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A NOTE ON THE DISTINCT DISTANCES PROBLEM
IN THE HYPERBOLIC PLANE

ZHIPENG LU AND XIANCHANG MENG

We provide a proof of a Guth–Katz-type lower bound for the distinct dis-
tances problem in the hyperbolic plane. Our construction follows the frame-
work of Guth and Katz to deal with PSL2(R) and the corresponding incidence
structure in projective geometry. In addition, we deduce a new sum-product
estimate in the form of a hyperbolic metric formula based on this lower
bound.

1. Introduction

The distinct distances problem was first proposed by Erdős [3] in the Euclidean
plane. He conjectured the lower bound ≳ N/

√

log N for the number of distinct
distances between pairs of points among N points in the plane. (Here A ≳ B means
A ≥ cB for some absolute constant c > 0.) After a half-century of progression
with partial results, there came the major breakthrough by Guth and Katz [4] who
proved the nearly optimal bound ≳ N/ log N . Foremostly they invented the tool of
polynomial partitioning and promoted profound applications in incidence geometry
and other areas, later developed by themselves and many other authors; for instances,
see [1; 6].

In this paper, we deal with the distinct distances problem in the hyperbolic
plane H2 and prove the nearly optimal bound in equivalent strength with [4].
Following an idea of Tao’s blog [11], Rudnev and Selig [9] described a proof
using the Klein quadric in Plüker coordinates without exploiting symmetries in the
hyperbolic plane. By contrast, following the framework of Elekes and Sharir, as
in [4], we give an independent proof by carefully studying isometries of H2 in a
more Guth–Katz ethnic language. More specifically, we prove:

Theorem 1.1. For any set P ⊂ H2 of N points, we have

|{dH2(p, q), p, q ∈ P}| ≳ N/ log N ,

where |A| denotes the cardinality of a set A and dH2 denotes the hyperbolic metric
on H2.
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In the case of the Euclidean plane, Guth and Katz [4] used the framework of
Elekes and Sharir [2] to reduce the distinct distances problem to an incidence
problems of lines, then derived the lower bound resorting to ruled surface theory
and polynomial partitioning. Elekes and Sharir’s framework serves as a realization
of the Erlangen program (see [7] for historical background) for the distinct distances
problem in the Euclidean plane. However, this framework cannot apply directly
to the case of the hyperbolic plane. For the hyperbolic plane H2, we consider its
isometry group PSL2(R). Distinguished from Guth and Katz’s coordinate of lines,
our lines lie in P3 rather than R3. We need further linearizations to reduce our
coordinate of lines to R3. Subsequently we need to overcome the difficulty of
constructing vector fields in order to use ruled surface theory. See Section 2 for
details.

In addition, we deduce a new sum-product-type result using Theorem 1.1. For
any finite sets A ⊂ R\{0}, B ⊂ R, define P = {b + i |a| : a ∈ A, b ∈ B}, and
P ′

= {−b + i |a| : a ∈ A, b ∈ B}. Note that explicitly we have the hyperbolic
distance formula

2 cosh dH2(x1 + iy1, x2 + iy2) =
(x1 − x2)

2
+ y2

1 + y2
2

y1 y2

and |{|x | : x ∈ E}| ≥
1
2 |E | for any finite set E ⊂ R. By applying Theorem 1.1 to P

and P ′, we get:

Theorem 1.2. Let A ⊂ R\{0}, B ⊂ R be finite sets. Then we have∣∣∣∣{a2
1 + a2

2 + (b1 − b2)
2

a1a2
: a1, a2 ∈ A, b1, b2 ∈ B

}∣∣∣∣ ≳ |A| |B|

log(|A|) + log(|B|)
,

and ∣∣∣∣{a2
1 + a2

2 + (b1 + b2)
2

a1a2
: a1, a2 ∈ A, b1, b2 ∈ B

}∣∣∣∣ ≳ |A| |B|

log(|A|) + log(|B|)
.

By adding or subtracting 2 on the elements in the above sets, the factor a2
1 + a2

2 can
be replaced by (a1 + a2)

2 or (a1 − a2)
2.

