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HANKEL OPERATORS ON L p(R+) AND
THEIR p-COMPLETELY BOUNDED MULTIPLIERS

LORIS ARNOLD, CHRISTIAN LE MERDY AND SAFOURA ZADEH

We show that for any 1 < p < ∞, the space Hank p(R+) ⊆ B(L p(R+)) of
all Hankel operators on L p(R+) is equal to the w∗-closure of the linear
span of the operators θu : L p(R+) → L p(R+) defined by θu f = f (u− · ), for
u > 0. We deduce that Hank p(R+) is the dual space of Ap(R+), a half-line
analogue of the Figà-Talamanca–Herz algebra Ap(R). Then we show that
a function m : R∗

+ → C is the symbol of a p-completely bounded multiplier
Hank p(R+) → Hank p(R+) if and only if there exist α ∈ L∞(R+; L p(�)) and
β ∈ L∞(R+; L p′

(�)) such that m(s + t) = ⟨α(s), β(t)⟩ for a.e. (s, t) ∈ R∗2
+ .

We also give analogues of these results in the (easier) discrete case.

1. Introduction

For any u > 0 and for any function f : R+ → C, let τu f : R+ → C be the
shifted function defined by τu f = f ( · −u). Let 1< p, p′ <∞ be two conjugate
indices. We say that a bounded operator T : L p(R+)→ L p(R+) is Hankelian if
⟨T τu f, g⟩= ⟨T f, τug⟩ for all f ∈ L p(R+) and g ∈ L p′

(R+). Let B(L p(R+)) denote
the Banach space of all bounded operators on L p(R+). The main object of this paper
is the subspace Hankp(R+)⊆ B(L p(R+)) of all Hankel operators on L p(R+).

The case p = 2 has received a lot of attention; see [Nikolski 2002; 2020; Peller
2003; Yafaev 2015; 2017a; 2017b]. The most important result in this case is
that Hank2(R+) is isometrically isomorphic to the quotient space L∞(R)/H∞(R),
where H∞(R)⊂ L∞(R) is the classical Hardy space of essentially bounded func-
tions whose Fourier transform has support in R+ (see [Nikolski 2020, Section IV.5.3]
or [Peller 2003, Theorem I.8.1]). This result is the real line analogue of Nehari’s
classical theorem describing Hankel operators on ℓ2 (see [Nikolski 2020, Theo-
rem II.2.2.4], [Peller 2003, Theorem I.1.1] or [Power 1982, Theorem 1.3]). An
equivalent formulation of the above result is that

(1) Hank2(R+)≃ H 1(R)∗,

where H 1(R)⊆ L1(R) is the Hardy space of all integrable functions whose Fourier
transform vanishes on R−.
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The first main result of this paper is that for any 1< p <∞, the Banach space
Hankp(R+) coincides with Spanw

∗

{θu : u > 0} ⊂ B(L p(R+)), where, for any u > 0,
θu : L p(R+)→ L p(R+) is the Hankel operator defined by θu f = f (u− · ). As a
consequence, we show that

(2) Hankp(R+)≃ Ap(R+)
∗,

where Ap(R+) is a half-line analogue of the Figà-Talamanca–Herz algebra Ap(R)

(see, e.g., [Derighetti 2011, Chapter 3]). We will see in Remark 4.2(a) that
A2(R+) ≃ H 1(R). Thus, the duality result (2), established in Theorem 4.1, is
an L p-version of (1).

By a multiplier of Hankp(R+), we mean a w∗-continuous operator

T : Hankp(R+)→ Hankp(R+)

such that T (θu) = m(u)θu for all u > 0, for some function m : R∗

+
→ C. In this

case, we set T = Tm and it turns out that m is necessarily bounded and continuous,
see Lemma 4.5. The second main result of this paper is a characterization of
p-completely bounded multipliers Tm . We refer to Section 2 for some background
on p-complete boundedness, whose definition goes back to [Pisier 1990] (see
also [Daws 2010; Le Merdy 1996; Pisier 2001]). We prove in Theorem 4.6 that
Tm : Hankp(R+)→ Hankp(R+) is a p-completely bounded multiplier if and only
if there exist a measure space (�,µ) and two essentially bounded measurable
functions α : R+ → L p(�) and β : R+ → L p′

(�) such that m(s + t)= ⟨α(s), β(t)⟩
for almost every (s, t) ∈ R∗2

+
. This is a generalisation of [Arnold et al. 2022,

Theorem 3.1]. Indeed, the result in [Arnold et al. 2022] provides a characterization
of S1-bounded multipliers on H 1(R). Using (1), this yields a characterization of
completely bounded multipliers on Hank2(R+), which is nothing but the case p = 2
of Theorem 4.6. See Remark 4.7 for more on this.

Let us briefly explain the plan of the paper. Section 2 contains some preliminary
results. Section 3 is devoted to Hankp(N)⊂ B(ℓp), the space of Hankel operators
on ℓp. We establish analogues of the aforementioned results in the discrete setting.
Results for Hankp(N) are easier than those concerning Hankp(R+) and Section 3
can be considered as a warm up. The main results are stated and proved in Section 4.

2. Preliminaries

All our Banach spaces are complex ones. For any Banach spaces X, Z , we let
B(X, Z) denote the Banach space of all bounded operators from X into Z and we
write B(X) instead of B(X, X) when Z = X . For any x ∈ X and x∗

∈ X∗, the
duality action x∗(x) is denoted by ⟨x∗, x⟩X∗,X , or simply by ⟨x∗, x⟩ if there is no
risk of confusion.
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We start with duality on tensor products. Let X, Y be Banach spaces. Let X ⊗̂ Y
denote their projective tensor product [Diestel and Uhl 1977, Section VIII.1]. We
will use the classical isometric identification

(3) (X ⊗̂ Y )∗ ≃ B(X, Y ∗)

provided, e.g., by [Diestel and Uhl 1977, Corollary VIII.2.2]. More precisely,
for any ξ ∈ (X ⊗̂ Y )∗, there exists a necessarily unique Rξ ∈ B(X, Y ∗) such that
ξ(x ⊗ y) = ⟨Rξ (x), y⟩ for all x ∈ X and y ∈ Y . Moreover ∥Rξ∥ = ∥ξ∥ and the
mapping ξ 7→ Rξ is onto.

Lemma 2.1. Let A ⊂ X and B ⊂ Y such that Span{A} is dense in X and Span{B}

is dense in Y . Assume that (Rι)ι is a bounded net of B(X, Y ∗). Then Rι converges
to some R ∈ B(X, Y ∗) in the w∗-topology if and only if ⟨Rι(x), y⟩ → ⟨R(x), y⟩ for
all x ∈ A and y ∈ B.

Proof. Assume the latter property. Since the algebraic tensor product X ⊗Y is dense
in X ⊗̂ Y , it implies that ⟨Rι, z⟩ → ⟨R, z⟩, for all z belonging to a dense subspace
of X ⊗̂ Y . Next, the boundedness of (Rι)ι implies that ⟨Rι, z⟩ → ⟨R, z⟩, for all z
belonging to X ⊗̂ Y . The equivalence follows. □

We will use the above duality principles in the case when X = Y ∗ is an L p-space
L p(�), for some index 1< p <∞.

We now give a brief background on p-completely bounded maps, following
[Pisier 1990] (see also [Daws 2010; Le Merdy 1996; Pisier 2001]). Let 1< p <∞

and let SQ p denote the collection of quotients of subspaces of L p-spaces, where
we identify spaces which are isometrically isomorphic. Let E be an SQ p-space.
Let n ≥ 1 be an integer and let [Ti j ]1≤i, j≤n ∈ Mn ⊗ B(E) be an n × n matrix with
entries Ti j in B(E). We equip Mn ⊗ B(E) with the norm defined by

(4) ∥[Ti j ]∥ = sup
{( n∑

i=1

∥∥∥ n∑
j=1

Ti j (x j )

∥∥∥p) 1
p

: x1, . . . , xn ∈ E,
n∑

i=1
∥xi∥

p
≤ 1

}
.

