖM ′u
ζ
+ξ̂2ϖ

2
M ′u
ζ

of algebras, where ξ1, ξ2, ξ3 ∈ k. Hence, the problem is reduced to the positive
characteristic case by [Deligne 1984, Proposition 3.7.1].

We may assume K = Fq((t)). We put K⟨1⟩ = Fp((t)). We define M ′u
ζ,⟨1⟩

similarly
as M ′u

ζ starting from K⟨1⟩. We use similar notations also for other objects in the
K⟨1⟩-case. We put f ′

= [M ′u
ζ : M ′u

ζ,⟨1⟩
]. We have

δM ′u
ζ /M ′u

ζ,⟨1⟩
(rsw(ξn,ζ,⟨1⟩, ψM ′u

ζ,⟨1⟩
))= (−1) f ′

−1

by Lemma 10.3. We have λ(M ′u
ζ /M ′u

ζ,⟨1⟩
, ψM ′u

ζ,⟨1⟩
) = 1, since the level of ψM ′u

ζ,⟨1⟩
is

2 − pe by Lemma 11.3. Then, we obtain

(11-5) ε(ξn,ζ , ψM ′u
ζ
)= (−1) f ′

−1ε(ξn,ζ,⟨1⟩, ψM ′u
ζ,(1)
) f ′

by Proposition 5.1. By (11-5), the problem is reduced to the case where f = 1. In
this case, the claim follows from Lemmas 11.11 and 11.16. □

11B. Special cases. We assume that n = pe, ch K = p and f =1 in this subsection.
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11B1. Odd case. Assume that p ̸= 2.

Lemma 11.8. We have ψM ′u
ζ
(−δ

pe
+1

ζ (1 + xϖM ′u
ζ
))= 1 for x ∈ kN .

Proof. For x ∈ kN , we have

ψM ′u
ζ
(−δ

pe
+1

ζ (1 + xϖM ′u
ζ
))= ψM ′u

ζ
(−(r−1δζ −α−1

ζ )(δζ + x))= ψM ′u
ζ
(−r−1δ2

ζ ),

because TrM ′u
ζ /T u

ζ
(δζ )= 0 and [M ′u

ζ : T u
ζ ] = pe. If pe

̸= 3, then we have the claim,
because TrM ′u

ζ /T u
ζ
(δ2
ζ )= 0.

We assume that pe
= 3. Then we have

ψM ′u
ζ
(−r−1δ2

ζ )=ψT u
ζ
(−2r−2)=ψ0(TrkN /Fp(−2r−2))=ψ0(−N TrFp2/Fp(r

−2))= 1

by TrM ′u
ζ /T u

ζ
(δ2
ζ )= 2r−1 and r4

= −1. □

Let θζ be as in (9-10).

Lemma 11.9. We have

NrN ′u
ζ /M ′u

ζ
(1 + xθ (p−1)/2

ζ ϖM ′u
ζ
)≡ 1 + (−2r)(1−p)/2 x pϖM ′u

ζ
+

x2

2
ϖ 2

M ′u
ζ

mod p3
M ′u
ζ

for x ∈ kN .

Proof. We put T = 1+ xθ (p−1)/2
ζ ϖM ′u

ζ
. By θ p

ζ −θζ = (−2r)−1δ2
ζ in (9-11), we have

θζ = −
1
2r
δ2
ζ

(
(x−1(T − 1)δζ )2 − 1

)−1
.

Substituting this to x−1(T − 1)δζ = θ
(p−1)/2
ζ , we have

(T 2
− 2T + 1 − x2ϖ 2

M ′u
ζ
)(p−1)/2(T − 1)− (−2r)(1−p)/2 x pϖM ′u

ζ
= 0.

The claim follows from this. □

Lemma 11.10. We have∑
x∈kN

ξn,ζ (1 + xϖM ′u
ζ
)−1

= −((−1)(p−1)/2 p)e0
(

r
kN

)
.

Proof. Let ξ ′

n,ζ be as in Section 9C. We note that the left-hand side of the claim
does not change even if we replace ξn,ζ by ξ ′

n,ζ . We have

(11-6)
∑
x∈kN

ξ ′

n,ζ (1 + xϖM ′u
ζ
)−1

=

∑
x∈kN

ξ ′

n,ζ
(
1 + (−2r)(1−p)/2 x pϖM ′u

ζ

)−1

=

∑
x∈kN

ξ ′

n,ζ

(
1 −

x2

2
ϖ 2

M ′u
ζ

)−1

=

∑
x∈kN

ψM ′u
ζ

(
−

x2

2
δ

pe
−1

ζ

)
,
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where we use Lemmas 9.7 and 11.9 at the second equality and (10-4) at the last
equality. The last expression in (11-6) is equal to∑
x∈kN

ψT u
ζ
(−(2r)−1(pe

−1) x2)=
∑
x∈kN

ψ0(TrkN /Fp(r x2))= −((−1)(p−1)/2 p)e0
(

r
kN

)
by (2-16), (8-2), Lemma 11.3 and N = 2e0. □

Lemma 11.11. We have ε(ξn,ζ , ψM ′u
ζ
)= −(−1)

1
2 ((p−1) e0)

( r
kN

)
.

Proof. We have

ε(ξn,ζ , ψM ′u
ζ
)= p−e0

∑
x∈kN

ξn,ζ (−δ
pe

+1
ζ (1 + xϖM ′u

ζ
))−1ψM ′u

ζ
(−δ

pe
+1

ζ (1 + xϖM ′u
ζ
))

= −(−1)
1
2 ((p−1) e0)

(
r

kN

)
ξn,ζ (−δ

pe
+1

ζ )−1

by Proposition 5.3(2), Lemmas 11.8 and 11.10. We have

ξn,ζ (−δ
pe

+1
ζ )= ξ ′

n,ζ (−δ
pe

+1
ζ )(−1)

1
2 (p−1) 1

2 (p
e
+1)N

= ξ ′

n,ζ (−δ
pe

+1
ζ )= ξ ′

n,ζ (−(−2r)(p
e
+1) 1

2 (1−p))= 1,

where we use

NrN ′u
ζ /M ′u

ζ
(θ
(p−1)/2
ζ ϖM ′u

ζ
)= (−2r)(1−p)/2ϖM ′u

ζ

at the third equality and k×

N ⊂ NrN ′u
ζ /M ′u

ζ
((N ′u

ζ )
×) at the last equality. Thus, we have

the claim. □

11B2. Even case. Assume that p = 2.

Lemma 11.12. We have TrM ′u
ζ /K (δ

2e
+1

ζ )= 0 and

TrM ′u
ζ /K (δ

2e

ζ )=

{
1 if e = 1,
0 if e ≥ 2.

Proof. These follow from δ2e

ζ − δζ = α−1
ζ + 1. □

Lemma 11.13. We have NrN ′u
ζ /M ′u

ζ
(θζ δ

−1
ζ )= δ−1

ζ .

Proof. We have NrN ′u
ζ /M ′u

ζ
(θζ )= δ3

ζ by θ2
ζ − θζ = δζηζ and η2

ζ −ηζ = δζ . The claim
follows from this. □

Let σ0 ∈ Gal(N ′u
ζ /M ′u

ζ ) be a generator of Gal(N ′u
ζ /M ′u

ζ ) determined by

σ0(ηζ )− ηζ = 1 and σ0(θζ )− θζ = ηζ .

Lemma 11.14. Let ιn,ζ : Gal(N ′u
ζ /M ′u

ζ ) → C× be the homomorphism induced
by ξ ′

n,ζ (see Lemma 9.9). Then we have ιn,ζ (σ0)= −
√

−1.
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Proof. Let s, t be as in (9-4). We take σ ∈ IM ′u
ζ

such that 2ζ (σ ) = ((1, t, s2), 0).
Recall that

φ′((1, t, s2))= ḡ
(

1, s2
+

∑
0≤i< j≤e−1

t2i
+2 j

)
∈ R′′

0

is a generator. Then it suffices to show that σ(ηζ )− ηζ = 1 and σ(θζ )− θζ = ηζ .
We can check the first equality easily. To show the second equality, it suffices to
show that σ(θ ′

ζ )− θ
′

ζ = η2e−1

ζ . By (2-11), we have

σ(γζ )− γζ ≡ s2
+

e−1∑
i=0

(tβζ + t2)2
i

mod pN ′u
ζ
.

By t = σ(βζ )−βζ , TrF2e/F2(t)= 1 and (9-14), we have

σ(γ ′

ζ )− γ
′

ζ = ηζ − b1 + s2
+

∑
0≤i≤ j≤e−1

t2i
+2 j

mod pN ′u
ζ
.

Hence, by (9-15) and (9-19), we have

σ(θ ′

ζ )− θ
′

ζ ≡

2e−1∑
i=0

di η
i
ζ mod pN ′u

ζ

with some di ∈ kac. By (9-19), we have

e−1∑
i=0

(t (σ (γ ′

ζ )− γ
′

ζ ))
2i

= σ(γ ′

ζ )− γ
′

ζ +

∑
1≤i≤ j≤e−1

t2i
+2 j

+

∑
0≤i< j≤e−1

t2 j
(δζ − s)2

i
.

Therefore, again by (9-15) and (9-19), we have

d0 = b1 + s2
+

∑
0≤i≤ j≤e−1

t2i
+2 j

+

∑
1≤i≤ j≤e−1

t2i
+2 j

+ b2
1 = s + s2

+ t = 0.

This implies σ(θ ′

ζ )− θ ′

ζ = η2e−1

ζ , since we know that σ(θ ′

ζ )− θ ′

ζ − η2e−1

ζ ∈ F2 by
Lemma 9.8 and σ(ηζ )− ηζ = 1. □

Lemma 11.15. We have

ε(ξ ′

n,ζ , ψM ′u
ζ
)=

{ 1+
√

−1
√

2
if e = 1,

1−
√

−1
√

2
if e ≥ 2.

Proof. By Proposition 5.3, equation (10-4), Lemmas 11.3, 11.12 and 11.13, we
have

(11-7) ε(ξ ′

n,ζ , ψM ′u
ζ
)= 2−1/2

∑
x∈F2

ξ ′

n,ζ (δ
2e

+1
ζ (1+xδ−1

ζ ))−1ψM ′u
ζ
(δ2e

+1
ζ (1+xδ−1

ζ ))

=

{
2−1/2(1−ξ ′

n,ζ (1+δ−1
ζ )−1) if e = 1,

2−1/2(1+ξ ′

n,ζ (1+δ−1
ζ )−1) if e ≥ 2.
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First assume that e = 1. Then we know the equality in the claim modulo µ2(C) by
Lemma 11.5. Hence it suffices to show the equality of the real parts. This follows
from (11-7). In particular, we have ξ ′

2,ζ (1 + δ−1
ζ )=

√
−1.

Next, we consider the general case. We put α′

1 = 1/(δ2
ζ − δζ + 1) and ϖ ′

= α′3
1 .

Let ξ ′

2,1,ζ denote ξ ′

2,1 in the case where K and ϖ are replaced by F2((ϖ
′)) and ϖ ′.

By applying Lemma 11.14 to ξ ′

n,ζ and ξ ′

2,1,ζ , we have ξ ′

n,ζ = ξ ′

2,1,ζ . We know
that ξ ′

2,1,ζ (1 + δ−1
ζ ) =

√
−1 by the result in the case e = 1. Hence, we have

ξ ′

n,ζ (1 + δ−1
ζ )=

√
−1, which shows the claim. □

Lemma 11.16. We have

ε(ξn,ζ , ψM ′u
ζ
)= (−1)1+ϵ0 .

Proof. The epsilon factor ε(ξn,ζ , ψM ′u
ζ
) equals ε(ξ ′

n,ζ , ψM ′u
ζ
) times{( 1+

√
−1

√
2

)−3(2e
+1) if e ̸= 2,

−
( 1+

√
−1

√
2

)−3(2e
+1) if e = 2

by Lemma 4.2, equation (9-12) and Lemma 10.3. Hence, the claim follows from
Lemma 11.15. □

Appendix: Realization in cohomology of Artin–Schreier variety

We realize τn in the cohomology of an Artin–Schreier variety. Let νn−2 be the
quadratic form on An−2

kac defined by

νn−2((yi )1≤i≤n−2)= −
1
n′

∑
1≤i≤ j≤n−2

yi y j .

Let X be the smooth affine variety over kac defined by

x p
− x = y pe

+1
+ νn−2((yi )1≤i≤n−2) in An

kac .

We define a right action of Q ⋊Z on X by

(x, y, (yi )1≤i≤n−2)((a, b, c), 0)

=

(
x +

e−1∑
i=0

(by)pi
+ c, a(y + bpe

), (a(p
e
+1)/2 yi )1≤i≤n−2

)
,

(x, y, (yi )1≤i≤n−2)Fr(1)= (x p, y p, (y p
i )1≤i≤n−2).

We consider the morphism

πn−2 : An−1
kac → A1

kac, (y, (yi )1≤i≤n−2) 7→ y pe
+1

+ νn−2((yi )1≤i≤n−2).
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Then we have a decomposition

(A-1) H n−1
c (X,Qℓ)∼=

⊕
ψ∈F∨

p \{1}

H n−1
c (An−1

kac , π
∗

n−2Lψ)

as Q ⋊Z representations. Let ρn be the representation over C of Q ⋊Z defined by

H n−1
c (An−1

kac , π
∗

n−2Lψ0)
(

n−1
2

)
and ι, where

( n−1
2

)
means the twist by the character ((a, b, c),m) 7→ pm(n−1)/2.

Lemma A.1. If p ̸= 2, then we have det νn−2 = −(−2n′)n ∈ F×
p /(F

×
p )

2.

Proof. This is an easy calculation. □

Proposition A.2. We have τn ≃ ρn .

Proof. Let Y be the smooth affine variety over kac defined by

x p
− x = νn−2((yi )1≤i≤n−2) in An−1

kac .

We define a right action of Q ⋊Z on Y by

(x, (yi )1≤i≤n−2)((a, b, c), 0)= (x, (a(p
e
+1)/2 yi )1≤i≤n−2),

(x, (yi )1≤i≤n−2)Fr(1)= (x p, (y p
i )1≤i≤n−2).

Using the action of Q ⋊Z on Y , we can define an action of Q ⋊Z on

H n−2
c (An−2

kac , ν
∗

n−2Lψ0).

Then we have

(A-2) H n−1
c (An−1

kac , π
∗

n−2Lψ0)
∼= H 1

c (A
1
kac, π

∗Lψ0)⊗ H n−2
c (An−2

kac , ν
∗

n−2Lψ0)

by the Künneth formula, where the isomorphism is compatible with the actions of
Q ⋊Z. By (A-2), it suffices to show the action of Q ⋊Z on

(A-3) H n−2
c (An−2

kac , ν
∗

n−2Lψ0)
(

n−1
2

)
is equal to the character (2-9) via ι.

First, consider the case where p ̸= 2. The equality of the actions of Q follows
from [Denef and Loeser 1998, Lemma 2.2.3]. We have

(A-4) (−1)n−2
∑

y∈Fn−2
p

ψ0(νn−2( y))=

(
−1
p

)(
−

(
−2n′

p

))n
(ϵ(p)

√
p)n−2

=

(
−ϵ(p)

(
−2n′

p

))n√
pn−2

by Lemma A.1. The equality of the actions of Fr(1) ∈ Q⋊Z follows from [Deligne
1977, Sommes trig. Scholie 1.9] and (A-4).

If p = 2, the equality follows from [Imai and Tsushima 2020, Proposition 4.5]
and

( 2
n−1

)
= (−1)

1
8 n(n−2). □
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DIVISORS OF FOURIER COEFFICIENTS
OF TWO NEWFORMS

ARVIND KUMAR AND MONI KUMARI

For a pair of distinct non-CM newforms of weights at least 2 and having
rational integral Fourier coefficients a1(n) and a2(n), under GRH, we obtain
an estimate for the set of primes p such that

ω(a1( p) − a2( p)) ≤
[
7k +

1
2 + k1/5],

where ω(n) denotes the number of distinct prime divisors of an integer n and
k is the maximum of their weights. As an application, under GRH, we show
that the number of primes giving congruences between two such newforms
is bounded by

[
7k +

1
2 + k1/5]. We also obtain a multiplicity-one result for

newforms via congruences.

1. Introduction and statement of the results

For an elliptic curve E/Q and a prime p of good reduction, let Np(E) := p+1−a(p)
be the number of points of the reduction of E modulo p. Assume that E is not
Q-isogenous to an elliptic curve with torsion. Then Koblitz’s conjecture [7] says
that the number of primes p ≤ X for which Np(E) is prime is asymptotically equal
to CE(X/(log X)2), where CE is a positive constant depending on E . In particular,
Np(E) is prime infinitely often when p runs over the set of primes. This conjecture
is still open but there are many results towards this in the literature (see [17]).
Indeed, Koblitz’s conjecture can be seen as a variant of the twin prime conjecture
(for more details, see [7]).

Inspired by Koblitz’s conjecture, Kirti Joshi [6] studied the prime divisors of
Np( f ) := pk−1

+ 1 − a(p), where a(p) is the (integer) p-th Fourier coefficient of
a newform f ∈ Sk(N ), the space of cusp forms of weight k and level N . Note that
for the Ramanujan delta function 1 ∈ S12(1), ω(Np(1))≥ 3 for any p ≥ 5, where
ω(n) is the number of distinct prime divisors of an integer n. This shows that, in
general, the obvious variant of Koblitz’s conjecture is not true for modular forms of
higher weights. In fact, Joshi shows that there exist infinitely many cusp forms fki
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(which need not be eigenforms) of increasing weight ki and of level 1 such that
ω(Np( fki ))≥ 2 for all primes p.

If f is a non-CM newform of weight k ≥ 4 then in the same paper Joshi gives an
estimate for the primes p for which Np( f ) is an almost prime, i.e., has few prime
divisors. More precisely, under GRH and Artin’s holomorphy conjecture, he uses a
suitably weighted sieve due to Richert to prove that

(1-1)
∣∣{p ≤ X : ω(Np( f ))≤

[
5k + 1 +

√
log k

]}∣∣ ≫
X

(log X)2
,

where [ · ] is the greatest integer function. He also proves a similar result for the
function �(Np( f )), where �(n) counts the number of prime divisors of n with
multiplicity.

One can interpret Np( f ) as the difference of p-th Fourier coefficients of the
normalized Eisenstein series Ek and the newform f . This leads us to study the
number of prime divisors of the difference between the p-th Fourier coefficients of
any two distinct cuspidal newforms which allows us to deduce many interesting
consequences about congruences between newforms, multiplicity-one results, etc.
More precisely, we prove the following.

Theorem 1.1. Let f1 ∈ Sk1(N1) and f2 ∈ Sk2(N2) be non-CM newforms with integer
Fourier coefficients a1(n) and a2(n), respectively, of weights at least 2. We also
assume that f1 and f2 are not character twists of each other if k1 = k2. Put

k = max{k1, k2}.

Then under GRH, we have

(1-2)
∣∣{p ≤ X :a1(p) ̸=a2(p), ω(a1(p)−a2(p))≤

[
7k+

1
2 +k1/5]}∣∣≫ X

(log X)2
.

If k ≥ 6 then the term k1/5 appearing in (1-2) can be replaced with the smaller term
√

log k.

We remark that because of Deligne’s estimate of Fourier coefficients, for any p,
Np( f ) in (1-1) never vanishes, whereas a1(p)− a2(p) may be zero. Therefore we
remove such primes from (1-2).

Remark 1.2. In Theorem 1.1 and all the subsequent results in this section, by GRH,
we mean the generalized Riemann hypothesis holds for all the number fields Lh ,
h ≥ 1 (see Section 2B for the definition of Lh), i.e., the Dedekind zeta functions
associated with Lh have no zeros in the complex region Re(s) > 1

2 for all h.

We now state a few applications of our main result. Unless stated otherwise,
throughout the paper we shall work with forms f1 and f2 as in Theorem 1.1. We
also assume that a newform is always normalized so that its first Fourier coefficient
is 1. An immediate consequence of Theorem 1.1 is the following.
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Corollary 1.3. Let f1 and f2 be newforms as in Theorem 1.1. Then under GRH
there exist infinitely many primes p such that a1(p) ̸= a2(p) and

ω(a1(p)− a2(p))≤
[
7k +

1
2 + k1/5].

We now recall a multiplicity-one result which says that if a1(p)= a2(p) for all
but finitely many primes p, then f1 = f2. Rajan [14] has extensively generalized
this result by proving that if a1(p)= a2(p) for a set of primes p of positive upper
density, then f1 is a character twist of f2. This is known as a strong multiplicity-one
result. Recently, in [12], a variant of this result for normalized Fourier coefficients
has been obtained. In this direction, we prove in Proposition 4.2 that, under GRH, if

(1-3)
∣∣{p ≤ X : a1(p)= a2(p)}

∣∣ ≫ X13/14+ϵ

for any ϵ>0, then f1 is a character twist of f2. As a consequence of Theorem 1.1, we
obtain the following interesting result that can be seen as a variant of a multiplicity-
one result in terms of congruences.

Corollary 1.4. Let f1 and f2 be non-CM normalized newforms of weight k1 and k2

with integer Fourier coefficients a1(n) and a2(n), respectively. Put k = max{k1, k2}

and assume GRH. If there exist primes ℓ1, ℓ2, . . . , ℓn such that n >
[
7k +

1
2 + k1/5

]
and, for each 1 ≤ i ≤ n,

(1-4) a1(p)≡ a2(p) (mod ℓi ),

for all p except for a set of primes of order o(X/(log X)2), then k1 = k2 and f1 is a
character twist of f2.

Proof. On the contrary, assume that f1 is not a character twist of f2. For 1 ≤ i ≤ n,
let Bi (X) = {p ≤ X : a1(p) ̸≡ a2(p) (mod ℓi )}. Put B(X) =

⋃n
i=0 Bi (X). Then,

for p /∈ B(X),

ℓ1ℓ2 · · · ℓn | (a1(p)− a2(p)) =⇒ ω(a1(p)− a2(p))≥ n.

In particular,{
p ≤ X : a1(p) ̸= a2(p) and ω(a1(p)− a2(p))≤

[
7k +

1
2 + k1/5]}

⊂ B(X).

But from our assumptions in (1-4) we have |B(X)| = o(X/(log X)2) and this
contradicts Theorem 1.1. □

We now mention the last application of Theorem 1.1 which is related to the
number of congruence primes of a newform. Recall that for a newform f1 ∈ Sk(N1)

with integer Fourier coefficients a1(n), a positive integer D is called a congruence
divisor if there exists another newform f2 ∈ Sk(N2) with integer Fourier coefficients
a2(n) which is not a character twist of f1 such that f1 and f2 are congruent
modulo D, that is, a1(n) ≡ a2(n) (mod D) for all (n, N1 N2) = 1. Indeed, this is
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equivalent to the condition that a1(p)≡ a2(p) (mod D) for all (p, N1 N2)= 1. If
D is a prime, then D is called a congruence prime and we refer to [3] for a nice
overview of the subject. A congruence divisor of a newform is an important object
to study as it is connected to many well-known problems. To name a few, a bound
of the largest congruence divisor is related to the ABC conjecture, and if k = 2,
then the congruence primes for f1 are related to the prime divisors of the minimal
degree of the modular parametrization to the elliptic curve attached to f1 via the
Eichler–Shimura mapping (see [11, p. 179–180]). It would be also of great interest
to bound the number of congruence primes of a newform (see remark on page 180
of [11]). However, if we fix two newforms, then the following result gives a bound
on the number of congruence primes which is immediate by Corollary 1.3.

Corollary 1.5. Let f1 and f2 be newforms as in Theorem 1.1. Suppose there exists
a positive integer D such that f1 and f2 are congruent modulo D. Then under GRH

ω(D)≤
[
7k +

1
2 + k1/5].

Each prime divisor of D gives a congruence between f1 and f2; therefore,
Corollary 1.5 ensures that the number of primes giving congruences between two
newforms is bounded uniformly in terms of their weights and not on the levels.
This is the novelty of this result.

We now discuss some results about the function �(a1(p)− a2(p)), where p
varies over the set of primes. Using a similar idea as the proof of Theorem 1.1, we
obtain the following.

Theorem 1.6. Let f1 and f2 be as in Theorem 1.1. Then under GRH, we have∣∣{p ≤ X :a1(p) ̸=a2(p) and �(a1(p)−a2(p))≤
[
13k+

1
2 +

√
log k

]}∣∣≫ X
(log X)2

.

It is clear that Theorem 1.6 also has applications of similar nature to that of
Theorem 1.1 mentioned above and we would not repeat it here.

Remark 1.7. It is possible to obtain an upper bound of the right order of magnitude
for the estimate in Theorem 1.6. In fact, we can do so by using Selberg’s sieve and
the ideas used in the proof of [6, Theorem 2.3.1]. More precisely, under GRH, one
can obtain that if f1 and f2 are as in Theorem 1.1, then∣∣{p ≤ X : a1(p) ̸= a2(p) and �(a1(p)− a2(p))≤

[ 1
2(29k − 13)

]}∣∣ ≪
X

(log X)2
.

From the above estimate, it follows that under GRH∣∣{p ≤ X : a1(p)− a2(p) is prime}
∣∣ ≪

X
(log X)2

.



DIVISORS OF FOURIER COEFFICIENTS OF TWO NEWFORMS 89

In particular, the natural density of the set {p : a1(p)− a2(p) is prime} is zero. It
would be interesting to obtain a suitable lower bound of this set or at least to know
whether there are infinitely many primes p for which a1(p)− a2(p) is a prime.

In fact, all the above results are valid even if we replace a1(p)− a2(p) with
a1(p)+ a2(p). Also, similar results but with better bounds hold in Theorems 1.1
and 1.6 if we assume Artin’s holomorphicity conjecture in addition to GRH. It is
also worth mentioning that the full strength of GRH is not essential to prove our
theorems. Rather, a quasi-GRH, which assumes a zero-free region for the associated
Dedekind zeta functions in the region Re(s)= 1−ϵ for some ϵ ∈

(
0, 1

2

)
, is sufficient

for our purpose (see the discussion and results proved in [13]). In this case, we
obtain similar results to Propositions 2.1 and 4.1, with the only difference being
that the exponent of x becomes 1−ϵ instead of 1

2 . However, it then requires a more
careful analysis of handling the error terms in the subsequent part of the proof of
our results, which will not be carried out here.

Contents and structure of the paper. The theorem of Deligne connecting the
theory of ℓ-adic Galois representations to Fourier coefficients of newforms opens
the door for obtaining many new results regarding the arithmetical nature of these
coefficients. This connection and the Chebotarev density theorem play a prominent
role in this paper. These are recalled in Section 2. To prove our results, we first
establish Proposition 4.3 which gives an asymptotic formula for the number of
primes p up to X for which a1(p) ̸= a2(p) and a1(p)− a2(p) is divisible by a
fixed positive integer. Proof of Proposition 4.3 requires computations of the image
of the product Galois representations attached to f1 and f2 and this is obtained in
Section 3. Finally, we apply a suitably weighted sieve due to Richert, recalled in
Section 5, to prove our results. To establish the sieve conditions with the required
uniformity of parameters, Proposition 4.3 plays a crucial role. We use the ideas
employed in [6; 17] to prove our main results in Sections 6 and 7.

Notation. For any real number X ≥ 2, π(X) denotes the number of primes less
than or equal to X . Along with the standard analytic notation ≪,≫, O, o,∼ (the
implied constants will often depend on the pair of forms under consideration), we
use the letters p, ℓ, q, ℓ1, ℓ2, etc. to denote prime numbers throughout the paper.

2. Preliminaries

We summarize some standard results without proofs which will be used throughout
the paper. We closely follow [2] for our exposition.

2A. Chebotarev density theorem. We recall the Chebotarev density theorem which
is one of the principal tools needed for proving the main theorems of this paper.
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Let K be a finite Galois extension of Q with the Galois group G and degree nK .
For an unramified prime p, we denote by Frobp, a Frobenius element of K at p
in G. For a subset C of G, stable under conjugation, we define

πC(X) := {p ≤ X : p unramified in K and Frobp ∈ C}.

The Chebotarev density theorem states that

πC(X)∼
|C |

|G|
π(X).

We will use the following conditional effective version of this theorem which
was first obtained by Lagarias and Odlyzko [8] and was subsequently refined by
Serre [16]. To state this, let dK be the absolute value of the discriminant of K/Q
and ζK (s) be the Dedekind zeta function associated with K .

Proposition 2.1. Suppose ζK (s) satisfies GRH. Then

πC(X)=
|C |

|G|
π(X)+ O

(
|C |

|G|
X1/2(log dK + nK log X)

)
.

In addition to GRH for ζK (s), by assuming Artin’s holomorphy conjecture (which
states that the Artin L-function associated to any nontrivial representation of the
Galois group Gal(K/Q) has an analytic continuation on the whole complex plane)
one can improve the error term in the above asymptotic formula for πC(X).

2B. mod-h Galois representations. Let GQ = Gal(Q̄/Q) be the absolute Galois
group of an algebraic closure Q̄ of Q. Let k ≥ 2, N ≥ 1 and ℓ be a prime. Suppose
f ∈ Sk(N ) is a newform with integer Fourier coefficients a(n). The work of Eichler,
Shimura and Deligne (see [1]) give the existence of a two-dimensional continuous,
odd and irreducible Galois representation

ρ f,ℓ : GQ → GL2(Zℓ),

which is unramified at p ∤ Nℓ. If Frobp denotes a Frobenius element corresponding
to such a prime, then the representation ρ f,ℓ has the property that

tr(ρ f,ℓ(Frobp))= a(p), det(ρ f,ℓ(Frobp))= pk−1.

By reduction and semisimplification, we obtain a mod-ℓ Galois representation,

ρ̄ f,ℓ : GQ → GL2(Fℓ),

where Fℓ := Z/ℓZ.
Let h =

∏t
j=1 ℓ

n j
j be a positive integer. Using the ℓ j -adic representations at-

tached to f , we consider an h-adic representation given by products of mod-ℓ j ’s
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representations

ρ f,h : GQ → GL2

( ∏
1≤ j≤t

Zℓ j

)
.

For each 1 ≤ j ≤ t , we have the natural projection Zℓ j ↠ Z/ℓ
n j
j Z, and hence we

obtain a mod-h Galois representation given by

ρ̄ f,h : GQ → GL2

( ∏
1≤ j≤t

Z/ℓ
n j
j Z

)
∼=−→ GL2(Z/hZ).

