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ARITHMETIC MODULAR LINKS

TALI PINSKY, JESSICA S. PURCELL AND

JOSÉ ANDRÉS RODRÍGUEZ-MIGUELES

We construct a sequence of geodesics on the modular surface such that the
complements of the canonical lifts to the unit tangent bundle are arithmetic
3-manifolds.

1. Introduction

The modular group PSL(2, Z) is one of the simplest examples of an arithmetic
group. The quotient of the upper half plane by the modular group is called the
modular surface 6Mod; it is an arithmetic hyperbolic 2-dimensional orbifold.

One dimension higher, arithmetic hyperbolic 3-manifolds and 3-orbifolds form
families of manifolds with very rich structure. They are also quite special. For
example, among knot complements, only the figure-8 knot is arithmetic [22], and
there exist closed orientable 3-manifolds that do not contain a simple closed curve
with arithmetic complement [2]. However, every closed orientable 3-manifold
contains an arithmetic link [15].

Associated with each oriented closed geodesic γ on the modular surface is a
3-manifold. This is obtained by lifting the geodesic γ into the unit tangent bundle
over the modular surface UT(6Mod) to obtain a corresponding periodic orbit of the
geodesic flow γ̂ called the canonical lift. The 3-manifold is the complement of γ̂

in the unit tangent bundle.
By Thurston’s hyperbolisation theorem, the complement of a canonical lift of a

closed modular geodesic will always be hyperbolic; see Foulon and Hasselblatt [12].
What is unknown in general is whether it will be arithmetic for some cases, and
if so, what topological, geometric, and algebraic properties of the geodesic yield
arithmeticity.

In this paper, we find an explicit family of canonical lift complements that are
arithmetic.

Theorem 1.1. There exists a sequence {γn}n∈N of distinct closed geodesics on the
modular surface such that for each n, the union of the first n canonical lifts

⋃n
j=1 γ̂ j
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has complement in the unit tangent bundle UT(6Mod) that is an arithmetic hyper-
bolic 3-manifold UT(6Mod)∖

⋃n
j=1 γ̂ j , obtained by gluing regular ideal octahedra.

Note that for n > 1, the manifolds of Theorem 1.1 are complements of more than
one geodesic. When n = 1, the theorem produces a 3-manifold homeomorphic to
the Whitehead link complement, which is well known to be arithmetic [18, § 4.5].
This corresponds to UT(6Mod)∖γ̂0 for γ0 the shortest geodesic on the modular
surface. It is an open question as to whether this is the only arithmetic canonical
lift complement of a single geodesic on the modular surface.

The theorem is proved by considering canonical lifts of geodesics on a once-
punctured torus, which is a six-fold cover of the modular surface. In Theorem 4.2
below, we build an explicit family of geodesics on the punctured torus and we prove
that their canonical lifts are built of regular ideal octahedra. Such manifolds are
always arithmetic, and the main theorem follows as arithmeticity is invariant under
finite covers.

Because of the explicit nature of the construction, we are further able to obtain
geometric information on these manifolds. For example, their volumes are given
explicitly, and can be related to the lengths of the geodesics.

Corollary 1.2. There exists a sequence {γk}k∈N of closed geodesics on the modular
surface with length ℓ(γk) ↗ ∞ such that, for 0n :=

⋃n
k=1 γk ,

(1) UT(6Mod)∖0̂n is arithmetic,

(2) Vol(UT(6Mod)∖0̂n) = nvoct/2, and

(3) Vol(UT(6Mod)∖0̂n) ≍

√

ℓ(0n).

Here voct is the volume of a regular ideal octahedron.

In Corollary 1.2, ≍ means coarsely equivalent: there are constants A, B, C , and
D such that

A
√

ℓ(0n) + B ≤ Vol(UT(6Mod)∖0̂n) ≤ C
√

ℓ(0n) + D.

Note that others have related volume to length of geodesics. Bergeron, Pinsky,
and Silberman showed that the volume is bounded by a constant times the length [5].
Rodríguez-Migueles showed that there is a sequence of geodesics such that the
volume grows linearly in the length of the geodesics up to a logarithmic factor [23].
Upper and lower bounds were extended by Cremaschi and Rodríguez-Migueles [8].
Cremaschi, Rodríguez-Migueles and Yarmola related volumes of the canonical lifts
of a pair of simple closed curves to the Weil–Petersson distance in Teichmüller
space [9].

More generally, by taking finite covers, we obtain:

Corollary 1.3. Let 6g,r be an orientable punctured surface with any hyperbolic
metric. Then there exists a sequence {0k}k∈N of filling finite sets of closed geodesics
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on 6g,r with lengths ℓ(0k) ↗ ∞, such that UT(6g,r )∖0̂k is arithmetic for each
k ∈ N and

Vol(UT(6g,r )∖0̂k) ≍
√

ℓ(0k).

2. Surfaces and unit tangent bundles

Let 6 be a hyperbolic surface or orbifold. The unit tangent bundle UT(6) consists
of points of the form (x, v), where x lies on 6, and v is a unit vector tangent to 6

at x . Given a smooth oriented curve γ on 6, any point x ∈ γ determines a point
(x, v) in the unit tangent vector, by letting v be the unit vector at x pointing in the
direction of γ . Then γ lifts to a embedded closed curve γ̂ in UT(6).

The modular surface. The modular surface is the quotient of H2 by the modular
group PSL(2, Z). Background on the modular group can be found in many places,
for example in the work of Series [26]; see also the work of Brandts, Pinsky, and
Silberman [7]. We review a few relevant facts here.

Consider the upper half plane H2 with its hyperbolic metric. Let U be a rotation
of π about the point i and let V be a rotation of 2π/3 about the point 1

2 + i
√

3
2 , per-

muting points ∞, 1, 0. These two rotations generate the modular group PSL(2, Z).
As elements of PSL(2, Z), U and V have the form

U = ±

(
0 −1
1 0

)
, V = ±

(
0 −1
1 −1

)
.