If S ⊂ B(E) is any subspace, then we let Mn(S) denote Mn ⊗ S equipped with the
induced norm.

Let S1 and S2 be subspaces of B(E1) and B(E2), respectively, for some SQ p-
spaces E1 and E2. Letw : S1 → S2 be a linear map. For any n ≥1, letwn : Mn(S1)→

Mn(S2) be defined by wn([Ti j ]) = [w(Ti j )], for any [Ti j ]1≤i, j≤n ∈ Mn(S1). By
definition, w is called p-completely bounded if the maps wn are uniformly bounded.
In this case, the p-cb norm of w is defined by ∥w∥p−cb = supn ∥wn∥. We further
say that w is p-completely contractive if ∥w∥p−cb ≤ 1 and that w is a p-complete
isometry ifwn is an isometry for all n ≥1. Note that the case p =2 corresponds to the
classical notion of completely bounded maps (see, e.g., [Paulsen 2002; Pisier 2001]).
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We recall the following factorisation theorem of Pisier (see [Le Merdy 1996,
Theorem 1.4; Pisier 1990, Theorem 2.1]), which extends Wittstock’s factorisation
theorem [Paulsen 2002, Theorem 8.4].

Theorem 2.2. Let (�1, µ1) and (�2, µ2) be measure spaces and let 1 < p <∞.
Let S ⊆ B(L p(�1)) be a unital subalgebra. Let w : S → B(L p(�2)) be a linear
map and let C ≥ 0 be a constant. The following assertions are equivalent.

(i) The map w is p-completely bounded and ∥w∥p−cb ≤ C.

(ii) There exist an SQ p-space E , a unital, nondegenerate p-completely contractive
homomorphism π : S → B(E) as well as operators V : L p(�2) → E and
W : E → L p(�2) such that ∥V ∥∥W∥≤C and for any x ∈ S, w(x)= Wπ(x)V .

Remark 2.3. Let 1 < p < ∞ and let p′ be its conjugate index. Let E be an
SQ p-space. Then by assumption, there exist a measure space (�,µ) and two closed
subspaces E2 ⊆ E1 ⊆ L p(�) such that E = E1/E2. Then E⊥

1 ⊆ E⊥

2 ⊆ L p′

(�) and
we have an isometric identification

(5) E∗
≃

E⊥

2

E⊥

1
,

by the classical duality between subspaces and quotients of Banach spaces. More
explicitly, let f ∈ E1 and let g ∈ E⊥

2 . Let ḟ ∈ E denote the class of f modulo E2

and let ġ ∈ E∗ denote the element associated to the class of g modulo E⊥

1 through
the identification (5). Then we have

(6) ⟨ġ, ḟ ⟩E∗,E = ⟨g, f ⟩L p′
,L p .

We now turn to Bochner spaces. Let (6, ν) be a measure space and let X be
a Banach space. For any 1 ≤ p ≤ ∞, we let L p(6; X) denote the space of all
measurable functions φ :6 → X (defined up to almost everywhere zero functions)
such that the norm function t 7→ ∥φ(t)∥ belongs to L p(6). This is a Banach space
for the norm ∥φ∥p, defined as the L p(6)-norm of ∥φ( · )∥ (see, e.g., [Diestel and
Uhl 1977, Chapters I and II]).

Assume that p is finite and note that in this case, L p(6)⊗X is dense in L p(6; X).
Let p′ be the conjugate index of p. For all φ ∈ L p(6; X) and ψ ∈ L p′

(6; X∗), the
function t 7→ ⟨ψ(t), φ(t)⟩X∗,X belongs to L1(6) and the resulting duality paring
⟨ψ, φ⟩ :=

∫
�
⟨ψ(t), φ(t)⟩ dν(t) extends to an isometric embedding L p′

(6; X∗) ↪→

L p(6; X)∗. Furthermore, this embedding is onto if X is reflexive, that is,

(7) L p′

(6; X∗)≃ L p(6; X)∗ if X is reflexive.

We refer to [Diestel and Uhl 1977, Corollary III.2.13 and Section IV.1] for these
results and complements.
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Let (6, ν) and (�,µ) be two measure spaces. Then we have an isometric
identification

L p(6; L p(�))≃ L p(6×�),

from which it follows that for any T ∈ B(L p(6)), the tensor extension

T ⊗ IL p(�) : L p(6)⊗ L p(�)→ L p(6)⊗ L p(�)

extends to a bounded operator T ⊗ IL p(�) on L p(6×�), whose norm is equal to
the norm of T . The following is elementary.

Lemma 2.4. The mapping π : B(L p(6)) → B(L p(6 ×�)) defined by π(T ) =

T ⊗ IL p(�) is a p-complete isometry.

Proof. Let n ≥ 1 and let Jn = {1, . . . , n}. It follows from (4) that Mn(B(L p(6)))=

B(ℓp
n (L p(6))) and hence Mn(B(L p(6))) = B(L p(Jn ×6)) isometrically. Like-

wise, we have Mn(B(L p(6×�)))= B(L p(Jn ×6×�)) isometrically. Through
these identifications,

[Ti j ⊗ IL p(�)] = [Ti j ] ⊗ IL p(�),

for all [Ti j ]1≤i, j≤n in Mn(B(L p(6))). The result follows at once. □

We finally state an important result concerning Schur products on B(ℓp
I )-spaces.

Let I be an index set, let 1< p<∞ and let ℓp
I denote the discrete L p-space over I .

Let (et)t∈I be its canonical basis. To any T ∈ B(ℓp
I ), we associate a matrix of

complex numbers, [ast ]s,t∈I , defined by ast = ⟨T (et), es⟩, for all s, t ∈ I . Following
[Pisier 2001, Chapter 5], we say that a bounded family {ϕ(s, t)}(s,t)∈I 2 of complex
numbers is a bounded Schur multiplier on B(ℓp

I ) if for all T ∈ B(ℓp
I ), with matrix

[ast ]s,t∈I , the matrix [ϕ(s, t)ast ]s,t∈I represents an element of B(ℓp
I ). In this case,

the mapping [ast ] → [ϕ(s, t)ast ] is a bounded operator from B(ℓp
I ) into itself. We

note that {ϕ(s, t)}(s,t)∈I 2 is a bounded Schur multiplier with norm ≤ C if and only
if for all n ≥ 1, all [ai j ]1≤i, j≤n in Mn and all t1, . . . , tn, s1, . . . , sn in I , we have

(8) ∥[ϕ(si , t j )ai j ]∥B(ℓp
n )

≤ C∥[ai j ]∥B(ℓp
n )
.

In the sequel, we apply the above definitions to the case when I = R∗

+
.

Theorem 2.5. Let ϕ :R∗2
+

→C be a continuous bounded function. Let 1< p, p′<∞

be conjugate indices and let C ≥ 0 be a constant. The following assertions are
equivalent.

(i) The family{ϕ(s, t)}(s,t)∈R∗2
+

is a bounded Schur multiplier on B(ℓp
R∗

+

), with
norm ≤ C.

(ii) There exist a measure space (�,µ) and two functions α∈ L∞(R+; L p(�)) and
β∈L∞(R+; L p′

(�)) such that ∥α∥∞∥β∥∞ ≤C and ϕ(s, t)=⟨α(s),β(t)⟩L p,L p′

for almost every (s, t) ∈ R∗2
+

.
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Proof. According to [Coine 2018, Section 4.1], (ii) is equivalent to the fact that as
an element of L∞(R2

+
),

(ii’) ϕ is a bounded Schur multiplier on B(L p(R+)).

It further follows from [Herz 1974, Lemmas 1 and 2] that since ϕ is continuous,
(ii’) is equivalent to (i). The result follows. □

3. Hankel operators on ℓ p and their multipliers

In this section we work on the sequence spaces ℓp
= ℓ

p
N, where N = {0, 1, . . .}. For

any 1< p <∞, we let (en)≥0 denote the classical basis of ℓp. For any T ∈ B(ℓp),
the associated matrix [ti j ]i, j≥0 is given by ti j = ⟨T (e j ), ei ⟩, for all i, j ≥ 0.