If p ∤ Nh is a prime, then ρ̄ f,h is unramified at p and

tr(ρ̄ f,h(Frobp))≡ a(p) (mod h), det(ρ̄ f,h(Frobp))≡ pk−1 (mod h).

Let f1 ∈ Sk1(N1) and f2 ∈ Sk2(N2) be newforms having integer Fourier coefficients
a1(n) and a2(n), respectively. Then one can consider the product representation ρ̄h

of ρ̄ f1,h and ρ̄ f2,h , defined by

ρ̄h : GQ → GL2(Z/hZ)× GL2(Z/hZ),

σ 7→ (ρ̄ f1,h(σ ), ρ̄ f2,h(σ )).

Let Ah denote the image of GQ under ρ̄h . By the fundamental theorem of Galois
theory, the fixed field of ker(ρ̄h), say Lh , is a finite Galois extension of Q and

(2-1) Gal(Lh/Q)∼= Ah .

Let Ch be the subset of Ah defined by

Ch = {(A, B) ∈ Ah : tr(A)= tr(B)}.

We now define the following function on the set of positive integers which will play
an important role throughout the paper. For an integer h > 1, define

(2-2) δ(h) :=
|Ch|

|Ah|

and δ(1) := 1. Since the trace of the image of complex conjugation is always zero,
Ch ̸= φ, and hence δ(h) > 0 for every integer h.

3. Technical results

Let f1 and f2 be newforms as before. The main aim of this section is to obtain
an asymptotic size of δ(ℓn) for n = 1, 2 and this requires the computation of the
cardinalities of Aℓn and Cℓn . Building on the work of Ribet [15] and Momose [10],
Loeffler [9] has determined the image Aℓn of the product Galois representations.
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More precisely, Loeffler [9, Theorem 3.2.2] has proved that that there exists a
positive constant M( f1, f2) such that, for all primes ℓ≥ M( f1, f2) and n ≥ 1,

(3-1) Aℓn =
{
(A, B) ∈ GL2(Z/ℓ

nZ)× GL2(Z/ℓ
nZ) :

det(A)= vk1−1, det(B)= vk2−1, v ∈ (Z/ℓnZ)×
}
.

In other words, the mod-ℓn representations of two newforms (that are not character
twists of each other) are as independent as possible. In the rest of the paper, we
denote the constant M( f1, f2) by M and without loss of generality, we assume that
M ≥ 3. Clearly, for ℓ≥ M ,

(3-2) Cℓn = {(A, B) ∈ Aℓn : tr(A)= tr(B)}.

3A. Combinatorial lemmas. Here we obtain results about cardinalities of Aℓn and
Cℓn for any ℓ≥ M . We first assume that

λn = gcd(ℓn
− ℓn−1, k1 − 1, k2 − 1)

and

(3-3) 3n = {(vk1−1, vk2−1) : v ∈ (Z/ℓnZ)×}.

Recall that ℓ≥ 3. We now consider the group homomorphism

φ : (Z/ℓnZ)× →3n defined by φ(v)= (vk1−1, vk2−1).

Since φ is surjective and its kernel {v ∈ (Z/ℓnZ)× : vλn = 1} is a cyclic subgroup
of (Z/ℓnZ)× of order λn , we obtain

(3-4) |3n| =
|(Z/ℓnZ)×|

λn
=
ℓn

−ℓn−1

λn
.

We first recall the following result proved in [2, Lemma 3.3].

Lemma 3.1. For any prime ℓ≥ M ,

|Aℓ| =
1
λ1
(ℓ− 1)3(ℓ2

+ ℓ)2.

Using Lemma 3.1, we now compute |Aℓn | for any n ≥ 1.

Lemma 3.2. For any prime ℓ≥ M and integer n ≥ 1,

|Aℓn | =
1
λn
ℓ7(n−1)(ℓ− 1)3(ℓ2

+ ℓ)2.

Proof. Let ψ : Aℓn → Aℓ be the natural map defined by

(3-5) (A, B) 7→ (A (mod ℓ), B (mod ℓ)).

Since it is a surjective group homomorphism, we have

|Aℓn | = |ker(ψ)||Aℓ|.
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Therefore, in view of Lemma 3.1, to evaluate |Aℓn | it is sufficient to compute
|ker(ψ)|. For that we first compute the cardinality of the set

{γ ∈ GL2(Z/ℓ
nZ) : det(γ )= d, γ ≡ Id (mod ℓ)},

where d ∈ (Z/ℓnZ)× such that d ≡ 1 (mod ℓ) is fixed and Id is the identity element
in GL2(Fℓ). Any general element of the above set will be of the form(

1+xℓ yℓ
zℓ 1+wℓ

)
,

where 0 ≤ x, y, z, w < ℓn−1 with the condition that

(1 + xℓ)(1 +wℓ)− yzℓ2
= d.

As d ≡ 1 (mod ℓ), the above equation reduces to

x(1 +wℓ)=
d − 1
ℓ

+ yzℓ−w.

Since 1 +wℓ ∈ (Z/ℓnZ)× for such w, for any choices of 0 ≤ y, z, w < ℓn−1 the
above equation gives a unique x . Therefore

(3-6)
∣∣{γ ∈ GL2(Z/ℓ

nZ) : det(γ )= d, γ ≡ Id (mod ℓ)}
∣∣ = ℓ3(n−1).

Now, we note that

ker(ψ)=
∣∣{(A, B) ∈ Aℓn : (A, B)≡ (Id, Id) (mod ℓ)}

∣∣;
therefore from (3-1)

|ker(ψ)| =

∑
(d1,d2)∈3n

∑
A∈GL2(Z/ℓ

nZ)
det(A)=d1

A≡Id (mod ℓ)

1
∑

B∈GL2(Z/ℓ
nZ)

det(b)=d2
b≡Id (mod ℓ)

1.

In the above, congruence conditions on A and B compel that d1 ≡ d2 ≡ 1 (mod ℓ),
and hence using (3-6) gives

|ker(ψ)| = ℓ6(n−1)
∑

(d1,d2)∈3n
d1≡d2≡1 (mod ℓ)

1.

Since the sum appearing on the right side of the above equation is the cardinality of
the kernel of the natural (surjective) reduction map3n →31 given in (3-5), we have

|ker(ψ)| =
|3n|

|31|
ℓ6(n−1).

Now using (3-4) in the above yields the desired result. □
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Our next aim is to compute the cardinalities of Cℓ and Cℓ2 . Though an explicit
computation is possible, we only obtain asymptotic formulas here and that is
enough for our purpose. To simplify our notation, we denote the set of quadratic
and nonquadratic residue elements in (Z/ℓnZ)× by Qn and Qc

n , respectively.

Lemma 3.3. For any prime ℓ≥ M ,

|Cℓ| =
ℓ6

λ1
+ O(ℓ5).

Proof. From the definition of Cℓ

|Cℓ| =

∑
(d1,d2)∈31

∣∣{(A, B) ∈ GL2(Fℓ)× GL2(Fℓ) :

det(A)= d1, det(B)= d2, tr(A)= tr(B)}
∣∣

=

∑
t∈Fℓ

∑
(d1,d2)∈31

∑
A∈GL2(Fℓ)
det(A)=d1

tr(A)=t

1
∑

B∈GL2(Fℓ)
det(B)=d2

tr(B)=t

1.

Split the sum over 31 into three parts, namely

(3-7) |Cℓ| =

∑
t∈Fℓ

[ ∑
(d1,d2)∈31
t2

−4d1∈Q1

+

∑
(d1,d2)∈31

t2
=4d1

+

∑
(d1,d2)∈31
t2

−4d1∈Qc
1

] ∑
A∈GL2(Fℓ)
det(A)=d1

tr(A)=t

1
∑

B∈GL2(Fℓ)
det(B)=d2

tr(B)=t

1

and we denote the corresponding sums by S1, S2 and S3, respectively. Thus

S1 =

∑
t∈Fℓ

∑
(d1,d2)∈31
t2

−4d1∈Q1

∑
A∈GL2(Fℓ)
det(A)=d1

tr(A)=t

1
∑

B∈GL2(Fℓ)
det(B)=d2

tr(B)=t

1.

To proceed further, note that for given d ∈ F×

ℓ and t ∈ Fℓ one can obtain the following
result by employing an elementary counting argument:

(3-8)
∣∣{γ ∈ GL2(Fℓ) : det(γ )= d, tr(γ )= t}

∣∣ =


ℓ2

+ ℓ if t2
− 4d ∈ Q1,

ℓ2 if t2
= 4d,

ℓ2
− ℓ if t2

− 4d ∈ Qc
1.

Using (3-8) gives

S1 = (ℓ2
+ ℓ)

∑
t∈Fℓ

∑
(d1,d2)∈31
t2

−4d1∈Q1

∑
B∈GL2(Fℓ)
det(B)=d2

tr(B)=t

1

= (ℓ2
+ ℓ)

∑
t∈Fℓ

[ ∑
(d1,d2)∈31
t2

−4d1∈Q1
t2

−4d2∈Q1

+

∑
(d1,d2)∈31
t2

−4d1∈Q1
t2

=4d2

+

∑
(d1,d2)∈31
t2

−4d1∈Q1
t2

−4d2∈Qc
1

] ∑
B∈GL2(Fℓ)
det(B)=t2
tr(B)=t

1.
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Again using (3-8)

S1 = (ℓ2
+ ℓ)

∑
t∈Fℓ

[
(ℓ2

+ ℓ)
∑

(d1,d2)∈31
t2

−4d1∈Q1
t2

−4d2∈Q1

1 + ℓ2
∑

(d1,d2)∈31
t2

−4d1∈Q1
t2

=4d2

1 + (ℓ2
− ℓ)

∑
(d1,d2)∈31
t2

−4d1∈Q1
t2

−4d2∈Qc
1

1
]
.

Collecting the terms containing ℓ4 gives

S1 = ℓ4
∑
t∈Fℓ

∑
(d1,d2)∈31
t2

−4d1∈Q1

1 + O(ℓ5).

Similarly, we have

S2 = ℓ4
∑
t∈Fℓ

∑
(d1,d2)∈31

t2
=4d1

1 + O(ℓ5), S3 = ℓ4
∑
t∈Fℓ

∑
(d1,d2)∈31
t2

−4d1∈Qc
1

1 + O(ℓ5).

Combining all together, we have, from (3-7),

|Cℓ| = ℓ4
∑
t∈Fℓ

∑
(d1,d2)∈31

1 + O(ℓ5)

and now using (3-4) completes the proof. □

To compute |Cℓ2 |, we first prove the following result which is a generalization of
(3-8) for the ring Z/ℓ2Z.

Lemma 3.4. For any d ∈ (Z/ℓ2Z)× and t ∈ Z/ℓ2Z, we have

(3-9)
∣∣{γ ∈ GL2(Z/ℓ

2Z) : det(γ )= d, tr(γ )= t}
∣∣

=


ℓ4

+ ℓ3
− ℓ2 if t2

− 4d = 0,
ℓ4

− ℓ2 if 0 ̸= t2
− 4d ≡ 0 (mod ℓ),

ℓ4
+ ℓ3 if t2

− 4d ∈ Q2,

ℓ4
− ℓ3 if t2

− 4d ∈ Qc
2.

Proof. It is clear that∣∣{γ ∈ GL2(Z/ℓ
2Z) : det(γ )= d, tr(γ )= t}

∣∣ = |N |,

where N := {(a, b, c)∈ (Z/ℓ2Z)3 : a2
−at +bc = −d}. To compute |N | we divide

the set N into three disjoint subsets N1, N2 and N3 based on the following three
cases, respectively. Hence

(3-10) |N | = |N1| + |N2| + |N3|.
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Case (i): a = 0. Then the condition bc = −d forces that b and c both have to be
units and for any b there exists a unique c. Hence

|N1| = ℓ2
− ℓ.

Case (ii): a ̸= 0 and bc = 0. The latter condition implies that either b or c is 0,
or both are (nonzero) zero-divisors of Z/ℓ2Z. The total number of such pairs is
2ℓ2

− 1 + (ℓ− 1)2 = 3ℓ2
− 2ℓ. Therefore,

(3-11) |N2| = |{a ∈ Z/ℓ2Z : a2
− at + d = 0}| × (3ℓ2

− 2ℓ).

We now claim that

(3-12) |{a ∈ Z/ℓ2Z : a2
− at + d = 0}| =


ℓ if t2

− 4d = 0,
0 if 0 ̸= t2

− 4d ≡ 0 (mod ℓ),
2 if t2

− 4d ∈ Q2,

0 if t2
− 4d ∈ Qc

2.

To prove this, we see that if t2
− 4d = 0, then any a ≡

t
2 (mod ℓ) is a solution of

a2
−at +d = 0 and there are ℓ such choices for a. Next, assume that 0 ̸= t2

−4d ≡

0 (mod ℓ). If a2
− at + d = 0 has solutions, say x and y, then

(x − y)2 = (x + y)2 − 4xy = t2
− 4d ≡ 0 (mod ℓ).

Therefore, x − y ≡ 0 (mod ℓ)=⇒ t2
− 4d = (x − y)2 = 0, which is a contradiction.

The last two cases are clear.
Thus using (3-12) in (3-11) gives the cardinality of N2.

Case (iii): a ̸= 0 and bc ̸= 0. In this case, bc can be either a (nonzero) zero-divisor
or a unit. Clearly, the number of choices for b and c such that bc is a given nonzero
zero-divisor is 2ℓ(ℓ− 1) and for a given unit the number of such choices is ℓ2

− ℓ.
Therefore, we have

(3-13) |N3| =
∣∣{a ∈ Z/ℓ2Z : 0 ̸= a2

− at + d ≡ 0 (mod ℓ)}
∣∣ × 2ℓ(ℓ− 1)

+
∣∣{a ∈ Z/ℓ2Z : a2

− at + d ∈ (Z/ℓ2Z)×}
∣∣ × (ℓ2

− ℓ).

If a2
− at + d = mℓ for some m ∈ F×

ℓ , then from (3-12)

|{a ∈Z/ℓ2Z :a2
−at+d =mℓ}|=


ℓ if t2

− 4(d − mℓ)= 0,
0 if 0 ̸= t2

− 4(d − mℓ)≡ 0 (mod ℓ),
2 if t2

− 4(d − mℓ) ∈ Q2 ⇐⇒ t2
− 4d ∈ Q2,

0 if t2
− 4(d − mℓ) ∈ Qc

2 ⇐⇒ t2
− 4d ∈ Qc

2.
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Note that there exists a unique m ∈ F×

ℓ such that t2
− 4(d − mℓ) = 0, and in that

case 0 ̸= t2
− 4d ≡ 0 (mod ℓ). Therefore

(3-14)
∣∣{a ∈ Z/ℓ2Z : 0 ̸= a2

− at + d ≡ 0 (mod ℓ)}
∣∣

=


0 if t2

− 4d = 0,
ℓ if 0 ̸= t2

− 4d ≡ 0 (mod ℓ),
2(ℓ− 1) if t2

− 4d ∈ Q2,

0 if t2
− 4d ∈ Qc

2.

As we have ℓ2
− 1 choices of a in this case, (3-12) and (3-14) immediately gives

(3-15)
∣∣{a ∈ Z/ℓ2Z : a2

− at + d ∈ (Z/ℓ2Z)×}
∣∣

=


ℓ2

− ℓ− 1 if t2
− 4d = 0,

ℓ2
− ℓ− 1 if 0 ̸= t2

− 4d ≡ 0 (mod ℓ),
ℓ2

− 2ℓ− 1 if t2
− 4d ∈ Q2,

ℓ2
− 1 if t2

− 4d ∈ Qc
2.

Substituting (3-14) and (3-15) in (3-13) and then combining all the above three
cases in (3-10) gives the desired result. □

We are now ready to give a desirable estimate for |Cℓ2 |.

Lemma 3.5. For any prime ℓ≥ M ,

|Cℓ2 | =
ℓ12

λ2
+ O(ℓ11).

Proof. We use similar arguments as in the proof of Lemma 3.3, and hence we will
only give an outline of the proof here. We write

|Cℓ2 | =

∑
t∈Z/ℓ2Z

∑
(d1,d2)∈32

∑
A∈GL2(Z/ℓ

2Z)
det(A)=d1

tr(A)=t

1
∑

B∈GL2(Z/ℓ
2Z)

det(B)=d2
tr(B)=t

1.

We split the sum over 32 into four parts, namely

|Cℓ2 | =

∑
t∈Z/ℓ2Z

[ ∑
(d1,d2)∈32
t2

−4d1∈Q2

+

∑
(d1,d2)∈31

t2
=4d1

+

∑
(d1,d2)∈31

0 ̸=t2
−4d1≡0 (mod ℓ)

+

∑
(d1,d2)∈31
t2

−4d1∈Qc
2

]
∑

A∈GL2(Z/ℓ
2Z)

det(A)=d1
tr(A)=t

1
∑

B∈GL2(Z/ℓ
2Z)

det(B)=d2
tr(B)=t

1

and denote the corresponding sums by S′

1, S′

2, S′

3 and S′

4 so that

(3-16) |Cℓ2 | = S′

1 + S′

2 + S′

3 + S′

4.
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Now applying Lemma 3.4, we obtain

S′

1 = (ℓ4
+ ℓ3)

∑
t∈Z/ℓ2Z

∑
(d1,d2)∈32
t2

−4d1∈Q2

∑
B∈GL2(Z/ℓ

2Z)
det(B)=d2

tr(B)=t

1.

As before, splitting the middle sum into four parts and applying Lemma 3.4 yields

S′

1 = (ℓ4
+ ℓ3)

∑
t∈Z/ℓ2Z

[
(ℓ4

+ ℓ3)
∑

(d1,d2)∈32
t2

−4d1∈Q2
t2

−4d2∈Q2

+(ℓ4
+ ℓ3

− ℓ2)
∑

(d1,d2)∈32
t2

−4d1∈Q2
t2

=4d2

+ (ℓ4
− ℓ2)

∑
(d1,d2)∈32
t2

−4d1∈Q2
0≡t2

−4d2≡0 (mod ℓ)

+(ℓ4
− ℓ3)

∑
(d1,d2)∈32
t2

−4d1∈Q2
t2

−4d2∈Qc
2

]
1

and then collecting the terms containing ℓ8 gives

S′

1 = ℓ8
∑

t∈Z/ℓ2Z

∑
(d1,d2)∈32
t2

−4d1∈Q2

1 + O(ℓ11).

Computing S′

2, S′

3 and S′

4 in a similar manner and substituting in (3-16), we have

|Cℓ2 | = ℓ8
∑

t∈Z/ℓ2Z

∑
(d1,d2)∈32

1 + O(ℓ11)

and finally using (3-4) completes the proof. □

Let h = ℓ
n1
1 ℓ

n2
2 · · · ℓ

nt
t . Since the fixed field of ker(ρ̄h) is contained in the com-

positum of fixed fields of ker(ρ̄ℓni
i
), from (2-1)

|Ah| ≤ |Aℓ
n1
1

||Aℓ
n2
2

| · · · |Aℓ
nt
t
| and |Ch| ≤ |Cℓn1

1
||Cℓn2

2
| · · · |Cℓnt

t
|.

For any prime ℓ and integer n ≥ 1, Aℓn is contained in the set{
(A, B) ∈ GL2(Z/ℓ

nZ)× GL2(Z/ℓ
nZ) :

det(A)= vk1−1, det(B)= vk2−1, v ∈ (Z/ℓnZ)×
}
,

and hence a simple counting argument gives

|Aℓn | ≪ ℓ7n and |Cℓn | ≪ ℓ6n.

Therefore now it is clear that, for any integer h ≥ 1,

(3-17) |Ah| ≪ h7 and |Ch| ≪ h6.
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3B. Asymptotic size of δ(ℓ). Recall that, for any positive integer h > 1,

δ(h)=
|Ch|

|Ah|
.

An immediate consequence of the results in the previous section is the following.

Proposition 3.6. If ℓ varies over primes then, for n = 1, 2,

δ(ℓn)∼
1
ℓn as ℓ→ ∞.

Finally, we state the following multiplicative property which plays an important
role to prove our main result.

Proposition 3.7 [2, Proposition 3.6]. For primes ℓ1, ℓ2 > M with ℓ1 ̸= ℓ2, we have

δ(ℓ1ℓ2)= δ(ℓ1)δ(ℓ2).

4. Analytic results on primes

Recall that f1 and f2 are non-CM newforms with integer Fourier coefficients which
are not character twists of each other. For a positive integer h ≥ 1 and a real number
X ≥ 2, consider the function

(4-1) π f1, f2(X, h) :=

∑
p≤X,(p,hN )=1
h|(a1(p)−a2(p))

1.

The representation ρ̄h , defined in Section 2, is unramified outside hN . Also, it is
ramified at all the primes ℓ | h because its determinant contains a nontrivial power
of the mod-ℓ cyclotomic character which is ramified at ℓ. However, there may exist
some primes dividing N at which ρ̄h is unramified. It follows that a prime p is
unramified in Lh only if either (p, hN )= 1 or p | N . Since the image of Frobenius
elements under ρ̄h generate Ah , we can write

π f1, f2(X, h)=
∣∣{p ≤ X : p unramified in Lh, ρ̄h(Frobp) ∈ Ch}

∣∣ + O(1),

where the error term is due to the possible primes divisors of N which are unramified
in Lh . Since the trace and the determinant maps are stable under conjugation, the
group Ah and the set Ch are also stable under conjugation. Now applying the
Chebotarev density theorem (see Proposition 2.1) for the field Lh , we obtain the
following.

Proposition 4.1. Let f1 ∈ Sk1(N1) and f2 ∈ Sk2(N2) be non-CM newforms with
rational integral coefficients a1(n) and a2(n), respectively. Assume that f1 and f2
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are not character twists of each other. Let N = lcm(N1, N2) and h ≥ 1 be an integer.
If GRH holds for the field Lh , then

(4-2) π f1, f2(X, h)= δ(h)π(X)+ O(h6 X1/2 log(hN X)).

We remark that to establish Proposition 4.1, we need to use (3-17) and the
following variation of a result of Hensel (see [16, Proposition 5, p. 129]):

(4-3) log dLh ≤ Ah log(hNAh).

For our purpose, we now use Proposition 4.1 to obtain the following result giving
an upper bound for the set of primes p with a1(p)= a2(p). This may be also of
independent interest.

Proposition 4.2. Let f1 and f2 be newforms as before. Then under GRH∣∣{p ≤ X : a1(p)= a2(p)}
∣∣ = O(X13/14).

Proof. Clearly, for any prime ℓ,∣∣{p ≤ X : a1(p)= a2(p)}
∣∣ ≤ π f1, f2(X, ℓ)+ O(1).

Hence using Proposition 4.1, for a large prime ℓ,∣∣{p ≤ X : a1(p)= a2(p)}
∣∣ = O

(
π(X)
ℓ

)
+ O(ℓ6 X1/2 log(ℓN X)).

Now by Bertrand’s postulate, we choose a prime ℓ between X1/14/log X and
2(X1/14/ log X) and this proves the result. □

Note that in Proposition 4.2, GRH is used for the field Lℓ, for all but finitely
many primes ℓ.

We remark that for newforms of weight 2 and by making use of various abelian
extensions, in [13, Theorem 10], a better estimate in Proposition 4.2 is obtained.

We now define

(4-4) π∗

f1, f2
(X, h)=

∑
p≤X

h|(a1(p)−a2(p))
a1(p) ̸=a2(p)

1.

Using Propositions 4.1 and 4.2 we deduce the following.

Proposition 4.3. Let f1 and f2 be newforms as in Proposition 4.1 and h ≥ 1 be an
integer. If GRH holds for the field Lh , then

(4-5) π∗

f1, f2
(X, h)= δ(h)π(X)+ O(h6 X1/2 log(hN X))+ O(X13/14).
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Remark 4.4. Indeed, the estimates given in Propositions 4.1 and 4.3 are also valid
for the set of primes p ≤ X with h | (a1(p)+ a2(p)). This can be achieved by
considering the set C ′

h = {(A, B) ∈ Ah : tr(A)= −tr(B)} instead of Ch in Section 3
and following the same arguments.

Remark 4.5. In the above propositions, if one assumes Artin’s holomorphy con-
jecture in addition to GRH, then an improved error term can be obtained. More
precisely, in Propositions 4.1 and 4.3, we have O(h3 X1/2 log(hN X)) instead of
O(h6 X1/2 log(hN X)) which gives the estimate for Proposition 4.2

(4-6)
∣∣{p ≤ X : a1(p)= a2(p)}

∣∣ = O(X7/8).

5. Sieving tool: Richert’s weighted one-dimensional sieve form

We will prove Theorem 1.1 by using a suitably weighted sieve due to Richert [4].
The sieve problem we encounter here is a one-dimensional sieve problem in the
parlance of “sieve methods”. We will use notation and conventions from [4].

Let A be a finite set of integers not necessarily positive or distinct. Let P be an
infinite set of prime numbers. For each prime ℓ∈P , let Aℓ :={a ∈A :a ≡0 (mod ℓ)}.
We write

(5-1) |A| = X + r1 and |Aℓ| = δ(ℓ)X + rℓ,

where X (resp. δ(ℓ)X ) and r1 (resp. rℓ) are a close approximation and remainder to
A (resp. Aℓ), respectively. For a square free integer d composed of primes of P , let

Ad = {a ∈ A : a ≡ 0 (mod d)}, δ(d)=

∏
ℓ|d

δ(ℓ) and rd = |Ad | − δ(d)X.

Notice that the function δ depends on both A and P . For a real number z > 0, let

P(z)=

∏
ℓ∈P,ℓ<z

ℓ and W (z)=

∏
ℓ∈P,ℓ<z

(1 − δ(ℓ)).

Hypothesis 5.1 [4, p. 29, 142, 219]. For the above setup, we now state a series of
hypotheses.

�1: There exists a constant A1 > 0 such that

0 ≤ δ(ℓ)≤ 1 −
1
A1

for all ℓ ∈ P.

�2(1, L): If 2 ≤ w ≤ z, then

−L ≤

∑
w≤ℓ≤z

δ(ℓ) log ℓ− log
z
w

≤ A2,

where A2 ≥ 1 and L ≥ 1 are some constants independent of z and w.
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R(1, α): There exist 0< α < 1 and A3, A4 ≥ 1 such that, for X ≥ 2,∑
d≤

Xα

(log X)A3

µ(d)2 3ω(d) |rd | ≤ A4
X

(log X)2
.

For A and P as above and for real numbers u, v and λ with u ≤ v, define the
weighted sum

(5-2) W(A,P, v, u, λ)=

∑
a∈A

(a,P(X1/v))=1

(
1 −

∑
X1/v

≤q<X1/u

q|a,q∈P

λ

(
1 − u

log q
log X

))
.

We now state the following form of Richert’s weighted one-dimensional sieve.

Theorem 5.2 [4, Theorem 9.1, Lemma 9.1]. With notation as above, assume that
Hypothesis 5.1 for �1, �2(1, L) and R(1, α) hold for suitable constants L and α.
Suppose further that there exists u, v, λ ∈ R and A5 ≥ 1 such that

1
α
< u < v,

2
α

≤ v ≤
4
α
, 0< λ < A5.

Then

W(A,P, v, u, λ)≥ X W (X1/v)

(
F(α, v, u, λ)−

cL
(log X)1/14

)
,

where c is a constant depends at most on u and v (as well as on the Ai ’s and α) and

(5-3) F(α, v, u, λ)=
2eγ

αv

(
log(αv− 1)− λαu log

v

u
+ λ(αu − 1) log

αv− 1
αu − 1

)
.

Here γ is Euler’s constant and X is the approximation of A given in (5-1).

6. Proof of Theorem 1.1

We shall closely follow the arguments of [6]. The idea is to apply Theorem 5.2 to
the situation

A :=
{
|a1(p)− a2(p)| : p ≤ X, a1(p) ̸= a2(p)

}
and P := {ℓ : ℓ≥ M},

where M = M( f1, f2) is the constant in Section 3. It is clear that, for any ℓ ∈ P ,

|Aℓ| =
∣∣{p ≤ X : a1(p) ̸= a2(p), ℓ | (a1(p)− a2(p))

}∣∣ = π∗

f1, f2
(X, ℓ).

Applying Proposition 4.3, under GRH, we obtain

|Aℓ| = δ(ℓ)
X

log X
+ rℓ,
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where rℓ = O(ℓ6 X1/2 log(ℓN X))+ O(X13/14). If d is a square free integer com-
posed of primes from P , then from Propositions 3.7 and 4.3 we have

(6-1) δ(d)=

∏
ℓ|d,ℓ∈P

δ(ℓ) and rd = O(d6 X1/2 log(d N X))+ O(X13/14).

To apply Theorem 5.2, we now verify that hypotheses �1, �2(L , 1) and R(1, α),
given in Hypothesis 5.1, hold for our choice of A and P .

Lemma 6.1. Let f1 and f2 be newforms as before. Then we have the following:

(1) Hypothesis �1 holds with a suitable A1.

(2) Hypothesis �2(1, L) holds with a suitable L.

(3) Under GRH, the hypothesis R(1, α) holds with any α < 1
14 .

Proof. By Proposition 3.6 the validity of hypotheses�1 and�2(1, L) are immediate
because if ℓ ∈ P then δ(ℓ)∼

1
ℓ

and this proves hypothesis �1 while the latter one
can be achieved by using Mertens’s theorem (see [6, Lemmas 4.6.1, 4.6.2, 4.6.3]).
So we only give a proof of part (3). From [5, p. 260], we know that 3ω(n) ≤

d(n)3 log 3/ log 2
≪ nϵ . Therefore, for any positive constant A3, from (6-1), we have∑

d≤
Xα

(log X)A3

µ(d)2 3ω(d) |rd | ≪

∑
d≤

Xα

(log X)A3

(d6+ϵX1/2 log(d N X)+ X13/14).

We now see that, for any α < 1
14 ,∑

d≤
Xα

(log X)A3

µ(d)2 3ω(d) |rd | ≪
X

(log X)2

and this completes the proof. □

Next we need to choose sieve parameters α, u, v, λ satisfying conditions in
Theorem 5.2. For k ≥ 2 we take

(6-2) α =
k − 1
14k

, u =
14k + 1
k − 1

, v =
56k

k − 1
, λ=

1
k1/5 .