The rotation V fixes the hyperbolic ideal triangle in H2 with vertices 0, 1, ∞, while
U maps it to an adjacent ideal triangle. Thus the orbit of this ideal triangle under
PSL(2, Z) is an invariant tessellation of H2 by ideal triangles called the Farey
tessellation. It has an ideal vertex at each point of Q ∪ ∞ on ∂H2.

The quotient of H2 by the modular group PSL(2, Z) is an orbifold that is a sphere
with a cusp, a cone point of order three, and a cone point of order two. This is
called the modular surface and denoted by 6Mod. A fundamental domain for 6Mod

is given by one third of the 0, 1, ∞ ideal triangle.
Elements of finite order in PSL(2, Z) are exactly the conjugates of 1, U, V, V 2.

Every element of infinite order is a finite word in U , V and V −1
= V 2, involving

both letters. Conjugating, one may always obtain a word beginning with V or V 2

and ending with U . Thus, up to conjugation, any infinite-order element can be
written in positive powers of L = V 2U and R = V U [13], where

(2.1) L = ±

(
1 1
0 1

)
and R = ±

(
1 0
1 1

)
.

A closed geodesic on the modular surface 6Mod is called a modular geodesic.
Modular geodesics are in one-to-one correspondence with conjugacy classes of
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Figure 1. The branched surface inside the complement of the
trefoil, with the direction of the semiflow indicated, pointing down-
wards from the branchline.

hyperbolic elements in PSL(2, Z), i.e., those with trace more than two. Note that
R and L are parabolic elements, with trace two, but any word in positive powers in
R and L involving both letters is hyperbolic.

A modular geodesic lifts to H2, tiled by the Farey tessellation. Series observed
that such lifts cut out a sequence of triangles [26]. Within a given triangle an
oriented geodesic enters through one side and then either exits through the side on
its left (cutting off a single ideal vertex on its left side) or exits to its right. The
sequence of rights and lefts determines a word in positive powers of R and L up
to cyclic order called the cutting sequence. This agrees with the matrix product
corresponding to the geodesic.

Now consider the unit tangent bundle of the modular surface, UT(6Mod). This is
a Seifert fibred space whose base orbifold is 6Mod, with cone points of orders two
and three and a cusp. In [19], Milnor proves that UT(6Mod) is homeomorphic to the
complement of the trefoil in S3, which proof he credits to Quillen. A neighbourhood
of the cusp point of 6Mod lifts to give a neighbourhood of the trefoil. By the work
of Ghys [13], for any finite collection of closed geodesics on the modular surface,
their canonical lifts can be jointly isotoped in UT(6Mod) to lie on the branched
surface shown in Figure 1. These are called modular links.

A modular link follows two lobes of the branched surface, one on the right
and one on the left, and it is determined up to cyclic permutation by the word
in the letters L and R. Thus the complement of a modular link corresponding to
an n-component geodesic on the modular surface will be homeomorphic to the
complement of a link in S3 with n + 1 components, with the additional component
corresponding to the trefoil. Examples are shown at the end of Section 6.

The once-punctured torus. Begin with the closed torus with no punctures, which
we will denote by 61,0: the surface of genus one with zero punctures. Once we
fix a choice of generators 1

0 and 0
1 for π1(61,0), any simple closed curve on the
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torus is determined by an element of Q ∪
{ 1

0

}
. A geodesic representative of p/q

has constant tangent vector; the curve lifts to a line of constant slope p/q in the
universal cover R2.

The unit tangent bundle UT(61,0) in this case is homeomorphic to 61,0 × S1.
For ease of notation, we will write a point ei t in S1 simply as t ; in this form, two
points in S1 are equivalent if they differ by addition of an integer multiple of 2π .
Then the canonical lift of a curve γ of slope p/q is a curve γ ×{arctan(p/q)} when
oriented with tangent vector pointing towards ei arctan(p/q) in C. The curve has two
orientations; when oriented in the opposite direction the canonical lift becomes
γ × {arctan(p/q) + π}. Note that in either case, it has constant second coordinate.
(This discussion needs to be modified for p/q =

1
0 ; we leave that to the reader.)

Now consider the once-punctured torus, which we denote by 61,1: the genus
one surface with one puncture. Consider the abelian cover of the punctured torus;
for now we view this as the plane R2 with integer lattice points removed. The
line y = 0 in R2 projects to an arc µ on 61,1 with both endpoints on the puncture.
Similarly, the line x = 0 projects to an arc λ.

Consider those simple closed curves on the punctured torus that are parallel to
lines in R2 of rational slope p/q, but disjoint from points on the integer lattice.
These lines of rational slope project to closed curves in 61,1 meeting µ a total of
|p| times, and meeting λ a total of |q| times. We let p/q denote the closed curve.
In particular, a closed curve parallel to µ is 0

1 , and one parallel to λ is 1
0 . Note these

are not all the closed curves in 61,1; we are omitting curves that wrap around the
puncture in more complicated ways. However, these are the closed curves we will
encounter in this paper.

Now consider the canonical lifts of such curves. The unit tangent bundle of the
punctured torus is homeomorphic to the product 61,1 × S1. Just as for the closed
torus, up to homeomorphism, the canonical lift of a curve of slope p/q in UT(61,1)

has the form γ ×{arctan(p/q)} oriented in one direction, or γ ×{arctan(p/q)+π}

oriented in the other direction. That is, in either case we may isotope p/q in 61,1

to have constant tangent vector.
In addition to the unit tangent bundle one may consider the projective tangent

bundle PT(61,1), where one quotients out by the action of ±1 on S1, i.e., antipodal
points are identified. The unit tangent bundle is a degree-two cover of the projective
tangent bundle. The two lifts of any fixed geodesic are identified in the quotient,
and hence an unoriented closed geodesic has a unique lift to the projective tangent
bundle. Its complement in the projective tangent bundle is covered via a degree-two
covering map by the complement of both its lifts in the unit tangent bundle.

Lemma 2.2. The punctured torus forms a 6-fold cover of the modular surface. The
group of covering transformations is generated by a rotation of order three and a
rotation of order two.
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µ

Figure 2. Taking the quotient of R2∖3 by translations gives 61,1.
Quotient further by 2π/3 rotations about centres of triangles and
π rotations about centres of edges to obtain 6Mod.