Let Hankp(N) ⊆ B(ℓp) be the subspace of all T ∈ B(ℓp) whose matrix is
Hankelian, i.e., has the form [ci+ j ]i, j≥0 for some sequence (ck)k≥0 of complex
numbers.

Let p′ be the conjugate index of p and regard ℓp
⊗ℓp′

⊂ B(ℓp) in the usual way.
We set

γk =
∑

i+ j=k
ei ⊗ e j

for any k ≥ 0. Then each γk belongs to Hankp(N), and ∥γk∥ = 1. Indeed, the matrix
of γk is [ci+ j ]i, j≥0 with ck = 1 and cl = 0 for all l ̸= k.

Lemma 3.1. For any 1 < p < ∞, the space Hankp(N) is the w∗-closure of the
linear span of {γk : k ≥ 0}.

Proof. It is plain that Hankp(N) is a w∗-closed subspace of B(ℓp), hence one
inclusion is straightforward.

To check the other one, consider T ∈ Hankp(N). By the definition of this space,
there is a sequence (ck)k≥0 of C such that

⟨T (e j ), ei ⟩ = ci+ j , for all i, j ≥ 0.

For any n ≥ 1, let Kn be the Fejér kernel defined by

Kn(t)=

n∑
k=−n

(
1 −

|k|

n

)
eint , t ∈ R.

Then let Tn ∈ B(ℓp) be the finite rank operator whose matrix is [K̂n(i + j)ci+ j ]i, j≥0.
Note that

Tn =

n∑
k=0

(
1 −

|k|

n

)
ck γk ∈ Span{γk : k ≥ 0}.
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We show that ∥Tn∥ ≤ ∥T ∥. To see this, let α = (α j ) j≥0 ∈ ℓp and (βm)m≥0 ∈ ℓp′

.
We have that

⟨Tn(α), β⟩ =
∑

m, j≥0
K̂n(m + j)cm+ jα jβm

=
1

2π

∫ π

−π
Kn(t)

∑
m, j≥0

cm+ jα jβme−i(m+ j)t dt.

Since Kn ≥ 0, we deduce

|⟨Tn(α), β⟩| ≤
1

2π

∫ π

−π
Kn(t)

∣∣∣ ∑
m, j≥0

cm+ jα jβme−i(m+ j)t
∣∣∣ dt.

Now for all t ∈ [−π, π], we have∣∣∣ ∑
m, j≥0

cm+ jα jβme−i(m+ j)t
∣∣∣ =

∣∣∣ ∑
m, j≥0

cm+ j (e−i j tα j )(e−imtβm)

∣∣∣
=

∣∣〈T ((e−i j tα j ) j≥0), (e−imtβm)m≥0
〉∣∣

≤ ∥T ∥

(∑
j≥0

|e−i j tα j |
p
)1

p
( ∑

m≥0
|e−imtβm |

p′
) 1

p′

≤ ∥T ∥∥α∥p∥β∥p′,

Since
1

2π

∫ π

−π
Kn(t)dt = 1,

we therefore obtain that |⟨Tn(α), β⟩|≤∥T ∥∥α∥p∥β∥p′ . This proves that ∥Tn∥≤∥T ∥,
as requested.

For all i, j ≥ 0,

⟨Tn(e j ), ei ⟩ = K̂n(i + j) ⟨T e j , ei ⟩ → ⟨T e j , ei ⟩,

when n → ∞. Hence Tn → T in the w∗-topology, by Lemma 2.1. Consequently, T
belongs to the w∗-closure of Span{γk : k ≥ 0}. □

Remark 3.2. (a) Nehari’s celebrated theorem (see, e.g., [Nikolski 2020, Theo-
rem II.2.2.4], [Peller 2003, Theorem I.1.1] or [Power 1982, Theorem 1.3]) asserts
that

(9) Hank2(N)≃
L∞(T)

H∞(T)
.

Here T stands for the unit circle of C and H∞(T)⊂ L∞(T) is the Hardy space of
functions whose negative Fourier coefficients vanish. The isometric isomorphism
J : L∞(T)/H∞(T)→ Hank2(N) providing (9) is defined as follows. Given any
F ∈ L∞(T), let Ḟ denote its class modulo H∞(T). Then J (Ḟ) is the operator
whose matrix is equal to [F̂(−i − j − 1)]i, j≥0.
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(b) We remark that Hankp(N)⊆ Hank2(N). To see this, note that if T ∈ Hankp(N),
then because of the symmetry in its matrix representation due to being a Hankelian
matrix, T has the same matrix representation as T ∗, and therefore T extends to a
bounded operator on ℓp′

. By interpolation, T extends to a bounded operator on ℓ2,
which is represented by the same matrix as T . Hence, T belongs to Hank2(N).

However for 1 < p ̸= 2 < ∞, there is no description of Hankp(N) similar to
Nehari’s theorem.

(c) The definition of Hankp(N) readily extends to the case p = 1 isometrically:

Hank1(N)≃ ℓ1.

Indeed, let J1 : ℓ1
→ Hank1(N) be defined by

J1(c)=

∞∑
k=0

ckγk, c = (ck)k≥0 ∈ ℓ1.

Next, let J2 : Hank1(N) → ℓ1 be defined by J2(T ) = T (e0). Then J1, J2 are
contractions and it is easy to check that they are inverse to each other. Hence J1 is
an isometric isomorphism.

We say that a sequence m = (mk)k≥0 in C is the symbol of a multiplier on
Hankp(N) if there is a w∗-continuous operator Tm : Hankp(N) → Hankp(N)

such that
Tm(γk)= mkγk, k ≥ 0.

Such an operator is uniquely defined. In this case, m ∈ ℓ∞ and ∥m∥∞ ≤ ∥Tm∥.
The following is a simple extension of [Pisier 2001, Theorems 6.1 and 6.2].

Theorem 3.3. Let 1< p <∞, let C ≥ 0 be a constant and let m = (mk)k≥0 be a
sequence in C. The following assertions are equivalent.

(i) m is the symbol of a p-completely bounded multiplier on Hankp(N), and

∥Tm : Hankp(N)→ Hankp(N)∥p−cb ≤ C.

(ii) There exist a measure space (�,µ), and bounded sequences (αi )i≥0 in L p(�)

and (β j ) j≥0 in L p′

(�) such that mi+ j = ⟨αi , β j ⟩, for every i, j ≥ 0, and

sup
i≥0

∥αi∥p sup
j≥0

∥β j∥p′ ≤ C.

Proof. By homogeneity, we may assume that C = 1 throughout this proof.
Assume (i). Let κ : ℓ

p
Z → ℓ

p
Z be defined by κ((ak)k∈Z)= (a−k)k∈Z, let J : ℓ

p
N → ℓ

p
Z

be the canonical embedding and let Q : ℓ
p
Z → ℓ

p
N be the canonical projection.

Define q : B(ℓp
Z)→ B(ℓp

N) by q(T )= QκT J . According to the easy implication
(ii) =⇒ (i) of Theorem 2.2, the mapping q is p-completely contractive. We note that
if [ti, j ](i, j)∈Z2 is the matrix of some T ∈ B(ℓp

Z), then the matrix of q(T ) is equal
to [t−i, j ](i, j)∈N2 .
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Let Mp(Z)⊆ B(ℓp
Z) be the space of all bounded Fourier multipliers on ℓp

Z; this
is a unital subalgebra. Let T ∈ Mp(Z) and let φ ∈ L∞(T) denote its symbol. Then
the matrix of T is equal to [φ̂(i − j)](i, j)∈Z2 , hence the matrix of q(T ) is equal
to [φ̂(−i − j)](i, j)∈N2 . Hence, q(T ) is Hankelian. We can therefore consider the
restriction map

q|Mp(Z) : Mp(Z)→ Hankp(N).