Clearly, 1
α
< u < v, 2

α
≤ v ≤

4
α

and 0 < λ < 1. This shows that these parameters
satisfy the conditions required for applying Theorem 5.2, and hence for our choices
of A and P , we obtain

W(A,P, v, u, λ)≫
X

(log X)2

(
F(α, v, u, λ)−

cL
(log X)1/14

)
.

Note that here we have used the fact that |A| ≫ X/log X and W (X)≫ 1/log X for
X ≫ 0 which follows immediately by using Proposition 3.6. Also for the choices
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of sieve parameters α, u, v, λ given in (6-2), the function F(α, v, u, λ), defined by
(5-3), can be computed explicitly and is given by

F
(k−1

14k
,

56k
k−1

,
14k+1

k−1
,

1
k1/5

)
=

eγ
(
14k6/5 log 3+log 42k−(1+14k) log

( 56k
14k+1

))
28k6/5 .

Also, F(α, v, u, λ) > 0 for k > 1.71 . . . . Therefore for a fixed weight k ≥ 2 one
can choose X , sufficiently large, such that F(α, v, u, λ)− (cL)/(log X)1/14 > 0. In
other words, we have

(6-3) W(A,P, v, u, λ)≫
X

(log X)2
.

There are at least X/(log X)2 many primes p ≤ X which make a positive contribution
to the left-hand side of (6-3). Therefore to complete the proof of the first part of
Theorem 1.1 it is sufficient to show that, for any such prime p,

ω(a1(p)− a2(p))≤
[
7k +

1
2 + k1/5].

Let p be such a prime. Then (a1(p)− a2(p), X1/v)= 1 and

(6-4) 1 −

∑
X1/v

≤q<X1/u

q|(a1(p)−a2(p))

λ

(
1 − u

log q
log X

)
> 0.

Therefore, we write

ω(a1(p)− a2(p))=

∑
q|(a1(p)−a2(p))

1 =

∑
X1/v<q<X1/u

q|(a1(p)−a2(p))

1 +

∑
q≥X1/u

q|(a1(p)−a2(p))

1.(6-5)

Now to estimate the first sum on the right of (6-5) we use (6-4) and obtain∑
X1/v<q<X1/u

q|(a1(p)−a2(p))

1<
1
λ

+ u
∑

X1/v<q<X1/u

q|(a1(p)−a2(p))

log q
log X

.

For the second sum we observe that if q ≥ X1/u then log q/log X ≥
1
u that gives∑

q≥X1/u

q|(a1(p)−a2(p))

1 ≤ u
∑

q≥X1/u

q|(a1(p)−a2(p))

log q
log X

.

Substituting the last two inequalities in (6-5) yields

ω(a1(p)− a2(p))≤
1
λ

+ u
∑

q|(a1(p)−a2(p))

log q
log X

≤
1
λ

+ u
log |a1(p)− a2(p)|

log X
.
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Using Deligne’s estimate we know |a1(p)− a2(p)| ≤ 4p(k−1)/2. Therefore for any
p ≤ X as above, we have

ω(a1(p)− a2(p))≤
1
λ

+ u
k − 1

2
+ u

log 4
log X

.

Substituting the values of u and λ from (6-2) and choosing X large enough completes
the proof of the first part of the theorem.

Finally, the last assertion of the theorem when k ≥ 6 can be achieved by taking
λ= 1/

√
log k instead of λ= 1/k1/5 in the above proof and then following the same

arguments.

7. Proof of Theorem 1.6

The idea of the proof is similar to the proof of Theorem 1.1 with minor modifications.
We shall apply Theorem 5.2 with the same setting as in Section 6. For k ≥ 2, we
choose the sieve parameters as

α =
k − 1
14k

, u =
26k + 1

k − 1
, v =

30k
k − 1

, λ=
1

√
log k

.

Again, these parameters satisfy the conditions required for Theorem 5.2 and the
corresponding function F(α, v, u, λ) > 0 for k > 1.006. Hence as in the proof of
Theorem 1.1, the corresponding weighted sum satisfies

(7-1) W(A,P, v, u, λ)≫
X

(log X)2
.

Next we observe that∣∣{p ≤ X : ℓ2
| (a1(p)−a2(p)), X1/v

≤ ℓ≤ X1/u}∣∣ =

∑
X1/v≤ℓ≤X1/u

(π f1, f2(X, ℓ
2)+O(1)),

where the error term is due to the presence of those primes p such that p | ℓN and
ℓ2

| (a1(p)− a2(p)). Applying Proposition 4.1 gives that the left side of the above
equality is equal to

π(X)
∑

X1/v≤ℓ≤X1/u

1
ℓ2 + O

(
X1/2+ϵ

∑
X1/v≤ℓ≤X1/u

ℓ12
)
.

Since u > 26, we have

(7-2)
∣∣{p ≤ X : ℓ2

| (a1(p)− a2(p)), X1/v
≤ ℓ≤ X1/u}∣∣ = o

(
X

(log X)2

)
.

We conclude, by combining (7-1) and (7-2), that there are at least X/(log X)2 many
primes p ≤ X such that
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(a) a1(p)− a2(p) does not have any prime divisors less than X1/v,

(b) for primes ℓ | (a1(p)− a2(p)) with X1/v < ℓ < X1/u , ℓ2 ∤ (a1(p)− a2(p)),

(c) the contribution of p to the sifting function W(A,P, v, u, λ) is positive, i.e.,

1 −

∑
X1/v

≤q<X1/u

q∥(a1(p)−a2(p))

λ

(
1 − u

log q
log X

)
> 0.

In order to complete the proof, we will show that if p ≤ X is a prime satisfying the
three conditions above then

�(a1(p)− a2(p))≤
[
13k +

1
2 +

√
log k

]
.

Let p ≤ X be a prime satisfying (a), (b) and (c). Then, as in the proof of Theorem 1.1,

�(a1(p)−a2(p))=
∑

X1/v<q<X1/u

q∥(a1(p)−a2(p))

1+

∑
q≥X1/u

qm
|(a1(p)−a2(p))

1<
1
λ

+u
∑

qm |(a1(p)−a2(p))

log q
log X

which gives

�(a1(p)− a2(p))≤
1
λ

+ u
log |a1(p)− a2(p)|

log X
.

Now applying Deligne’s estimate and arguing as in the proof of Theorem 1.1, we
get the desired result.
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DESINGULARIZATIONS OF QUIVER GRASSMANNIANS
FOR THE EQUIORIENTED CYCLE QUIVER

ALEXANDER PÜTZ AND MARKUS REINEKE

We construct torus equivariant desingularizations of quiver Grassmannians
for arbitrary nilpotent representations of an equioriented cycle quiver. We
apply this to the computation of their torus equivariant cohomology.

1. Introduction

Quiver Grassmannians are projective varieties parametrizing subrepresentations of
quiver representations. Originating in the geometric study of quiver representations
[Schofield 1992] and in cluster algebra theory [Caldero and Chapoton 2006], they
have been applied extensively in recent years in a Lie-theoretic context, namely as
a fruitful source for degenerations of (affine) flag varieties [Cerulli Irelli et al. 2013;
2017; Feigin et al. 2017; Pütz 2022]. This approach allows for an application of
homological methods from the representation theory of quivers to the study of such
degenerate structures.

The resulting varieties being typically singular, a construction of natural desingu-
larizations is very desirable. For quiver Grassmannians of representations of Dynkin
quivers this was accomplished in [Cerulli Irelli et al. 2013] building on [Feigin and
Finkelberg 2013], and for Grassmannians of subrepresentations of loop quivers
in [Feigin et al. 2017] (in other directions, this construction was generalized to
representations of large classes of finite dimensional algebras in [Crawley-Boevey
and Sauter 2017; Keller and Scherotzke 2014; Leclerc and Plamondon 2013]).

In the present paper, we synthesize the approaches of [Cerulli Irelli et al. 2013;
Feigin et al. 2017] and construct desingularizations of quiver Grassmannians for
nilpotent representations of equioriented cycle quivers, thereby, in particular, desin-
gularizing degenerate affine flag varieties [Pütz 2022].

As an important application, this allows us to describe the equivariant cohomology
of degenerate affine flag varieties and more general quiver Grassmannians, in
continuation of the program started in [Lanini and Pütz 2023a; 2023b].

In the first section, we recall some background material on quiver Grassmannians
for nilpotent representations of the equioriented cycle quiver. In Section 3 we give
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Keywords: quiver Grassmannian, affine flag variety, desingularization.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2023.326-1
https://doi.org/10.2140/pjm.2023.326.109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


110 ALEXANDER PÜTZ AND MARKUS REINEKE

an explicit construction for desingularizations of quiver Grassmannians for nilpotent
representations of the equioriented cycle, along the lines of [Cerulli Irelli et al. 2013].
We prove that the desingularization has a particularly favorable geometric structure,
namely it is isomorphic to a tower of Grassmann bundle. Consequently, it, admits a
cellular decomposition which is compatible with the cellular decomposition of the
singular quiver Grassmannian. In Section 4, we recall the definition of certain torus
actions on cyclic quiver Grassmannians, together with the necessary framework
to compute torus equivariant cohomology. Finally, in Section 5 we prove that the
desingularization is equivariant with respect to the torus action as introduced in
[Lanini and Pütz 2023a]. This allows to use the construction from that paper for
the computation of torus equivariant cohomology to all quiver Grassmannians for
nilpotent representations of the equioriented cycle.

2. Quiver Grassmannians for the equioriented cycle

In this section we recall some definitions concerning quiver Grassmannians and
representations of the equioriented cycle. We refer to [Kirillov Jr. 2016; Schiffler
2014] for general representation theoretic properties, and to [Cerulli Irelli et al.
2012] for basic properties of quiver Grassmannians.

Generalities on quiver representations. Let Q be a quiver, consisting of a set of
vertices Q0 and a set of arrows Q1 between the vertices. A Q-representation M
consists of a tuple of C-vector spaces M (i) for i ∈ Q0 and tuple of linear maps
Mα : M (i)

→ M ( j) for (α : i → j)∈ Q1. We denote the category of finite dimensional
Q-representations by repC(Q). The morphisms between two objects M and N are
tuples of linear maps ϕi : M (i)

→ N (i) for i ∈ Q0 such that ϕj ◦ Mα = Nα ◦ϕi holds
for all (α : i → j) ∈ Q1.

Definition 2.1. For M ∈ repC(Q) and e ∈ NQ0 , the quiver Grassmannian Gre(M)
is the closed subvariety of

∏
i∈Q0

Grei (M
(i)) of all subrepresentations U of M such

that dimC U (i)
= ei for i ∈ Q0.

For an isomorphism class [N ] of Q-representations, the stratum S[N ] is defined
as the set of all points (that is, subrepresentations) U ∈ Gre(M) such that U is
isomorphic to N . By [Cerulli Irelli et al. 2012, Lemma 2.4], S[N ] is locally closed
and irreducible. If there are only finitely many isomorphism classes of subrepre-
sentations of M , as will be the case in the following, the S[N ] thus define a finite
stratification of the quiver Grassmannians.

Every basis B of M ∈ repC(Q) consists of bases

B(i) = {v
(i)
k : k ∈ [mi ]}
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for each vector space M (i) of the Q-representation M , where mi := dimC M (i)

for all i ∈ Q0, and [m] := {1, . . . ,m}.

Definition 2.2. Let M ∈ repC(Q) and B a basis of M . The coefficient quiver
Q(M, B) consists of:

(QM0) The vertex set Q(M, B)0 = B.

(QM1) The set of arrows Q(M, B)1, containing (α̃ : v
(i)
k → v

( j)
ℓ ) if and only if

(α : i → j) ∈ Q1 and the coefficient of v( j)
ℓ in Mαv

(i)
k is nonzero.

Representations of the equioriented cycle. For n ∈ N, by 1n we denote the equior-
iented cycle quiver on n vertices. Hence the set of arrows and the sets of vertices are
in bijection with Zn := Z/nZ; more precisely, we have (1n)0 = Z/nZ and arrows
αi : i → i + 1 for all i ∈ Z/nZ. Here and in the following, we consider all indices
modulo n unless specified differently.

A 1n-representation M is called N -nilpotent for N ∈ N if

Mαi+N−1 ◦ Mαi+N−2 ◦ · · · ◦ Mαi+1 ◦ Mαi = 0

for all i ∈ Zn , i.e., all concatenations of the maps of M along the arrows of 1n

vanish after at most N steps. M is called nilpotent if it is N -nilpotent for some N .
From now on we use the short hand notation Mi for the map along the arrow αi .

Example 2.3. Let i ∈ Zn and let ℓ∈ Z≥1. Consider the C-vector space V with basis
B = {b1, . . . , bℓ} equipped with the Zn-grading given by deg(bk)= i + k − 1 ∈ Zn .
Take the operator A ∈ End(V ) uniquely determined by setting Abk = bk+1 for any
k < ℓ and Awℓ = 0. The vector space of the corresponding 1n-representation over
the j-th vertex is spanned by the elements of B of degree j . Let m j be the number
of these basis elements. In this basis, the map from vertex j to j + 1 is given by
a m j × m j+1 matrix with ones on the diagonal below the main diagonal and all
other entries equal to zero. It is immediate to check that this 1n-representation is
nilpotent. We denote this representation by Ui (ℓ).

Proposition 2.4 [Kirillov Jr. 2016, Theorem 7.6.(1)]. Every indecomposable nilpo-
tent representation of 1n is isomorphic to some Ui (ℓ).

Example 2.5. Observe that the basis B from Example 2.3 can be obviously rear-
ranged into the union of ordered bases

B(i) = {v(i)r : r ∈ [ki ]} for i ∈ Zn,

where ki is the number of elements b ∈ B with deg(b)= i . With respect to B, the
coefficient quiver of Ui (ℓ) has the form:
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v
(i)
1

v
( j)
kj

By [Kirillov Jr. 2016, Theorem 1.11], every nilpotent 1n-representation is iso-
morphic to a 1n-representation of the form

M :=

⊕
i∈Zn

⊕
ℓ∈[N ]

Ui (ℓ)⊗ Cdi,ℓ,

with di,ℓ ∈ Z≥0 for all i ∈ Zn and ℓ ∈ [N ]. Here N is the nilpotence parameter
of the representation and the tensor product with the C-vector spaces counts the
multiplicities of the indecomposable summands.

Let C1n be the path algebra of 1n and define the path

pi (N ) := (i + N |αi+N−1 ◦αi+N−2 ◦ · · · ◦αi+1 ◦αi | i)

for all i ∈ Zn and some fixed N ∈ N. We define the path algebra ideal

IN := ⟨pi (N ) : i ∈ Zn⟩ ⊂ C1n,

generated by all paths of length N , and we denote the truncated path algebra
C1n/IN by A(N )n . The following is a special case of [Schiffler 2014, Theorem 5.4].

Proposition 2.6. The category repC(1n, IN ) of bounded quiver representations is
equivalent to the category modC(A

(N )
n ) of modules over the truncated path algebra.

Remark 2.7. The Ui (N ) for i ∈ Zn are the longest indecomposable nilpotent
representations in repC(1n, IN ).

Let Pi ∈ repC(1n, IN ) be the 1n-representation starting at vertex i ∈ Zn corre-
sponding to the projective indecomposable A(N )n -module, and let Ij ∈ repC(1n, IN )

be the1n-representation ending at vertex j ∈ Zn corresponding to the injective inde-
composable A(N )n -representation. We can identify bounded projective and bounded
injective representations of the cycle, via indecomposable nilpotent representations
(see [Pütz 2022, Proposition 4.2]):
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Proposition 2.8. For n, N ∈ N and all i, j ∈ Zn the projective and injective repre-
sentations Pi and Ij of the bound quiver (1n, IN ) satisfy

Pi ∼= Ui (N )∼= Ii+N−1 and Ij ∼= U j−N+1(N )∼= Pj−N+1.

Remark 2.9. In particular, Ui (N ) is projective and injective in repC(1n, IN ). If
we want to emphasize the injective nature of an indecomposable 1n-representation
we sometimes use the notation U ( j; ℓ) := U j−ℓ+1(ℓ).

Parametrization of irreducible components. In Section 3 we will construct desingu-
larizations of all quiver Grassmannians associated to nilpotent representations of the
equioriented cycle, which requires knowledge of their irreducible components. Let
us first recall the approach: since there are only finitely many isomorphism classes
of nilpotent 1n-representations in any fixed dimension, the stratification of every
quiver Grassmannian into strata S[N ] is finite. Since the strata are irreducible, the
irreducible components of quiver Grassmannians are therefore of the form S[N ] for
certain isomorphism classes [N ], which provide a natural labeling (and a canonical
representative) of the components.

For arbitrary nilpotent representations of the equioriented cycle the structure of the
irreducible components of the associated quiver Grassmannians is not known. In the
special case that all indecomposable direct summands of the 1n-representation M
have length N = ωn (for ω ∈ N) and e = (ωk, . . . , ωk) ∈ Zn , we have an explicit
description of the irreducible components of the quiver Grassmannian Gre(M) [Pütz
2022, Lemma 4.10]:

Lemma 2.10. Let M denote the1n-representation ⊕i∈Zn U (i;ωn)⊗Cdi with ω∈ N

and di ∈ Z≥0 for all i ∈ Zn , define m :=
∑

i∈Zn
di and e := (ωk, . . . , ωk) ∈ Zn . The

irreducible components of Gre(M) are in bijection with the set

Ck(d) :=

{
p ∈ Zn

≥0 : pi ≤ di for all i ∈ Zn,
∑
i∈Zn

pi = k
}

and they all have dimension ωk(m − k).

Remark 2.11. A representative of the open dense stratum in the irreducible com-
ponent corresponding to p ∈ Ck(d) is

U p :=

⊕
i∈Zn

U (i;ωn)⊗ Cpi .

Example 2.12. Let di = 1 for all i ∈ Zn . Then by Lemma 2.10 the irreducible com-
ponents are parametrized by the k-element subsets of [n] and the representatives are⊕

j∈I

U ( j;ωn)

for I ∈
(
[n]

k

)
. The dimension of the irreducible components is ωk(n − k).
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3. Construction of the desingularization

The approach to the construction of desingularizations of quiver Grassmannians for
the equioriented cycle quiver carried out in this section is a synthesis of the approach
of Cerulli Irelli et al. [2013] for Dynkin quivers and the approach of Feigin et al.
[2017] for the loop quiver. We will construct another quiver for which certain quiver
Grassmannians yield desingularizations, which relies on certain favorable homolog-
ical properties similar to those in [Cerulli Irelli et al. 2013, Section 4]. Note that the
present case is not immediately covered by the generalizations [Crawley-Boevey
and Sauter 2017; Keller and Scherotzke 2014; Leclerc and Plamondon 2013], and
our construction has the advantage of being of a very explicit linear algebra nature.

Bounded representations of the equioriented cylinder. In this subsection we intro-
duce a map 3 : repC(1n, IN )→ repC(Q, I) for some bound quiver (Q, I) such that
each quiver Grassmannian associated to 3(M) is smooth for all M ∈ repC(1n, IN ).
We start with the definition of Q and the ideal I. Let 1̂n,N be the quiver with
vertices (1̂n,N )0 = {(i, k) : i ∈ Zn, k ∈ [N ]} and arrows(
1̂n,N

)
1 =

{
αi,k : (i, k)→ (i, k + 1) such that i ∈ Zn, k ∈ [N − 1]

}
∪

{
βi,k : (i, k)→ (i + 1, k − 1) such that i ∈ Zn, k ∈ [N ] \ {1}

}
,

which we call an equioriented cylinder quiver. We define În,N as the ideal in the
path algebra C1̂n,N generated by the relations

βi,k+1 ◦αi,k ≡ αi+1,k−1 ◦βi,k and αi+1,N−1 ◦βi,N ≡ 0

for all i ∈ Zn and all k ∈ [N − 1] \ {1}.

Example 3.1. 1̂4,4 is the following quiver:

(1, 1)
α1,1

(2, 1)

α2,1

(3, 1)
α3,1

(4, 1)

α4,1

(1, 2)

β1,2

(2, 2)
β2,2

(3, 2)

β3,2

(4, 2)
β4,2 α1,2

β1,3

β3,3

α3,2

β4,3

α2,2β2,3

α4,2

(4, 3)
α4,3

(1, 3)

α1,3

(2, 3)
α2,3

(3, 3)

α3,3

(4, 4)

β4,4

(1, 4)
β1,4

(2, 4)

β2,4

(3, 4)
β3,4
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We define a functor 3 : repC(1n, IN )→ repC(1̂n,N , În,N ) on objects by

3(M) := M̂ =
(
(M̂ (i,k))i∈Zn,k∈[N ], (M̂αi,k , M̂βi,k+1)i∈Zn,k∈[N−1]

)
,

with
M̂ (i,1)

:= M (i) for k = 1,

M̂ (i,k)
:= Mi+k−2 ◦ Mi+k−3 ◦ · · · ◦ Mi+1 ◦ Mi (M (i)) for k ≥ 2,

M̂αi,k := Mi+k−1|M̂ (i,k) for k ≥ 1,

M̂βi,k := ι : M̂ (i,k) ↪→ M̂ (i+1,k−1) for k ≥ 2,

where the inclusions in the last row arise naturally from the definition of the vector
spaces of the representation M̂ . Here Mi denotes the map along the arrow αi .

Example 3.2. Let n = N = 2 and M = U (1; 2)⊕U (2; 2). The 1̂2,2-representation
3(M) is

C

C2

C

C2

(0
1

)

(10)
(0

1

)
(10)

Proposition 3.3. 3 : repC(1n, IN )→ repC(1̂n,N , În,N ) as defined above induces a
bijection 3N ,M : Hom1n (N ,M)→ Hom1̂n,N

(N̂ , M̂) for all N ,M ∈ repC(1n, IN )

and hence is a fully faithful functor.

Proof. By construction of 3, the vector spaces constituting M̂ ∈ repC(1̂n,N , În,N )

are subspaces of the corresponding vector spaces constituting M . Hence each
morphism in Hom1n (N ,M) induces a morphism in Hom1̂n,N

(N̂ , M̂) whose com-
ponents at the additional vertices are obtained by restriction. It is immediate to
check that this induces the desired bijection 3N ,M , 3N ,M(idM) = idM̂ and that
3N ,M(φ) ◦3N ,M(ψ)=3N ,M(φ ◦ψ) holds for all φ,ψ ∈ Hom1n (N ,M) and all
N ,M ∈ repC(1n, IN ). □

Now we want to describe the image of the indecomposable Ui (ℓ) under 3. Let
A∞×N be the infinite band quiver of height N , that is, the quiver with vertices (i, k)
for i ∈Z and k ∈[N ] and arrows αi,k :(i, k)→(i, k+1) and βi,k :(i, k)→(i+1, k−1)
whenever both vertices exist. Define a map of quivers φ : A∞×N → 1̂n,N , induced
by sending each index i ∈ Z to its equivalence class i ∈ Zn . This extends to a
push-down functor 8 : repC(A∞×N )→ repC(1̂n,N ) with

(8(V ))(i,k)=
⊕
r∈Z

V (i+rn,k), (8(V ))αi,k =

⊕
r∈Z

Vαi+rn,k , (8(V ))βi,k =

⊕
r∈Z

Vβi+rn,k

for all V ∈ repC(A∞×N ). Consider the A∞×N -representation V (i; ℓ) with vector
spaces V (i; ℓ)( j,k)

=C for ( j, k)∈(A∞×N )0 with i ≤ j ≤ i+ℓ−1 and 1≤k ≤ i+ℓ− j
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and zero otherwise. The maps along the arrows of A∞×N are identities if both
the source and target space are one-dimensional and zero otherwise. Using the
explicit definitions of the functors 3 and 8, and the explicit descriptions of the
representations Ui (ℓ) and V (i; ℓ), we can now directly verify that

3(Ui (ℓ))=8(V (i; ℓ)).

Analogously, we define A∞×N -representations V (i, k; ℓ) consisting of vector
spaces V (i, k; ℓ)( j,r)

=C for ( j, r)∈ (A∞×N )0 with j ≥ i and i+k ≤ j+r ≤ i+k+ℓ

and W (i, k; ℓ) with vector spaces W (i, k; ℓ)( j,r)
= C for ( j, r) ∈ (A∞×N )0 with

j ≤ i and i − ℓ≤ j + r ≤ i + k.

Example 3.4. For N = 4 the quiver A∞×N is

. . . (−4, 1) (−3, 1) (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) (4, 1) . . .

. . . (−4, 2) (−3, 2) (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) (3, 2) (4, 2) . . .

. . . (−5, 3) (−4, 3) (−3, 3) (−2, 3) (−1, 3) (0, 3) (1, 3) (2, 3) (3, 3) . . .

. . . (−5, 4) (−4, 4) (−3, 4) (−2, 4) (−1, 4) (0, 4) (1, 4) (2, 4) (3, 4) . . .

Its representation V (1, 3) is of the form

. . . 0 0 0 0 C C C 0 0 . . .

. . . 0 0 0 0 C C 0 0 0 . . .

. . . 0 0 0 0 0 C 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 0 . . .

From now on we erase all zeros and arrows connected to zeros from the picture.
Hence we obtain

V (i, 2, 2)=

C C

C C

C

and W (i, 3, 2)=

C C

C C

C C

C
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Homological properties of the category of cylinder representations. In this section,
we follow closely the approach of Cerulli Irelli et al. [2013] to establish certain
favorable homological properties of the image of the functor 3.

Proposition 3.5. The simple, projective and injective objects in repC(1̂n,N , În,N )

are given by

Si,k :=8(V (i, k; 0)), Pi,k :=8(V (i, k; N − k)), Ii,k :=8(W (i, k; N − k)),

respectively, for all (i, k) ∈ (1̂n,N )0.

Proof. For the simple objects this is immediate. The parametrization of the projective
and injective representations is a direct computation using the formula based on
paths in the quiver 1̂n,N (see [Schiffler 2014, Definition 5.3]) and their relations
from În,N as described in the beginning of this section. □

Theorem 3.6. The category repC(1̂n,N , În,N ) has global dimension at most two.

Proof. It suffices to construct projective resolutions of length at most two for all
simple representations in repC(1̂n,N , În,N ). These representations are denoted by
Si,k and consist of a single copy of C at vertex (i, k) and all other vector spaces and
the maps are zero. The projective resolutions of Si,1 are of the form

0 → Pi,2 → Pi,1 → Si,1 → 0

and for Si,k with k ≥ 2 this generalizes to

0 → Pi+1,k → Pi+1,k−1 ⊕ Pi,k+1 → Pi,k → Si,k → 0. □

Example 3.7. For N = 4 and Si,3 we obtain the following projective resolution:

C C

C C

C C

C

C C2 C C C

C C2 C C C

C2 C C C C

C C C

Si,3Pi,3P1+1,2 ⊕ Pi,4Pi+1,3

Lemma 3.8. For M ∈ repC(1n, IN ) the injective and projective dimension of M̂ is
at most one and Ext1

1̂n,N ,În,N
(M̂, M̂)= 0.

Proof. It suffices to compute the projective and injective dimension of the image of
all indecomposable representations Ui (ℓ) ∈ repC(1n, IN ), by exhibiting projective
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resp. injective resolutions, namely

0 → Pi,ℓ+1 → Pi,1 → Ûi (ℓ)→ 0, 0 → Û ( j; ℓ)→ I j,1 → I j−ℓ,ℓ+1 → 0,

where j := i + ℓ− 1 and hence U ( j; ℓ)= Ui (ℓ).
It remains to prove vanishing of all

Ext1
1̂n,N ,În,N

(Ûi (ℓ), Ûj (ℓ
′)).

We apply the functor
Hom

1̂n,N ,În,N
(_, Ûj (ℓ

′))

to the above projective resolution of Ûi (ℓ), simplify the terms involving projectives,
and obtain the exact sequence

0→Hom(Ûi (ℓ),Ûj (ℓ
′))→ Ûj (ℓ

′)(i,1)
α

−→ Ûj (ℓ
′)(i,ℓ+1)

→Ext1(Ûi (ℓ),Ûj (ℓ
′))→0.

By definition of 3, the map α is the canonical surjection

Uj (ℓ
′)(i) →

(
Uj (ℓ

′)i+ℓ−1 ◦ · · · ◦ Uj (ℓ
′)i

)
(Uj (ℓ

′)(i)),

proving the desired Ext1-vanishing. □

Example 3.9. For N =4 we obtain the following projective and injective resolutions
of Ui (3)= U (i − 2; 3):

Pi,4

C

C

C

C

Pi,1

C C C C

C C C

C C

C

Ûi (3)

C C C

C C

C

Û (i − 2; 3)

C C C

C C

C

Ii−2,1

C C C C

C C C

C C

C

Ii−5,4

C

C

C

C



DESINGULARIZATIONS OF QUIVER GRASSMANNIANS FOR CYCLE QUIVER 119

The restriction functor. For each W ∈ repC(1̂n,N , În,N ) we define the representa-
tion res W ∈ repC(1n, IN ) by

res W :=
(
(W (i,1))i∈Zn , (Wβi,2 ◦ Wαi,1)i∈Zn

)
.

This induces maps resV,W : Hom1̂n,N
(V,W )→ Hom1n (res V, res W ), by forgetting

the components of the morphisms at the vertices (i, k) with k ≥ 2. Hence we
obtain a functor res : repC(1̂n,N , În,N )→ repC(1n, IN ). The proof of the following
proposition is immediate by the construction of 3 and res.

Proposition 3.10. res ◦3(M)= M holds for all M ∈ repC(1n, IN ).

The desingularization map. In this subsection we provide the construction of the
desingularization map, again closely following [Cerulli Irelli et al. 2013]. An
example is given below.

Definition 3.11. An isomorphism class [N ] of 1n-representations is called a
generic subrepresentation type of M ∈ repC(1n, IN ) to dimension vector e, if
the stratum S[N ] is open in Gre(M). The set of generic subrepresentation types is
denoted by gsube(M).

Remark 3.12. By construction, for some [N ] ∈ gsube(M) the closure of the stra-
tum S[N ] is an irreducible component of Gre(M), and all irreducible components
are obtained in this way.

Remark 3.13. In general, there is no explicit description of the gsube(M). But
if the indecomposable summands of M are all of length ωn for n, ω ∈ N, we can
apply Lemma 2.10.