Remark 1. In particular, if |A| and |B| are all about the size ≍ N , the above lower
bounds become ≳ N 2/log N .

A variant of the distinct distances problem has been previously used by Roche-
Newton and Rudnev [8] to study sum-product-type estimates. See also the work of
Jones [5] for estimates of other sum-product-types using incidence geometry. Very
recently, Sheffer and Zahl [10] derived a sum-product-type estimate for complex
numbers.
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2. Proof of Theorem 1.1

We use Elekes and Sharir’s framework to reduce the counting of distinct distances
to an incidence problem of lines in the real projective space P3. To overcome the
difficulty of linearizing projective lines in P3, we turn the incidence of lines in P3

into that of lines in R3 by certain conjugation. Then fulfilling the requirements
for our lines in R3 as Guth and Katz in Proposition 2.8 of [4] amounts to a more
concrete proof of the lower bound ≳ N/ log N of distinct distances among N points
in H2.

Framework. Let H2 be the hyperbolic plane and G = PSL2(R) be its isometry
group which acts on H2 by Möbius transformation:

z 7→ γ · z =
az + b
cz + d

for γ =

(
a b
c d

)
∈ PSL2(R), z ∈ H2.

Let P ⊂ H2 be a set of N points and define the set of distance quadruples

(1) Q(P) := {(p1, p2, p3, p4) ∈ P4
: d(p1, p2) = d(p3, p4) ̸= 0},

where d( · , · ) denotes the hyperbolic metric. Denote the distance set by

d(P) := {d(p1, p2) : p1 ̸= p2 ∈ P}.

Then we have a close relation between d(P) and Q(P) as follows. Suppose
d(P) = {di : 1 ≤ i ≤ m} and ni is the number of pairs of points in P with distance di .
So |Q(P)| =

∑m
i=1 n2

i . Since
∑m

i=1 ni = 2
(N

2

)
= N 2

− N , by Cauchy–Schwarz
inequality we get

(N 2
− N )2

=

( m∑
i=1

ni

)2

≤

( m∑
i=1

n2
i

)
m = |Q(P)| |d(P)|.

Rearranging the inequality gives

(2) |d(P)| ≥
N 4

− 2N 3

|Q(P)|
.

Any quadruple (p1, p2, p3, p4) ∈ Q(P) uniquely determines an isometry g ∈ G
such that g(p1) = p3, g(p2) = p4. Suppose p1 = x + iy, p3 = x ′

+ iy′
∈ H2

(y, y′ > 0) and there is some A =
(a

c
b
d

)
∈ G such that

A · (x + iy) =
a(x + iy) + b
c(x + iy) + d

= x ′
+ iy′,

for i =
√

−1. Rearranging terms we get

ax + b + iay = cxx ′
+ dx ′

− cyy′
+ i(cxy′

+ dy′
+ cx ′y),
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or equivalently the system of linear equations

(3)
xa + b + (yy′

− xx ′)c − x ′d = 0,

ya − (xy′
+ x ′y)c − y′d = 0.

Its solution set in R4 is the intersection of two distinct hyperplanes, which turns out
to be a two-dimensional plane passing through the origin. If, in addition, A · p2 = p4,
the point (a, b, c, d) also lies in another distinct two-dimensional plane intersecting
the above plane at a line since p1 ̸= p2, p3 ̸= p4 as follows.

Lemma 2.1. The equations of (3) determine a unique dimension-2 hyperplane in R4

for each distinct pair of points in H2. In particular, any quadruple (p1, p2, p3, p4)∈

Q(P) determines a unique isometry.

Proof. A fairly complicated elementary computation on 4×4 matrices derived from
(3) allows us to see this, but here we prove it by geometric arguments.

First, a nonidentity real Möbius transformation can have at most one fixed point
in H2, since az+b

cz+d = z implies cz2
+ (d − a)z − b = 0 which has 1 or no roots in

H2 for real coefficients. If two isometries γ1, γ2 ∈ PSL2(R) satisfy γi · p1 = p3 and
γi · p2 = p4, then γ −1

1 γ2 fixes both p1 and p2, a contradiction (p1 ̸= p2). This is
to say a quadruple in Q(P) determines at most one isometry, or equivalently, two
systems of equations for two pairs of points as in (3) define different planes that
intersect on at most one line.