Let s : ℓ
p
Z → ℓ

p
Z be the shift operator defined by s(e j )= e j+1, for all j ∈ Z. We

observe (left to the reader) that

(10) q(s−k)= γk, k ∈ N.

We assume that Tm : Hankp(N)→ Hankp(N) is p-completely contractive. Con-
sider w : Mp(Z)→ Hankp(N)⊆ B(ℓp) defined by w := Tm ◦ q|Mp(Z). Then w is
p-completely contractive. Applying Theorem 2.2 to w, we obtain an SQ p-space E ,
a contractive homomorphism π :Mp(Z)→ B(E) and contractive maps V : ℓ

p
N → E

and W : E → ℓ
p
N such that

(11) w(T )= Wπ(T )V, T ∈ Mp(Z).

Let i, j ≥ 0. By (10), we have

w(s−(i+ j))= Tm(q(s−(i+ j)))= Tm(γi+ j )= mi+ jγi+ j ,

hence ⟨w(s−(i+ j))ei , e j ⟩ = mi+ j . Consequently, from (11), we obtain that

mi+ j = ⟨π(s−(i+ j))V (ei ),W ∗(e j )⟩E,E∗ .

The mapping π is multiplicative, hence this implies that

mi+ j = ⟨π(s−i )V (ei ), π(s− j )∗W ∗(e j )⟩E,E∗ .

Set xi := π(s−i )V (ei ) ∈ E and y j := π(s− j )∗W ∗(e j ) ∈ E∗. Then, for all i, j ≥ 0
we have ∥xi∥ ≤ 1, ∥y j∥ ≤ 1 and mi+ j = ⟨xi , y j ⟩E,E∗ .

Let us now apply Remark 2.3. As in the latter, consider a measure space (�,µ)
and closed subspaces E2 ⊂ E1 ⊂ L p(�) such that E = E1/E2. Recall (5). For
any i ≥ 0, pick αi ∈ E1 such that ∥αi∥p = ∥xi∥ and α̇i = xi . Likewise, for any
j ≥ 0, pick β j ∈ E⊥

2 such that ∥β j∥p′ = ∥y j∥ and β̇ j = y j . Then for all i, j ≥ 0,
we both have ∥αi∥p ≤ 1, ∥β j∥p′ ≤ 1 and mi+ j = ⟨αi , β j ⟩L p,L p′ . This proves (ii).

Conversely, assume (ii). By [Pisier 2001, Corollary 8.2], the family {mi+ j }(i, j)∈N2

induces a p-completely contractive Schur multiplier on B(ℓp). It is clear that the
restriction of this Schur multiplier maps Hankp(N) into itself. More precisely, it
maps γk to mkγk for all k ≥ 0. Hence m is the symbol of a p-completely contractive
multiplier on Hankp(N). □
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4. Hankel operators on L p(R+)

Throughout we let 1< p <∞ and we let p′ denote its conjugate index. For any
u > 0, we set τu f := f ( · −u), for all f ∈ L1(R)+ L∞(R). Let

Hankp(R+)⊆ B(L p(R+))

be the space of Hankelian operators on L p(R+), consisting of all bounded operators
T : L p(R+)→ L p(R+) such that

⟨T τu f, g⟩ = ⟨T f, τug⟩,

for all f ∈ L p(R+), g ∈ L p′

(R+) and u > 0.
For any u > 0, let θu : L p(R+)→ L p(R+) be defined by θu f = f (u− · ). Note

that θu is a Hankelian operator on L p(R+). Indeed, for all f ∈ L p(R+), g ∈ L p′

(R+)

and v > 0, we have

⟨θuτv f, g⟩ =

∫ u

v
f (u − s)g(s − v) ds = ⟨θu f, τvg⟩

if v < u, and ⟨θuτv f, g⟩ = ⟨θu f, τvg⟩ = 0 if v ≥ u. The operators θu are the
continuous counterparts of the operators γk from Section 3. From this point of view,
part (1) of Theorem 4.1 below is an analogue of Lemma 3.1. However its proof is
more delicate.

We introduce a new space Ap(R+)⊆ C0(R+) by

Ap(R+):=
{

F =

∞∑
n=1

fn∗gn : fn ∈L p(R+), gn ∈L p′

(R+)and
∞∑

n=1
∥ fn∥p∥gn∥p′<∞

}
,

and we equip it with the norm

(12) ∥F∥Ap = inf
{ ∞∑

n=1
∥ fn∥p∥gn∥p′

}
,

where the infimum runs over all possible representations of F as above. The
space Ap(R+) is a half-line analogue of the classical Figà-Talamanca–Herz algebra
Ap(R); see, e.g., [Derighetti 2011]. The classical arguments showing that the latter
is a Banach space show as well that (12) is a norm on Ap(R+) and that Ap(R+) is
a Banach space.

It follows from the above definitions that there exists a (necessarily unique)
contractive map

Q p : L p(R+) ⊗̂ L p′

(R+)→ Ap(R+)

such that Q p( f ⊗ g)= f ∗ g, for all f ∈ L p(R+) and g ∈ L p′

(R+). Moreover Q p

is a quotient map. Hence the adjoint

Q∗

p : Ap(R+)
∗
→ B(L p(R+))
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of Q p is an isometry. This yields an isometric identification Ap(R+)
∗
≃ ker(Q p)

⊥

(= ran(Q∗
p)).

We observe that

(13) ker(Q p)
⊥

= Spanw
∗

{θu : u > 0}.

To prove this, we note that

(14) ⟨θu, f ⊗ g⟩ = ⟨θu( f ), g⟩ = ( f ∗ g)(u),

for all f ∈ L p(R), g ∈ L p′

(R+) and u > 0. Hence,〈
θu,

∞∑
n=1

fn ⊗ gn

〉
=

( ∞∑
n=1

fn ∗ gn

)
(u)

for all sequences ( fn)n in L p(R+) and (gn)n in L p′

(R+) such that
∞∑

n=1
∥ fn∥p∥gn∥p′ <∞,

and all u > 0. This implies that Span{θu : u > 0}⊥ = ker(Q p), and (13) follows.

Theorem 4.1. (1) The space Hankp(R+) is equal to the w∗-closure of the linear
span of {θu : u > 0}.

(2) We have an isometric identification

Hankp(R+)≃ Ap(R+)
∗.

Proof. Part (2) follows from part (1) and the discussion preceding the statement
of Theorem 4.1. For any f ∈ L p(R+), g ∈ L p′

(R+) and u > 0, the functionals
T 7→ ⟨T τu f, g⟩ and T 7→ ⟨T f, τug⟩ are w∗-continuous on B(L p(R+)). Conse-
quently, Hankp(R+) is w∗-closed. Hence Hankp(R+) contains the w∗-closure of
Span{θu : u > 0}. To prove the reverse inclusion, it suffices to show, by (13), that

Hankp(R+)⊂ ker(Q p)
⊥.

We will use a double approximation process. First, let k, l in Cc(R), the space of
continuous functions with compact support. To any T ∈ B(L p(R+)), we associate
Tk,l ∈ B(L p(R+)) defined by

⟨Tk,l( f ), g⟩ =

∫
R
⟨T (τuk · f ), τ−ul · g⟩ du, f ∈ L p(R+), g ∈ L p′

(R+).

We note that∫
R

∣∣⟨T (τuk · f ), τ−ul · g⟩
∣∣ du ≤ ∥T ∥p

(∫
R
∥τuk f ∥

p
p du

)1
p
(∫

R
∥τ−ulg∥

p′

p′ du
) 1

p′

= ∥T ∥p∥ f ∥p∥g∥p′∥k∥p∥l∥p′ .
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Thus, Tk,l is well-defined and ∥Tk,l∥ ≤ ∥T ∥∥k∥p∥l∥p′ . We are going to show that

(15) T ∈ Hankp(R+) =⇒ Tk,l ∈ ker(Q p)
⊥.