Example 3.14. Let n = 3, N = 2 and consider the quiver Grassmannian for
M = U1(2)2 ⊕ U2(2)3 ⊕ U3(2) and e = (1, 2, 3). It has eight isomorphism classes
of subrepresentations but only two irreducible components. Namely S[N1,2] for
N1 = U2(2)2 ⊕ U3(2) and N2 = U1(2)⊕ U2(2)⊕ U3(1)2. The stratum of N1 is
seven-dimensional whereas the stratum of N2 is only five-dimensional.

For [N ] ∈ gsube(M) we define a map from a quiver Grassmannian of the cylinder
quiver to a quiver Grassmannian of the cycle quiver

πN : Grdim N̂ (M̂)→ Gre(M)

by πN (U ) := res U for all U ∈ Grdim N̂ (M̂).

Proposition 3.15. For each [N ] ∈ gsube(M) the map

πN : Grdim N̂ (M̂)→ Gre(M)

is injective over S[N ].
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Proof. Let U ∈ S[N ] ⊆ Gre(M), then dim Û = dim N̂ and

π−1
N (U )=

{
V ∈ Grdim N̂ (M̂) : V (i,1)

= U (i) for all i ∈ Zn
}
.

In particular Û is contained in π−1
N (U ) ⊂ Grdim N̂ (M̂). It remains to show that

π−1
N (U ) = {Û }: By construction of res and 3 it follows that Û (i,2)

⊂ V (i,2) and
dimC Û (i,2)

= dimC V (i,2) holds for all V ∈ π−1
N (U ) since U and N are isomorphic.

This implies that Û (i,2)
= V (i,2) holds for all i ∈ Zn . Inductively, it follows that

V = Û . □

Proposition 3.16. For each [N ] ∈ gsube(M) the fiber of πN over U ∈ Gre(M) is

π−1
N (U )= FU :=

{
F ∈ Grdim N̂ (M̂) : Û ⊆ F

}
∼= Grdim N̂−dim Û (M̂/Û ).

Proof. Observe that dim U = dim N , so that dimC Û (i,1)
= dimC N̂ (i,1) for all i ∈ Zn

and the first nontrivial choice of a subspace F (i,k) is over vertices (i, k) with k ≥ 2.
The inclusion FU ⊆ π−1

N (U ) holds since πN (F)= U is clear by definition of FU

and the construction of the restriction functor. The other inclusion follows since
every point V of the fiber π−1

N (U ) has to contain the vector spaces of Û in its
vector spaces V (i,k) over each vertex (i, k) of 1̂n,N , in order to map to U . The
isomorphism between FU and the quiver Grassmannian is a direct consequence of
the explicit description of the fiber. □

We are now ready to state the main result of the paper, which is proved after the
next proposition.

Theorem 3.17. Let M ∈ repC(1n, IN ). The map

π :=

⊔
[N ]∈gsube(M)

πN :

⊔
[N ]∈gsube(M)

Grdim N̂ (M̂)→ Gre(M)

is a desingularization of Gre(M).

Remark 3.18. Using Proposition 3.16, we can compute the fiber dimensions for
the desingularization to examine whether it is small, in the spirit of [Feigin and
Finkelberg 2013, Section 2]. This is the case for the quiver Grassmannian Gr2(M)
from [Lanini and Pütz 2023b, Example 3.13] where Q =11 and M = U1(2)⊕ S2

1 .
In general, desingularizations of quiver Grassmannians for the cycle are not small.
It already fails for the loop quiver (i.e., 11) and the quiver Grassmannian Gr2(N )
where N = U1(2)2.

For the proof of Theorem 3.17 we recollect the main properties of the maps πN :

Proposition 3.19. Let M ∈ repC(1n, IN ) and [N ] ∈ gsube(M). Then:

(i) The variety Grdim N̂(M̂) is smooth with irreducible equidimensional connected
components.
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(ii) The map πN is one-to-one over S[N ].

(iii) The image of πN is closed in Gre(M) and contains S[N ].

(iv) The map πN is projective.

Proof. By Theorem 3.6 and Lemma 3.8 we can apply [Cerulli Irelli et al. 2013,
Proposition 7.1] to each quiver Grassmannian Grdim N̂(M̂) and obtain the properties
stated in (i). Proposition 3.15 is exactly part (ii). The remaining parts are proven
analogous to [Cerulli Irelli et al. 2013, Theorem 7.5] since the functor 3 is fully
faithful by Proposition 3.3. □

Proof of Theorem 3.17. By [Cerulli Irelli et al. 2021, Proposition 37], we obtain
that

Grdim N̂ (M̂)= S
[N̂ ]

since M̂ is rigid by Lemma 3.8. With the properties of 1̂n,N -representations from
Theorem 3.6 and Lemma 3.8, the maps πN as in Proposition 3.19 and 3 as in
Proposition 3.3, the rest of the proof is the same as for [Cerulli Irelli et al. 2013,
Corollary 7.7]. □

Remark 3.20. In particular, Cerulli Irelli et al. [2021, Proposition 37] proves the
conjecture from [Cerulli Irelli et al. 2013, Remark 7.8], about the irreducibility of
Gre(M̂) in [Cerulli Irelli et al. 2013, Corollary 7.7] for arbitrary representations M
of a Dynkin quiver.

The following result generalizes [Feigin et al. 2023b, Theorem 7.10].

Theorem 3.21. For each [N ] ∈ gsube(M) the quiver Grassmannian Grdim N̂ (M̂) is
isomorphic to a tower of fibrations

Grdim N̂ (M̂)= X1 → X2 → · · · → X N =

∏
i∈Zn

Grn̂(i,N )(C
m̂(i,N )

),

where n̂ := dim N̂ and m̂ := dim M̂ and each map Xk → Xk + 1 for k ∈ [N − 1]

is a fibration with fiber isomorphic to a product of ordinary Grassmannians of
subspaces.

Proof. Every point U of the quiver Grassmannian Grdim N̂ (M̂) is parametrized by a
collection of subspaces U (i,k)

⊆ M (i,k) for i ∈ Zn and k ∈ [N ]. In particular it is a
point in

Grn̂(C
m̂) :=

∏
i∈Zn

∏
k∈[N ]

Grn̂(i,k)(C
m̂(i,k)

).

Define Xk as the image of Grdim N̂ (M̂) in the variety Grn̂(m̂)(k) which is defined
analogous to Grn̂(C

m̂), with the only difference that the second product runs over
{k, k +1, . . . , N } instead of [N ]. Hence Grdim N̂ (M̂)= X1 follows by construction.
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We proceed by decreasing induction starting from k = N . Every point in the
product of Grassmannians of subspaces Grn̂(m̂)(N ) can be extended to an element
of Grdim N̂ (M̂) since the upper vector spaces of an element in the quiver Grassman-
nian are not related. This implies X N = Grn̂(m̂)(N ) as desired.

Now assume that the vector spaces U (i,k′) are fixed for all i ∈ Zn and k ′ > k.
Since U has to be contained in the quiver Grassmannian it has to satisfy the relations

M̂αi+1,k ◦ M̂βi,k+1 U (i,k+1)
⊆ U (i+1,k+1) for all i ∈ Zn.

Hence the next layer of vector spaces U (i,k) requires

M̂βi−1,k+1 U (i−1,k+1)
⊆ U (i,k) and M̂αi,k U (i,k)

⊆ U (i,k+1) for all i ∈ Zn.

This is equivalent to the choice of a point in the Grassmannian

Grn̂(i,k)−n̂(i−1,k+1)(U (i,k)/M̂βi−1,k+1 U (i−1,k+1))

because every map M̂αi,k is a projection where the last m̂(i,k)
− m̂(i,k+1) coordinates

are sent to zero and each M̂βi,k is an inclusion. □

Remark 3.22. The explicit description of the desingularization in Theorem 3.21
allows to construct a cellular decomposition of Grdim N̂ (M̂) (see Theorem 5.5). In
particular, it implies that Grdim N̂ (M̂) is smooth.

4. Torus equivariant cohomology and equivariant Euler classes

In this section we briefly recall definitions and constructions concerning torus actions
on quiver Grassmannians, torus equivariant cohomology and torus equivariant Euler
classes. More details on the general theory is found in [Arabia 1998; Brion 1998;
Goresky et al. 1998; Gonzales 2014]. The application to quiver Grassmannians is
introduced in [Lanini and Pütz 2023a; 2023b]. In Section 5 we provide examples
and apply our desingularizations to the computation of equivariant cohomology of
quiver Grassmannians for the equioriented cycle.

Moment graph and torus equivariant cohomology. Let X be a projective algebraic
variety over C. The action of an algebraic torus T ∼= (C∗)r on X is skeletal if the
number of T -fixed points and the number of one-dimensional T -orbits in X is finite.
We call a cocharacter χ ∈ X∗(T ) generic for the T -action on X if X T

= Xχ(C∗).
By X∗(T ) we denote the character lattice of T . The T -equivariant cohomology
of X with rational coefficients is denoted by H•

T (X).

Definition 4.1. The pair (X, T ) is a GKM-variety if the T -action on X is skeletal
and the rational cohomology of X vanishes in odd degrees.

Remark 4.2. By [Brion 2000, Lemma 2] this is equivalent to [Lanini and Pütz
2023a, Definition 1.4].
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The closure E of every one-dimensional T -orbit E in a projective GKM-variety
admits an T -equivariant isomorphism to CP1. Thus each one-dimensional T -orbit
connects two distinct T -fixed points of X .

Definition 4.3. Let (X, T ) be a GKM-variety, and let χ ∈ X∗(T ) be a generic
cocharacter. The corresponding moment graph G = G(X, T, χ) of a GKM-variety
is given by the following data:

(MG0) The T -fixed points as vertices, i.e., G0 = X T .

(MG1) The closures of one-dimensional T -orbits E = E ∪ {x, y} as edges in G1,
oriented from x to y if limλ→0 χ(λ).p = x for p ∈ E .

(MG2) Every E is labeled by αE ∈ X∗(T ) describing the T -action on E .

Theorem 4.4 [Goresky et al. 1998, Theorem 1.2.2]. Let (X, T ) be a GKM-variety
with moment graph G = G(X, T, χ) and set R := H•

T (pt). Then

H•

T (X)∼=

{
( fx) ∈

⊕
x∈G0

R
∣∣∣ fxE − fyE ∈ αE R for any E = E ∪ {xE , yE } ∈ G1

}
.

Remark 4.5. The characters from (MG2) are only unique up to a sign. This sign
does not play a role in Theorem 4.4. Hence we can fix our favorite convention.

BB-filterable varieties. In this subsection we describe a class of varieties which
admit an explicit formula for the computation of their equivariant cohomology.
Let X be a C∗-variety. By XC∗

we denote its fixed point set and X1, . . . , Xm denote
the connected components of XC∗

. This induces a decomposition

(4.6) X =

⋃
i∈[m]

Wi , with Wi :=

{
x ∈ X : lim

z→0
z.x ∈ X i

}
,

where Wi is called attracting set of X i . Since decompositions of this type were first
studied by Bialynicki-Birula [1973], we call it a BB-decomposition.

Definition 4.7. We say that Wi from (4.6) is a rational cell if it is rationally smooth
at all w ∈ Wi . This in turn holds if

H 2 dimC(Wi )(Wi ,Wi \ {w})≃ Q and H m(Wi ,Wi \ {w})= 0

for any m ̸= 2 dimC(Wi ) (see [Gonzales 2014, p. 292, Definition 3.4]).

Definition 4.8. A projective T -variety X is BB-filterable if:

(BB1) The fixed point set X T is finite.

(BB2) There exists a generic cocharacter χ : C∗
→ T , i.e., Xχ(C∗)

= X T , such that
the associated BB-decomposition consists of rational cells.
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Theorem 4.9 (see [Lanini and Pütz 2023a, Theorem 1.15]). Let X be a BB-filterable
projective T -variety. Then:

(1) X admits a filtration into T -stable closed subvarieties Zi such that

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm−1 ⊂ Zm = X.

(2) Each Wi = Zi \ Zi−1 is a rational cell, for all i ∈ [m].

(3) The singular rational cohomology of Zi vanishes in odd degrees, for i ∈ [m].

(4) If , additionally, the T -action on X is skeletal, each Zi is a GKM-variety.

Euler classes and cohomology module bases. For the precise definition of Euler
classes we refer the reader to [Arabia 1998, Section 2.2.1]. Instead we give three
properties which are enough to determine the equivariant Euler classes in our setting.

Lemma 4.10 (see [Brion 1998, Corollary 15, Lemma 16, Theorem 18]). Let Y be
a T -variety and y ∈ Y T .

(1) If Y is smooth at y then EuT (y, Y ) = (−1)dim(Y ) det TyY , where det TyY is
the product of the characters by which T acts on the tangent space TyY .

(2) If Y is rationally smooth at y then EuT (y, Y )= z ·det TyY , for some z ∈ Q\{0}.

(3) If π : Y → X is a T -equivariant resolution of singularities and |Y T
| < ∞,

then
EuT (x, X)−1

=

∑
y∈Y T ,π(y)=x

EuT (y, Y )−1.

Remark 4.11. Lemma 4.10 differs from [Brion 1998] by using Euler classes instead
of equivariant multiplicities which are inverse to each other up to a sign.

Definition 4.12 (see [Gonzales 2014, Lemma 6.7]). Let X T
= {x1, . . . , xm}. For

i ∈ [m], the local index of f ∈ H•

T (X) at xi ∈ X T is

Ii ( f )=

∑
j∈[m]:xj ∈Zi

fxj

EuT (xj , Zi )
.

The next theorem gives an explicit formula to compute a basis for H•

T (X) as free
module over H•

T (pt). Observe that everything depends on the order of the fixed
points which is in general not unique.

Theorem 4.13 (see [Lanini and Pütz 2023a, Theorem 2.12]). Let (X, T ) be a
BB-filterable GKM-variety with filtration

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm = X

as in Theorem 4.9. Let X T
= {x1, . . . , xm} with xi ∈ Wi = Zi \ Zi−1. There exists

a unique basis {θ (i)}i∈[m] of H•

T (X) as free module over H•

T (pt), such that for any
i ∈ [m] the following properties hold:
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(1) θ (i)xj = 0 for all j < i .

(2) θ (i)xi = EuT (xi , Zi ).

(3) Ij (θ
(i))= 0 for all j ̸= i .

Remark 4.14. Observe that (1) and (2) imply Ii (θ
(i))= 1 by Definition 4.12.

Torus action on cyclic quiver Grassmannians. We briefly recall torus actions
on quiver Grassmannians for the equioriented cycle (see [Lanini and Pütz 2023a,
Section 5]).

Remark 4.15. From now on we assume the choice of a basis B of M such that
the connected components of Q(M, B) are in bijection with the indecomposable
direct summands of M . Such a choice is always possible by [Kirillov Jr. 2016,
Theorem 1.11].

A grading of M ∈ repC(1n) with respect to a fixed basis is a map wt : B → ZB .
This induces an action of λ ∈ C∗ by

λ.b := λwt(b)
· b.

Remark 4.16. Combining several weight functions wt1, . . . ,wtD : B → ZB , we
can define the action of λ= (λj ) j∈[D] ∈ (C∗)D by

λ.b :=

∏
j∈[D]

λ
wtj (b)
j · b = λ

wt1(b)
1 · · · · · λ

wtD(b)
D · b.

Observe that this action extends to the quiver Grassmannian Gre(M) only un-
der some additional assumptions about the grading (see [Lanini and Pütz 2023a,
Lemma 5.12]).

Theorem 4.17 (see [Lanini and Pütz 2023a, Theorem 6.6]). Let M be a nilpo-
tent representation of 1n with d-many indecomposable direct summands, and let
e ≤ dim M be such that Gre(M) is nonempty. Let T := (C∗)d+1 act on Gre(M)
as in [Lanini and Pütz 2023a, Lemma 5.12]. Then (Gre(M), T ) is a projective
BB-filterable GKM-variety.

Remark 4.18. If the desingularizations constructed in Theorem 3.17 are T -equi-
variant, this theorem implies that we can compute the T -equivariant cohomology of
all quiver Grassmannians for nilpotent representations of 1n , using Theorem 4.13.

From now on we assume that T := (C∗)d+1 acts on Gre(M) as in [Lanini and Pütz
2023a, Lemma 5.12]. Here d is the number of connected components in Q(M, B)
and the additional parameter comes from cyclic symmetry. The weight functions of
the action are defined implicitly by the formula used in [Lanini and Pütz 2023a,
Section 5.2].
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5. Torus equivariant desingularization and application

In this section we apply the methods from the previous section to compute Euler
classes at singular points and torus equivariant cohomology of quiver Grassman-
nians for the equioriented cycle using their desingularizations as constructed in
Theorem 3.17. It remains to show that these desingularizations are torus equivariant.

Torus action on the desingularization. Let M ∈ repC(1n, IN ) be nilpotent with
d-many indecomposable direct summands, and let T := (C∗)d+1 act on Gre(M) as
in [Lanini and Pütz 2023a, Lemma 5.12].

Remark 5.1. A choice of basis B of M ∈ repC(1n, IN ) induces a basis B̂ of
M̂ ∈ repC(1̂n,N , În,N ) such that the connected components of Q(M̂, B̂) are in
bijection with the images of the indecomposable summands of M . In particular
the basis B̂(i,k) over the vertex (i, k) of 1̂n,N is a subset in the basis B(i+k−1) of
cardinality mi+k−1 −c where c is the corank of the map Mαi+k−2 ◦ · · · ◦ Mαi if k ≥ 2
and B̂(i,k) = B(i) for k = 1. This allows us to extend the T -action to the vector
spaces of M̂ by extending the weight functions according to the inclusions of the
basis described above. In other words, all basis vectors of B̂ which have the same
image in B get the same weight.

Proposition 5.2. The T -action on the vector spaces of M̂ as defined in Remark 5.1
extends to every quiver Grassmannian Grk(M̂).

Proof. We have to show that the T -action is compatible with the maps of the quiver
representation M̂ . By construction of the action and the representation M̂ , this
follows immediately from the compatibility of the T -action (on the vector spaces
of M) with the maps of M as shown in [Lanini and Pütz 2023a, Lemma 5.12]. □

Lemma 5.3. The desingularization of Theorem 3.17 is T -equivariant.

Proof. With Proposition 5.2, the statement follows immediately from the con-
struction of the grading as in Remark 5.1 together with the description of the
desingularization in Theorem 3.17. □

Remark 5.4. The T -equivariance of the desingularization allows us to use [Lanini
and Pütz 2023a, Lemma 2.1(3)] for the computation of equivariant Euler classes
at the singular points of Gre(M). This allows us to apply [Lanini and Pütz 2023a,
Theorem 2.12] about the construction of a basis for the T -equivariant cohomology
to all quiver Grassmannians for nilpotent representations of the cycle.

Cellular decomposition of the desingularization.

Theorem 5.5. For [N ] ∈ gsube(M) the T -fixed points of Grdim N̂ (M̂) are exactly
the preimages of the T -fixed points of S[N ] ⊂ Gre(M) under πN . The C∗-attracting
sets of these points provide a cellular decomposition of Grdim N̂ (M̂).
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Proof. The T -equivariance of πN from Lemma 5.3 gives the desired description of
the fixed points. Now we prove that the C∗-attracting sets of these fixed points from
the BB-decomposition are cells. By [Carrell 2002, Lemma 4.12], they provide an
α-partition, i.e., there exists a total order of the fixed points

Grdim N̂ (M̂)
C∗

= {p1, . . . , pr }

such that
⊔s

j=1Wi is closed in Grdim N̂ (M̂) for all s ∈ [r ]. It remains to show that
they are isomorphic to affine spaces. This is induced by the cellular decomposition
of Gre(M) and the T -equivariance of the desingularization:

Assume p ∈ Grdim N̂ (M̂) is a T -fixed point. The vector space p(i,k) over the
vertex (i, k) of 1̂n,N is a point in the Grassmannian of subspaces Grn̂(i,k)(C

m̂(i,k)
).

By construction of the C∗-action (as in Remark 5.1), the attracting set of p(i,k)

in Grn̂(i,k)(C
m̂(i,k)

) is a cell. The attracting set of p in the whole quiver Grassmannian
is the intersection of these cells along the maps of M̂ . We proceed by induction on k.
For k = 1 there is nothing to show because there are no maps between the vector
spaces. If k = 2, we have the original vector spaces of the representation M and one
additional layer of subspaces therein. The relations between the coordinates in the
attracting sets are the same as for Gre(M). Hence they are cells by [Lanini and Pütz
2023a, Theorem 5.7]. The maps of M̂ along the arrows βi,k of 1̂n,N are inclusions
and the maps along αi,k are projections where the last m(i,k)

− m(i,k+1) coordinates
are sent to zero (see [Lanini and Pütz 2023a, Proposition 4.8]). Thus we obtain that
the intersecting relations for each k ∈ [N ] are of the form as described in [Lanini
and Pütz 2023a, Theorem 5.7]. This implies the desired isomorphisms to affine
spaces. □

Remark 5.6. In the setting that

M =

⊕
i∈Zn

Ui (ωn) and e = (ωk, . . . , ωk) ∈ Zn

it is possible to strengthen the results concerning the desingularization (see [Feigin
et al. 2023a, Sections 2.5 and 2.6]). Namely, Gre(M) has

(n
k

)
explicitly described

irreducible components (see Example 2.12) and the cells of Grdim N̂ (M̂) are the
strata of the corresponding T -fixed points.

Example. Now, we provide an explicit example for the constructions from the
previous sections. Let M := U1(4)⊕U2(2)⊕U2(2) be a 12-representation and fix
the dimension vector e = (2, 2). The quiver Grassmannian Gre(M) has five strata
(i.e., isomorphism classes of subrepresentations) with the representatives:

V1 := U1(4), V2 := S2 ⊕ U1(3), V3 := U2(2)⊕ U2(2),

V4 := U1(2)⊕ U2(2), V5 := S1 ⊕ S2 ⊕ U2(2).
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The stratum of V2 is three-dimensional, the strata of V1, V3 and V4 are two-
dimensional and the stratum of V5 is one-dimensional. This is computed using
[Pütz 2022, Proposition 4.4] and [Cerulli Irelli et al. 2012, Lemma 2.4].

Let the basis B of M be the union of the standard basis for each indecomposable
summand of M . Then its coefficient quiver is

Q(M, B)=

where the arrows from left to right have α : 1 → 2 as underlying arrow in 12. The
arrows from right to left have β : 2 → 1 as underlying arrow. We define the action
of γ := (γ0, γ1, γ2, γ3) ∈ T := (C∗)3+1 and λ ∈ C∗ on B as

γ1γ0γ1

γ2γ1γ
2
0

γ3γ2γ0

γ1γ
3
0

γ3γ0

λ3λ

λ4λ5

λ5λ6

λ7λ7

These actions extend linearly to the vector spaces of M and to the whole quiver
Grassmannian by [Lanini and Pütz 2023a, Lemma 5.12]. Moreover,

χ : C∗
→ T, λ 7→ (λ2, λ, λ, λ)

is a generic cocharacter by [Lanini and Pütz 2023a, Theorem 5.14]. We apply
[Cerulli Irelli 2011, Theorem 1] to compute the fixed points of both actions:

p1 = p2 = p3 = p4 =

p5 = p6 = p7 = p8 =

Here the black vertices indicate the corresponding subrepresentation of M . The
pairs p1 and p2, p3 and p4, and p6, p7 are each isomorphic as subrepresentations
of M . The attracting sets of the fixed points are cells by [Pütz 2022, Theorem 4.13].
Their dimension equals the number of out going arrows in the following moment
graph which is computed using [Lanini and Pütz 2023a, Theorem 6.15].
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with labels
=̂ ϵ3 − ϵ2

=̂ ϵ2 − ϵ1 − δ

=̂ ϵ3 − ϵ1 − δ

=̂ ϵ1 − ϵ3 + 3δ
=̂ ϵ1 − ϵ2 + 3δ

p7

p8

p6 p4

p5

p3 p2

p1

The labels are expressed as linear combination of the characters

ϵi : T → C∗, (γ0, γ1, . . . , γd) 7→ γi for i ∈ [d],

δ : T → C∗, (γ0, γ1, . . . , γd) 7→ γ0.

Here the dashed lines were used to highlight the symmetries of the labeling and
avoid to write the labels in the picture.

There are four points which are not rationally smooth. Namely the tangent
spaces at p1, p2, p6 and p7 are four-dimensional, whereas Gre(M) itself is three-
dimensional. We can read this from the picture as follows: the number of edges
adjacent to a point is the dimension of its tangent space and the number of outgoing
edges is the cell dimension. The irreducible components are obtained as closure
of the strata of the points p8, p7 and p5, because their strata are not contained in
the closure of any other stratum. These are generic subrepresentation types of M
for dimension vector e = (2, 2). Hence the desingularization of Gre(M) consists of
three components.

The extended quiver 1̂2,4 is

(1, 2)

(2, 1)

(2, 2)

(1, 1)
β1,2

α2,1β2,2

α1,1

(2, 4)

(1, 3)

(1, 4)

(2, 3)

α1,2

β2,4

α2,2

β1,4

β2,3

α2,3

β1,3

α1,3
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For the basis induced by the basis B of M , the coefficient quiver of M̂ is

Here the separating lines between the vertices indicate if they live over the inner or
outer vertex of 1̂2,4 in that position. Representatives for the extended representations
of the generic subrepresentation types are

V̂1 = V̂2 =

V̂3 =

With the explicit description of the cellular decomposition of the quiver Grass-
mannians Grdim V̂1

(M̂), Grdim V̂2
(M̂) and Grdim V̂3

(M̂) from Theorem 5.5, it is a
straightforward computation that their moment graphs are

with labels
=̂ ϵ3 − ϵ2

=̂ ϵ2 − ϵ1 − δ

=̂ ϵ3 − ϵ1 − δ

=̂ ϵ1 − ϵ3 + 3δ
=̂ ϵ1 − ϵ2 + 3δ

p7,1

p8,1

p6,1

p7,2

p6,2 p4,2

p3,2 p2,2

p1,2

p5,3

p2,3

p1,3
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Here p̂i, j is the preimage of pi in Grdim V̂j
(M̂). Moreover, from the cellular decom-

positions we obtain the isomorphisms

Grdim V̂1
(M̂)∼= Gr1(C

3), Grdim V̂2
(M̂)∼= Fl(SL3), Grdim V̂3

(M̂)∼= Gr2(C
3).

With the moment graph of the desingularization as described above, it is possible
to compute the Euler classes at the singular points of Gre(M) using Lemma 4.10.
For example we obtain

EuT (p1, Z5)=
1

(ϵ3 − ϵ2)(ϵ2 − ϵ1 − δ)
+

1
(ϵ3 − ϵ2)(ϵ1 − ϵ2 + 3δ)

=
2δ

(ϵ3 − ϵ2)(ϵ2 − ϵ1 − δ)(ϵ1 − ϵ2 + 3δ)
,

where Z5 =
⋃5

i=1Wi .
We compute the following basis of H•

T (Gre(M)) as free module over H•

T (pt):

ϕ(1) = (1, 1, 1, 1, 1, 1, 1, 1),

ϕ(2) = (0, ϵ3 − ϵ2, 0, ϵ3 − ϵ2, ϵ1 − ϵ2 + 3δ, ϵ3 − ϵ1 − δ, ϵ3 − ϵ1 − δ, ϵ3 − ϵ1 − δ),

ϕ(3) = (0, 0, ϵ2 − ϵ1 − δ, ϵ3 − ϵ1 − δ, 0, ϵ2 − ϵ1 − δ, ϵ3 − ϵ2, ϵ3 − ϵ1 − δ),

ϕ(4) = (ϵ3 − ϵ2)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 1, 0, 0, 1, 0),

ϕ(5) = (ϵ1 − ϵ2 + 3δ)(ϵ1 − ϵ3 + 3δ) · (0, 0, 0, 0, 1, 0, 0, 0),

ϕ(6) = (ϵ2 − ϵ1 − δ)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 0, 0, 1, 1, 0),

ϕ(7) = (ϵ3 − ϵ2)(ϵ2 − ϵ1 − δ)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 0, 0, 0, 1, 0),

ϕ(8) = (ϵ2 − ϵ1 − δ)(ϵ3 − ϵ1 − δ) · (0, 0, 0, 0, 0, 0, 0, 1).

Observe that the special role of p8 in this example allows to generate more zero-
entries as in the general setting of Theorem 4.13.
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VARIETIES OF CHORD DIAGRAMS,
BRAID GROUP COHOMOLOGY

AND DEGENERATION OF EQUALITY CONDITIONS

VICTOR A. VASSILIEV

For any finite-dimensional vector space F of continuous functions f :

R1 → R1 we consider subspaces in F defined by systems of equality condi-
tions f (ai ) = f (bi ), where {ai, bi }, i = 1, . . . , n, are some pairs of points
in R1. It is proven that if dimF < 2n − I (n), where I (n) is the number of
ones in the binary notation of n, then there necessarily exist independent
systems of n equality conditions defining the subspaces of codimension
greater than n in F . We also prove lower estimates of the sizes of the
inevitable drops of the codimensions of some of these subspaces.

Next, we apply these estimates to knot theory (in which systems of
equality conditions are known as chord diagrams) and prove the inevitable
presence of complicated nonstable terms in sequences of spectral sequences
computing cohomology groups of spaces of knots.

1. Main results

Let FN be an N -dimensional vector subspace of the space C0(R1, R1) of continuous
functions R1

→ R1. Typically, a collection of n independent conditions of the form

(1) f (ai ) = f (bi ),

where ai ̸= bi , i = 1, . . . , n, defines a subspace of codimension n in FN if n ≤ N
and only the trivial subspace if n ≥ N . However, for exceptional sets of such
conditions, the codimensions of these subspaces can drop.

For example, if FN is the space PN of all polynomials of the form

(2) α1 x N
+ α2 x N−1

+ · · · +αN x

in the variable x , then all subspaces defined by arbitrarily many conditions

f (ai ) = f (−ai )
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contain the
[ N

2

]
-dimensional subspace of even polynomials. Of course, the case of

polynomials is very specific, but the situation when the dimensions of subspaces
in FN defined by some n independent conditions (1) are greater than max(N −n, 0)

can be unavoidable by a choice of space FN .