Similarly, the unit tangent bundle of the punctured torus forms a 6-fold cover of
the unit tangent bundle of the modular surface. The group of covering transforma-
tions is generated by two glide rotations of orders three and two.

Proof. We will study the cover 61,1 → 6Mod by considering first the abelian cover
R2∖3 → 61,1, where 3 is a lattice, and showing that 6Mod is obtained as a further
quotient of this space.

Triangulate 61,1 by adding the edges λ parallel to 1
0 and µ parallel to 0

1 as above,
and an arc parallel to the slope 1

1 . This subdivides 61,1 into two triangles, which
we view as equilateral triangles. The abelian cover of 61,1 can then be viewed as
obtained by tiling R2 by these equilateral triangles, and removing all vertices to
form the lattice 3. We obtain 61,1 by taking the quotient of R2∖3 by covering
transformations that translate in the direction of µ and λ.

To obtain 6Mod, we quotient further, first by a rotation by 2π/3, fixing the centre
of one of the equilateral triangles and rotating its three vertices (the second triangle
will also be rotated around its centre as a result), and then by a rotation by π ,
fixing the centre of an edge of an equilateral triangle and rotating that edge back
to itself, swapping its endpoints and swapping the two triangles (note this will
rotate simultaneously the other two edges about their centres). These two rotations
generate a group of order 6, and the quotient is 6Mod. See Figure 2.

Now consider the unit tangent bundles. The unit tangent bundle UT(61,1) is a
trivial product, so it is covered by (R2∖3)× R. We obtain UT(61,1) by taking the
quotient by translations on R2 in the directions of µ and λ, and by a translation
(x, y, 0) 7→ (x, y, 2π) in the R direction.

To obtain UT(6Mod), further quotient by a covering transformation of order three,
and one of order two. The first is the glide rotation V that rotates an equilateral
triangle in R2 by 2π/3 about its centre, and translates it in the R direction by 2π/3.
Then V has order three in 61,1 ×S1

= UT(61,1). The second is the glide rotation U
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that rotates R2 by π in the centre of an edge of an equilateral triangle, and shifts
in the R direction by π . This has order two in UT(61,1). Observe it takes the
canonical lift of an oriented curve in 61,1 to the canonical lift of the oppositely
oriented curve.

We claim that the quotient of UT(61,1) by U and V is UT(6Mod). To see this,
note that the quotient is Seifert fibred, with base orbifold a sphere with one cusp, one
cone point of order two, and one cone point of order three. This is homeomorphic
to UT(6Mod). □

Remark 2.3. More generally, any orientable hyperbolic surface with at least one
puncture can be tiled by ideal triangles. There is then a hyperbolic structure that
allows us to identify its fundamental domain with a finite portion of the Farey
tessellation of H2. Since the modular group PSL2(R) is the full symmetry group
of the tessellation, this yields a representation of the surface’s fundamental group
as a subgroup of the modular group of finite index, and the surface is therefore a
branched cover of 6Mod. Thus one can consider lifts of modular geodesics to any
such surface and, as the unit tangent bundle is always trivial in this case, if the lift
is simple the situation will be similar.

Curves on the once-punctured torus and the Farey tessellation. Isotopy classes
of simple closed curves on the punctured torus are organised by the same Farey
tessellation. Recall that the Farey complex can be considered as H2 with boundary
R ∪

{1
0

}
. Isotopy classes of simple closed curves on 61,1 correspond to points in

Q ∪
{1

0

}
. The geometric intersection number of curves a/b and c/d is given by

|ad − bc|. When a/b and c/d intersect exactly once, they correspond to an edge in
the Farey complex: a hyperbolic geodesic running from a/b in Q ∪

{ 1
0

}
to c/d in

Q ∪
{1

0

}
. We say such curves are Farey neighbours. The matrix

(a
b

c
d

)
in PSL(2, Z)

takes the edge between 1
0 and 0

1 to the edge between a/b and c/d in H2.

Definition 2.4. We say an ordered collection of simple closed curves α1, . . . , αn

in 61,1 are Farey neighbours if each α j and α j+1 are connected by an edge of the
Farey triangulation, for j = 1, . . . , n − 1, and if αn and α1 are also connected by
an edge of the Farey triangulation.

3. Arithmetic Kleinian groups

Let K be a link in a compact 3-manifold with torus boundary. Suppose that the
interior of the complement has a complete hyperbolic structure, meaning it is
isometric to H3/G, where H3 is the hyperbolic 3-space and G is a torsion-free,
noncocompact Kleinian group of finite covolume. The following definition of
arithmeticity is a consequence of [18, Theorem 9.2.2].
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Definition 3.1. A noncocompact Kleinian group is arithmetic if it is conjugate
in PSL(2, C) to a group commensurable with PSL2(Od), where Od is the ring of
integers in the imaginary quadratic number field Q(

√
−d), with d a positive integer.

Such a group PSL(2, Od) is called a Bianchi group. We say that a hyperbolic 3-
manifold is arithmetic if the corresponding Kleinian group is arithmetic. Similarly,
a knot or link with arithmetic complement is said to be arithmetic.

An example of an Bianchi group is the group PSL(2, Z[i]), called the Picard
group. The Picard group is generated by face pairings of a fundamental region

F =
{
(x, y, t) ∈ H3

| x2
+ y2

+ t2
≥ 1, −

1
2 ≤ x ≤

1
2 , 0 ≤ y ≤

1
2

}
;

see [18, § 1.4.1]. This is a quotient of a regular ideal octahedron. In fact, analogous
to the two-dimensional case, H3 is tessellated by regular ideal octahedra, with ideal
vertices at all points of Q[i]. The Picard group PSL(2, Z[i]) is a subgroup of index
two of the full symmetry group of this tessellation. Thus we have the following
well-known result; see [1; 18, § 9.4; 20].

Lemma 3.2. Any finite-volume hyperbolic 3-manifold obtained by gluing regular
ideal octahedra is arithmetic.

Note that arithmeticity is preserved by taking finite covers or quotients; any
space that is finitely covered by such a space is also arithmetic.