Let α ∈ Cc(R+)
+ such that ∥α∥1 = 1. Let Rα ∈ B(L p(R+)) be defined by

Rα( f )= α ∗ f, f ∈ L p(R+).

We show that (TRα)k,l belongs to ker(Q p)
⊥ if T ∈ Hankp(R+), and we use these

auxiliary operators to establish (15).
We fix some T ∈ Hankp(R+). Let z ∈ ker(Q p). Since Cc(R+) is both dense in

L p(R+) and L p′

(R+), it follows, e.g., from [Derighetti 2011, Chapter 3, Propo-
sition 6] that there exist sequences ( fn)n≥1 and (gn)n≥1 in Cc(R+) such that∑

∞

n=1 ∥ fn∥p∥gn∥p′ < ∞ and z =
∑

∞

n=1 fn ⊗ gn . Since z ∈ ker(Q p), we have∑
∞

n=1 fn ∗ gn = 0, pointwise.
We write Rα f =

∫
R+

f (s)τsα ds as a Bochner integral, for all f ∈ Cc(R+). A
simple application of Fubini’s theorem leads to

k ∗ l · fn ∗ gn =

∫
R

∫
R+

(τuk · fn)(s)τs(τ−ul · gn) dsdu,

for all n ≥ 1. We deduce that

∞∑
n=1

⟨(TRα)k,l( fn), gn⟩ =

∞∑
n=1

∫
R
⟨TRα(τuk · fn), τ−ul · gn⟩ du

=

∞∑
n=1

∫
R
⟨T ((τuk · fn) ∗α), τ−ul · gn⟩ du

=

∞∑
n=1

∫
R

∫
R+

(τuk · fn)(s)⟨T (τsα), τ−ul · gn⟩ dsdu

=

∞∑
n=1

∫
R

∫
R+

⟨T (α), (τuk · fn)(s)τs(τ−ul · gn)⟩ dsdu

=

∞∑
n=1

⟨T (α), k ∗ l · fn ∗ gn⟩

=

〈
T (α), k ∗ l ·

∞∑
n=1

fn ∗ gn

〉
= 0.

This shows that (TRα)k,l belongs to ker(Q p)
⊥.

For z, fn, gn as above, write

∞∑
n=1

⟨Tk,l( fn), gn⟩ =

∞∑
n=1

⟨Tk,l( fn), gn⟩ −

∞∑
n=1

⟨(TRα)k,l( fn), gn⟩.
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Then we have∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤

∞∑
n=1

∫
R

∣∣⟨T (τuk · fn − (τuk · fn) ∗α), τ−ul · gn⟩
∣∣ du

≤

∞∑
n=1

∥T ∥

(∫
R
∥τuk · fn − (τuk · fn) ∗α∥

p
p du

)1
p
(∫

R
∥τ−ul · gn∥

p′

p′ du
) 1

p′

≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(∫
R
∥τuk · fn −

(
τuk · fn

)
∗α∥

p
p du

)1
p
.

Recall that by assumption, α ≥ 0 and
∫

R+
α(s)ds = 1. Then we deduce from

above that∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(∫
R

∥∥∥∫
R+

α(s)(τuk · fn − τs(τuk · fn))ds
∥∥∥p

p
du

)1
p

≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(∫
R

∫
R+

α(s)
∥∥τuk · fn − τs(τuk · fn)

∥∥p
p dsdu

)1
p
.

The integral in the right-hand side satisfies(∫
R

∫
R+

α(s)
∥∥τuk · fn −τs(τuk · fn)

∥∥p
p dsdu

)1
p

≤

(∫
R

∫
R+

α(s)
∥∥τuk · fn −τs+uk · fn

∥∥p
pdsdu

)1
p

+

(∫
R

∫
R+

α(s)
∥∥τs+uk · fn −τs(τuk · fn)

∥∥p
p dsdu

)1
p

≤

(∫
R

∫
R+

α(s)
∥∥τu((k−τsk)· fn)

∥∥p
p dsdu

)1
p

+

(∫
R

∫
R+

α(s)
∥∥τs+uk ·( fn −τs fn)

∥∥p
pdsdu

)1
p

≤ sup
s∈supp(α)

(∫
R

∥∥τu(k−τsk)· fn
∥∥p

p du
)1

p
+ sup

s∈supp(α)

(∫
R

∥∥τs+uk ·( fn −τs fn)
∥∥p

p du
)1

p

= sup
s∈supp(α)

∥k−τsk∥p∥ fn∥p+ sup
s∈supp(α)

∥k∥p∥ fn −τs fn∥p.

Hence we obtain that∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(
sup

s∈supp(α)
∥k − τsk∥p∥ fn∥p + sup

s∈supp(α)
∥k∥p∥ fn − τs fn∥p

)
.
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Given ϵ > 0, choose M such that
∞∑

n=M+1
∥ fn∥p∥gn∥p′ < ϵ.

We may find s0 > 0 such that for all s ∈ (0, s0) and all 1 ≤ n ≤ M , we have that

∥k − τsk∥p ≤
ϵ∥k∥p∑

∞

n=1 ∥ fn∥p∥gn∥p′

and ∥ fn − τs fn∥p ≤
ϵ

M∥gn∥p′

.

We may now choose α so that supp(α)⊆ (0, t0). Then we obtain from above that∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤ ∥T ∥∥l∥p′

(
ϵ∥k∥p +

M∑
n=1

∥gn∥p′ · sup
s∈supp(α)

∥k∥p∥ fn − τs fn∥p

+

∞∑
n=M+1

∥gn∥p′ · sup
s∈supp(α)

∥k∥p∥ fn − τs fn∥p

)
≤ ∥T ∥∥l∥p′

(
2ϵ∥k∥p +

∞∑
n=M+1

2∥k∥p∥gn∥p′∥ fn∥p

)
≤ 4ϵ∥T ∥∥l∥p′∥k∥p.

Since ϵ was arbitrary, this shows that
∑

∞

n=1⟨Tk,l( fn),gn⟩=0. Since z=
∑

∞

n=1 fn⊗gn

was an arbitrary element of ker(Q p), we obtain (15).
Next, we construct a sequence (Tkn,ln )n which tends to T in the w∗-topology of

B(L p(R+)). In the sequel, we assume that k, l in Cc(R) are such that

(16) ∥k∥p = 1, ∥l∥p′ = 1 and
∫

R
k(−s)l(s) ds = 1.

Consider any f, g ∈ Cc(R+). We have∣∣⟨T ( f ), g⟩ − ⟨Tk,l( f ), g⟩
∣∣

=

∣∣∣∫
R
⟨T (k(−s) f ), l(s)g⟩ − ⟨T (τsk · f ), τ−sl · g⟩ ds

∣∣∣
≤

∫
R

∣∣⟨T ((k(−s)− τsk) f ), l(s)g⟩
∣∣ ds +

∫
R

∣∣⟨T (τsk · f ), (l(s)− τ−sl)g⟩
∣∣ ds

≤ ∥T ∥

(∫
R

∥∥(k(−s)− τsk) f
∥∥p

pds
)1

p
(∫

R
∥l(s)g∥

p′

p′ ds
) 1

p′

+ ∥T ∥

(∫
R
∥τsk · f ∥

p
pds

)1
p
(∫

R
∥(l(s)− τ−sl)g∥

p′

p′ ds
) 1

p′

≤ ∥T ∥∥g∥p′

(∫
R+

| f (t)|p
∥τt ǩ − ǩ∥

p
p dt

)1
p

+ ∥T ∥∥ f ∥p

(∫
R+

|g(t)|p′

∥τ−t l − l∥p′

p′ dt
) 1

p′

.