Definition 1. An unordered pair {a, b} of distinct points in R1 is called a chord.
An unordered collection of n pairwise distinct chords is called an n-chord diagram.

The subalgebra of C0(R1, R1) corresponding to the n-chord diagram

(3) {{a1, b1}, . . . , {an, bn}}

consists of all functions satisfying n conditions (1) with these ai , bi . These n con-
ditions (and the corresponding n chords) are independent if the codimension of this
subalgebra in C0(R1, R1) is equal to n. (We say that an affine or vector subspace T
of a function space K has codimension n if for any point ϕ ∈ T there exist n-
dimensional affine subspaces in K intersecting T at this point only, and all affine
subspaces of higher dimensions passing through ϕ intersect T along subspaces
of positive dimensions.) Two independent n-chord diagrams are equivalent if the
corresponding subalgebras in C0(R1, R1) coincide. A resonance of a chord diagram
is a cyclic sequence of k ≥ 3 its pairwise different chords such that one point of
each chord also belongs to the preceding chord in this sequence, and the other its
point also belongs to the next chord.

For example, two chord diagrams are equivalent if one of them contains the
chords {a, b} and {b, c}, the other contains the chords {a, b} and {a, c}, and all
other chords in them are common.

Proposition 2. An n-chord diagram is independent if and only if it does not contain
resonances. Two independent n-chord diagrams are equivalent if and only if they
can be connected by a chain of elementary flips described in the previous paragraph.
The space of independent n-chord diagrams is a smooth connected 2n-dimensional
manifold.

Proof. The proof is elementary. □

1.1. Results for the case of N ≥ n.

Proposition 3. If N ≥ 2n−1, then the codimension of the subspace in the space PN

of polynomials (2), defined by n conditions (1) of an arbitrary independent n-chord
diagram (3), is equal to n.

Proof. First, the assertion of our proposition will be true if we replace in it the
space PN by the (N + 1)-dimensional space P̂N of all polynomials of degree N .
Indeed, any n-chord diagram has at most 2n distinct endpoints ai , bi , therefore by
interpolation theorem the evaluation morphism from the space of such polynomials
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to the space of real-valued functions on the set of these endpoints is epimorphic,
and hence the preimage of any subspace of codimension n of the latter space also
has codimension n in P̂N . However, adding the constant functions preserves the
subspace of P̂N defined by any chord diagram, therefore the codimension of the
considered subspace in PN is also equal to n. □

Denote by I (n) the number of ones in the binary notation of n.

Theorem 4. If n ≤ N < 2n − I (n), then for any N-dimensional vector subspace
FN

⊂ C0(R1, R1) there exist independent n-chord diagrams (3) such that the
codimension of the subspace in FN consisting of functions satisfying all the corre-
sponding conditions (1) is less than n. The dimension of the set of such exceptional
n-chord diagrams is at least 3n − N − 1 in the following exact sense: there exists
a nontrivial element of the (N − n + 1)-dimensional homology group of the 2n-
dimensional manifold of all independent n-chord diagrams, such that each cycle
representing this element necessarily intersects our set.

In particular, if n is a power of 2 then the minimal dimension of the func-
tion spaces FN in which any independent n-chord diagram defines a subspace of
codimension exactly n is equal to 2n − 1.

A more general result can be formulated in terms of configuration spaces; see,
e.g., [1] for the current state of the theory of these spaces.

Definition 5. The n-th configuration space B(X, n) of a topological space X is
the (naturally topologized) space of unordered subsets of cardinality n in X . The
regular bundle ξn with base B(X, n) is the vector bundle, whose fiber over an
n-point configuration is the space of real-valued functions on the corresponding set
of points.

Theorem 6. Suppose that N ≥ n and for some natural r the cohomological product

(4)
r∏

i=1

wN−n+2i−1(ξn)

of Stiefel–Whitney classes of the regular bundle ξn is not equal to 0 in the ring
H∗(B(R2, n), Z2). Then for any N-dimensional vector subspace FN of the space
C0(R1, R1) there exists an independent system of n conditions (1) such that the
subspace of FN defined by this system has codimension ≤ n − r in FN .

The first statement of Theorem 4 follows immediately from this theorem (the
case r = 1) and statement 5.3 of [3] asserting that the classes

wk ∈ H k(B(R2, n), Z2)

are nontrivial for all k ≤ n − I (n); see also Proposition 30 in Section 6 below. The
second statement of Theorem 4 will be proven at the end of Section 3.
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Corollary 7. A. If two natural numbers n and N satisfy one of the following pairs
of conditions:

(1) n ≥ 6, N = n,

(2) n ≥ 10, N = n + 1,

(3) n ≥ 14, N = n + 2 or n + 3,

(4) n ≥ 16, N = n + 4,

(5) n ≥ 18, N = n + 5,

(6) n ≥ 20, N = n + 6,

(7) n ≥ 24, N = n + 7,

(8) n ≥ 28, N = n + 8 or n + 9,

(9) n ≥ 32, N = n + 10 or n + 11,

then for any N-dimensional vector subspace FN
⊂ C0(R1, R1) there exists a system

of n independent conditions (1) defining a subspace of codimension ≤ n − 2 in FN .

B. If n and N satisfy one of the following pairs of conditions:

(1) n ≥ 18, N = n or n + 1,

(2) n ≥ 22, N = n + 2,

(3) n ≥ 26, N = n + 3,

(4) n ≥ 30, N = n + 4,

(5) n ≥ 36, N = n + 5,

(6) n ≥ 40, N = n + 6 or n + 7,

(7) n ≥ 44, N = n + 8 or n + 9,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 3 in FN .

C. If n and N satisfy one of the following conditions:

(1) n ≥ 30 and N = n or n + 1,

(2) n ≥ 44 and N = n + 2 or n + 3,

(3) n ≥ 52 and N = n + 4 or n + 5,

(4) n ≥ 56 and N = n + 6 or n + 7,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 4 in FN .

D. If n and N satisfy one of the following conditions:

(1) n ≥ 48 and N = n or n + 1,
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(2) n ≥ 60 and N = n + 2 or n + 3,

(3) n ≥ 68 and N = n + 4 or n + 5,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 5 in FN .

E. If n and N satisfy one of the following conditions:

(1) n ≥ 64 and N = n or n + 1,

(2) n ≥ 76 and N = n + 2 or n + 3,

then for any N-dimensional subspace FN
⊂ C0(R1, R1) there exists a system of

n independent conditions (1) defining a subspace of codimension ≤ n − 6 in FN .

F. If we have n ≥ 80 and N = n or n + 1, then for any N-dimensional subspace
FN

⊂ C0(R1, R1) there exists a system of n independent conditions (1) defining a
subspace of codimension ≤ n − 7 in FN .

See Section 6 for the proof of this corollary. Its lists can easily be continued and
the corresponding calculations can be programmed.

Remark. The first statement of Theorem 4 looks very similar (and is closely related)
to the result of [2] estimating the dimensions of spaces of functions R2

→ R1

realizing n-regular embeddings of the plane. The main effort of our proof of
Theorem 6 is a comparison of the configuration spaces used in these two problems,
see Lemma 16 below.

1.2. Results for the case of N ≤ n.

Theorem 8. If N ≤ n and for some natural r the product

(5)
r∏

i=1

wn−N+2i−1(ξn)

of Stiefel–Whitney classes of the bundle ξn is not equal to 0 in the ring

H∗(B(R2, n), Z2),

then for any N-dimensional vector subspace FN
⊂ C0(R1, R1) there exists an

independent n-chord diagram, such that the subspace of FN consisting of functions
satisfying the corresponding system of equality conditions is at least r-dimensional.

If N = n, then Theorems 6 and 8 coincide tautologically.

Corollary 9. If N ≥2, then for any N-dimensional vector subspace FN
⊂C0(R1,R1)

there exist independent n-chord diagrams with arbitrarily large n such that the
corresponding systems of equality conditions have nontrivial solutions in FN .
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Indeed, it is enough to prove this for N = 2 and numbers n equal to powers of 2.
In this case wn−N+1(ξn) ̸= 0 by the previously mentioned result in [3]. □

Remark. This corollary has also an elementary proof. Indeed, any 2-dimensional
subspace of C0(R1, R1) contains a nonzero function taking equal values at some
two different points a, b ∈ R1. Then this function necessarily satisfies the equality
conditions f (ã) = f (b̃) for a continuum of different pairs {ã, b̃} ⊂ [a, b].

Corollary 10. All statements of Corollary 7 will remain valid if in each of its
conditions we replace the value of N by 2n − N (e.g., N = n +4 by N = n −4) and
simultaneously the corresponding conclusion “there exists a system of n independent
conditions (1) defining a subspace of codimension ≤ n − r in FN” by “there exists
a system of n independent conditions (1) defining a subspace of dimension ≥ r
in FN”.

Remark. In terms of [6], the subspaces of anomalous codimensions defined by
chord diagrams in finite-dimensional function spaces are responsible for the nonsta-
ble regions of the (p, q)-planes of the spectral sequences converging to cohomology
groups of spaces of long knots R1

→ R3 defined by functions from these function
spaces. These domains are the only possible sources of cohomology classes of the
knot space (including 0-dimensional classes, i.e., knot invariants) not of finite-type.
In Section 7 below, we prove some facts about filtrations of simplicial resolutions
of discriminant spaces in finite-dimensional knot spaces, estimating the deviation
of the corresponding spectral sequences from stable ones.

2. Scheme of proof of Theorem 6

Denote by CDn the set of equivalence classes of independent n-chord diagrams. It
has a natural topology induced by the topology of the variety of subalgebras of codi-
mension n in C0(R1, R1). To describe this topology without infinite-dimensional
considerations, let A be a sufficiently large finite-dimensional vector subspace of
C0(R, R), such that all subspaces of A defined by independent n-chord diagrams
(that is, the intersections of A with subalgebras of C0(R1, R1) corresponding to
these chord diagrams) have codimension exactly n in A, and the nonequivalent
n-chord diagrams define different subspaces. (For reasons similar to the proof
of Proposition 3 we can take for such a space A the space PM , M ≥ 2n + 1,
or any space containing it; taking P2n−1 is not enough because nonequivalent
n-chord diagrams can define equal subspaces in it). We can and will assume that A
contains FN , because otherwise we can replace A by its sum with FN .

The set CDn is embedded into the Grassmann manifold G(A, −n) of subspaces
of codimension n in A, and inherits a topology from this manifold. It is easy to see
that this definition of a topology on CDn does not depend on the choice of A.
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Suppose that N ≥ n. Let 1r (FN ) ⊂ G(A, −n) be the set of all subspaces of
codimension n in A whose sums with FN have codimension at least r in A.

Proposition 11. The class in H∗(G(A, −n), Z2) Poincaré dual to the homology
class of the algebraic variety 1r (FN ) is equal to r × r determinant:

(6)

∣∣∣∣∣∣∣∣∣∣∣∣∣

wN−n+r wN−n+r+1 wN−n+r+2 . . . wN−n+2r−2 wN−n+2r−1

wN−n+r−1 wN−n+r wN−n+r+1 . . . wN−n+2r−3 wN−n+2r−2

wN−n+r−2 wN−n+r−1 wN−n+r . . . wN−n+2r−4 wN−n+2r−3

. . . . . . . . . . . . . . . . . .

wN−n+2 wN−n+3 wN−n+4 . . . wN−n+r wN−n+r+1

wN−n+1 wN−n+2 wN−n+3 . . . wN−n+r−1 wN−n+r

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where wi are the Stiefel–Whitney classes of the tautological bundle on G(A, −n).

Proof. Let τn be the vector bundle on G(A, −n) whose fiber over the point {L}

corresponding to the subspace L ⊂A is the space of linear functions on A vanishing
on L . Consider the morphism of this bundle to the constant bundle with fiber (FN )∗,
sending any such linear form to its restriction to FN . The variety 1r (FN ) can
be redefined as the set of points {L} such that the rank of this morphism does not
exceed n − r . By the real version of the Thom–Porteous formula (the proof of
which literally repeats its complex analog given in [4, Section 14.4], after standard
replacements of Chern classes by Stiefel–Whitney classes, Z by Z2, etc.) the class
in H∗(G(A, −n), Z2) Poincaré dual to this variety is equal to the determinant of
the form (6) in which all the symbols wi are the Stiefel–Whitney classes of the
virtual bundle −τn .

The constant bundle on G(A, −n) with the fiber A∗ is obviously isomorphic to
the direct sum of τn and the bundle dual (and hence isomorphic) to the tautological
bundle. Therefore −τn and this tautological bundle belong to the same class of the
group K̃ (G(A, −n)), in particular have the same Stiefel–Whitney classes. □

These Stiefel–Whitney classes wi (−τn) are equal to the i-dimensional compo-
nents wi (τn) ∈ H i (G(A, −n), Z2) of the class w−1(τn), where

w(τn) = 1 + w1(τn) + . . .

is the total Stiefel–Whitney class of the bundle τn , see Section 4 in [5]. If the inter-
section of the subset CDn ⊂ G(A, −n) with 1r (FN ) is empty, then the restriction
homomorphism H∗(G(A, −n), Z2) → H∗(CDn, Z2) maps the class (6) to zero.
Theorem 6 therefore reduces to the following lemma.

Lemma 12. If the class (4) is not equal to 0, then the restriction of the class (6) to
the subvariety CDn ⊂ G(A, −n) is a nontrivial element of the group

H r(N−n+r)(CDn, Z2).
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3. Proof of Lemma 12

Let R2
+

⊂ R2 be the half-plane {(a, b) | a < b} ⊂ R2. Any point (a, b) of R2
+

can be
identified with the chord {a, b}, and any element of the configuration space B(R2

+
, n)

with an n-chord diagram. Let us denote by 4 ⊂ B(R2
+
, n) the set of dependent

(that is, containing resonances) n-chord diagrams. Consider the diagram

(7)
B(R2, n) B(R2

+
, n) \ 4

CDn G(A, −n)

⊃

π

⊂

where π is the map sending any chord diagram to its equivalence class.

Lemma 13. The restriction of the regular vector bundle ξn (see Definition 5) to
the subset B(R2

+
, n) \4 ⊂ B(R2, n) is isomorphic to the bundle pulled back by the

map π from the bundle τn over CDn .

Proof. The bundle τn is isomorphic to its dual bundle τ ∗
n , i.e., to the quotient of the

trivial bundle with fiber A by the tautological bundle over G(A, −n).
Consider the following homomorphism from the trivial bundle with the fiber A

over B(R2
+
, n) \ 4 to ξn: over any n-chord diagram 0 it sends any function

f ∈ A ⊂ C0(R1, R1) to the function on the set of chords of this chord diagram,
whose value on any chord {ai , bi } is equal to the difference f (bi ) − f (ai ). By the
first characteristic property of the space A this morphism is surjective; by definition
of inclusion CDn ⊂ G(A, −n) its kernel is equal to the fiber of the tautological
bundle over the point π(0) ∈ CDn . Therefore our homomorphism induces an
isomorphism between the bundles π∗(τ ∗

n ) ∼ π∗(τn) and ξn . □

Lemma 14 (see [3] or Proposition 31). The square of any positive-dimensional ele-
ment of the ring H∗(B(R2, n), Z2) is equal to zero, in particular w−1(ξn) = w(ξn)

and wi (ξn) = wi (ξn) for any i . □

Lemma 15. The determinant of the form (6) in which all classes wi are replaced
by wi (ξn) is equal to the product (4) in H∗(B(R2, n), Z2).

Proof. The matrix (6) is symmetrical with respect to the southwest/northeast
diagonal, hence calculating its determinant mod 2 it suffices to count only those
products of r matrix elements which are self-symmetric with respect to this diagonal.
By Lemma 14 such products, not all factors of which lie in this diagonal, are also
trivial. □

Lemma 16. The inclusion B(R2
+
, n) \4 → B(R2, n) induces a monomorphism of

cohomology groups H∗(B(R2, n), Z2) → H∗(B(R2
+
, n) \ 4, Z2).
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Lemma 16 will be proved in Section 5. Lemma 12 follows from Lemmas
13–16 and the functoriality of Stiefel–Whitney classes. Namely, by Lemma 16
if the product (4) is nontrivial in H∗(B(R2, n), Z2), then it is nontrivial also in
H∗(B(R2

+
, n)\4, Z2). By the Lemmas 13–15 this element of H∗(B(R2

+
, n)\4, Z2)

is equal to the class induced by the map π from the determinant (6), so this
determinant is also nontrivial.

Proof of the last statement of Theorem 4. By Lemma 16 and statement 5.3 of [3],
under the conditions of this theorem the class wN−n+1(ξn) is not trivial. We can
then take an arbitrary element of the group HN−n+1(B(R2

+
, n) \ 4, Z2) on which

this class takes nonzero value: any cycle realizing such an element intersects the
set π−1(11(FN )). □

4. Proof of Theorem 8

Now suppose that N ≤ n. Let 3r (FN ) be the subset of G(A, −n) consisting of
planes whose intersection with FN is at least r -dimensional.

Proposition 17. The class in H∗(G(A,−n), Z2) Poincaré dual to the variety
3r (FN ) is equal to r × r determinant similar to (6), in which N − n in all lower
indices is replaced by n − N , and wi are Stiefel–Whitney classes of the bundle τn .

Proof. The projection along the fibers of the tautological bundle over G(A, −n)

defines a morphism from the constant bundle with fiber FN and base G(A, −n) to
the bundle dual (and hence isomorphic) to τn , i.e., to the quotient of the constant
bundle with fiber A by the tautological bundle. The set 3r (FN ) can be defined as
the set of points at which the rank of this morphism does not exceed N − r . Our
proposition follows from the real version of Thom–Porteous formula applied to this
morphism. □

The rest of the reduction of Theorem 8 to Lemma 16 repeats that of Theorem 6; the
Stiefel–Whitney classes of the bundles −τn and τn participating in the corresponding
Thom–Porteous formulas are the same by Lemma 14.

5. Proof of Lemma 16

5.1. Generators of Hopf algebra. We will prove the dual statement: the map
H∗(B(R2

+
, n) \ 4, Z2) → H∗(B(R2, n), Z2) induced by the identical embedding is

epimorphic.
According to [3], all stabilization maps

H∗(B(R2, n), Z2) → H∗(B(R2, n + m), Z2)

induced by the standard inclusions B(R2, n) ↪→ B(R2, n + m) are injective. There-
fore, all elements of the group H∗(B(R2, n), Z2) are given by polynomials in the
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multiplicative generators of the Hopf algebra H∗(B(R2, ∞), Z2), and it suffices to
prove that all these generators and their products participating in the construction
of these elements can be realized by cycles lying in B(R2

+
, n) \ 4.

These generators [Mj ] ∈ H2 j −1(B(R2, 2 j ), Z2) were defined in Section 8 of [3]
by the following cycles Mj ⊂ B(R2, 2 j ). Arbitrarily choose two opposite points of
the circle of radius 1 centered at the origin in R2. Take two circles of small radius
ε with centers at these points and arbitrarily choose a pair of opposite points in
each of them. Take circles of radius ε2 centered at all obtained four points and
choose a pair of opposite points in all of them. Continuing, after the j-th step we
obtain a 2 j -configuration in R2. This construction involves 1 + 2 + 4 + · · ·+ 2 j−1

choices of opposite points in some circles, hence the set Mj of all possible 2 j -
configurations that can be obtained in this way is (2 j

− 1)-dimensional. It is easy
to see that this set is a closed submanifold in B(R2, 2 j ), and therefore it defines
an element [Mj ] of the group H2 j −1(B(R2, 2 j ), Z2), j ≥ 1. Finally, define the
element [M0] ∈ H0(B(R2, 1), Z2) as the class of a single point.

Unfortunately, these cycles with j > 1 contain configurations with resonances,
and, moreover, all configurations of class Mj do not lie in R2

+
. To avoid these

problems, we modify the previous construction by (1) replacing the circles with
squares, (2) taking these squares of the same level (i.e., arising on the same stage
of the construction) of varying sizes depending on their centers, and (3) shifting the
resulting configurations into the half-plane R2

+
⊂ R2; see Section 5.4 below.

5.2. Preparation for the construction.

Definition 18. A segment in the plane R2 with coordinates a and b is called vertical
(respectively, horizontal) if the coordinate a (respectively, b) is constant along it. A
straight resonance of an n-point configuration in R2 is a closed chain of strictly
alternating vertical and horizontal segments, all whose endpoints belong to our
configuration.

Proposition 19. Let ā and b̄ be two real numbers such that b̄ − ā > 8. If all points
{ai , bi }, i = 1, . . . , n, of an n-chord diagram (3) satisfy the conditions

(8) |ai − ā| < 2, |bi − b̄| < 2,

and the corresponding n-configuration {(ai , bi )} ⊂ B(R2
+
, n) has a resonance, then

it has a straight resonance.

Indeed, if two chords {ai , bi } and {ak, bk} satisfying the conditions (8) have
common points, then either ai = ak or bi = bk , but not ai = bk . □

We will construct our basic cycles in the set of configurations satisfying the
condition of Proposition 19 for some ā and b̄, and prove that they do not have
configurations with straight resonances.
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Figure 1. 8-configuration of the class M̃3.

Let us fix a very small number ε > 0. Define the basic square □ ⊂ R2 as the
union of four segments consecutively connecting the points

(−1, −1), (−1, 1), (1, 1), (1, −1)

and again (−1, −1). Fix an arbitrary continuous function χ : □ → [ε, 1] equal
identically to 1 on segments

(9) [(−1 + ε, 1), (1, 1)] and [(1, −1 + ε), (1, 1)],

equal to ε on segments

(10) [(−1, −1), (−1, 1 − ε)] and [(−1, −1), (1 − ε, −1)],

and taking some intermediate values in the remaining ε-neighborhoods of corners
(−1, 1) and (1, −1), see Figure 1.

5.3. First example. Let n = 4. Arbitrarily choose two opposite points A and −A
of the basic square. Consider two squares of the second level obtained from the
basic square by the affine maps

X 7→ A + εχ(A)X and X 7→ −A + εχ(−A)X

(in particular, centered at the points A and −A), and arbitrarily choose two opposite
points in each of these squares.
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None of the 4-configurations thus obtained can have a straight resonance (i.e., to
be the set of corners of a rectangle with vertical and horizontal sides). Indeed, two
points of different squares of second level can be joined by a vertical (respectively,
horizontal) segment only if the centers A and −A of these squares are very close
to the centers of the opposite horizontal (respectively, vertical) sides of the basic
square. But in this case the values of the function χ at the points A and −A are
different, our two squares of second level have different sizes, and the segments
connecting two opposite points in one of them and two opposite points in the other
cannot be opposite sides of the same rectangle.

Therefore shifting all obtained 4-configurations by a fixed vector (ā, b̄) ∈ R2

with b̄ − ā > 8, we get a 3-dimensional cycle in space B(R2
+
, 4) \ 4.

5.4. Construction of cycles M̃ j (see Figure 1). The general construction is an
iteration of the previous one.

Namely, define two sequences of natural numbers u j and Tj , j ≥ 2, by recursion

(11) u2 =1, T2 =2, u j =u j−1+Tj−1+2, Tj =u j +Tj−1+1 for j >2.

Define the subset M̃1 ⊂ B(R2, 2) as the space of all choices of two opposite
points in the basic square □. Suppose we have defined the (2 j−1

− 1)-dimensional
subvariety M̃j−1 ⊂ B(R2, 2 j−1), j ≥ 2. Then the (2 j

− 1)-dimensional subvariety
M̃j ⊂ B(R2, 2 j ) is defined as the space of all 2 j -configurations consisting of

(i) a 2 j−1-configuration obtained from some configuration of the class M̃j−1 by
the affine map R2

→ R2 given by

(12) {X 7→ A + εχuj (A)X},

where A is some point of the basic square □;

(ii) a 2 j−1-configuration obtained from some configuration of the class M̃j−1 by
the map

(13) {X 7→ −A + εχuj (−A)X},

with the same A, see Figure 1.

Any 2 j -configuration of the class M̃j uniquely determines the set of 2 j
− 1

squares participating in its construction: it consists of the basic square □ and the
images under maps (12), (13) of two collections of 2 j−1

− 1 squares participating
in the construction of two 2 j−1-configurations of class M̃j−1. This set is obviously
organized into (the set of vertices of) an oriented binary tree. Namely, it has two
squares of the second level, four squares of the third level, etc. Every square of the
l-th level is centered at a point of some square of (l − 1)-st level; we connect the
two corresponding vertices by an edge of the tree oriented towards the vertex of
level l. Any point of our configuration belongs to a square of the j-th level, i.e.,
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to a leaf of the tree. We say that a point of the configuration is subordinate to this
square of level j containing it, and also to all squares of lower levels connected
with it by an oriented path in our binary tree. Conversely, we say that all these
squares dominate such a point of the configuration; in particular, any square of
level l dominates exactly 2 j−l+1 points.

Lemma 20. The length of the sides of the smallest square participating in the
construction of a 2 j -configuration of class M̃j is not less than 2εTj .

Proof. This follows by induction from the last condition (11) because both subsets
constituting our 2 j -configuration are obtained from certain 2 j−1-configurations of
the class M̃j−1 by homotheties (12), (13) with coefficients ≥ εuj +1. □

Lemma 21. The absolute values of the coordinates a, b of all points of configura-
tions of class M̃j do not exceed 1 + ε + ε2

+ · · · + ε j−1 < 1
1−ε

.

Lemma 22. If a square of level l participating in the construction of a configuration
of the class M̃j has sides of length d , then all 2 j−l+1 points of this configuration
subordinate to this square lie in the εd

√
2(1−ε)

-neighborhood of this square.

Proof. Proofs of these two lemmas follow directly from the construction. □

Finally, we move the obtained subvariety M̃j ⊂ B(R2, 2 j ) into B(R2
+
, 2 j ) shifting

all its 2 j -configurations to R2
+

by some translation {X 7→ X+(ā, b̄)}, where b̄−ā ≥8.
Denote by ∇j the resulting cycle in B(R2

+
, 2 j ).

It is easy to see that ∇j is the image of an embedding Mj → B(R2, 2 j ) (where
the manifold Mj was defined in Section 5.1), which is homotopic to the identical
embedding; in particular, it defines the same homology class in H∗(B(R2, 2 j ), Z2).
Indeed, such a homotopy is defined by (1) a family of functions connecting the
function χ with the function equal identically to 1 in the space of positive functions
□ → R1, (2) a deformation of all circles to squares, and (3) the continuous shift of
the plane by the vector (ā, b̄). Therefore, to realize the homology class [Mj ] by a
cycle from B(R2

+
) \ 4 it remains to prove the following statement.

Theorem 23. The variety ∇j does not contain 2 j -chord diagrams with straight
resonances.

The proof of this theorem for arbitrary j is not as simple as for j = 2, it uses the
following generalization of straight resonances.

Definition 24. For any positive number δ, a segment in R2 is called δ-horizontal
(respectively, δ-vertical) if the tangent of the angle between this segment and a hor-
izontal (respectively, vertical) line belongs to the interval [0, δ). An n-configuration
in R2 is δ-resonant if there exists a closed chain of strictly alternating δ-vertical and
δ-horizontal segments in R2 such that the endpoints of any of its segments belong
to our configuration.
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-� 2ε □

□

Figure 2. Discrepancy preventing resonances.

Theorem 23 now follows from the following statement.

Theorem 25. If the number ε participating in the construction of the cycle M̃j is
sufficiently small, then the set M̃j does not contain εuj +1-resonant 2 j -configurations.

5.5. Example and idea of the proof of Theorem 25. Let us again consider the
case j = 2. If a 4-configuration of the class M̃2 is ε2-resonant, then some points of
opposite squares of second level participating in its construction are connected by
segments almost parallel (up to angles with tangent ≤ ε2) to a vertical or horizontal
segment. Let us assume for certainty that these are almost vertical segments. Then
the centers A and −A of these squares are very close to the centers of the opposite
horizontal sides of the basic square, in particular the function χ takes the value 1 at
one of them and the value ε at the other. The a-coordinates of two points of our
ε2-resonant 4-configuration, placed in the bigger square of second level, differ by 2ε,
see Figure 2 (left). On the other hand, these two points are connected by a chain of
three segments of our ε2-resonance passing through the smaller square, therefore
this difference is estimated from above by the sum of (a) the length of the sides of
the small square and (b) twice the maximal possible difference of a-coordinates of
endpoints of the ε2-vertical segments of our ε2-resonance. The last difference is
estimated from above by the maximal difference of b-coordinates of points of our
configuration (which is at most 2 + ε + ε2) multiplied by the allowed bending ε2 of
the segments of our ε2-resonance. This sum is of order ε2, a contradiction.

Further, let j be arbitrary; suppose that our configuration of class M̃j is εuj +1-
resonant, and two squares of second level participating in its construction are located
near the centers of horizontal sides of the basic square. Our exponents (11) are
chosen in such a way that the upper endpoints of any two εuj +1-vertical segments
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connecting the points subordinate to different squares of the second level cannot
lie too close to the opposite vertical sides of an arbitrary square subordinate to the
bigger (upper) square of second level: indeed, by an estimate similar to that from
the previous paragraph the difference of the a-coordinates of these endpoints is
much smaller than the minimal distance between these vertical sides.

If j > 2, then there remains a possibility that these two endpoints lie in neigh-
borhoods of opposite horizontal sides of such a square (see Figure 2, right) and are
connected by some εuj +1-resonant chain inside the upper square of second level.
In this case, let us connect directly these two endpoints by a segment and forget
about the part of our εuj +1-resonance involving the points from the lower square.
The exponents (11) are chosen so that the tangent of this segment with a vertical
line is estimated from above by εuj−1+1, and we obtain a εuj−1+1-resonance inside
the upper square only, which is prohibited by the induction hypothesis.

5.6. Proof of Theorem 25. Let us support this reasoning with strict estimates.
Suppose that Theorem 25 is proved for all cycles M̃i , i < j . By the construction,

any 2 j -configuration 0 ∈ M̃j splits into two subsets of cardinality 2 j−1 with mass
centers at some opposite points A and −A of the basic square □, any of these
subsets lying in the

√
2ε/(1−ε)-neighborhood of the corresponding point A or −A.

Suppose that our configuration 0 ∈ M̃j is εuj +1-resonant. If the entire chain of its
points participating in this resonance is located in only one of these two subsets of 0,
then we get a contradiction with the induction hypothesis for i = j − 1, because
this subset is homothetic to a configuration of the class M̃j−1, and εuj +1 < εuj−1+1.