Then we verify the existence of solution. Since PSL2(R) acts on H2 transitively
(which can also be seen from (3)), let γ j · i = p j , j = 1, . . . , 4. Then

γ · p1 = p3, γ · p2 = p4 ⇐⇒ γ −1
3 γ γ1 · i = i, γ −1

4 γ γ2 · i = i.

For i = (0, 1), (3) simply becomes

b + c = 0,

a − d = 0.

Let its solution plane be π ; then the desired solution set of γ is γ3πγ −1
1 ∩γ4πγ −1

2 =

γ3(π ∩ γ −1
3 γ4πγ −1

2 γ1)γ
−1
1 . Note that d(i, γ −1

2 γ1 · i)= d(γ2 ·i, γ1 ·i)= d(p2, p1)=

d(p4, p3) = d(γ4 · i, γ3 · i) = d(i, γ −1
4 γ3 · i). Hence there exists a rotation γ ∈ π

about i that transfers γ −1
2 γ1 · i to γ −1

4 γ3 · i , that is, γ γ −1
2 γ1 · i = γ −1

4 γ3 · i , or
γ −1

3 γ4γ γ −1
2 γ1 · i = i . This is to say

γ ∈ π ∩ γ −1
3 γ4πγ −1

2 γ1,

so that γ −1
3 γ4πγ −1

2 γ1 ̸= ∅ and then the desired solution set γ3πγ −1
1 ∩ γ4πγ −1

2 is
not empty. □
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Thus all (a, b, c, d) lying in the intersection line of two planes defined by (3) in
R4 project to a single point as [a : b : c : d] ∈ P3. This gives a map E : Q(P) → G.
Define, for any p, q ∈ H2,

Spq := {g ∈ G : g(p) = q},

which are one-dimensional curves in G. Similar to [4, Lemmas 2.4 and 2.6], we have

(i) if |P ∩ g P| = k, then |E−1(g)| = 2
(k

2

)
;

(ii) and |P ∩ g P| ≥ k if and only if g lies in at least k of the curves {Spq}p,q∈P .

Thus we derive that

(4) |Q(P)| =

N∑
k=2

2
(k

2

)
|{g : |P ∩ g P| = k}| ≲

N∑
k=2

k |Gk(P)|,

where Gk(P) ⊂ G consists of g ∈ G with |P ∩ g P| ≥ k. Henceforth we focus on
estimating |Gk(P)| for k = 2 and k ≥ 3 as in Sections 3 and 4 of [4].

Incidence of projective lines in P3. For any g ∈ G, we have d(gp, gq) = d(p, q)

so that shifting P to g P does not affect counting of distinct distances. Now for a
quadruple (p1, p2, p3, p4)∈ Q(P), suppose E((p1, p2, p3, p4))=h, i.e., hp1 = p3,
hp3 = p4. After shifting we get

E((gp1, gp2, gp3, gp4)) = ghg−1.

In the matrix form of G, we manage to reshape the distance quadruples as follows.

Proposition 2.2. For any finite set of points P ⊂ H2, there is an isometry g ∈

PSL2(R) such that all matrices in E(Q(g P)) have nonvanishing upper-left corners.

Proof. We use translations Tx =
( 1

0
x
1

)
with x ∈ R. For any h =

(a
c

b
d

)
∈ GL2(R) we

calculate that

Tx hT −1
x =

(
1 x
0 1

) (
a b
c d

) (
1 −x
0 1

)
=

(
a+cx −cx2

+(d−a)x+b
c d−cx

)
.