Here ǩ denotes the function s 7→ k(−s).
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Now for n ≥ 1, set

kn :=
χ[−n,n]

(2n)
1
p

and ln :=
χ[−n,n]

(2n)
1
p′

,

where χ[−n,n] is the indicator function of the interval [−n, n]. Then ∥kn∥p =

∥ln∥p′ = 1 and
∫

R
kn(−s)ln(s) ds = 1 as in (16). Let K = supp( f )∪ supp(g) and

let r = sup(K ). Note that ǩn = kn and that we have

sup
t∈K

∥τt kn − kn∥p ≤

(
r
n

)1
p

and sup
t∈K

∥τ−t ln − ln∥p′ ≤

(
r
n

) 1
p′

.

Therefore, ∣∣⟨T ( f ), g⟩ − ⟨Tkn,ln ( f ), g⟩
∣∣ ≤

2r
n

∥T ∥∥ f ∥p∥g∥p′,

hence ⟨Tkn,ln ( f ), g⟩ n→∞
−−→⟨T ( f ), g⟩. Since ∥Tkn,ln∥≤∥T ∥ for all n ≥1, this implies,

by Lemma 2.1, that Tkn,ln → T in the w∗-topology of B(L p(R+)). Consequently,
T ∈ ker(Q p)

⊥ as expected. □

Remark 4.2. (a) For any 1 ≤ p ≤ ∞, let H p(R)⊂ L p(R) be the subspace of all
f ∈ L p(R) whose Fourier transform has support in R+. Recall the factorisation
property

H 1(R)= H 2(R)× H 2(R).

More precisely, the product h1h2 ∈ H 1(R) and ∥h1h2∥1 ≤ ∥h1∥2∥h2∥2 for all
h1, h2 ∈ H 2(R) and conversely, for all h ∈ H 1(R), there exist h1, h2 ∈ H 2(R) such
that h = h1h2 and ∥h∥1 = ∥h1∥2∥h2∥2.

Recall that by definition,

A2(R+)=

{∑
fn ∗ gn : fn, gn ∈ L2(R+),

∑
∥ fn∥2∥gn∥2 <∞

}
.

It therefore follows from the above factorisation property and the identification of
L2(R+) with H 2(R) via the Fourier transform that

A2(R+)= {ĥ : h ∈ H 1(R)},

with ∥ĥ∥A2(R+) = ∥h∥H1(R). Therefore, we have an isometric identification

A2(R+)∼= H 1(R).

Since H 1(R)⊥ = H∞(R), we have

H1(R)
∗ ∼=

L∞(R)

H∞(R)
.
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Applying Theorem 4.1(2), we recover the well-known fact (see [Nikolski 2020,
Section IV.5.3] or [Peller 2003, Theorem I.8.1]) that

Hank2(R+)∼=
L∞(R)

H∞(R)
.

(b) Notice that Hankp(R+)⊆Hank2(R+). Indeed, suppose that T ∈Hankp(R+) and
note that the adjoint mapping T ∗

∈B(Lp′

(R+)) coincides with T on Lp(R+)∩Lp′

(R+).
To see this, take f, g ∈ L p(R+)∩L p′

(R+) and observe that f ⊗g−g⊗ f belongs to
ker(Q p). This implies that ⟨T ( f ), g⟩ = ⟨T (g), f ⟩. Therefore, T coincides with T ∗

on L p(R+)∩ L p′

(R+). It then follows by interpolation that T extends to a bounded
operator on L2(R+), say T̃ . Since T and T̃ coincide on L p(R+)∩ L2(R+) and T
is Hankelian, it follows from the definition of Hankel operators that T̃ is also a
Hankel operator and hence belongs to Hank2(R+).

(c) The definition of Hankp(R+) extends to the case p = 1. In analogy with
Remark 3.2(c), we have an isometric identification

Hank1(R+)≃ M(R∗

+
),

where M(R∗

+
) denotes the space of all bounded Borel measures on R∗

+
. To establish

this, we first note that for all f ∈ L1(R+), the function u 7→ θu( f ) is bounded
and continuous from R∗

+
into L1(R+). Hence for all ν ∈ M(R∗

+
), we may define

Hν ∈ B(L1(R+)) by

(17) Hν( f )=

∫
R∗

+

θu( f ) dν(u), f ∈ L1(R+).

It is clear that Hν is Hankelian. It follows from (14) that〈
Hν( f ), g

〉
=

∫
R∗

+

( f ∗ g)(u) dν(u), f ∈ L1(R+), g ∈ L∞(R+).

We note that the mapping ν 7→ Hν is a one-to-one contraction from M(R∗

+
) into

Hank1(R+). We shall now prove that this mapping is an onto isometry.
We use the isometric identification M(R∗

+
) ≃ C0(R

∗

+
)∗ provided by the Riesz

theorem and we regard L1(R+)⊆ M(R∗

+
) in the obvious way. Let T ∈ Hank1(R+).

We observe that for all h, f ∈ L1(R+) and all g ∈ C0(R
∗

+
), we have

(18) ⟨T (h ∗ f ), g⟩ = ⟨T (h), f ∗ g⟩

Indeed, write h∗ f =
∫

∞

0 f (s)τsh ds. This implies that T (h∗ f )=
∫

∞

0 f (s)T (τsh) ds,
hence

⟨T (h ∗ f ), g⟩ =

∫ ∞

0
f (s)⟨T τsh, g⟩ ds =

∫ ∞

0
f (s)⟨T h, τs g⟩ ds = ⟨T (h), f ∗ g⟩.

Let (hn)n≥1 be a norm one approximate unit of L1(R+). Then (T (hn))n≥1 is
a bounded sequence of L1(R+). Hence it admits a cluster point ν ∈ M(R∗

+
)
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in the w∗-topology of M(R∗

+
). Thus, for all g ∈ C0(R

∗

+
), the complex number∫

R∗
+

g(u) dν(u) is a cluster point of the sequence (⟨T (hn), g⟩)n≥1. Furthermore,
we have ∥ν∥ ≤ ∥T ∥. Let f ∈ L1(R+) and let g ∈ C0(R

∗

+
). Since hn ∗ f → f

in L1(R+), we have that ⟨T (hn ∗ f ), g⟩ → ⟨T ( f ), g⟩. By (18), we may write
⟨T (hn ∗ f ), g⟩ = ⟨T (hn), f ∗ g⟩. We deduce that

⟨T ( f ), g⟩ =

∫
R∗

+

( f ∗ g)(u) dν(u).

This implies that T = Hν , see (17), which concludes the proof.

Definition 4.3. We say that a function m : R∗
+

→ C is the symbol of a multiplier on
Hankp(R+) if there exist a w∗-continuous operator Tm : Hankp(R+)→ Hankp(R+)

such that for every u > 0, Tm(θu) = m(u)θu . (Note that such an operator Tm is
necessarily unique.)

Remark 4.4. Suppose that Tm :Hankp(R+)→Hankp(R+) is a multiplier as defined
above. Using Theorem 4.1(2), let Sm : Ap(R+)→ Ap(R+) be the operator such
that S∗

m = Tm . For f ∈ L p(R+) and g ∈ L p′

(R+), we have, by (14),

[Sm( f ∗ g)](u)= ⟨θu, Sm( f ∗ g)⟩

= ⟨Tm(θu), f ∗ g⟩

= m(u)⟨θu, f ∗ g⟩

= m(u)( f ∗ g)(u).

We deduce that Sm(F)= m · F , for every F ∈ Ap(R+).
Conversely, if m : R∗

+
→ C is such that Sm : Ap(R+) → Ap(R+) given by

Sm(F)= m · F is well-defined and bounded, then S∗
m is a multiplier on Hankp(R+).

Lemma 4.5. If m : R∗
+

→ C is the symbol of a multiplier on Hankp(R+), then m is
continuous and bounded.