4. Regular octahedra for neighbouring slopes

We now return to curves on the punctured torus 61,1, and build arithmetic links in
UT(61,1).

Lemma 4.1. Suppose α and β are two simple closed curves on the punctured
torus 61,1 that share an edge in the Farey triangulation. Let Nα,β denote the space
obtained from 61,1 × [0, 1] by removing α from 61,1 × {0} and removing β from
61,1 ×{1}. Then Nα,β admits a complete hyperbolic structure obtained by gluing in
pairs the eight faces of a regular ideal octahedron.

Proof. When α =
1
0 and β =

0
1 , this is well known and is illustrated in Figure 3; see,

for example, [16, Lemma 2.4]. On the left of that figure, 61,1 × [0, 1] is obtained
by gluing the front face to the back, and the left face to the right.

On the right of the figure, observe that this gluing now identifies the front and
back triangles opposite each other across the ideal vertex at the top of the octahedron,
and the left and right triangles opposite each other across the ideal vertex at the
bottom of the octahedron. If we give the ideal octahedron the hyperbolic geometry
of a regular ideal octahedron, then each edge is identified to two edges of the ideal
octahedron. The remaining unglued top and bottom faces become totally geodesic
once-punctured annuli.



ARITHMETIC MODULAR LINKS 345

Figure 3. Starting on the left with 61,1 ×[0, 1] with α =
1
0 drilled

from 61,1 × {0} and β =
0
1 drilled from 61,1 × {1}, we obtain a

regular ideal octahedron on the right.

For general α = p/q and β = r/s, α and β are Farey neighbours if |ps −qr | = 1.
In this case there exists a homeomorphism from N0,∞=1/0 to Nα,β induced by the
action of the linear automorphism

( p
q

r
s

)
taking 61,1 ×{t} to 61,1 ×{t} for all t , and

taking (61,1×{0})∖
{1

0

}
to (61,1×{0})∖α and (61,1×{1})∖

{ 0
1

}
to (61,1×{1})∖β.

This can be realised by a hyperbolic isometry. □

Theorem 4.2. Let α1, . . . , αn be simple closed curves in 61,1 that are Farey neigh-
bours. Drill 61,1 × S1 by removing α j from 61,1 × { j/n}. The resulting manifold
has a complete hyperbolic structure obtained by gluing n regular ideal octahedra.

Proof. Cut the drilled manifold along each surface 61,1×{ j/n}. Obtain blocks of the
form Nα j ,α j+1 . By Lemma 4.1, each of these can be given the hyperbolic structure of
a regular ideal octahedron, with two top faces unglued and two bottom faces unglued.

Glue the top faces of Nα j ,α j+1 to the bottom faces of Nα j+1,α j+2 for j = 1, . . . , n
modulo n. The gluing will be by the identity, along totally geodesic once-punctured
annuli. These have a unique hyperbolic structure, hence the gluing is by isometry.

We claim this gives a complete hyperbolic structure on the original drilled
manifold. The proof is by the Poincaré polyhedron theorem; see the work of
Epstein and Petronio [11] for a careful exposition. The gluing identifies blocks
Nα j ,α j+1 top to bottom, yielding a manifold homeomorphic to the desired manifold.
Under the gluing, each edge is 4-valent. Thus when edges are glued, the monodromy
around any edge is the identity: formed by gluing four right-dihedral angles. This
is sufficient to ensure that the manifold has a (possibly incomplete) hyperbolic
structure. For completeness, notice that in the boundary of a horoball neighbourhood
of any cusp, we identify a sequence of truncated neighbourhoods of the ideal vertices;
these are squares. The squares are glued to obtain a tiling of the horospherical
torus. Thus the regular ideal octahedra induce a Euclidean structure on each cusp.
It follows that the hyperbolic metric obtained from the octahedra is a complete
metric on the drilled manifold; see also [21, Theorem 4.10]. □

We wish to apply Theorem 4.2 to a result about canonical lifts of Farey neighbours
in the unit tangent bundle UT(61,1). However, we need to take some care in
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orienting the curves. As noted above, each curve γ = p/q has two orientations.
For one orientation, the canonical lift γ̂ will lie in 61,1 × {arctan(p/q)} and the
other will lie in 61,1 × {arctan(p/q) + π}. The canonical lift γ̃ to the projective
tangent bundle PT 61,1 (which is the same trivial bundle 61,1 × S1) is well defined.

Theorem 4.3. Let 0 := {γ j = a j/b j }
n
j=1 be a collection of simple closed geodesics

on the punctured torus made of Farey neighbours, with each γ j oriented in the
direction of exp(i arctan(a j/b j )). Let 0 := {γ j }

n
j=1 be the same collection, with

each curve oriented in the opposite direction. Then:

(1) UT(61,1)∖0̂ ∼= UT(61,1)∖0̂ ∼= PT(61,1)∖0̃ is arithmetic, obtained by gluing
n regular ideal octahedra.

(2) UT(61,1)∖(0̂ ∪ 0̂) is arithmetic, obtained by gluing 2n regular ideal octahe-
dra.

Proof. Each γ j = a j/b j corresponds to a distinct slope in Q∪
{ 1

0

}
. We may assume

the b j are nonnegative integers. By our orientation convention, each curve γ̂ j will
be drilled from 61,1 × {arctan(a j/b j )} ⊂ 61,1 × S1. Because 0 is a collection of
Farey neighbours, there is some minimal slope in Q, which we may relabel to be
γ1 =a1/b1, and then up to relabelling, the slopes satisfy a1/b1 <a2/b2 < · · ·<an/bn .
Then when we drill, the curves are drilled in cyclic order γ1, γ2, up to γn in the
S1 factor of 61,1 × S1. The drilling is therefore homeomorphic to the drilling of
Theorem 4.2. Then the fact that M0̂ is obtained by gluing n regular ideal octahedra
follows from Theorem 4.2, and the fact that it is arithmetic follows from Lemma 3.2.
An identical argument holds for 0.