Suppose E(Q(P)) consists of
(ai

ci

bi
di

)
∈ PSL2(R), 1 ≤ i ≤ K . Note that ai and ci

cannot be both zero, we choose nonzero x such that ai +ci x ̸= 0 for all i = 1, . . . , K .
For such x we have E(Q(Tx P)) = Tx E(Q(P))T −1

x consisting of matrices with
nonvanishing upper-left corners. □

Remark 2. For any finite set of points in the upper-half plane, we may also dilate
points by hyperbolic isometries so that they all have sufficiently large absolute
values. Note that a Möbius transformation

( 0
c

b
d

)
· z =

b
cz+d basically inverts the

absolute value of z, so that it cannot map z with large absolute values to points with
large absolute values. Thus after dilation, Möbius transformations with vanishing
upper-left corners do not occur as isometries in consideration.
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Hence without loss of generality, we assume px , py , qx , qy ≫ 1 for points
p = px + i py , q = qx + qy in consideration, that is, far away in the first quadrant.
We have the following observation through (3). First, each Spq is a projective line
in P3

⊃ G = PSL2(R). We use the natural manifold atlas

P3
= R3

1 ∪ R3
2 ∪ R3

3 ∪ R3
4,

with R3
1 = {[1 : b : c : d] | b, c, d ∈ R} ≃ R3 and R3

i ≃ R3, i = 2, 3, 4, similarly
defined with i-th entry equal to 1 in the projective coordinate. Analogously we use

G =

4⋃
i=1

Gi , Gi = PSL2(R) ∩ R3
i .

In particular, G1 consists of matrices with nonvanishing upper-left corners. Then
the restriction Spq ∩ Gi becomes a real line in R3

i , and by Proposition 2.2, there
exists g ∈ G such that Gk(g P) ⊂ G1 for each k ≥ 2. Abusing notation, we always
denote by L pq the real line S(gp)(gq)∩R3

1 in the manifold atlas of P3. The incidences
among curves Spq are now equivalent to that of lines L pq in R3 (R3

1). Explicitly
L pq has the following linear parametrization.

Proposition 2.3. For any p = px + i py , q = qx + iqy ∈ H2, the line L pq can be
parametrized as

(5)
(

−
qy(p2

x + p2
y) + py(q2

x + q2
y)

pxqy + qx py
,

py + qy

pxqy + qx py
, 0

)
+ t

( py(q2
x + q2

y)

pxqy + qx py
, −

qy

pxqy + qx py
, 1

)
,

for t ∈ R.

Proof. For any
(a

c
b
d

)
· p = q with a = 1 and t = d +1 as parameter, we get from (3),

(6)
b = −

qy(p2
x + p2

y) + py(q2
x + q2

y)

pxqy + qx py
+

py(q2
x + q2

y)

pxqy + qx py
t,

c =
py + qy

pxqy + qx py
−

qy

pxqy + qx py
t,

which gives us the parametrization of points (b, c, t) ∈ L pq . □

Remark 3. There are other parametrizations of L pq , say for b = t as the parameter.
Here the roles of p and q are symmetric in that the intersection of L pq and Lqp is
on the plane t = 0.

Since there are nonlinear terms in our parametrization, which is not a problem for
Guth and Katz [4], we have to consider different families of lines that rule surfaces
and the vector fields on reguli to get the following.



A NOTE ON DISTINCT DISTANCES PROBLEM IN THE HYPERBOLIC PLANE 135

Proposition 2.4. For any set of N points P ⊂ H2
>0 := {x + iy : x, y > 0} and

L = {L pq : p, q ∈ P}, no more than N lines of L lie in a common plane and no
more than O(N ) lines of L lie in a common regulus.