So, our chain should contain εuj +1-vertical or εuj +1-horizontal segments, which
connect some points from these two subsets. Therefore, the corresponding points
A and −A are very close to either the center points of opposite horizontal sides of
the basic square □, or to the center points of its vertical sides. These two situations
can be reduced to each other by the reflection in the diagonal {a = b} of R2, it is
therefore sufficient to consider only the first of them.

Consider a εuj +1-vertical segment of our resonance chain which has endpoints
in both these subsets; let A0 be its endpoint in the upper subset. Starting from A0,
our chain somehow travels inside this upper subset and finally leaves it along some
other εuj +1-vertical segment; let B0 be the upper point of the latter segment.

Lemma 26. (1) The difference between the a-coordinates of points A0 and B0 is
estimated from above by 7εuj +1.

(2) The difference between the b-coordinates of A0 and B0 is estimated from below
by εTj−1+1.

Proof. (1) This difference is estimated from above by the sum of (a) the maximal
difference of the a-coordinates of the points of the lower 2 j−1-subconfiguration
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of our 2 j -configuration 0, (b) the difference of the a-coordinates of the point A0

and the other endpoint of the segment of our chain connecting A0 with this lower
subconfiguration, and (c) the similar difference for the point B0. By Lemma 21,
formulas (12)–(13) and the definition of the function χ , the first of these differences
is estimated from above by 2εuj +1(1 + O(ε)); the other two are estimated by the
heights of these two segments (which by Lemma 21 are smaller than 2

1−ε
) multiplied

by their tangents with the vertical direction (which are estimated by εuj +1 since
these segments are εuj +1-vertical). Thus, the entire sum is estimated from above by
εuj +1(6 + O(ε)) < 7εuj +1.

(2) Let us consider two paths in the binary tree of squares participating in the
construction of our configuration 0 ∈ M̃j , starting from the basic square and
consisting of all squares dominating the point A0 (respectively, B0). Let □k be
the last (of highest level) common square of these two sequences. By Lemma 20,
the length of its sides is at least 2εTj−1+1: indeed, this square is obtained from
a square participating in the construction of a 2 j−1-configuration of class M̃j−1

by a homothety with coefficient εχ(A) for some point A from the central part
of the upper side of the basic square (where χ ≡ 1). The next two squares in
these sequences (or their final points A0 and B0 if □k is a square of the last j-th
level) are different, therefore these next squares (or points) are centered at (or
coincide with) some points of opposite sides of □k . These cannot be vertical
sides: indeed, in this case by Lemma 22 the a-coordinates of our points A0 and B0

would differ by 2εTj−1+1(1 + O(ε)), which contradicts statement (1) of our lemma,
because by (11) εTj−1+1

≫ εuj +1. Therefore, these are horizontal opposite sides,
and hence the difference of their b-coordinates is estimated from below by the
number 2εTj−1+1(1 + O(ε)) > εTj−1+1. Moreover, by Lemma 22 the last estimate is
also valid for the difference of the b-coordinates of the points A0 and B0 subordinate
to some squares centered at points of these sides. □

Corollary 27. The segment [A0, B0] is εuj−1+1-vertical.

Proof. By the previous lemma, the absolute value of the tangent of the angle between
this segment and the vertical direction is estimated from above by 7εuj −Tj−1 , which
by (11) is less than εuj−1+1 (since we can assume that ε < 1

7 ). □

In particular, this segment [A0, B0] is not εuj +1-horizontal, so A0 and B0 cannot
be neighboring points in our εuj +1-resonance chain. Now consider the closed chain
of segments in the upper subset of our M̃j -configuration 0, which consists of the
segment [A0, B0] and the part of our initial εuj +1-resonance chain connecting these
two points inside this upper subset of 0. This closed chain is a εuj−1+1-resonance,
which contradicts the induction hypothesis over j . This contradiction finishes the
proof of Theorem 25, and hence also of Theorem 23. □
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Finally, every product [Mj1] · [Mj2] · · · [Mjq ] of multiplicative generators of the
Hopf algebra H∗(B(R2, ∞), Z2) such that 2 j1 +2 j2 +· · ·+2 jq = n can be realized
by the set of all n-configurations, some 2 j1 points of which form a configuration
of type M̃j1 shifted to R2

+
along the vector (0, 8), some other 2 j2 points form a

configuration of type M̃j2 shifted along the vector (56, 64). . . and the last 2 jq

points form a configuration of type M̃jq shifted along the vector (8q
− 8, 8q). The

values of both coordinates of the points of any of these groups are very far from the
coordinates of the points from any other group, thus all obtained n-configurations
do not contain resonances. This finishes the proof of Lemma 16 and hence also of
Theorems 6 and 8. □

6. Proof of Corollaries 7 and 10

Proposition 28. All the statements of Corollary 7 (respectively, Corollary 10) are
monotonic on N : if for a triplet of numbers (n, N , r), n < N (respectively, n > N ),
it is true that for any N-dimensional subspace FN

⊂ C0(R1, R1) there exist systems
of n independent equality conditions defining subspaces of codimension ≤ n − r
(respectively, of dimension r ) in FN , then the same is true for the triplet (n, N−1, r)

(respectively, (n, N + 1, r)).

Proof. Apply the hypothesis of this proposition to an arbitrary N -dimensional space
containing FN−1 (respectively, contained in FN+1). □

Let us recall several results of [3] on mod 2 cohomology of spaces B(R2, n).

Proposition 29 (see [3, Section 4.8]). For any k, the group H k(B(R2,n),Z2) has a
canonical basis whose elements are in a one-to-one correspondence with unordered
decompositions of the number n into n − k powers of 2. In particular, this group is
nontrivial if and only if k ≤ n − I (n).

The standard notation for such a basis element is ⟨2l1, 2l2, . . . , 2lt ⟩, where
l1 ≥ l2 ≥ · · · ≥ lt ≥ 1, t ≤ n − k: this is the list (in nonincreasing order) of
all summands of such a decomposition which are strictly greater than 1.

Namely, such a basis element of H∗(B(R2, n), Z2) is defined by the intersection
index with the closure of the subvariety in B(R2, n) consisting of all n-configurations
such that there exist t distinct vertical lines in R2, one of which contains 2l1 points
of our configuration, some other one contains 2l2 of them, etc.

We will also use the abbreviated notation ⟨2s1
v1

, 2s2
v2

, . . . , 2sq
vq ⟩ for these basis

elements, where s1 > s2 > · · · > sq ≥ 1 and 2si
vi

means 2si repeated vi times; if
some vi is here equal to 1 then we write simply 2si instead of 2si

1 .

Proposition 30 (see [3, Section 5.2]). The class wk(ξn) ∈ H k(B(R2, n), Z2) for
any k < n is equal to the sum of all basic elements of this group described in the
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previous proposition. In particular, all classes wk(ξn) with k ≤ n − I (n) are not
equal to 0.

So we have

w1 = ⟨2⟩,(14)

w2 = ⟨22⟩,(15)

w3 = ⟨23⟩ + ⟨4⟩,(16)

w4 = ⟨24⟩ + ⟨4, 2⟩,(17)

w5 = ⟨25⟩ + ⟨4, 22⟩,(18)

w6 = ⟨26⟩ + ⟨4, 23⟩ + ⟨42⟩,(19)

w7 = ⟨27⟩ + ⟨4, 24⟩ + ⟨42, 2⟩ + ⟨8⟩,(20)

w8 = ⟨28⟩ + ⟨4, 25⟩ + ⟨42, 22⟩ + ⟨8, 2⟩,(21)

w9 = ⟨29⟩ + ⟨4, 26⟩ + ⟨42, 23⟩ + ⟨43⟩ + ⟨8, 22⟩,(22)

w10 = ⟨210⟩ + ⟨4, 27⟩ + ⟨42, 24⟩ + ⟨43, 2⟩ + ⟨8, 23⟩ + ⟨8, 4⟩,(23)

w11 = ⟨211⟩ + ⟨4, 28⟩ + ⟨42, 25⟩ + ⟨43, 22⟩ + ⟨8, 24⟩ + ⟨8, 4, 2⟩,(24)

w12 = ⟨212⟩ + ⟨4, 29⟩ + ⟨42, 26⟩ + ⟨43, 23⟩ + ⟨44⟩ + ⟨8, 25⟩ + ⟨8, 4, 22⟩.(25)

Proposition 31 (see [3, Sections 9 and 6]). The cohomological product of two basis
elements of the group H∗(B(R2, n), Z2) having the form

⟨2m, . . . , 2m, 2m−1, . . . , 2m−1, . . . , 2, . . . , 2⟩,

where any number 2i , i ∈ {1, 2, . . . , m}, occurs pi times in the first factor and
qi times in the second and some of numbers pi , qi can be equal to 0, is equal to

(26)
m∏

i=1

(
pi + qi

pi

)
⟨2m, . . . , 2m, 2m−1, . . . , 2m−1, . . . , 2, . . . , 2⟩,

where any symbol 2i in the angle brackets occurs pi + qi times, all binomial
coefficients are counted modulo 2, and the entire expression (26) is assumed to be
zero if (pm + qm)2m

+ (pm−1 + qm−1)2m−1
+ · · · + (p1 + q1)2 > n.

Now, all statements of Corollaries 7 and 10 follow immediately from Theo-
rems 6, 8 and the following calculations.

A(1) By (14), (16) and (26), w1w3 = ⟨4, 2⟩, which is nontrivial for n ≥ 6.

A(2) By (15), (17) and (26),

(27) w2 w4 = ⟨4, 23⟩ + ⟨26⟩,

which is nontrivial if n ≥ 10.
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A(3) By (16), (18) and (26), w3 w5 = ⟨4, 25⟩, which is nontrivial if n ≥ 14. By
(17), (19) and (26),

(28) w4 w6 = ⟨42, 24⟩ + ⟨43, 2⟩,

which is also nontrivial if n ≥ 14.

A(4) By (18), (20) and (26),

(29) w5 w7 = ⟨43, 23⟩ + ⟨8, 25⟩ + ⟨8, 4, 22⟩,

which is nontrivial for n ≥ 16.

A(5) By (19), (21) and (26),

(30) w6 w8 = ⟨214⟩ + ⟨4, 211⟩ + ⟨42, 28⟩ + ⟨43, 25⟩ + ⟨8, 27⟩ + ⟨8, 42, 2⟩,

which is nontrivial for n ≥ 18.

A(6) By (20), (22) and (26),

(31) w7 w9 = ⟨4, 213⟩ + ⟨43, 27⟩ + ⟨8, 29⟩ + ⟨8, 43⟩,

which is nontrivial for n ≥ 20.

A(7) By (21), (23) and (26),

(32) w8 w10 = ⟨42, 212⟩ + ⟨43, 29⟩ + ⟨8, 4, 28⟩ + ⟨8, 42, 25⟩ + ⟨8, 43, 22⟩,

which is nontrivial if n ≥ 24.

A(8) By (22), (24) and (26),

(33) w9 w11 = ⟨43, 211⟩ + ⟨8, 4, 210⟩ + ⟨8, 43, 24⟩,

which is nontrivial if n ≥ 28.
By (23), (25) and (26),

(34) w10 w12

= ⟨44, 210⟩+⟨45, 27⟩+⟨46, 24⟩+⟨47, 2⟩+⟨8, 4, 212⟩+⟨8, 44, 23⟩+⟨8, 45⟩,

which also is nontrivial if n ≥ 28.

A(9) The class w14 contains summand ⟨82⟩, therefore by (25) and (26) the product
w12 w14 contains summands ⟨82, 44⟩ and ⟨83, 4, 22⟩, each of which is nontrivial
if n ≥ 32.

B(1) By (15), (28) and (26),

(35) w2 w4 w6 = ⟨42, 26⟩ + ⟨43, 23⟩,
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which is nontrivial for n ≥ 18. By Theorem 6 this calculation proves the statement
B(1) of Corollary 7 (respectively, Corollary 10) for N = n + 1 (respectively, N =

n − 1), and the case N = n follows by monotonicity, see Proposition 28.

B(2) By (16), (29) and (26), w3 w5 w7 = ⟨8, 4, 25⟩, which is nontrivial for n ≥ 22.

B(3) By (28), (21) and (26),

(36) w4 w6 w8 = ⟨42, 212⟩ + ⟨43, 29⟩ + ⟨8, 42, 25⟩,

which is nontrivial for n ≥ 26.

B(4) By (18), (31) and (26),

(37) w5 w7 w9 = ⟨8, 4, 211⟩ + ⟨8, 43, 25⟩,

which is nontrivial if n ≥ 30.

B(5) By (19), (32) and (26),

(38) w6 w8 w10 = ⟨8, 4, 214⟩ + ⟨8, 43, 28⟩,

which is nontrivial for n ≥ 36.

B(6) By (32), (25) and (26),

(39) w8 w10 w12

= ⟨46, 212⟩ + ⟨47, 29⟩ + ⟨8, 43, 214⟩ + ⟨8, 45, 28⟩ + ⟨8, 46, 25⟩ + ⟨8, 47, 22⟩,

which is nontrivial for n ≥ 40. By Theorems 6 and 8, this implies statements B(6)
of Corollaries 7 and 10 for N = n + 7 (respectively, N = n − 7), and the cases
N = n +6 (respectively, N = n −6) follow by monotonicity. Notice that the routine
consideration for N = n + 6 based on

(40) w7 w9 w11 = ⟨43, 211⟩ + ⟨8, 43, 211⟩,

gives the same result in more restrictive conditions, n ≥ 42 only.

B(7) The class w14 contains the summand ⟨82⟩. Therefore by (34) and (26), the
product w10 w12 w14 contains the summand ⟨83, 45⟩, which is nontrivial if n ≥ 44.

C(1) By (15), (36) and (26),

(41) w2 w4 w6 w8 = ⟨42, 214⟩ + ⟨43, 211⟩ + ⟨8, 42, 27⟩,

which is nontrivial if n ≥ 30. By Theorem 6, this proves statements C(1) of
Corollaries 7 and 10 in the case N = n + 1 (respectively, N = n − 1), and the case
N = n follows by monotonicity.

C(2) By (17) and (38),

(42) w4 w6 w8 w10 = ⟨8, 43, 212⟩,
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which is nontrivial if n ≥ 44. This proves statement C(2) of Corollary 7 (respectively,
Corollary 10) for N = n + 3 (respectively, N = n − 3), which implies it also for
N = n + 2 (respectively, N = n − 2).

C(3) By (19) and (39),

(43) w6 w8 w10 w12 = ⟨8, 45, 214⟩ + ⟨8, 47, 28⟩,

which is nontrivial if n ≥52. This proves statements C(3) for N =n+5 (respectively,
N = n − 5) and hence also for N = n + 4 (respectively, N = n − 4).

C(4) The class w14 contains the summand ⟨82⟩. Therefore by (39) and (26) the class
w8 w10 w12 w14 contains the summand ⟨83, 47, 22⟩, which is nontrivial if n ≥ 56.
This proves statements C(4) for N = n+7 (N = n−7) and hence also for N = n+6
(N = n − 6).

D(1) By (41), (23) and (26), w2 w4 w6 w8 w10 = ⟨8, 43, 214⟩, which is nontrivial if
n ≥ 48.

D(2) By (17), (43) and (26), w4 w6 w8 w10 w12 = ⟨8, 47, 212⟩, which is nontrivial
if n ≥ 60.

D(3) Since w14 contains ⟨82⟩, by (43) and (26) the product w6 w8 w10 w12w14

contains the summand ⟨83, 47, 28⟩, which is nontrivial if n ≥ 68.

E(1) By D(1) and formulas (25) and (26), w2 w4 w6 w8 w10 w12 =⟨8, 47, 214⟩, which
is nontrivial if n ≥ 64.

E(2) Since w14 contains ⟨82⟩, by D(2) and (26) the product w4 w6 w8 w10 w12w14

contains the summand ⟨83, 47, 212⟩, which is nontrivial if n ≥ 76.

F. Since w14 contains the summand ⟨82⟩, by E(1) and formula (26) the class
w2 w4 w6 w8 w10 w12 w14 contains the summand ⟨83, 47, 214⟩, nontrivial if n ≥ 80.

□

7. Equality conditions and homology of knot spaces

Let us denote by K the affine space of all C∞-smooth maps R1
→ R3 coinciding

with a fixed linear embedding outside a compact set in R1. Let 6 be the discriminant
subvariety of K consisting of all maps which are not smooth embeddings, i.e., have
either self-intersections or points of vanishing derivative. The elements of the
set K \ 6 are called long knots. There is a natural one-to-one correspondence
between the connected components of this set and the isotopy classes of the usual
knots, i.e., of smooth embeddings S1

→ R3 or S1
→ S3.

The variety 6 is swept out by affine subspaces L(a, b) of codimension 3 in K
corresponding to all chords {a, b} in R1 (including degenerate chords with a =b) and
consisting of maps ϕ : R1

→ R3 such that ϕ(a)=ϕ(b) (or ϕ′(a)= 0 if a = b). Much
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of the topological structure of 6 can be described in terms of the order complex
of the (naturally topologized) partially ordered set, whose elements correspond to
these subspaces L(a, b) and their finite intersections (defined by chord diagrams),
and the order relation is the incidence of corresponding subspaces. For any n, the
subspaces in K defined in this way by independent n-chord diagrams form an affine
bundle over the space CDn of equivalence classes of such diagrams (including
degenerate ones, containing chords of type {a, a}). The fibers of this bundle have
codimension 3n in K, and its normal bundle is isomorphic to the sum of three
copies of the bundle τ ∗

n considered in Section 2 (and continued to degenerate chord
diagrams).

The topology of the space K \ 6 is related by a kind of Alexander duality to the
topology of the complementary space 6, in particular, the numerical knot invariants
can be realized as linking numbers with infinite-dimensional cycles of codimension 1
in K contained in 6. However, Alexander duality deals with finite-dimensional
spaces only, therefore to apply it properly we use finite-dimensional approximations
of the space K. Namely, we consider infinite sequences K1 ⊂ K2 ⊂ . . . of finite-
dimensional affine subspaces of K, such that any connected component of K \ 6 is
represented by elements of subspaces Kj \6 with sufficiently large j , and moreover
any homology class of K \6 is represented by cycles contained in such subspaces.
(The existence of such sequences of subspaces Kj follows easily from Weierstrass
approximation theorem). Then for any such subspace Kj of dimension dj we have
the Alexander isomorphisms

(44) H̃ k(Kj \ 6) ≃ H dj −k−1(Kj ∩ 6),

where H∗ denotes the Borel–Moore homology groups.
To study the left-hand groups in (44) (in particular, such a group with k = 0, i.e.,

the group of Z-valued invariants of knots realizable in Kj ) a simplicial resolution of
the space Kj ∩6 is used in [6]. It is a certain topological space σ( j) and a surjective
map σ( j) → Kj ∩6 inducing an isomorphism of Borel–Moore homology groups.
These groups H∗(σ ( j)) ≃ H∗(Kj ∩ 6) can be calculated by a spectral sequence
{Er

n,β} defined by a natural increasing filtration

(45) σ1( j) ⊂ σ2( j) ⊂ · · · ⊂ σ( j),

in particular, E1
n,β ≃ H n+β(σn( j) \ σn−1( j)).

This filtration is finite if the subspace Kj is not very degenerate. Namely, any
space σn( j) \ σn−1( j) is constructed starting from the intersection sets of Kj with
subspaces of codimension 3n in K defined by independent n-chord diagrams. Since
the family of all such planes is 2n-parametric, a generic dj -dimensional affine
subspace Kj meets only subspaces of this kind with n ≤ dj , so σdj ( j) = σ( j).
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Figure 3. Spectral sequence for H∗(Kj \ 6).

The formal change E p,q
r ≡ Er

−p,dj −1−q turns the homological spectral sequence
defined by this filtration into a cohomological one, which by Alexander duality
converges to the left-hand groups of (44). All nontrivial groups E p,q

r , r ≥ 1, of the
last spectral sequence for a generic subspace Kj lie in the domain (see Figure 3)

{(p, q) : p ∈ [−dj , −1], p + q ≥ 0}.

If the approximating subspace Kj is generic and n is sufficiently small with
respect to dj (namely, n ≤

dj
5 ), then all subspaces of K defined by independent n-

chord diagrams intersect Kj transversally along nonempty planes. Indeed, if dj > 3n,
then the codimension of the set of dj -dimensional affine subspaces in K, which
are not generic with respect to a plane of codimension 3n, is equal to dj − 3n + 1;
therefore the 2n-parametric family of such sets corresponding to all subspaces
defined by n-chord diagrams sweeps out a subset of codimension at least dj −5n+1
(if this number is positive), and for dj ≥ 5n we can choose Kj not from this subset.

If Kj is generic in this sense, then these intersection sets in Kj form an affine
bundle of dimension dj − 3n with base CDn . By the construction of the simplicial
resolution, this implies that the topology of the sets σn( j) \ σn−1( j) essentially
stabilizes at this value of j : for all j ′ > j the space σn( j ′)\σn−1( j ′) is homeomorphic
to the direct product of spaces σn( j) \ σn−1( j) and Rdj ′−dj . In particular, we have
natural isomorphisms

E1
n,β( j) ≃ E1

n,β+(d ′

j −dj )
( j ′) for all j ′ > j , n ≤

dj
5 and arbitrary β.
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Substitutions (44) turn them into natural isomorphisms E p,q
1 ( j ′) ≃ E p,q

1 ( j) for all
p ≥ −

dj
5 . Moreover, these isomorphisms commute with all the further differentials

of our spectral sequence; the Borel–Moore homology groups of the spaces σn( j)
and σn( j ′) for all n ≤

dj
5 and j ′

≥ j are naturally isomorphic to each other up to the
shift of dimensions by dj ′ − dj . The cohomology classes of K \6 arising from this
area of the spectral sequence (i.e., the sequences of nontrivial cohomology classes
of the spaces Kj ′\6, j ′

≥ j , realizable by linking numbers with cycles located
in σn( j ′) for n ≤

dj
5 and corresponding to one another by these isomorphisms) are

known as finite-type cohomology classes of the space of long knots. Therefore, the
intriguing question about the completeness of the system of these classes in entire
cohomology groups of K \6 (in particular, about the existence of nonequivalent
knots not separated by finite-type invariants) depends on the groups E p,q

r ( j) in the
nonstable domains, on the deviation of these groups from stable ones, and on the
way in which the nonstable groups E p,q

∞ ( j) for different j correspond to the same
cohomology classes of spaces Kj \ 6 with different j .

The arguments of the previous sections of this article allow us to say something
about the nontriviality of this problem.

Proposition 32. If 4n− I (n)>dj ≥3n, then for any dj -dimensional affine subspace
Kj ⊂K there exist independent n-chord diagrams such that the corresponding affine
subspaces of K have nongeneric (i.e., either nontransversal or empty) intersections
with the space Kj .

Proposition 33. If 2n + I (n) ≤ dj ≤ 3n, then for almost any dj -dimensional affine
subspace Kj ⊂ K (that is, for any subspace from a residual subset in the space
of all such subspaces) there exist independent n-chord diagrams such that the
corresponding affine subspaces of K have nonempty intersection with Kj .

Definition 34. Let L denote the affine bundle over the space B(R2
+
, n) \ 4 of

independent n-chord diagrams, whose fiber over any such diagram is the subspace
of codimension 3n in K consisting of maps ϕ : R1

→ R3 taking the same values
at endpoints of each chord of this diagram. For an affine subspace Kj ⊂ K denote
by ∥(Kj ) the subset in B(R2

+
, n) \ 4 consisting of n-chord diagrams such that the

corresponding fiber of bundle L contains lines parallel to some lines contained in
the space Kj .

Proof of Proposition 32. The normal bundle L⊥ of L in K is isomorphic to the
direct sum of three copies of the regular bundle ξn . By Lemmas 13 and 14, its
total Stiefel–Whitney class is then equal to (w(ξn))

3
≡ w(ξn), in particular, its

i-dimensional component wi is not trivial if i ≤ n − I (n).
Make Kj a vector space by arbitrarily choosing the “origin” point in it. If all

fibers of the bundle L are in general position with respect to Kj , then a (dj − 3n)-
dimensional vector bundle with the same base is defined, the fiber of which over a
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chord diagram is obtained from the intersection set of Kj and the corresponding
fiber of the bundle L by a parallel translation, after which it passes through the
origin point of Kj . The total Stiefel–Whitney class of this bundle is equal to
w(L⊥)−1

≡ w(ξn)
−1, which by Lemma 14 is equal to w(ξn). If dj −3n < n − I (n),

then this implies that wn−I (n)(ξn) = 0, a contradiction. □

Lemma 35. If dj ≤ 3n, then for almost any dj -dimensional affine subspace Kj ⊂ K
the codimension of the set ∥(Kj ) in B(R2

+
, n) \ 4 is at least 3n − dj + 1.

Proof. Consider the space

(46) G̃(K, dj ) × (B(R2
+
, 2) \ 4)

of all pairs {Kj , 0} where K j is a dj -dimensional affine subspace of K and 0 is
an independent n-chord diagram. Denote by 3 the subset of this space consisting
of pairs {Kj , 0} such that 0 ∈ ∥(K j ). The space (46) and its subset 3 are both
fibered over the space B(R2

+
, 2) \ 4 of independent n-chord diagrams, and for any

such diagram 0 the corresponding fiber of the latter fiber bundle has codimension
3n − dj + 1 in the fiber of the former. Therefore, the codimension of 3 in the
space (46) is equal to 3n −dj +1, and the typical fiber of the projection of 3 to the
first factor of (46) has codimension at least 3n − dj + 1 in the corresponding fiber
of the projection of entire space (46). □

Proof of Proposition 33. Let us fix a subspace Kj for which the condition of the
previous lemma is satisfied. The complement of the set ∥(Kj ) in the manifold
B(R2

+
, n)\4 has then the same homology groups up to dimension 3n −dj as entire

B(R2
+
, n) \ 4.

Consider the affine bundle (L⊥)∗ over the manifold B(R2
+
, n)\4: its fibers consist

of linear functions on K vanishing on the corresponding fibers of the bundle L.
Over the set (B(R2

+
, n) \ 4) \ ∥(K j ) a (3n − dj )-dimensional subbundle of (L⊥)∗

is defined, consisting of functions constant on Kj . This subbundle has the same
Stiefel–Whitney class (equal to w(ξn)) as the whole (L⊥)∗, since its normal bundle
is isomorphic to the trivial bundle with fiber (Kj )

∗. If no fibers of the bundle L
intersect the space Kj , then this subbundle has a nowhere vanishing cross-section:
indeed, we can define an arbitrary Euclidean structure on this subbundle, and choose
in each fiber the linear function of unit norm taking the maximal value on Kj . If
3n−dj ≤ n− I (n), then this contradicts the nontriviality of the class wn−I (n)(ξn). □

Remark. I hope that the further study of the characteristic classes of the bundle L
(and of its analog defined on the space CDn of equivalence classes of chord diagrams,
rather than on the resolution B(R2

+
, n) \4 of this space) will provide not only the

proofs of the inevitable troubles in the calculation of the cohomology classes of
knot spaces, but also the construction of some such classes not reducible to classes
of finite-type.
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POSITIVELY CURVED FINSLER METRICS
ON VECTOR BUNDLES, II

KUANG-RU WU

We show that if E is an ample vector bundle of rank at least two with some
curvature bound on OP(E∗)(1), then E∗ ⊗ det E is Kobayashi positive. The
proof relies on comparing the curvature of (det E∗)k and Sk E for large k
and using duality of convex Finsler metrics. Following the same thread of
thought, we show if E is ample with similar curvature bounds on OP(E∗)(1)

and OP(E⊗det E∗)(1), then E is Kobayashi positive. With additional assump-
tions, we can furthermore show that E∗ ⊗ det E and E are Griffiths positive.

1. Introduction

Let E be a holomorphic vector bundle of rank r over a compact complex manifold X
of dimension n. We denote the dual bundle by E∗ and its projectivized bundle
by P(E∗). The vector bundle E is said to be ample if the line bundle OP(E∗)(1)

over P(E∗) is ample. On the other hand, E is called Griffiths positive if E carries
a Griffiths positive Hermitian metric. Moreover, E is called Kobayashi positive
if E carries a strongly pseudoconvex Finsler metric whose Kobayashi curvature is
positive (we will give a quick review on Finsler metrics and Kobayashi curvature
in Section 2A; or see [Wu 2022, Section 2]).

There are two conjectures made by Griffiths [1969] and Kobayashi [1975]
regarding the equivalence of ampleness and positivity:

(1) If E is ample, then E is Griffiths positive.

(2) If E is ample, then E is Kobayashi positive.

These two conjectures are still open, save for n = 1, in [Umemura 1973; Campana
and Flenner 1990] (for recent progress, see [Berndtsson 2009a; Mourougane and
Takayama 2007; Hering et al. 2010; Liu et al. 2013; Liu and Yang 2015; Naumann
2021; Feng et al. 2020; Demailly 2021; Finski 2022; Pingali 2021; Ma and Zhang
2023]). Note that the converse of each conjecture is true [Feng et al. 2020; Wu 2022].

By Kodaira’s embedding theorem, ampleness of a line bundle is equivalent to
the existence of a positively curved metric on the line bundle. So, the conjectures
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of Griffiths and Kobayashi can be rephrased: Given a positively curved metric
on OP(E∗)(1), can we construct a positively curved Hermitian/Finsler metric on E?
In this paper, we show that it is so, by imposing curvature bounds on tautological
line bundles of P(E∗) and P(E). Since Hermitian metrics on OP(E∗)(1) are in
one-to-one correspondence with Finsler metrics on E∗, these curvature bounds can
also be written in terms of Kobayashi curvature.

We first consider a relevant case where the picture is clearer. It is known that,
for rank of E at least 2:

(1) If E is Griffiths positive, then E∗
⊗ det E with the induced metric is Griffiths

positive.

(2) If E is ample, then E∗
⊗ det E is ample.

The first fact can be found in [Demailly 2012, p. 346, Theorem 9.2] and the second
in [Hartshorne 1966, Corollary 5.3] together with the isomorphism (see Appendix)

r−1∧
E ≃ E∗

⊗ det E .