For the union of 0̂ and 0̂, the arithmeticity follows from the fact it is a double
cover of PT(61,1)∖0̂. Furthermore, the first n canonical lifts will be at heights
arctan(a1/b1) < · · · < arctan(an/bn), and the next n at arctan(a1/b1) + π through
arctan(an/bn) + π . Thus again we drill the Farey neighbours in an order homeo-
morphic to that of Theorem 4.2, and so that theorem implies that the complement
is built of 2n regular ideal octahedra. □

5. Projecting and lifting on the modular surface

Lemma 5.1. Let γ be an oriented geodesic on the modular surface 6Mod, obtained
by projecting the simple closed curve p/q ⊂61,1 via the covering map of Lemma 2.2.
Then under the covering map, γ has six lifts in 61,1. These are p/q , q/(q − p),
(p − q)/p, and each of these three curves oriented in the opposite direction: p/q ,
q/(q − p), and (p − q)/p.

Proof. We consider the images of p/q under the rotations of order two and three of
Lemma 2.2. As in the proof of that lemma, we will view 61,1 as a quotient of the
tiling of R2 by equilateral triangles with vertices removed.
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λ

µ

Figure 4. A rotation by 2π/3 about the centre of each equilateral
triangle takes the curve p/q to the curve (p − q)/p, and a further
rotation takes it to q/(q − p). Shown is the case q > p > 0. Similar
pictures give other cases.

Recall that the rotation of order three rotates an ideal triangle, permuting its
vertices. Consider its effect on the curve p/q. We may assume without loss of
generality that q ≥ 0. If p ≥ 0, then the curve p/q meets the side µ of an equilateral
triangle in the fundamental domain for 61,1 a total of p times. It meets λ a total of
q times, and meets the diagonal |q − p| times. See Figure 4, which shows the case
q > p > 0.

Rotating by 2π/3 takes the curve to one meeting µ a total of |q − p| times,
meeting λ a total of |p| times, and meeting the diagonal q times. In case q > p > 0,
as shown in Figure 4, the resulting slope is negative, of value (p − q)/p, and a
further rotation gives the curve of slope q/(q − p). Our convention is to take an
overline if the curve crosses lambda from right to left; we will see that in all cases
we obtain each curve in both directions so this convention will not matter.

If p > q > 0, the result of the rotation is positive, of slope (p − q)/p, and a
further rotation results in a curve of slope q/(q − p).

If p < 0 then the curve p/q meets µ a total of |p| times, meets λ a total of q
times, and meets the diagonal |p| + q = q − p times. The resulting slopes after
rotating are (q − p)/p and (p − q)/p.

Finally if one of p or q is zero, or p = q = 1, the three slopes up to rotation are
0
1 , 1

0 , and 1
1 , and the lemma holds for these.

Now consider the rotation of order two, with fixed point on an edge of the triangle.
This takes the p/q curve back to itself, but it gives it the opposite orientation. This
will give us the curve p/q. Similarly it gives the other two curves with opposite
orientations. Thus in all cases we obtain the set of both orientations of each of the
slopes {p/q, q/(q − p), (p − q)/p}, as required. □

The following lemma shows that in lieu of rotating the closed geodesics and then
considering the resulting slopes as above, one may instead directly rotate the slopes
along the circle at infinity.

Lemma 5.2. For any p/q ∈ Q ∪
{ 1

0

}
, V (p/q) = q/(q − p) and V 2(p/q) =

(p − q)/p.
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∞

1
2

2−1

3
2

Figure 5. The Farey graph of rational slopes.

Proof. Recall that V has the form ±
( 0

1
−1
−1

)
. Then V (p/q) = q/(q − p), and

V 2(p/q) = (p − q)/p. □

Observe that the first rotation shown in Figure 4 is V 2.
We will now turn a sequence of geodesics in the punctured torus into a sequence

of geodesics on the modular surface. We start with an example, shown in Figure 5.
Consider the 3

2 curve. There is a shortest path from the Farey triangle with vertices( 1
1 , 0

1 , 1
0

)
to a Farey triangle with vertex 3

2 . The path meets three Farey triangles,
with vertices

( 1
1 , 0

1 , 1
0

)
,
( 1

1 , 2
1 , 1

0

)
, and

( 1
1 , 2

1 , 3
2

)
. Form a collection of curves 0 by

adding all the distinct slopes in all these triangles to 0.
Thus 0 consists of 0

1 , 1
0 , 1

1 , 2
1 , and 3

2 . Note these are Farey neighbours, so
Theorem 4.3 implies that the complement of their canonical lifts (oriented both
ways) is an arithmetic manifold.

We wish to apply the covering projection from UT(61,1) to UT(6Mod). However,
note that the canonical lift of 0 does not cover any link complement in the unit
tangent bundle of the modular surface, because 0 does not contain all the preimages
of its projections to the modular surface. Thus we extend 0, by including all images
of 0 under the rotations V and V 2. Thus in the example of Figure 5, we would
add −

1
1 = V

(2
1

)
, 1

2 = V 2
( 2

1

)
, −

2
1 = V

( 3
2

)
and 1

3 = V 2
( 3

2

)
. The result is a again a

collection of Farey neighbours, and now the complement of all canonical lifts is a
cover of the complement of a modular link. We generalise this example.

Theorem 5.3. Any modular geodesic that lifts to a simple closed curve α on the
once-punctured torus is part of an arithmetic link in UT(6Mod) with all components
being modular geodesics. Suppose the shortest path in the Farey triangulation
between the triangle (0, 1, ∞) and any triangle with vertex α passes through x
Farey triangles. Then the complement of the lift can be decomposed into x regular
ideal octahedra.
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Proof. Given any slope p/q , there is a shortest path in the Farey triangulation from
the centre of the triangle with vertices

(0
1 , 1

1 , 1
0

)
to a triangle with a vertex p/q . This

will pass through some number of Farey triangles. Build a collection of curves 0

by adding all the slopes corresponding to all the vertices of the Farey triangles
in the path. Thus 0 will contain 0

1 , 1
1 , 1

0 and p/q, as well as additional curves at
vertices of Farey triangles. At this step, 0 will contain a total of 2 + x slopes: three
corresponding to the first triangle

( 0
1 , 1

1 , 1
0

)
, and x − 1 additional slopes, one for

each new triangle in the path.
Next, expand 0 by adding all images of 0 under the rotations V and V 2 of

Lemma 5.2. Note this adds 2(x − 1) additional slopes to 0, so that in total, 0 now
contains 3x slopes.