Proof. We consider the families Lq := {L pq}p∈H2
>0

of lines targeting at q. First,
for any p′

̸= p, the line L p′q does not intersect L pq . Note that L pq ⊂ Spq , and
suppose L pq ∩ L p′q ̸=∅. Then there would be some g ∈ G such that gp′

= gp = q ,
a contradiction. Moreover by (5), the directions of L pq and L p′q are different:( py(q2

x + q2
y)

pxqy + qx py
, −

qy

pxqy + qx py
, 1

)
= (ξ1, ξ2, 1)

has a unique solution for fixed q and ξ1, ξ2. Thus different Lq’s have no lines in
common and belong to different rulings of a ruled surface if any. Note that ξ1, ξ2

cannot be zero since px , py , qx , qy > 0. Indeed, equivalently we have(
−ξ1qy q2

x +q2
y−qxξ1

ξ2qy ξ2qx

) (
px

py

)
=

(
0

−qy

)
,

whose associate matrix has determinant −(q2
x + q2

y)ξ2qy ̸= 0. Hence lines of Lq

are pairwise skew and no two of its lines lie in a common plane. Therefore any
plane intersects each Lq at most one line and intersects L at most N lines.

To prove the second part, we construct a vector field V = (V1, V2, V3) on R3

tangent to lines of Lq for any fixed q = qx + iqy ∈ H2
>0. By (3) we locate p such

that L pq passes through any given x = (x1, x2, x3) ∈ R3 as follows (a = 1, x1 = b,
x2 = c, x3 = d):

px + x1 + (pyqy − pxqx)x2 − qx x3 = 0,

py − (pxqy + qx py)x2 − qy x3 = 0,

or equivalently,

(1 − qx x2)px + (qy x2)py = qx x3 − x1,

(−qy x2)px + (1 − qx x2)py = qy x3,

which has solution(
px

py

)
=

1
(1 − qx x2)2 + q2

y x2
2

(
qx x1x2−(q2

x +q2
y)x2x3−x1+qx x3

−qy x1x2+qy x3

)
.

By (5), we set the direction of L pq as

((q2
x + q2

y)py, −qy, qy px + qx py) =
1

(1 − qx x2)2 + q2
y x2

2
(V1, V2, V3),
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where
V1 = −qy(q2

x + q2
y)(x1x2 − x3),

V2 = −qy[(1 − qx x2)
2
+ q2

y x2
2 ],

V3 = −qy(q2
x + q2

y)x2x3 − qy x1 + 2 qxqy x3.

Let V = (V1, V2, V3); then V has degree 2. Note that p ∈ H2
>0, the vector field is

defined over the open subset

Uq := {(x1, x2, x3) ∈ R3
| qx x1x2−(q2

x +q2
y)x2x3−x1+qx x3 > 0, −qy x1x2+qy x3 > 0},

and we always consider the pieces of reguli restricted in Uq .
Now suppose a line L pq lies in a regulus R defined by a degree-2 irreducible

polynomial f in R3. Then at any point x ∈ L pq we have the Taylor expansion

f (x + tV (x)) = f (x) + ∇( f ) · V (x)t +
1
2 V T H( f )V t2,

where ∇( f ) is the gradient of f and H( f ) is the Hessian matrix of f .
By Bezout’s lemma (Lemma 3.1 of [4]), if more than 9 lines of Lq are contained

in R, f would have a common factor with both ∇( f ) · V and V T H( f )V , which
have degree 3 and 4, respectively. By irreducibility, f must be the common factor
so that f vanishes on each line of Lq with direction V (x) for any x ∈ R by the
Taylor expansion above, that is, Lq is a ruling of R. Since a regulus has only two
rulings, R can only contain at most 8 lines from N − 2 families Lq which are not
rulings of R and 2N lines of Lq1, Lq2 if they are rulings of R. In total, there are at
most 2N + 8(N − 1) = 10N − 8 lines of L lying in R. □

Now we already reduced the problem to incidence geometry in the Euclidean
space. Applying ruled surface theory and polynomial partitioning to reproduce
Guth and Katz’s Theorem 2.10 and 2.11 of [4], we get the following lower bound
for the distinct distances problem in the hyperbolic plane. It has the same strength
as the result of Guth and Katz for the Euclidean plane.

Theorem 2.5. For P ⊂ H2 any set of N points and L = {L pq | p, q ∈ P}, let Gk be
the set of points where at least k lines of L meet for 2 ≤ k ≤ N. Then

|Gk | ≲ N 3k−2.

Consequently, by (4), |Q(P)| ≲ N 3 log N , and by (2), we have |d(p)| ≳ N/ log N.
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