Proof. For all u > 0, we have m(u)θu = Tm(θu), hence |m(u)| ≤ ∥Tm∥. Thus, m is
bounded. For any a > 0, let χ(0,a) be the indicator function of the interval (0, a).
Then m ·χ(0,a) ∗χ(0,a) belongs to Ap(R+), hence to Cb(R

∗

+
), by Remark 4.4. Since

χ(0,a) ∗χ(0,a) > 0 on (0, 2a), it follows that m is continuous on (0, 2a). Thus, m is
continuous on R∗

+
. □

Theorem 4.6. Let 1 < p <∞, let C ≥ 0 be a constant and let m : R∗
+

→ C be a
function. The following assertions are equivalent.

(i) m is the symbol of a p-completely bounded multiplier on Hankp(R+), and

∥Tm : Hankp(R+)→ Hankp(R+)∥p−cb ≤ C.
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(ii) m is continuous and there exist a measure space (�,µ) and two functions
α ∈ L∞(R+; L p(�)) and β ∈ L∞(R+; L p′

(�)) such that ∥α∥∞∥β∥∞ ≤ C
and m(s + t)= ⟨α(s), β(t)⟩, for almost every (s, t) ∈ R∗2

+
.

Proof. By homogeneity, we may assume that C = 1 throughout this proof.
Assume (i). The continuity of m follows from Lemma 4.5. Let Tm :Hankp(R+)→

Hankp(R+) be the p-completely contractive multiplier associated with m. Let
κ : L p(R) → L p(R) be defined by (κ f )(t) = f (−t), for all f ∈ L p(R). Let
J : L p(R+)→ L p(R) be the canonical embedding and let Q : L p(R)→ L p(R+) be
the canonical projection defined by Q f = f|R+

. Let q : B(L p(R))→ B(L p(R+))

be given by q(T )= QκT J , for all T ∈ B(L p(R)). Applying the easy implication
(ii) =⇒ (i) of Theorem 2.2 we obtain that q is p-completely contractive.

Let Mp(R)⊆ B(L p(R)) denote the subalgebra of bounded Fourier multipliers.
Let us show that if T ∈ Mp(R), then q(T ) ∈ Hankp(R+). For any s ∈ R, recall
τs ∈ B(L p(R)) given by τs( f )= f ( · −s). Note that τs ∈Mp(R) and that Mp(R)=

Spanw
∗

{τs : s ∈ R}. For all f ∈ L p(R+), we have

q(τs) f = Qτ( f ( · −s))= Q( f (−( · +s)))= {t ∈ R+ 7→ f (−t − s)}.

Hence, if s ≥ 0, then q(τs)= 0 and if s < 0, then q(τs)= θ−s . It is plain that q is
w∗-continuous. Since Hankp(R+) is w∗-closed, we deduce that q maps Mp(R)

into Hankp(R+).
Consider the mapping

q0 := q|Mp(R) : Mp(R)→ Hankp(R+)

and set
0 := Tm ◦ q0 : Mp(R)→ B(L p(R+)).

It follows from above that

(19) 0(τ−s)= m(s)θs, s > 0.

Since q is p-completely contractive, 0 is also p-completely contractive. Applying
Theorem 2.2 to 0, we obtain the existence of an SQ p-space E , a unital p-completely
contractive, nondegenerate homomorphism π :Mp(R)→ B(E) as well as operators
V : L p(R+) → E and W : E → L p(R+) such that ∥V ∥∥W∥ ≤ 1 and for every
x ∈ Mp(R), 0(x)= Wπ(x)V .

Let c : L1(R)→ Mp(R) be defined by [c(g)]( f )= g ∗ f , for all g ∈ L1(R) and
f ∈ L p(R). Let λ : L1(R)→ B(E) be given by λ= π ◦ c. Then λ is a contractive,
nondegenerate homomorphism. By [de Pagter and Ricker 2008, Remark 2.5], there
exists σ : R → B(E), a bounded strongly continuous representation such that for all
g ∈ L1(R), λ(g)=

∫
R

g(t)σ (t) dt (defined in the strong sense). Let us show that

(20) 0(τ−s)= Wσ(−s)V, s > 0.
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Let η ∈ L1(R)+ be such that
∫

R
η(t) dt = 1. For any r > 0, let ηr (t) = rη(r t).

Since σ : R → B(E) is strongly continuous, the function t 7→ ⟨σ(t)x, x∗
⟩ is

continuous and we have

(21)
∫

R
ηr (−s − t)⟨σ(t)x, x∗

⟩ dt r→∞
−−→ ⟨σ(−s)x, x∗

⟩,

for all x ∈ E and x∗
∈ E∗. Since the left-hand side in (21) is equal to

⟨π(c(ηr (−s− · )))x, x∗
⟩,

we obtain, by Lemma 2.1, that π(c(ηr (−s− · ))) → σ(−s) in the w∗-topology
of B(E). This implies that Wπ(c(ηr (−s− · )))V → Wσ(−s)V in the w∗-topology
of B(L p(R+)). We next show that Wπ(c(ηr (−s− · )))V → 0(τ−s) in the w∗-
topology of B(L p(R+)), which will complete the proof of (20). Since

Wπ(c(ηr (−s− · )))V = 0(c(ηr (−s− · )))

and 0 is w∗-continuous, it suffices to show that c(ηr (−s− · )) → τ−s in the w∗-
topology of B(L p(R)). To see this, let f ∈ L p(R) and g ∈ L p′

(R). We have that

⟨c(ηr (−s− · )) f, g⟩ = ⟨ηr (−s− · ) ∗ f, g⟩

= ⟨δ−s ∗ ηr ∗ f, g⟩

→ ⟨δ−s ∗ f, g⟩ = ⟨τ−s f, g⟩.

By Lemma 2.1 again, this proves that c(ηr (−s− · ))→ τ−s in the w∗-topology, as
expected.

Given any ϵ > 0, let mϵ : R∗
+

→ C be defined by

mϵ(t)= m(t + ϵ), t > 0.

Let f ∈ L p(R+) be given by f = ϵ
−

1
pχ(0,ϵ) and let g ∈ L p′

(R+) be given by
g = ϵ

−
1
p′ χ(0,ϵ). For any s, t > 0, set

αϵ(s) := σ
(
−s −

ϵ
2
)
V (τs f ) and βϵ(t) := σ

(
−t −

ϵ
2
)∗W ∗(τt g).

Since σ is strongly continuous, αϵ and βϵ are continuous. By (19) and (20), we
have that

⟨αϵ(s), βϵ(t)⟩E,E∗ =
〈
σ
(
−s −

ϵ
2
)
V (τs f ), σ

(
−t −

ϵ
2
)∗W ∗(τt g)

〉
= ⟨Wσ(−s − t − ϵ)V (τs f ), τt g⟩

= ⟨(0(τ−s−t−ϵ))(τs f ), τt g⟩

= m(s + t + ϵ)⟨θs+t+ϵ(τs f ), τt g⟩

= mϵ(s + t)⟨ϵ−1/pχ(t,t+ϵ), ϵ
−1/p′

χ(t,t+ϵ)⟩

= mϵ(s + t),
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for all s, t > 0. Moreover, ∥αϵ(s)∥ ≤ ∥V ∥ and ∥βϵ(t)∥ ≤ ∥W∥ for all t, s> 0. Since
αϵ and βϵ are continuous, this implies that αϵ ∈ L∞(R+; E), βϵ ∈ L∞(R+; E∗)

and ∥αϵ∥∞∥βϵ∥∞ ≤ ∥V ∥∥W∥ ≤ 1.
We now show that the SQ p-space E can be replaced by an L p-space in the above

factorisation property of mϵ . Following Remark 2.3, assume that E = E1/E2, with
E2 ⊆ E1 ⊆ L p(�), and for all f ∈ E1, let ḟ ∈ E denote the class of f . Recall (5)
and for all g ∈ E⊥

2 , let ġ ∈ E∗ denote the class of g. Since E is a quotient of E1,
we have an isometric embedding E∗

⊆ E∗

1 . More precisely,

E∗
=

E⊥

2

E⊥

1
↪→

L p′

(�)

E⊥

1
= E∗

1 .

This induces an isometric embedding

L1(R+; E∗)⊆ L1(R+; E∗

1).