If we follow the guidance of Griffiths and Kobayashi, we would ask whether or
not the ampleness of E implies Griffiths/Kobayashi positivity of E∗

⊗ det E for
r ≥ 2. Our first result is that this can be achieved by imposing curvature bounds
on OP(E∗)(1).

Let q : P(E∗) → X be the projection. Let g be a metric on OP(E∗)(1) whose
curvature restricted to a fiber 2(g)|P(E∗

z ) is positive for all z ∈ X . For a tangent
vector η ∈ T 1,0

z X and a point [ζ ] ∈ P(E∗
z ), we consider tangent vectors η̃ to P(E∗)

at (z, [ζ ]) such that q∗(η̃) = η, namely the lifts of η to T 1,0
(z,[ζ ]) P(E∗). Then we

define the function

(1-1) (η, [ζ ]) 7→ inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) := m(η, [ζ ]),

where the infimum taken over all the lifts of η to T 1,0
(z,[ζ ]) P(E∗). This infimum is

actually a minimum, see (2-3). On the other hand, since such a metric g corresponds
to a strongly pseudoconvex Finsler metric on E∗, and if we denote its Kobayashi
curvature by θ(g) a (1, 1)-form on P(E∗), then

(1-2) m(η, [ζ ]) = −θ(g)(η̃, ¯̃η).

The term on the right is independent of the choice of lifts η̃ (we will prove (1-2) in
Section 2A).

Theorem 1. Assume r ≥ 2 and the line bundle OP(E∗)(1) has a positively curved
metric h and a metric g with 2(g)|P(E∗

z ) > 0 for all z ∈ X. If there exist a Hermitian
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metric � on X and a constant M ∈ [1, r) such that the following inequalities of
(1, 1)-forms hold:

Mq∗� ≥ −θ(g),(1-3)

q∗� ≤ −θ(h),(1-4)

then E∗
⊗ det E is Kobayashi positive.

We can of course choose g to be h in Theorem 1, but having two different metrics
seems more flexible. The proof of Theorem 1 relies on two observations. First,
starting with g and h on OP(E∗)(1), we construct two Hermitian metrics on Sk E
and det E respectively. The curvature of the induced metric on Sk E ⊗(det E∗)k can
be shown to be Griffiths negative for k large (see Section 3 for details). The second
observation (see [Wu 2022]) is that since the induced metric on Sk E ⊗ (det E∗)k

is basically an L2-metric, its k-th root is a convex Finsler metric on E ⊗ det E∗

which is also strongly plurisubharmonic on the total space minus the zero section.
After perturbing this Finsler metric and taking duality, we get a convex and strongly
pseudoconvex Finsler metric on E∗

⊗ det E whose Kobayashi curvature is positive.
So the bundle E∗

⊗ det E is Kobayashi positive. Notice that the Finsler metric we
find is actually convex.

The reason why we impose �, M and inequalities (1-3) and (1-4) in Theorem 1
is the following. On the bundle Sk E ⊗ (det E∗)k , the curvature of the induced
metric is roughly bounded above by k

∑
m am cm − rk

∑
m bm cm where am and bm

are some positive integrals with
∑

m am =
∑

m bm = 1, and cm are positive numbers
related to the curvature of h. It does not seem possible to us that the upper bound
k

∑
m am cm − rk

∑
m bm cm can be made negative without any assumption. So we

introduce � and M to control the upper bound.
With small changes on the proof, one can write down a variant of Theorem 1

where the conclusion is about the Kobayashi positivity of E∗
⊗ (det E)l (see the

end of Section 3).
Now let us go back to the original conjecture of Kobayashi and adapt the proof

of Theorem 1 to this case. Let p : P(E) → X be the projection. We recall under the
canonical isomorphism P(E ⊗ det E∗) ≃ P(E), the line bundle OP(E⊗det E∗)(1)

corresponds to the line bundle OP(E)(1) ⊗ p∗ det E (see [Kobayashi 1987, p. 86,
Proposition 3.6.21]). Let g be a metric on OP(E)(1)⊗ p∗ det E with 2(g)|P(Ez) > 0
for all z ∈ X . For a tangent vector η ∈ T 1,0

z X and a point [ξ ] ∈ P(Ez), we similarly
have

(η, [ξ ]) 7→ inf
p∗(η′)=η

2(g)(η′, η̄′),

where η′ are the lifts of η to T 1,0
(z,[ξ ]) P(E). Meanwhile, such a metric g corresponds to

a strongly pseudoconvex Finsler metric on E ⊗det E∗ and we denote its Kobayashi
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curvature by θ(g) a (1, 1)-form on P(E). As before,

(1-5) inf
p∗(η′)=η

2(g)(η′, η̄′) = −θ(g)(η′, η̄′).

Theorem 2. Assume r ≥ 2 and OP(E∗)(1) has a positively curved metric h and
OP(E)(1)⊗ p∗ det E has a metric g with 2(g)|P(Ez) > 0 for all z ∈ X. If there exist
a Hermitian metric � on X and a constant M ∈ [1, r) such that

Mp∗� ≥ −θ(g),(1-6)

q∗� ≤ −θ(h),(1-7)

then E is Kobayashi positive.

Since the ampleness of E implies ampleness of E∗
⊗ det E , one choice for g in

Theorem 2 is a positively curved metric on OP(E)(1)⊗ p∗ det E , but how much this
choice helps is unknown to us. The proof of Theorem 2 follows the same scheme
as in Theorem 1. We first use h and g to construct Hermitian metrics on det E and
Sk E∗

⊗(det E)k respectively. The induced metric on [Sk E∗
⊗(det E)k

]⊗(det E∗)k

is Griffiths negative for k large (see Section 4). Then by taking k-th root, perturbing,
and taking duality, we obtain a convex, strongly pseudoconvex, and Kobayashi
positive Finsler metric on E .

1A. Griffiths positivity. The conclusions in Theorems 1 and 2 are about Finsler
metrics. For their Hermitian counterpart, we need additional assumptions. The
reason is that in Theorems 1 and 2, taking large tensor power of various bundles helps
us eliminate the curvature of the relative canonical bundles K P(E∗)/X and K P(E)/X ,
and after getting the desired estimates we take k-th root to produce Finsler metrics.
However, the step of taking k-th root produces only Finsler, not Hermitian metrics.
So the first step of taking large tensor power is not allowed if one wants Hermitian
metrics.

Let us be more precise. For a metric g on OP(E∗)(1) with 2(g)|P(E∗
z ) > 0 for all

z ∈ X , we denote 2(g)|P(E∗
z ) by ωz for the moment. The relative canonical bundle

K P(E∗)/X has a metric induced from {ωr−1
z }z∈X and we denote the corresponding

curvature by γg, a (1, 1)-form on P(E∗). For η ∈ T 1,0
z X and [ζ ] ∈ P(E∗

z ), we
consider

(η, [ζ ]) 7→ sup
q∗(η̃)=η

γg(η̃, ¯̃η),

where the supremum taken over all the lifts of η to T 1,0
(z,[ζ ]) P(E∗). The supremum is

a maximum under a suitable assumption, see (2-9). Moreover, for z ∈ X , the restric-
tion γg|P(E∗

z ) is actually the negative of Ricci curvature −Ricωz of the metric ωz

on P(E∗
z ).

Any Hermitian metric G on E∗ will induce a metric g on OP(E∗)(1) with
2(g)|P(E∗

z ) > 0 and γg|P(E∗
z ) < 0 for all z ∈ X . Indeed, in this case, 2(g)|P(E∗

z )
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is the Fubini–Study metric and its Ricci curvature is positive, so γg|P(E∗
z ) < 0.

Furthermore, for any η ∈ T 1,0
z X and any [ζ ] ∈ P(E∗

z ),

(1-8) sup
q∗(η̃)=η

γg(η̃, ¯̃η) = rθ(g)(η̃, ¯̃η) − q∗2(det G)(η̃, ¯̃η)

(we will prove (1-8) in Section 2B).

Theorem 3. Assume r ≥ 2 and the line bundle OP(E∗)(1) has a positively curved
metric h and a metric g induced from a Hermitian metric G on E∗. If there exist a
Hermitian metric � on X and a constant M ∈ [1, r) such that

Mq∗� ≥ −(r + 1) θ(g) + q∗2(det G),(1-9)

q∗� ≤ −θ(h),(1-10)

then E∗
⊗ det E is Griffiths positive.

Theorem 3 could be seen as a Hermitian analogue of Theorem 1. To state
a Hermitian analogue of Theorem 2, we use again the isomorphism between
OP(E⊗det E∗)(1) → P(E ⊗ det E∗) and OP(E)(1) ⊗ p∗ det E → P(E).

Theorem 4. Suppose that r ≥ 2 and OP(E∗)(1) has a positively curved metric h
and OP(E)(1) ⊗ p∗ det E has a metric g induced from a Hermitian metric G on
E ⊗ det E∗. If there exist a Hermitian metric � on X and a constant M ∈ [1, r)

such that

Mp∗� ≥ −(r + 1) θ(g) + p∗2(det G),(1-11)

q∗� ≤ −θ(h),(1-12)

then E is Griffiths positive.

In all the theorems above, the existence of the metric h comes from ampleness
of E . So the real assumptions lie in (g, �, M) and the inequalities they have to
satisfy. To weaken or remove these inequalities, one possible direction is to use
geometric flows as in [Naumann 2021; Wan 2022; Ustinovskiy 2019; Li et al. 2021].
Another possible direction is to use the interplay between the optimal L2-estimates
and the positivity of curvature (see [Guan and Zhou 2015; Berndtsson and Lempert
2016; Lempert 2017; Hacon et al. 2018; Zhou and Zhu 2018]).

One example where the assumptions of all the theorems above are satisfied is
given by E = L9

⊕ L8
⊕ L7 with L a positive line bundle. The triple (9, 8, 7)

or the rank r = 3 is not that important; the point is to make sure the eigenvalues
of the curvature with respect to some positive (1, 1)-form do not spread out too
far. This example also indicates that a reasonable choice for � is probably related
to c1(det E).
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A more sophisticated example, related to approximate Hermitian–Yang–Mills
metrics [Jacob 2014; Misra and Ray 2021; Li et al. 2021], is semistable ample
vector bundles over Riemann surfaces (see Section 7 for details of the examples).

The proof of Theorem 1 is given in Section 3 and almost as a corollary we prove
Theorem 2 in Section 4. The proof of Theorem 3 in Section 5 is a modification
of Theorem 1 but we still write out the details. In Section 6, we prove Theorem 4
based on Section 5.

2. Preliminaries

2A. Finsler metrics. We will use some facts about Finsler metrics on vector bundles
which can be found in [Kobayashi 1975; 1996; Cao and Wong 2003; Aikou 2004;
Wu 2022]. First, we recall the definition of Finsler metrics. Let E∗ be a holomorphic
vector bundle of rank r over a compact complex manifold X . For a vector ζ ∈ E∗

z ,
we symbolically write (z, ζ )∈ E∗. A Finsler metric G on the vector bundle E∗

→ X
is a real-valued function on E∗ such that:

(1) G is smooth away from the zero section of E∗.

(2) For (z, ζ ) ∈ E∗, G(z, ζ ) ≥ 0, and equality holds if and only if ζ = 0.

(3) G(z, λζ ) = |λ|
2 G(z, ζ ) for λ ∈ C.

A Finsler metric G on E∗ is said to be:

(1) Strongly pseudoconvex if the fiberwise complex Hessian of G is positive
definite on E∗

\ {zero section}, namely (
√

−1∂∂̄G)|E∗
z
> 0 for all z ∈ X .

(2) Convex if G1/2 restricted to each fiber E∗
z is convex.

Let g be a Hermitian metric on OP(E∗)(1) with 2(g)|P(E∗
z ) > 0 for all z ∈ X .

Such a g corresponds to a strongly pseudoconvex Finsler metric G on E∗. Since
(
√

−1∂∂̄G)|E∗
z

> 0, we can define a Hermitian metric G̃ on the pull-back bun-
dle q∗E∗, where q : P(E∗) → X is the projection, as follows. For a vector Z in
the fiber q∗E∗

(z,[ζ ]), we define

G̃(z,[ζ ])(Z , Z) = (
√

−1∂∂̄G)|E∗
z
(Z , Z̄),

where the Z on the right-hand side is viewed as a tangent vector to E∗
z at ζ by

the identification of vector spaces q∗E∗

(z,[ζ ]) = E∗
z and E∗

z = Tζ E∗
z (see [Wu 2022,

Section 2.2] for a local coordinate description).
Now (q∗E∗, G̃) is a Hermitian holomorphic vector bundle, so we can talk about

its Chern curvature 2, an End q∗E∗-valued (1, 1)-form on P(E∗). With respect to
the metric G̃, the bundle q∗E∗ has a fiberwise orthogonal decomposition

OP(E∗)(−1) ⊕ OP(E∗)(−1)⊥,
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and so 2 can be written as a block matrix. Let 2|OP(E∗)(−1) denote the block in the
matrix 2 corresponding to End(OP(E∗)(−1)). Since OP(E∗)(−1) is a line bundle,
2|OP(E∗)(−1) is a (1, 1)-form on P(E∗), and it is called the Kobayashi curvature of
the Finsler metric G. We will use θ(g) to denote the Kobayashi curvature

(2-1) θ(g) := 2|OP(E∗)(−1).

In order to relate the Kobayashi curvature θ(g) to the curvature 2(g) of g, we
consider coordinates normal at one point. Given a point (z0, [ζ0]) ∈ P(E∗), there
exists a holomorphic frame {si } for E∗ around z0 ∈ X such that

(2-2)
Gζi ζ̄j

(z0, ζ0) = δi j ,

Gζi ζ̄j zα
(z0, ζ0) = Gζi ζ̄j z̄β

(z0, ζ0) = G ζ̄j zα
(z0, ζ0) = Gzα

(z0, ζ0) = 0,

where we use {ζi } for the fiber coordinates on E∗ with respect to the frame {si }

and {zα} for the local coordinates on X (such a frame can be obtained by (5.11)
in [Kobayashi 1996]). Moreover if � is a Hermitian metric on X , then by a linear
transformation in the z-coordinates, we can make

�

(
∂

∂zα

,
∂

∂ z̄β

)
(z0) = δαβ

without affecting (2-2). We will call this coordinate system normal at the point
(z0, [ζ0]) ∈ P(E∗).

Around the point (z0, [ζ0]) ∈ P(E∗), we assume the local coordinates

(z1, . . . , zn, w1, . . . , wr−1)

are given by wi = ζi/ζr for i = 1 ∼ r − 1. So

e :=
ζ1 s1 + · · · + ζr sr

ζr
= w1 s1 + · · · +wr−1 sr−1 + sr

is a holomorphic frame for OP(E∗)(−1). Let e∗ be the dual frame of OP(E∗)(1)

around (z0, [ζ0]) ∈ P(E∗) and g(e∗, e∗) = e−φ . Then, the curvature 2(g) can be
written locally as∑
α,β

∂2φ

∂zα ∂ z̄β

dzα ∧ dz̄β +

∑
α, j

∂2φ

∂zα ∂wj
dzα ∧ dwj

+

∑
i,β

∂2φ

∂wi ∂ z̄β

dwi ∧ dz̄β +

∑
i, j

∂2φ

∂wi ∂wj
dwi ∧ dwj .

Note that the terms ∂2φ
∂zα ∂wj

:= φα j̄ vanish at (z0, [ζ0]) by (2-2) and the fact

eφ
=

1
g(e∗, e∗)

= G(w1 s1 + · · · +wr−1 sr−1 + sr ).
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For a tangent vector η ∈ T 1,0
z0

X , we can write η =
∑

α ηα
∂

∂zα
. For the lifts η̃ of η to

T 1,0
(z0,[ζ0])

P(E∗), we have

(2-3) inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) =

∑
α,β

φαβ̄ |(z0,[ζ0])ηα η̄β

because φα j̄ = 0 at (z0, [ζ0]) and the matrix (φi j̄ ) is positive. On the other hand,
using the same coordinate system, the curvature 2 of G̃ can be written as

2=

∑
α,β

Rαβ̄ dzα∧dz̄β+

∑
α,l

Pαl̄ dzα∧dwl+
∑
k,β

Pkβ̄ dwk∧dz̄β+

∑
k,l

Qkl̄ dwk∧dwl,

where Rαβ̄, Pαl̄, Pkβ̄ , and Qkl̄ are endomorphisms of q∗E∗. By [Wu 2022, (2.4)],
for any lift η̃ of η to T 1,0

(z0,[ζ0])
P(E∗), we have

(2-4) θ(g)(η̃, ¯̃η)

= 2|OP(E∗)(−1)(η̃, ¯̃η) =

∑
α,β

G̃(Rαβ̄ ζ0, ζ0)

G̃(ζ0, ζ0)
ηα η̄β = −

∑
α,β

φαβ̄ |(z0,[ζ0])ηα η̄β,

where the last equality is by [Kobayashi 1996, (5.16)].
From (2-3) and (2-4), we see

inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) = −θ(g)(η̃, ¯̃η),

which is formula (1-2) we claim in the introduction, and when evaluated using
normal coordinates they are

∑
α,β φαβ̄ |(z0,[ζ0])ηα η̄β .

2B. Hermitian metrics. This subsection is a special case of Section 2A and it will
be used in the proofs of Theorems 3 and 4. Let G be a Hermitian metric on the
bundle E∗. The pull-back bundle q∗E∗

→ P(E∗) with the pull-back metric q∗G
induces a metric g∗ on the subbundle OP(E∗)(−1). We denote the dual metric
on OP(E∗)(1) by g.

Let � be a Hermitian metric on X and z0 a point in X with local coordinates {zα}

such that
�

(
∂

∂zα

,
∂

∂ z̄β

)
(z0) = δαβ .

There exists a holomorphic frame {si } for E∗ around z0 such that

G(si , sj ) = δi j + O(|z|2),

where z0 corresponds to the origin in the local coordinates. We use {ζi } for the
fiber coordinates with respect to the frame {si }. For a point (z0, [ζ0]) ∈ P(E∗),
we assume the local coordinates (z1, . . . , zn, w1, . . . , wr−1) around (z0, [ζ0]) are
given by wi = ζi/ζr for i = 1 ∼ r − 1. So

e :=
ζ1 s1 + · · · + ζr sr

ζr
= w1 s1 + · · · +wr−1 sr−1 + sr
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is a holomorphic frame for OP(E∗)(−1) and

g∗(e, e) = q∗G(w1 s1 + · · · +wr−1 sr−1 + sr , w1 s1 + · · · +wr−1 sr−1 + sr )

= 1 + O(|z|2) + O(|w|
2) + O(|w| |z|2) + O(|w|

2
|z|2).

The zα-derivative of g∗(e, e) is g∗(e, e)zα
= O((1 + |w| + |w|

2)|z|), and hence the
wi -derivatives of g∗(e, e)zα

of any order are zero when evaluated at z0. Therefore,
if we denote g∗(e, e) by eφ , then at z0

(2-5) φα j̄ = φαi j̄ = φαi j̄ k̄ = 0 and (log det(φi j̄ ))αk̄ = 0.

In this coordinate system, the curvature 2(g) is∑
α,β

∂2φ

∂zα ∂ z̄β

dzα ∧ dz̄β +

∑
α, j

∂2φ

∂zα ∂wj
dzα ∧ dwj

+

∑
i,β

∂2φ

∂wi ∂ z̄β

dwi ∧ dz̄β +

∑
i, j

∂2φ

∂wi ∂wj
dwi ∧ dwj .

For a tangent vector η ∈ T 1,0
z0

X , we can write η =
∑

α ηα
∂

∂zα
. For the lifts η̃ of η to

T 1,0
(z0,[ζ0])

P(E∗), we have

(2-6) inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) =

∑
α,β

φαβ̄ |(z0,[ζ0])ηα η̄β

because φα j̄ = 0 at z0 and the matrix (φi j̄ ) is positive. Since G is a Hermitian
metric, the corresponding Kobayashi curvature is

(2-7) θ(g) = q∗2(G)|OP(E∗)(−1),

which is equal to the negative of (2-6) by Section 2A.
Using the same coordinate system, the restriction 2(g)|P(E∗

z ) is
∑

φi j̄ dwi ∧dwj ,
so the metric on K P(E∗)/X induced from {(2(g)|P(E∗

z ))
r−1

}z∈X has its curvature γg

equal to

(2-8)
∑
α,β

(log det(φi j̄ ))αβ̄ dzα ∧ dz̄β +

∑
α, j

(log det(φi j̄ ))α j̄ dzα ∧ dwj

+

∑
i,β

(log det(φi j̄ ))i β̄ dwi ∧ dz̄β +

∑
i, j

(log det(φi j̄ ))i j̄ dwi ∧ dwj .

The matrix
(
(log det(φi j̄ ))i j̄

)
is negative because it represents the negative of

the Ricci curvature of the Fubini–Study metric on P(E∗
z ). Moreover, the terms

(log det(φi j̄ ))α j̄ = 0 at z0 by (2-5). As a result, for a tangent vector η ∈ T 1,0
z0

X with
η =

∑
ηα

∂
∂zα

in this coordinate system, we have

(2-9) sup
q∗(η̃)=η

γg(η̃, ¯̃η) =

∑
α,β

(log det(φi j̄ ))αβ̄ |(z0,[ζ0])ηα η̄β,

where η̃ are the lifts of η to T 1,0
(z0,[ζ0])

P(E∗).
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Finally, the metric on K P(E∗)/X induced from {(2(g)|P(E∗
z ))

r−1
}z∈X can be

identified with the metric (g∗)r
⊗ q∗(det G∗) under the isomorphism

K P(E∗)/X ≃ OP(E∗)(−r) ⊗ q∗ det E

(see [Kobayashi 1987, p. 85, Proposition 3.6.20]). This fact can be verified at one
point using the normal coordinates above. Therefore,

(2-10) γg = −r2(g) − q∗2(det G).

So, for any η ∈ T 1,0
z X and any [ζ ] ∈ P(E∗

z ),

sup
q∗(η̃)=η

γg(η̃, ¯̃η) = −r inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) − 2(det G)(η, η̄)

= rθ(g)(η̃, ¯̃η) − 2(det G)(η, η̄).

This is formula (1-8) that we promise to prove in the introduction.

2C. Convexity. Let E be a holomorphic vector bundle of rank r over a compact
complex manifold X . Given a Hermitian metric Hk on the symmetric power Sk E ,
we can define a Finsler metric on E by assigning to u ∈ E length Hk(uk, uk)1/2k .
We will denote this Finsler metric by H 1/2k

k , namely H 1/2k
k (u) = Hk(uk, uk)1/2k .

Lemma 5. Let F1 be a vector bundle and F2 a line bundle over X. Assume
F2 carries a Hermitian metric H. We also assume, for some k, Sk F1 carries a
Hermitian metric Hk such that the induced Finsler metric H 1/2k

k on F1 is convex:

H 1/2k
k (u + v) ≤ H 1/2k

k (u) + H 1/2k
k (v) for u, v ∈ F1.

Then the Finsler metric (Hk ⊗ H k)1/2k on F1 ⊗ F2 is convex.

Since F2 is a line bundle, there is a canonical isomorphism between the bundles
Sk(F1 ⊗ F2) and Sk F1 ⊗ Fk

2 which we use implicitly in the statement of Lemma 5.
Roughly speaking, Lemma 5 indicates that convexity is not affected by tensoring
with a line bundle.

Proof. Fix p ∈ X . The fiber F2|p is a one dimensional vector space and we let e
be a basis. For x and y ∈ F1 ⊗ F2|p, we can write x = x̃ ⊗ e and y = ỹ ⊗ e where
x̃, ỹ ∈ F1|p. By definition,

(Hk ⊗ H k)1/2k(x + y) = Hk ⊗ H k((x + y)k, (x + y)k)1/2k

= Hk ⊗ H k((x̃ + ỹ)k
⊗ ek, (x̃ + ỹ)k

⊗ ek)1/2k

= Hk((x̃ + ỹ)k, (x̃ + ỹ)k)1/2k H k(ek, ek)1/2k

≤ [Hk(x̃k, x̃k)1/2k
+ Hk(ỹk, ỹk)1/2k

] H k(ek, ek)1/2k

= (Hk ⊗ H k)1/2k(x) + (Hk ⊗ H k)1/2k(y).

Therefore the Finsler metric (Hk ⊗ H k)1/2k is convex. □
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2D. Direct image bundles. We recall how to construct Hermitian metrics on direct
image bundles and compute their curvature. Let g be a Hermitian metric on
OP(E∗)(1) with curvature 2(g). Denote the restriction of the curvature to a fiber,
2(g)|P(E∗

z ) by ωz for z ∈ X , and assume ωz > 0 for all z ∈ X . With the canonical
isomorphism

8k,z : Sk Ez → H 0(P(E∗

z ), OP(E∗
z )(k)) for k ≥ 0

(see [Demailly 2012, p. 278, Theorem 15.5]), we define a Hermitian metric Hk

on Sk E by

(2-11) Hk(u, v) :=

∫
P(E∗

z )

gk(8k,z(u), 8k,z(v)) ωr−1
z for u and v ∈ Sk Ez.

Let us denote by 2k the curvature of Hk . Fixing z ∈ X and u ∈ Sk Ez , in order
to estimate the (1, 1)-form Hk(2k u, u), we first extend the vector u to a local
holomorphic section ũ whose covariant derivative at z with respect to Hk equals
zero. A straightforward computation shows

∂∂̄ Hk(ũ, ũ)|z = −Hk(2k u, u).

But Hk(ũ, ũ)(z) for z near z can also be written as the push-forward

q∗

(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1),

where q : P(E∗) → X is the projection, so

(2-12) −Hk(2k u, u) = ∂∂̄ Hk(ũ, ũ)|z = q∗ ∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1)

|z.

Similarly, we can use a metric on OP(E)(1) ⊗ p∗ det E to construct Hermitian
metrics on Sk E∗

⊗ (det E)k . The formula is similar to (2-11), and we use bold
symbols to highlight the change. Let g be a metric on OP(E)(1) ⊗ p∗ det E with
curvature 2(g). Denote the restriction of the curvature to a fiber 2(g)|P(Ez) by ωz

for z ∈ X . Assume ωz > 0 for all z ∈ X . With the canonical isomorphism

8k,z : Sk E∗

z ⊗ (det Ez)
k
→ H 0(P(Ez), OP(Ez)(k) ⊗ (p∗ det Ez)

k) for k ≥ 0,

we define a Hermitian metric Hk on Sk E∗
⊗ (det E)k by

(2-13) Hk(u, v) :=

∫
P(Ez)

gk(8k,z(u), 8k,z(v)) ωr−1
z

for u and v ∈ Sk E∗
z ⊗ (det Ez)

k . We also have a curvature formula similar to (2-12).
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2E. Berndtsson’s positivity theorem. Let h be a metric on OP(E∗)(1) with curvature
2(h) > 0. Denote 2(h)|P(E∗

z ) by ωz for z ∈ X . We are going to define a Hermitian
metric on det E using the metric h. The relative canonical bundle K P(E∗)/X has
a metric induced from {ωr−1

z }z∈X . With hr on OP(E∗)(r) and the isomorphism
K P(E∗)/X ⊗ OP(E∗)(r) ≃ q∗ det E , there is an induced metric ρ on q∗ det E . Using
the canonical isomorphism

9z : det Ez → H 0(P(E∗

z ), q∗ det Ez),

we define a Hermitian metric H on det E by

(2-14) H(u, v) :=

∫
P(E∗

z )

ρ(9z(u), 9z(v)) ωr−1
z for u and v ∈ det Ez.

By Berndtsson’s theorem [Berndtsson 2009a], this metric H is Griffiths positive, but
it is the inequality that leads to this fact we will use. We follow the presentation in
[Liu et al. 2013, Section 4.1] (see also [Berndtsson 2009b, Section 2]). Denote the
curvature of H by 2. Fix z ∈ X , v ∈ det Ez and η ∈ T 1,0

z X . For a local holomorphic
frame of E∗ around z, we denote by {ζi } the fiber coordinates with respect to
this frame, and by {zα} the local coordinates on X . Around P(E∗

z ) in P(E∗),
we have homogeneous coordinates [ζ1, . . . , ζr ] which induce local coordinates
(w1, . . . , wr−1). For a local frame e∗ of OP(E∗)(1), we denote h(e∗, e∗) by e−φ

and write the tangent vector η =
∑

ηα
∂

∂zα
. The inequality that leads to Berndtsson’s

theorem is

(2-15) −H(2v, v)(η, η̄)

≤

∫
P(E∗

z )

ρ(9z(v), 9z(v)) r
∑
α,β

(∑
i, j

φα j̄ φi j̄ φi β̄ − φαβ̄

)
ηα η̄β ωr−1

z ,

where

φi j̄ :=
∂2φ

∂wi ∂wj
, φα j̄ :=

∂2φ

∂zα ∂wj
, φαβ̄ :=

∂2φ

∂zα ∂ z̄β

,

and (φi j̄ ) is the inverse matrix of (φi j̄ ). Since det E is a line bundle, the curvature 2

is a (1, 1)-form, and so H(2v, v)(η, η̄) = H(v, v)2(η, η̄). If we further assume
H(v, v) = 1, then the left-hand side of (2-15) becomes −2(η, η̄).

3. Proof of Theorem 1

Recall that h and g are metrics on OP(E∗)(1) that satisfy the assumptions in
Theorem 1 and the inequalities (1-3) and (1-4). We use the metric h to construct a
Hermitian metric H on det E as in (2-14), and the metric g to construct Hermitian
metrics Hk on Sk E as in (2-11). The number k is yet to be determined.
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We start with the metric g. Given a point (z0, [ζ0]) ∈ P(E∗), we have the normal
coordinate system from Section 2A. In this coordinate system, let us introduce the
following n-by-n matrix-valued function:

Bk = ((Bk)αβ) :=
(
kφαβ̄ − (log det(φi j̄ ))αβ̄

)
,

where g(e∗, e∗) = e−φ . By continuity, there is a neighborhood U of (z0, [ζ0])

in P(E∗) such that in U

(3-1) (φαβ̄)|(z0,[ζ0]) +
r −M

4
Idn×n ≥ (φαβ̄).

For this U , there is a positive integer k0 such that for k ≥ k0 and in U

(3-2) (φαβ̄) +
r −M

4
Idn×n ≥

Bk

k
.