Observe that the collection 0 can now be ordered in Q ∪
{1

0

}
to give a set

of Farey neighbours, invariant under the action of V . Theorem 4.3 then implies
UT(61,1)∖(0̂∪ 0̂) is arithmetic, obtained by gluing 6x regular ideal octahedra. By
Lemma 5.1, the drilled curves are exactly the canonical lifts of all curves projecting
to a collection of x simple closed curves on the modular surface.

Now consider the action of the covering transformations of Lemma 2.2 from
UT(61,1) to UT(6Mod). By construction, the order-two transformation will take
the canonical lift of p/q to that of p/q. The order-three transformation will take
the canonical lift of p/q to V (p/q) and V 2(p/q). Thus UT(61,1)∖(0̂ ∪ 0̂) is a
six-fold cover of the complement of a collection of canonical lifts in UT(6Mod).

Finally, observe that each of the covering transformations maps a regular ideal oc-
tahedron to a distinct regular ideal octahedron. By the construction of Theorem 4.2,
the regular ideal octahedra lie between canonical lifts that share an edge in the Farey
triangulation. The covering transformation of degree three takes the octahedron
between a/b and c/d to that between V (a/b) and V (c/d), and then again to that
between V 2(a/b) and V 2(c/d); these are all distinct edges of the Farey triangulation.
The covering transformation of degree two takes the octahedron between a/b and
c/d to that between a/b and c/d; this octahedron differs from the original by a
rotation by π in the S1 factor of UT(61,1) ∼= 61,1 × S1.

Then when we take the quotient by covering transformations, we obtain an
arithmetic canonical link complement in UT(6Mod), with the link containing the
original curve, and built from 6x/6 = x regular ideal octahedra. □

Theorem 1.1 from the introduction is an immediate consequence.

Corollary 5.4. There are infinitely many arithmetic modular links. □

6. Cutting sequences

As explained in Section 2, canonical lifts of geodesics in UT(6Mod) can be viewed
as links in S3∖K where K is the trefoil knot. In the previous section, we found
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infinitely many arithmetic canonical link complements. We wish to identify these
links as the complement of links in the 3-sphere. To do so, we will find cutting
sequences for the links, enabling us to identify them in the branched surface of
Figure 1 following [13]. That is the main goal of this section.

Definition 6.1. Let α be a closed geodesic in the modular surface 6Mod. The L R-
cutting sequence of α is the bi-infinite sequence of instances of L and R obtained
as follows. Recall that a fundamental domain for 6Mod is the quotient of an ideal
triangle by an order-three and an order-two rotation. As in the proof of Lemma 2.2,
we take a cover of 6Mod that tiles R2 by equilateral triangles, and remove the
lattice 3 consisting of the vertices of these triangles. Lift α to this cover. Consider
a point of intersection of α with an edge of a triangle. Then in the adjacent triangle,
α either runs next to the edge to the left or to the right. If it runs to the left, take the
letter L . If it runs right, take the letter R. Now repeat for the next triangle, and so
on. Because α is a closed geodesic, eventually α returns to an edge identified with
the original edge of intersection, and the sequence will repeat.

Remark 6.2. Since different lifts of the geodesic α differ by an element of PSL(2, Z)

which preserves the Farey tessellation by ideal triangles, the cutting sequence
remains the same up to cyclic order no matter which lift of α we start with. By
reversing the orientation of α if necessary we may always assume its cutting
sequence begins with an L . We may always assume it enters the 0, 1, ∞ triangle
through the imaginary axis (oriented to the right) by using the rotation about i given
by U above.

We can similarly define a cutting sequence for simple closed curves in 61,1. Take
a curve p/q with p/q positive, and lift to the abelian cover of 61,1 that we build
by tiling R2 with equilateral triangles, again as in the proof of Lemma 2.2. Lift
p/q to this cover. The lift will intersect lifts of the arcs µ and λ. If it intersects µ,
assign an instance of A. If it intersects λ, assign an instance of B. This gives an
AB-cutting sequence for geodesics on 61,1.

The following algorithm, from Series [25] and Davis [10, Algorithm 7.6], gives
the AB-cutting sequence in terms of the continued fraction expansion of p/q .

Algorithm 6.3. (1) Start with an infinite string consisting of incidences of the
letter A. This corresponds to a lift of a geodesic of slope 0. If p/q ̸= 0, take a
continued fraction expansion of the slope p/q of the form [a1, a2, . . . , ak] where
all the a j are positive.

(2) Insert ak instances of the letter B between each pair of letters A. The corre-
sponding trajectory now has slope ak . If p/q = ak we are done.

(3) Else swap every A to B and vice-versa. The corresponding trajectory now has
slope 1/ak . If p/q = 1/ak we are done.
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A
A

B

B

R

L

R

L
A

A

B

B

Figure 6. On the left is the general rule for determining the cutting
sequence of a positive slope, on the right is the cutting sequence
L R(RL)6 corresponding to the projection of the geodesic of
slope 1

7 .

(4) Else insert ak−1 instances of the letter B between each pair of letters A. The
corresponding trajectory now has slope ak−1 + 1/ak . If we have reached p/q we
are done.

(5) Else reverse B and A. The corresponding trajectory now has slope

1

ak−1 +
1
ak

.

If we have reached p/q we are done.

(6) Else continue this process, ending by inserting a1 instances of the letter B
between each pair of letters A. This yields the AB-cutting sequence corresponding
to the fractional slope [a1, a2, . . . , ak].

We wish to find the L R-cutting sequence corresponding to a modular geodesic,
and the AB-cutting sequence of Algorithm 6.3 for its lift to the once-punctured
torus. By Remark 6.2 the lift we choose does not change the L R-cutting sequence
and thus we may choose the lift to be a curve of slope p/q on 61,1 where p and
q are nonnegative. We can obtain the L R-cutting sequence corresponding to its
projection as follows.

Algorithm 6.4. Let p/q be a slope, where p and q are both positive. Then for
j = 1, . . . , n − 1:

(1) If the j-th letter is A and the next letter is B, add L .

(2) If the j-th letter is B followed by A, add R.

(3) If the j-th letter is A followed by A, add RL .

(4) If the j-th letter is B followed by B, add L R.

If the slope is 0
1 or 1

0 (these are both lifts of the same modular geodesic) the cutting
sequence is L R.

See Figure 6.



352 TALI PINSKY, JESSICA S. PURCELL AND JOSÉ ANDRÉS RODRÍGUEZ-MIGUELES

Example 6.5. Given a straight line of slope 1/n, its AB-cutting sequence is the
bi-infinite sequence given by concatenating copies of B An . Its L R-cutting sequence
is the bi-infinite sequence given by concatenating L R(RL)n−1.

Modular links. Now return to the arithmetic modular links of Theorem 5.3. We
will construct examples of such links in the trefoil complement in the 3-sphere.

From the proof of that theorem, the links are obtained by adding curves from
the Farey triangulation that are invariant under the rotation W that rotates 0

1 to 1
1 , 1

1
to 1

0 , and 1
0 to 0

1 . The smallest collection of curves comes from the initial triangle
0
1 , 1

1 , and 1
0 . All three curves at the vertices of this triangle are identified when

we project to 6Mod. Hence we may use any of the three curves to determine the
modular link. We take p/q =

1
1 .

Then observe that the AB-cutting sequence in this case is simply obtained
by concatenating copies of B A. By Algorithm 6.4, the L R-cutting sequence is
then obtained by concatenating copies of L R (or equivalently RL). Therefore the
modular geodesic corresponds to RL . In Figure 7, shown are the three distinct lifts
of this geodesic in the parallelogram that is a fundamental domain for 61,1. There
are six lifts in total. As discussed above, the other three lifts traverse these curves
in opposite directions. Note all six curves determine a cutting sequence RL or L R,
which gives the same bi-infinite sequence.

Thus we have proved:

Lemma 6.6. The modular geodesic RL is arithmetic. □

The corresponding curve in the trefoil complement is obtained by drawing a
closed curve on the branched surface of Figure 1. The cutting sequence L R instructs
us that this curve must first run over the L lobe of the branched surface, then the
R lobe, then close. This is shown on the left of Figure 8. Note that Lemma 6.6
is easily proved directly by the fact that its complement is homeomorphic to the
Whitehead link complement as shown by the deformations of Figure 8.

Now consider the next simplest arithmetic modular link arising from the con-
struction in the proof of Theorem 5.3. This is obtained by adding a single additional
curve, coming from a new vertex of a Farey triangle of distance one from that with
vertices 1

0 , 1
1 , and 0

1 , and then taking the image of this curve under the degree-three

λ

µ RL

Figure 7. A fundamental domain for the two-dimensional torus,
and three different lifts corresponding to the modular geodesic RL .
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Figure 8. The homeomorphism between the complement of the
RL geodesic and the Whitehead link complement.

rotation. We see from Figure 5 that the only possibility is to next include 2
1 , −

2
1 ,

and 1
2 , which are all identified in 6Mod.

In particular, the curve 1
2 has AB-cutting sequence B AA, and L R-cutting se-

quence obtained by concatenating copies of L R RL , which is equivalent to L2 R2.
Thus in the trefoil complement, it runs twice over the L lobe of the branched surface,
then twice over the R lobe, before closing up.

The link given by the union of L R and L2 R2 is also arithmetic, by Theorem 5.3.
It is shown on the left of Figure 9. This is a three-component link in S3. As
mentioned, any finite union of modular geodesics has an embedding as orbits on
the template. We remark this embedding is unique, and can be found in general
using an algorithm, for example, as in Birman and Williams [6, Algorithm 2.4.3];
see also Hui and Rodríguez-Migueles [17].

There are two possibilities for a four-component link in S3 that arises from
Theorem 5.3. One choice is to add slopes 3

2 , −
2
1 , and 1

3 , which are identified to a
modular curve with L R-cutting sequence with repeating portion L RL2 R2. Thus
the four-component arithmetic link in S3 consists of the trefoil and the geodesics
L R, L2 R2, and L RL2 R2. This link is shown in the middle of Figure 9.

The other option is to add slopes 3
1 , −

1
2 , and 2

3 , which are identified to a modular
curve with L R-cutting sequence with repeating portion L R2L2 R. Thus another
four-component arithmetic link in S3 consists of the trefoil, the link L R, L2 R2, and
L R2L2 R.

Figure 9. After the Whitehead link, the next three simplest arith-
metic links from Theorem 5.3 are shown (note that in our conven-
tions the symbol R corresponds to the left side of the figure).
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Note that the five-component link consisting of the trefoil and the geodesics
L R, L2 R2, L R2L2 R and L RL2 R2 is also arithmetic by Theorem 5.3. This link is
shown on the right of Figure 9.

7. Volume versus hyperbolic length

Our goal is to make explicit the relationship between volume of the canonical lift
complement and geometric length of the original geodesic, for some sequence of
geodesics in some surfaces.

Remark 7.1. Recall that for A ∈ PSL(2, R) a hyperbolic element of trace t , the
eigenvalues of A are (−t ±

√
t2 − 4)/2. Let λA be the eigenvalue satisfying |λA|> 1.

Then the length of the closed geodesic determined by A is 2 ln |λA|.

Lemma 7.2. Let γn be the unique closed geodesic on the modular surface lifting to
the geodesic 1/n on 61,1. For 0n := {γi }

n
i=1, the length ℓ(0n) satisfies

ℓ(0n) ≍ n2.

Proof. The matrix representative corresponding to 1/n is An := L R(RL)n−1; see
Example 6.5. Let(

an bn

cn dn

)
:= (RL)n−1, so

(
an+1 bn+1

cn+1 dn+1

)
=

(
an+cn bn+dn

an+2cn bn+2dn

)
,

and

An+1 =

(
3an+4cn 3bn+4dn

2an+3cn 2bn+3dn

)
.