Let us summarize what we have done so far:

Lemma 6. Given a point (z0, [ζ0]) ∈ P(E∗), there exist a coordinate neighbor-
hood U of (z0, [ζ0]) in P(E∗) and a positive integer k0 such that in U and for
k ≥ k0

(3-3) (φαβ̄)|(z0,[ζ0]) +
r −M

2
Idn×n ≥

Bk

k
.

By Lemma 6, since P(E∗
z0

) is compact, we can find on P(E∗
z0

) finitely many
points {(z0, [ζl])}l each of which corresponds to a coordinate neighborhood Ul

in P(E∗) and a positive integer kl such that the corresponding (3-3) holds, and
P(E∗

z0
) ⊂

⋃
l Ul . Denote maxl kl by kmax. The point z0 has a neighborhood W in X

such that for z ∈ W , the fiber P(E∗
z ) can be partitioned as

⋃
m Vm with each Vm

in Ul for some l. By shrinking W , we can assume that for each Ul the corresponding
�

(
∂

∂zα
, ∂

∂ z̄β

)
:= �αβ̄ satisfies

(3-4) −εδαβ < �αβ̄(z) − δαβ < εδαβ for z ∈ W,

where ε :=
r−M

5(r+M)
.

Recall the Hermitian metrics Hk on Sk E in (2-11) constructed using the metric g.
Denote by 2k the curvature of Hk . We claim the following lemma (one can also
use the asymptotic expansion in [Ma and Zhang 2023] to deduce the lemma).

Lemma 7. For k ≥ kmax, z ∈ W , 0 ̸= η ∈ T 1,0
z X , and u ∈ Sk Ez with Hk(u, u) = 1,

we have

(3-5) Hk(2k u, u)(η, η̄) ≤

(
M +

r −M
2

)
k �(η, η̄)

(1−ε)
.
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Proof. As in Section 2D, we extend the vector u ∈ Sk Ez to a local holomorphic
section ũ whose covariant derivative at z equals zero, and we have

−Hk(2k u, u) = ∂∂̄ Hk(ũ, ũ)|z =

∫
P(E∗

z )

∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1).

In the last equality, we partition the fiber P(E∗
z ) as

⋃
m Vm with each Vm in Ul for

some l. In a fixed Vm ⊂ Ul , using the coordinate system of Ul , we can write 8k,z(ũ)

as f (e∗)k with f a scalar-valued holomorphic function and e∗ a local frame for
OP(E∗)(1). So, gk(8k,z(ũ), 8k,z(ũ)) = | f |

2 e−kφ . Meanwhile, recall the curvature
2(g) = ∂∂̄φ. By Stokes’ theorem and a count on degrees, we have∑

m

∫
Vm

∂∂̄
(
gk(8k,z(ũ), 8k,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−kφ det(φi j̄ )

∂zα∂ z̄β

dzα ∧ dz̄β

∧
j

dwj ∧ dwj .

So, if the tangent vector η =
∑

α ηα
∂

∂zα
in the coordinate neighborhood Ul , then

(3-6) −Hk(2k u, u)(η, η̄)

=

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−kφ det(φi j̄ )

∂zα ∂ z̄β

ηα η̄β

∧
j

dwj ∧ dwj .

Note that the integrands in (3-6) are written in the local coordinates of correspond-
ing Ul . A direct computation shows∑
α,β

∂2
| f |

2 e−kφ det(φi j̄ )

∂zα∂ z̄β

ηα η̄β

= e−kφ det(φi j̄ )

∣∣∣∑
α

∂ f
∂zα

ηα − f
∑
α

(
kφα − (log det φi j̄ )α

)
ηα

∣∣∣2

− | f |
2 e−kφ det(φi j̄ )

∑
α,β

(
kφαβ̄ − (log det φi j̄ )αβ̄

)
ηα η̄β

≥ −| f |
2 e−kφ det(φi j̄ )

∑
α,β

(Bk)αβ ηα η̄β .

By (3-3),

(3-7)
1
k

∑
α,β

(Bk)αβ ηα η̄β ≤

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β +
r − M

2

∑
α

|ηα|
2.

Using the coordinate system of Ul , the tangent vector η =
∑

α ηα
∂

∂zα
at z induces

a tangent vector ηl =
∑

α ηα
∂

∂zα
|z0 at z0. Denote the lifts of ηl to T 1,0

(z0,[ζl ])
P(E∗)
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by η̃l . According to (1-2), (1-3), and (2-3), we see

(3-8) M
∑
α

|ηα|
2
≥ −θ(g)(η̃l, ¯̃ηl) = inf

q∗(η̃l )=ηl
2(g)(η̃l, ¯̃ηl) =

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β .

Therefore, (3-7) becomes

(3-9)
1
k

∑
α,β

(Bk)αβ ηα η̄β ≤

(
M +

r − M
2

) ∑
α

|ηα|
2
≤

(
M +

r − M
2

)
�(η, η̄)

(1 − ε)
,

where we use (3-4) in the second inequality. So, (3-6) becomes

(3-10) −Hk(2k u, u)(η, η̄)

≥

∑
m

∫
Vm

−| f |
2 e−kφ det(φi j̄ )

∧
j

dwj ∧ dwj

(
M +

r − M
2

)
k
�(η, η̄)

(1 − ε)

= −

(
M +

r − M
2

)
k
�(η, η̄)

(1 − ε)

since Hk(u, u) = 1. □

We turn now to the metric h. The argument about h is similar to that about g,
and it will be used in Theorems 2, 3, and 4. Given a point (z0, [ζ0]) ∈ P(E∗), we
have the normal coordinate system from Section 2A with respect to the metric h.
In this coordinate system, let us introduce the n-by-n matrix-valued function

A = (Aαβ) :=

(
φαβ̄ −

∑
i, j

φα j̄ φi j̄ φi β̄

)
,

where h(e∗, e∗) = e−φ and (φi j̄ ) is the inverse matrix of (φi j̄ ). By continuity, there
is a neighborhood U of (z0, [ζ0]) in P(E∗) such that in U

(3-11) r A +
r − M

4
Idn×n ≥ r A|(z0,[ζ0]).

In summary:

Lemma 8. Given a point (z0, [ζ0]) ∈ P(E∗), there exists a coordinate neighbor-
hood U of (z0, [ζ0]) in P(E∗) such that in U

(3-12) r A +
r − M

4
Idn×n ≥ r(φαβ̄)|(z0,[ζ0]).

By Lemma 8, since P(E∗
z0

) is compact, we can find on P(E∗
z0

) finitely many
points {(z0, [ζl])}l each of which corresponds to a coordinate neighborhood Ul

in P(E∗) such that the corresponding (3-12) holds, and P(E∗
z0

) ⊂
⋃

l Ul . The
point z0 has a neighborhood W ′ in X such that for z ∈ W ′, the fiber P(E∗

z ) can
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be partitioned as
⋃

m Vm with each Vm in Ul for some l. By shrinking W ′, we can
assume that for each Ul the corresponding �

(
∂

∂zα
, ∂

∂ z̄β

)
:= �αβ̄ satisfies

(3-13) −εδαβ < �αβ̄(z) − δαβ < εδαβ for z ∈ W ′,

where ε :=
r−M

5(r+M)
.

Recall the Hermitian metric H on det E in (2-14) constructed using the metric h.
Denote by 2 the curvature of H . We claim:

Lemma 9. For z ∈ W ′ and η ∈ T 1,0
z X , we have

(3-14) −2(η, η̄) ≤ −

(
r −

r − M
4

)
�(η, η̄)

(1 + ε)
.

Proof. Using (2-15) and assuming H(v, v) = 1, we get

(3-15) −2(η, η̄)

≤

∑
m

∫
Vm

ρ(9z(v), 9z(v)) r
∑
α,β

(∑
i, j

φα j̄ φi j̄ φi β̄ − φαβ̄

)
ηα η̄β ωr−1

z ,

where we again partition P(E∗
z ) as

⋃
m Vm with each Vm in Ul for some l. Note that

the integrands in (3-15) are written in the local coordinates of corresponding Ul . In
a fixed Vm ⊂ Ul , we have η =

∑
α ηα

∂
∂zα

, and by (3-12) we see

(3-16) r
∑
α,β

Aαβ ηα η̄β +
r − M

4

∑
α

|ηα|
2
≥ r

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β .

In Ul , the tangent vector

η =

∑
α

ηα

∂

∂zα

at z

induces a tangent vector

ηl =

∑
α

ηα

∂

∂zα

∣∣∣
z0

at z0.

Denote the lifts of ηl to T 1,0
(z0,[ζl ])

P(E∗) by η̃l . By (1-2), (1-4), and (2-3), we see

(3-17)
∑
α

|ηα|
2
≤ −θ(h)(η̃l, ¯̃ηl) = inf

q∗(η̃l )=ηl
2(h)(η̃l, ¯̃ηl) =

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β .

Therefore, (3-16) becomes

r
∑
α,β

Aαβ ηα η̄β ≥

(
r −

r − M
4

) ∑
α

|ηα|
2
≥

(
r −

r − M
4

)
�(η, η̄)

1 + ε
,
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where we use (3-13) in the second inequality. So, (3-15) becomes

−2(η, η̄) ≤ −

∑
m

∫
Vm

ρ(9z(v), 9z(v)) ωr−1
z

(
r −

r − M
4

)
�(η, η̄)

1 + ε

= −

(
r −

r − M
4

)
�(η, η̄)

(1 + ε)

because H(v, v) = 1. □

Now we put together the L2-metrics Hk on Sk E in (2-11), and H on det E
in (2-14). Since (det E∗)k is a line bundle, we can identify End(Sk E ⊗ (det E∗)k)

with End(Sk E), and the curvature of the metric Hk ⊗ (H∗)k on Sk E ⊗ (det E∗)k

can be written as
2k − k2 ⊗ IdSk E ,

where 2k and 2 are the curvature of Hk and H respectively. We claim that for
k ≥ kmax and in W ∩ W ′ a neighborhood of z0, the metric Hk ⊗ (H∗)k is Griffiths
negative. Indeed, as a result of Lemmas 7 and 9, for k ≥ kmax, z ∈ W ∩ W ′,
0 ̸= η ∈ T 1,0

z X , and u ∈ Sk Ez with Hk(u, u) = 1, we see

Hk(2k u, u)(η, η̄)−k2(η, η̄)≤k
(

M+
r − M

2

)
�(η, η̄)

(1 − ε)
−k

(
r−

r − M
4

)
�(η, η̄)

(1 + ε)
.

The term on the right is negative after some computation using ε =
r−M

5(r+M)
. So, we

have proved the claim that for k ≥ kmax and in W ∩ W ′
⊂ X , the metric Hk ⊗ (H∗)k

is Griffiths negative. Since X is compact, Hk ⊗ (H∗)k is Griffiths negative on the
entire X for k large enough.

Now we fix k such that the Hermitian metric Hk ⊗ (H∗)k on the bundle

Sk E ⊗ (det E∗)k

is Griffiths negative on X . The Hermitian metric Hk by construction is an L2-
integral, so its k-th root is a convex Finsler metric on E (see [Wu 2022, proof of
Theorem 1] for details). By Lemma 5, the k-th root of Hk⊗(H∗)k is a convex Finsler
metric on E ⊗ det E∗ which we denote by F . Moreover, this Finsler metric F is
strongly plurisubharmonic on E ⊗det E∗

\{zero section} due to Griffiths negativity
of Hk ⊗ (H∗)k . By adding a small Hermitian metric, we can assume F is strongly
convex and strongly plurisubharmonic.

In general, the Kobayashi curvature of Finsler metrics do not behave well under
duality [Demailly 1999, Remark 2.7]. But since our Finsler metric F is strongly
convex, the dual Finsler metric of F is in fact strongly pseudoconvex and Kobayashi
positive (this duality result is originally due to Sommese [1978] and Demailly [1999,
Theorem 2.5]. See also [Wu 2022, proof of Theorem 1 and Lemma 6]). In summary,
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the dual Finsler metric of F is a convex, strongly pseudoconvex, and Kobayashi
positive Finsler metric on E∗

⊗ det E . Hence the proof of Theorem 1 is complete.
With slight modification on the proof, one has the following variant of Theorem 1.

Theorem 10. Assume r ≥ 2 and the line bundle OP(E∗)(1) has a positively curved
metric h and a metric g with 2(g)|P(E∗

z ) > 0 for all z ∈ X. If there exist a Hermitian
metric � on X and a constant M ≥ 1 such that the following inequalities of (1, 1)-
forms hold

Mq∗� ≥ −θ(g),(3-18)

q∗� ≤ −θ(h),(3-19)

then for any positive integer l > M/r , the bundle E∗
⊗(det E)l is Kobayashi positive.

4. Proof of Theorem 2

The proof is similar to what we do in Section 3 except that we are dealing with not
only P(E∗) but P(E) here. The metric h is used to define a Hermitian metric H
on det E as in (2-14). The metric g is used to define Hermitian metrics Hk on
Sk E∗

⊗ (det E)k as in (2-13).
Fix z0 in X . For the metric h on OP(E∗)(1), we follow the path that leads to

Lemma 9 in Section 3 to deduce a neighborhood W ′ of z0 in X such that for z ∈ W ′

and η ∈ T 1,0
z X , the curvature 2 of H satisfies

(4-1) −2(η, η̄) ≤ −

(
r −

r − M
4

)
�(η, η̄)

(1 + ε)
,

with ε =
r−M

5(r+M)
.

For the metric g on OP(E)(1) ⊗ p∗ det E , we replace OP(E∗)(1) → P(E∗) in
Section 3 with OP(E⊗det E∗)(1)→ P(E⊗det E∗) and use the canonical isomorphism
between OP(E⊗det E∗)(1)→ P(E⊗det E∗) and OP(E)(1)⊗ p∗ det E → P(E). Then
following the argument leading to Lemma 7, we obtain a positive integer kmax and
a neighborhood W of z0 in X such that for k ≥ kmax, z ∈ W , η ∈ T 1,0

z X , and
u ∈ Sk E∗

z ⊗ (det Ez)
k with Hk(u, u) = 1, the curvature 2k of Hk satisfies

(4-2) Hk(2k u, u)(η, η̄) ≤

(
M +

r − M
2

)
k
�(η, η̄)

(1 − ε)
.

On the bundle [Sk E∗
⊗ (det E)k

] ⊗ (det E∗)k , there is a Hermitian metric
Hk ⊗(H∗)k with curvature 2k −k2⊗IdSk E∗⊗(det E)k . As a result of (4-1) and (4-2),
we deduce that, for k ≥ kmax, z ∈ W ∩ W ′, η ∈ T 1,0

z X , and u ∈ Sk E∗
z ⊗ (det Ez)

k

with Hk(u, u) = 1,

Hk(2k u, u)(η, η̄)−k2(η, η̄)≤k
(

M+
r − M

2

)
�(η, η̄)

(1 − ε)
−k

(
r−

r − M
4

)
�(η, η̄)

(1 + ε)
.
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Again, the term on the right is negative using ε =
r−M

5(r+M)
. So we have proved that

for k ≥ kmax and in W ∩ W ′, the metric Hk ⊗ (H∗)k is Griffiths negative. Since X
is compact, Hk ⊗ (H∗)k is Griffiths negative on X for k large.

Now we fix k such that Hk ⊗ (H∗)k on the bundle

[Sk E∗
⊗ (det E)k

] ⊗ (det E∗)k
≃ Sk E∗

is Griffiths negative. Using the same argument as those at the end of Section 3, we
obtain a convex, strongly pseudoconvex, Kobayashi positive Finsler metric on E .

5. Proof of Theorem 3

We use the metric h to construct a Hermitian metric H on det E as in (2-14), and
the metric g to construct a Hermitian metric H1 on S1 E = E as in (2-11).

We start with the metric g. For (z0, [ζ0]) in P(E∗), there is a special coordinate
system given in Section 2B. In this coordinate system, we define the following
n-by-n matrix-valued function:

B = (Bαβ) :=
(
φαβ̄ − (log det(φi j̄ ))αβ̄

)
,

where g(e∗, e∗) = e−φ . By continuity, there is a neighborhood U of (z0, [ζ0])

in P(E∗) such that in U

B|(z0,[ζ0]) +
r −M

4
Idn×n ≥ B.

In summary:

Lemma 11. Given a point (z0, [ζ0]) ∈ P(E∗), there exists a coordinate neighbor-
hood U of (z0, [ζ0]) in P(E∗) such that in U

(5-1) B|(z0,[ζ0]) +
r −M

4
Idn×n ≥ B.

By Lemma 11, since P(E∗
z0

) is compact, we can find finitely many points
{(z0, [ζl])}l on P(E∗

z0
) each of which corresponds to a coordinate neighborhood Ul

in P(E∗) such that the corresponding (5-1) holds, and P(E∗
z0

) ⊂
⋃

l Ul . The fiber
P(E∗

z0
) can be partitioned as

⋃
m Vm with each Vm in Ul for some l.

Recall the Hermitian metric H1 on E in (2-11) constructed using the metric g.
Denote by 21 the curvature of H1. We claim:

Lemma 12. For 0 ̸= η ∈ T 1,0
z0

X and u ∈ Ez0 with H1(u, u) = 1, we have

(5-2) H1(21u, u)(η, η̄) ≤

(
M +

r −M
4

)
�(η, η̄).

Proof. As in Section 2D, we extend the vector u ∈ Ez0 to a local holomorphic
section ũ whose covariant derivative at z0 equals zero, and we have
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−H1(21u, u) = ∂∂̄ H1(ũ, ũ)|z0 =

∫
P(E∗

z0
)

∂∂̄
(
g(81,z(ũ), 81,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∂∂̄
(
g(81,z(ũ), 81,z(ũ)) 2(g)r−1).

In a fixed Vm ⊂Ul , we can write 81,z(ũ) as f e∗ with f a scalar-valued holomorphic
function and e∗ a local frame for OP(E∗)(1). So,

g(81,z(ũ), 81,z(ũ)) = | f |
2 e−φ.

Meanwhile, recall the curvature 2(g) = ∂∂̄φ. By Stokes’ theorem and a count on
degrees, we have∑

m

∫
Vm

∂∂̄
(
g(81,z(ũ), 81,z(ũ)) 2(g)r−1)

=

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−φ det(φi j̄ )

∂zα∂ z̄β

dzα ∧ dz̄β

∧
j

dwj ∧ dwj .

So,

(5-3) −H1(21u, u)(η, η̄) =

∑
m

∫
Vm

∑
α,β

∂2
| f |

2 e−φ det(φi j̄ )

∂zα ∂ z̄β

ηα η̄β

∧
j

dwj ∧ dwj

for T 1,0
z0

X ∋ η =
∑

α ηα
∂

∂zα
. A direct computation shows

∑
α,β

∂2
| f |

2 e−φ det(φi j̄ )

∂zα∂ z̄β

ηα η̄β

= e−φ det(φi j̄ )

∣∣∣∑
α

∂ f
∂zα

ηα − f
∑
α

(
φα −(log det φi j̄ )α

)
ηα

∣∣∣2

− | f |
2 e−φ det(φi j̄ )

∑
α,β

(
φαβ̄ − (log det φi j̄ )αβ̄

)
ηα η̄β

≥ −| f |
2 e−φ det(φi j̄ )

∑
α,β

Bαβ ηα η̄β .

By (1-8), (1-9), (2-6), and (2-9), we see

M
∑
α

|ηα|
2
≥ −(r + 1) θ(g)(η̃, ¯̃η) + q∗2(det G)(η̃, ¯̃η)

= inf
q∗(η̃)=η

2(g)(η̃, ¯̃η) − sup
q∗(η̃)=η

γg(η̃, ¯̃η)

=

∑
α,β

φαβ̄ |(z0,[ζl ])ηα η̄β −

∑
α,β

(log det(φi j̄ ))αβ̄ |(z0,[ζl ])ηα η̄β

=

∑
α,β

Bαβ |(z0,[ζl ])ηα η̄β .



POSITIVELY CURVED FINSLER METRICS ON VECTOR BUNDLES, II 181

Therefore, (5-1) becomes

(5-4)
∑
α,β

Bαβ ηα η̄β ≤

(
M +

r −M
4

) ∑
α

|ηα|
2
=

(
M +

r −M
4

)
�(η, η̄).

So, (5-3) becomes

(5-5) −H1(21u, u)(η, η̄)

≥

∑
m

∫
Vm

−| f |
2e−φ det(φi j̄ )

∧
j

dwj ∧ dwj

(
M +

r −M
4

)
�(η, η̄)

= −

(
M +

r −M
4

)
�(η, η̄)

since H1(u, u) = 1. □

For the metric h on OP(E∗)(1), as in Lemma 9 from Section 3 with slight
modification, we deduce that for η ∈ T 1,0

z0
X , the curvature 2 of H satisfies

(5-6) −2(η, η̄) ≤ −

(
r −

r −M
4

)
�(η, η̄).

Finally, we consider the metric H1 ⊗ H∗ on E ⊗ det E∗. Since det E∗ is a line
bundle, we can identify End(E⊗det E∗) with End E , and the curvature of the metric
H1 ⊗ H∗ can be written as 21 −2⊗ IdE , where 21 and 2 are the curvature of H1

and H respectively. As a result of Lemma 12 and (5-6), we see for 0 ̸= η ∈ T 1,0
z0

X
and u ∈ Ez0 with H1(u, u) = 1,

H1(21u, u)(η, η̄) − 2(η, η̄) ≤

(
M +

r −M
4

)
�(η, η̄) −

(
r −

r −M
4

)
�(η, η̄),

the term on the right is negative. Hence we have proved that at z0 the metric
H1 ⊗ H∗ is Griffiths negative. The point z0 is arbitrary, so H1 ⊗ H∗ is Griffiths
negative on X . As a result, the dual bundle E∗

⊗ det E is Griffiths positive.

6. Proof of Theorem 4

The metric h is used to define a Hermitian metric H on det E as in (2-14). The
metric g is used to define Hermitian metric H1 on E∗

⊗ det E as in (2-13).
Given z0 in X . For the metric h on OP(E∗)(1), as in the formula (5-6) from

Section 5, for η ∈ T 1,0
z0

X we have

(6-1) −2(η, η̄) ≤ −

(
r −

r −M
4

)
�(η, η̄).

For the metric g on OP(E)(1) ⊗ p∗ det E , we replace OP(E∗)(1) → P(E∗) in
Section 5 with OP(E⊗det E∗)(1)→ P(E⊗det E∗) and use the canonical isomorphism
between OP(E⊗det E∗)(1)→ P(E⊗det E∗) and OP(E)(1)⊗ p∗ det E → P(E). Then
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as in Lemma 12, we get for η ∈ T 1,0
z0

X , and u ∈ E∗
z0

⊗ (det Ez0) with H1(u, u) = 1,
the curvature 21 of H1 satisfies

(6-2) H1(21u, u)(η, η̄) ≤

(
M +

r −M
4

)
�(η, η̄).

On the bundle (E∗
⊗ det E)⊗ det E∗, there is a Hermitian metric H1 ⊗ H∗ with

curvature 21 − 2 ⊗ IdE∗⊗det E . As a result of (6-1) and (6-2), we deduce that for
η ∈ T 1,0

z0
X , and u ∈ E∗

z0
⊗ (det Ez0) with H1(u, u) = 1,

(6-3) H1(21u, u)(η, η̄) − 2(η, η̄)

≤

(
M +

r −M
4

)
�(η, η̄) −

(
r −

r −M
4

)
�(η, η̄),

the term on the right is negative. So the Hermitian metric H1 ⊗ H∗ is Griffiths
negative at z0 an arbitrary point. Hence H1 ⊗ H∗ is Griffiths negative on X , and
the bundle E is Griffiths positive.

7. Examples

Example 13. We provide here an example where the assumptions in Theorems
1, 2, 3, and 4 are satisfied. Let L be a line bundle with a metric H whose curvature
2 > 0. Let E = L9

⊕ L8
⊕ L7 a vector bundle of rank r = 3. The induced metric

(H∗)9
⊕ (H∗)8

⊕ (H∗)7 on the dual bundle E∗ has curvature

2(E∗) = (−92) ⊕ (−82) ⊕ (−72),

which is Griffiths negative, so the corresponding metric h on OP(E∗)(1) is positively
curved. According to (2-7), we see

−θ(h) = −q∗2(E∗)|OP(E∗)(−1).

Hence we have

(7-1) 7q∗2 ≤ −θ(h) ≤ 9q∗2.

For all four theorems, we will use this metric h on OP(E∗)(1) and take � to be 72.
So q∗� ≤ −θ(h) always holds. The choice of g will be different from case to case.

For Theorem 1, we choose g to be h, and hence by (7-1) and � = 72 we get

(7-2) q∗� ≤ −θ(h) = −θ(g) ≤
9
7q∗�.

To fulfill the assumption of Theorem 1, we can choose M =
9
7 which is in the

interval [1, 3).
For Theorem 2, since E⊗det E∗

= (L∗)15
⊕(L∗)16

⊕(L∗)17 has induced curvature
(−152)⊕(−162)⊕(−172) which is Griffiths negative, the corresponding metric g
on OP(E)(1) ⊗ p∗ det E is positively curved and satisfies

(7-3) 15p∗2 ≤ −θ(g) ≤ 17p∗2.
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Together with (7-1) and � = 72, we have

(7-4) 17
7 p∗� ≥ −θ(g) and q∗� ≤ −θ(h).

We can choose M =
17
7 which is in [1, 3).

For Theorem 3, notice that h is induced from (H∗)9
⊕(H∗)8

⊕(H∗)7 on E∗, so if
we use (H∗)9

⊕(H∗)8
⊕(H∗)7 for the Hermitian metric G, then the corresponding g

is actually h. Since 2(det G) = −242, by using (7-1) we have

(7-5) −(r + 1) θ(g) + q∗2(det G) = −4θ(h) − 24q∗2 ≤ 12q∗2 =
12
7 q∗�.

We choose M =
12
7 which is in [1, 3).

Finally for Theorem 4, on E ⊗ det E∗
= (L∗)15

⊕ (L∗)16
⊕ (L∗)17, we will use

the metric (H∗)15
⊕ (H∗)16

⊕ (H∗)17 for G, so 2(det G) = −482. Moreover, the
corresponding metric g on OP(E)(1) ⊗ p∗ det E satisfies

(7-6) 15p∗2 ≤ −θ(g) ≤ 17p∗2,

so we get

(7-7) −(r + 1) θ(g) + p∗2(det G) ≤ 20p∗2 =
20
7 p∗�.

We choose M =
20
7 which is in [1, 3).

Example 14. Let X be a compact Riemann surface with a Hermitian metric ω.
Let E be an ω-semistable ample vector bundle of rank r over X . The assumptions
in Theorems 1, 2, 3, and 4 are all satisfied in this case. We will explain for only
Theorems 2 and 4. Theorems 1 and 3 can be verified similarly. By [Li et al. 2021,
Theorem 1.7, Remark 1.8, and Theorem 1.11], there exists a constant c > 0 such
that for any δ > 0, there exists a Hermitian metric Hδ on E satisfying

(7-8) (c − δ) IdE ≤
√

−13ω 2(Hδ) ≤ (c + δ) IdE ,

where 3ω is the contraction with respect to ω. Since X is a Riemann surface, 3ω

locally is multiplication by a positive function.
For Theorem 2, we choose δ =

c
5r . The Hermitian metric H∗

δ on E∗ induces a
metric h on OP(E∗)(1). Due to (2-7), we see

(7-9) −θ(h) = −q∗2(H∗

δ )|OP(E∗)(−1);

combining with (7-8), we have

(7-10) (c − δ) q∗ω ≤ −θ(h) ≤ (c + δ) q∗ω.

The Hermitian metric Hδ ⊗ det H∗

δ on E ⊗ det E∗ induces on OP(E)(1)⊗ p∗ det E
a metric g. Similar to (7-10), we have

(7-11) −θ(g) ≤ [−(c − δ) + r(c + δ)] p∗ω.
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If we choose � = (c − δ) ω and M = r −
1
2 , then

[−(c − δ) + r(c + δ)] p∗ω ≤ Mp∗�.

As a result, we achieve the assumption in Theorem 2:

q∗� ≤ −θ(h) and − θ(g) ≤ Mp∗�.

For Theorem 4, we choose δ =
c

9r . We still have (7-10). The Hermitian metric G
on E ⊗ det E∗ is taken to be Hδ ⊗ det H∗

δ , so we get

−(r + 1) θ(g) + p∗2(det G)

= −(r + 1)[p∗2(Hδ)|OP(E)(−1) − p∗2(det Hδ)] − (r − 1)p∗2(det Hδ)

≤ [−(r + 1)(c − δ) + 2r(c + δ)] p∗ω.

If we choose � = (c − δ) ω and M = r −
1
2 , then

[−(r + 1)(c − δ) + 2r(c + δ)] p∗ω ≤ Mp∗�.

So the assumption of Theorem 4 is satisfied.
In light of [Li et al. 2021, Theorem 1.7], it is possible to modify our theorems so

that semistability is not needed in this example.

Appendix

Here we prove the isomorphism
∧r−1 E ≃ E∗

⊗ det E where r is the rank of E .

Proof. Let {e1, . . . , er } and { f1, . . . , fr } be two sets of local frames for E with
the transition matrix g = (gi j ); namely, on the intersection of the two frames, we
have fi =

∑
j gi j ej . On the bundle

∧r−1 E , we have the induced local frame
{ê1, . . . , êr } where êk is e1 ∧ · · · ∧ er with ek removed. Similarly, we have another
frame { f̂1, . . . , f̂r }. Let ĝ = (ĝi j ) be the corresponding transition matrix for the
bundle

∧r−1 E , namely, f̂i =
∑

j ĝi j êj . It is not hard to verify that ĝi j is the
determinant of the matrix g with the i-th row and j-th column removed.

For the dual bundle E∗, the corresponding transition matrix for the dual frames
{e∗

1, . . . , e∗
r } and { f ∗

1 , . . . , f ∗
r } is the transpose of g−1. Therefore, the transition

matrix for the bundle E∗
⊗ det E is c = (ci j ) where ci j = (−1)i+ j ĝi j .

Now, let us denote by A the diagonal matrix whose i-th diagonal entry is (−1)i .
Notice that the inverse of A is still A. Also, after a straightforward computation, we
have AcA−1

= ĝ. So, the two bundles
∧r−1 E and E∗

⊗ det E are isomorphic. □
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