Then 3
2 Trace An−1 ≤ Trace An ≤ 4 Trace An−1. As Trace A1 = 3, by induction( 3

2

)n
≤ Trace An ≤ 4n.

The eigenvalue λn of An with |λn| > 1 is bounded by

1
2 |λn| ≤

1
2 Trace An ≤ |λn|.

Thus the length of γn satisfies

n ln 3
2 ≤ ℓ(γn) ≤ 2n ln 4,

and thus
n2 ln 3

2 ≤ ℓ(0n) ≤ 2n2 ln 4. □

Corollary 7.3. Let 0k := {γ1,n = 1/n, γ2,n = n/(n − 1), γ3,n = (1 − n)/1}
k
n=1 be

a collection of oriented simple closed geodesics on the once-punctured torus with a
hyperbolic metric ρ. Then, for 0̂k , the canonical lifts of 0k ,

(1) UT(61,1)∖0̂k is arithmetic,
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(2) Vol(UT(61,1)∖0̂k) = 3kvoct, and

(3) Vol(UT(61,1)∖0̂k) ≍

√

ℓρ(0k).

Proof. Notice that 0k are Farey neighbours, so by Theorem 4.3, UT(61,1)∖0̂k is
arithmetic and

Vol(UT(61,1)∖0̂k) = 3kvoct.

Observe that the geodesics 1/n, n/(n −1), (1−n)/1 project under the 6-fold cover
of the modular surface to L R(RL)n−1; see Example 6.5. Then by Lemma 7.2, the
length of the projection of 0k to 6Mod is coarsely equivalent to k2. Thus in the
6-fold cover 61,1, the lengths satisfy

ℓρ1,1(0k) ≍ 6k2,

where ρ1,1 is the pullback metric induced on 61,1 by the metric on the modular
surface 6Mod. Then

Vol(UT(61,1)∖0̂k) ≍ voct
√

3/2
√

ℓρ1,1(0k).

The proof of this result for any hyperbolic metric on the once-punctured torus
follows from the fact that any pair of hyperbolic metrics on a hyperbolic surface
are bilipschitz; see, for example, [5, Lemma 4.1]. □

By projecting the geodesics in Corollary 7.3 under the 6-fold cover to the modular
surface we obtain the following result from the introduction.

Corollary 1.2. There exists a sequence {γk}k∈N of closed geodesics on the modular
surface with length ℓ(γk) ↗ ∞ such that, for 0n :=

⋃n
k=1 γk ,

(1) UT(6Mod)∖0̂n is arithmetic,

(2) Vol(UT(6Mod)∖0̂n) = nvoct/2, and

(3) Vol(UT(6Mod)∖0̂n) ≍

√

ℓ(0n).

Here voct is the volume of a regular ideal octahedron.

Corollary 1.3. Let 6g,r be an orientable punctured surface with any hyperbolic
metric. Then there exists a sequence {0k}k∈N of filling finite sets of closed geodesics
on 6g,r with lengths ℓ(0k) ↗ ∞, such that UT(6g,r )∖0̂k is arithmetic for each
k ∈ N and

Vol(UT(6g,r )∖0̂k) ≍
√

ℓ(0k).

Proof. By Remark 2.3 we can construct a finite (branched) covering map p from
any orientable punctured hyperbolic surface 6g,r of genus g with r punctures to
the modular surface 6Mod.
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Let 0̃k be the finite set of closed geodesics on 6 obtained as the preimage under
p of the closed geodesics {γn}

k
n=1 of Lemma 7.2. By Lemma 3.2, UT(6g,r )∖0̂k is

arithmetic. A similar estimation of the volume and lengths as in Corollary 7.3 gives

Vol(UT(6g,r )∖0̂k) ≍
√

ℓρ(0k),

where the length ℓρ(0k) is measured in the pullback metric 6g,r induced by the
metric on 6Mod. Again the proof of this result for any hyperbolic metric on 6g,r

follows from the fact that any pair of hyperbolic metrics on a hyperbolic surface
are bilipschitz; see, for example, [5, Lemma 4.1]. □

8. Further questions

There is only one arithmetic knot complement in the 3-sphere, namely the figure-8
knot, due to Reid [22]. Is the modular geodesic L R the only modular geodesic with
arithmetic complement of its canonical lift? Notice that the question has a negative
answer in the general context of any knot in the complement of the trefoil. Hatcher
found an example of an arithmetic two-component link, where one component is
the trefoil knot, and the trace field is Q(

√
−2); see Figure 17 in [14]. However,

the unknotted component in Hatcher’s example is not a canonical lift of a closed
geodesic in the modular surface.

All arithmetic modular links produced in this paper are conjugate in PSL(2, C) to
a group commensurable with PSL(2, Z(

√
−1)). Are there examples of arithmetic

modular links conjugate to groups commensurable with PSL(2, Od) for Od a ring
of integers in a different quadratic number field Q(

√
−d)? More generally, is some

classification possible? For example, in the 3-sphere, there are infinitely many
arithmetic links. However, Baker and Reid showed that there are only finitely many
principal congruence link complements in the 3-sphere [3], where a noncompact
finite-volume hyperbolic 3-manifold is principal congruence if it is isometric to
H3/0(I ) where 0(I ) = ker{PSL(2, Od) → PSL(2, Od/I )} for some ideal I in Od .
Baker, Goerner, and Reid have now enumerated all principal congruence link
complements in the 3-sphere [4]. Is a similar classification possible for modular
links?

Any closed geodesic on the modular surface naturally corresponds to a real
quadratic extension of Q [24]. Does the arithmeticity of the complement of the
corresponding canonical lift relate to this? For the examples in this paper, the
quadratic field corresponding to the L R geodesic is Q(

√
5). The geodesic L2 R2

has quadratic field Q(
√

2). The geodesics L R2L2L and L RL2 R2 have the same
length, and both correspond to the same quadratic field Q(

√
221). In general,

geodesics corresponding to different maximal ideals in the same quadratic field will
have the same length.
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