Since E∗ and E∗

1 are reflexive, we may apply the identifications

L1(R+; E∗)∗ ≃ L∞(R+; E) and L1(R+; E∗

1)
∗
≃ L∞(R+; E1)

provided by (7). By the Hahn–Banach theorem, we deduce the existence of
α̃ϵ ∈ L∞(R+; E1) such that ∥α̃ϵ∥∞ = ∥αϵ∥∞ and the functional L1(R+; E∗

1)→ C

induced by α̃ϵ extends the functional L1(R+; E∗)→ C induced by αϵ . It is easy to
check that the latter means that ˙α̃ϵ(s)= αϵ(s) almost everywhere on R+. Likewise,
there exist β̃ϵ ∈ L∞(R+; E⊥

2 ) such that ∥β̃ϵ∥∞ = ∥βϵ∥∞ and ˙β̃ϵ(t)= βϵ(t) almost
everywhere on R+. Regard α̃ϵ as an element of L∞(R+, L p(�)) and β̃ϵ as an
element of L∞(R+, L p′

(�)). By (6), we then have

⟨αϵ(s), βϵ(t)⟩E,E∗ = ⟨̃αϵ(s), β̃ϵ(t)⟩L p,L p′ ,

for almost every (s, t) ∈ R∗2
+

.
We therefore obtain that mϵ : R∗

+
→ C satisfies condition (ii) of the theorem

(with C = 1).
Define ϕ : R∗2

+
→ C by ϕ(s, t) = m(s + t). Likewise, for any ϵ > 0, define

ϕϵ : R∗2
+

→ C by ϕ(s, t)= mϵ(s + t). Since m is continuous, the functions ϕ and ϕϵ
are continuous. It follows from above that for all ϵ > 0, ϕϵ satisfies condition (ii)
in Theorem 2.5, with C = 1. The latter theorem therefore implies that the family
{ϕϵ(s, t)}(s,t)∈R∗2

+
is a bounded Schur multiplier on B(ℓp

R∗
+

), with norm less than
one. Thus for all [ai j ]1≤i, j≤n in Mn and for all t1, . . . , tn, s1, . . . , sn in R∗

+
, we

have ∥[ϕϵ(si , t j )ai j ]∥B(ℓp
n )

≤ ∥[ai j ]∥B(ℓp
n )

. Since m is continuous, ϕϵ → ϕ pointwise
when ϵ → 0. We deduce that ϕ satisfies (8) with C = 1 for all [ai j ]1≤i, j≤n in Mn

and all t1, . . . , tn, s1, . . . , sn in R∗
+

. Consequently, the family {ϕ(s, t)}(s,t)∈R∗2
+

is
a bounded Schur multiplier on B(ℓp

R∗
+

), with norm less than one. Applying the
implication (i) =⇒ (ii) in Theorem 2.5, we deduce the assertion (ii) of Theorem 4.6.
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Conversely, assume (ii). Following Lemma 2.4, let

π : B(L p(R+))→ B(L p(R+ ×�))

be the p-completely isometric homomorphism defined by π(T )= T ⊗ IL p(�). This
map is w∗-continuous. Indeed, let (Tι)ι be a bounded net of B(L p(R+)) converging
to some T ∈ B(L p(R+)) in the w∗-topology. For any f ∈ L p(R+), g ∈ L p′

(R+),
ϕ ∈ L p(�) and ψ ∈ L p′

(�), we have〈
π(Tι), ( f ⊗ϕ)⊗ (g ⊗ψ)

〉
= ⟨Tι f, g⟩L p(R+),L p′

(R+)
⟨ϕ,ψ⟩L p(�),L p′

(�),

where the duality pairing in the left-hand side refers to the identification(
L p(R+ ×�) ⊗̂ L p′

(R+ ×�)
)∗

≃ B(L p(R+ ×�)).

Since ⟨Tι f, g⟩ → ⟨T f, g⟩, we deduce that

⟨π(Tι), ( f ⊗ϕ)⊗ (g ⊗ψ)⟩ → ⟨π(T ), ( f ⊗ϕ)⊗ (g ⊗ψ)⟩.

Since L p(R+) ⊗ L p(�) and L p′

(R+) ⊗ L p′

(�) are dense in L p(R+ × �) and
L p′

(R+ ×�), respectively, we deduce that π(Tι)→ π(T ) in the w∗-topology, by
Lemma 2.1. This proves that π is w∗-continuous.

Let V : L p(R+)→ L p(R+; L p(�))≃ L p(R+ ×�) be defined by

V ( f )= f α, f ∈ L p(R+).

This is a well-defined contraction. Likewise we define a contraction

W : L p(R+ ×�)→ L p(R+)

by setting
W ∗(g)= gβ, g ∈ L p′

(R+).

It follows from above and from the implication (ii) =⇒ (i) of Theorem 2.2 that the
mapping

w : B(L p(R+))→ B(L p(R+)), w(T )= Wπ(T )V

is a w∗-continuous p-complete contraction.
We claim that for all u > 0, we have

(22) w(θu)= m(u)θu .

To prove this, consider f ∈ L p(R+) and g ∈ L p′

(R+). For all u > 0, we have

⟨w(θu) f, g⟩ = ⟨π(θu)V ( f ),W ∗(g)⟩ = ⟨π(θu)( f α), (gβ)⟩.

By the definitions of π and θu , we have π(θu)( f α)= ( f α)(u− · ). Consequently,

⟨w(θu) f, g⟩ =

∫ u

0
f (u − t)g(t)⟨α(u − t), β(t)⟩ dt, u > 0.



214 LORIS ARNOLD, CHRISTIAN LE MERDY AND SAFOURA ZADEH

Let h ∈ L1(R+) be an auxiliary function. Then using Fubini’s theorem and setting
s = u − t in due place, we obtain that∫ ∞

0
⟨w(θu) f, g⟩h(u) du =

∫ ∞

0

∫ ∞

t
h(u) f (u − t)g(t)⟨α(u − t), β(t)⟩ dudt

=

∫ ∞

0

∫ ∞

0
h(s + t) f (s)g(t)⟨α(s), β(t)⟩ dsdt.

Applying the a.e. equality m(s + t)= ⟨α(s), β(t)⟩ and reversing this computation,
we deduce that∫ ∞

0
⟨w(θu) f, g⟩h(u) du =

∫ ∞

0
m(u)( f ∗ g)(u)h(u) du.

Since h is arbitrary, this implies that ⟨w(θu) f, g⟩ = m(u)( f ∗ g)(u) for a.e. u > 0.
Equivalently, ⟨w(θu) f, g⟩ = m(u)⟨θu f, g⟩ for a.e. u > 0. It is plain that u 7→ θu

is w∗-continuous on B(L p(R+)). Since w is w∗-continuous, the function u 7→

⟨w(θu) f, g⟩ is continuous as well. Since m is assumed continuous, we deduce that
⟨w(θu) f, g⟩ = m(u)⟨θu f, g⟩ for all u > 0. This yields (22), for all u > 0.

By part (1) of Theorem 4.1 and the w∗-continuity of w, the identity (22) implies
that Hankp(R+) is an invariant subspace of w. Further the restriction of w to
Hankp(R+) is the multiplier associated to m. The assertion (i) follows. □

Remark 4.7. We proved in [Arnold et al. 2022, Theorem 3.1] that a continuous
function m : R∗

+
→ C is the symbol of an S1-bounded Fourier multiplier on H 1(R),

with S1-bounded norm ≤ C , if and only if there exist a Hilbert space H and
two functions α, β ∈ L∞(R+;H) such that ∥α∥∞∥β∥∞ ≤ C and m(s + t) =

⟨α(t), β(s)⟩H for almost every (s, t) ∈ R∗2
+

. It turns out that using (1), a mapping
S : H 1(R)→ H 1(R) is an S1-bounded Fourier multiplier with S1-bounded norm ≤C
if and only if S∗

: Hank2(R+)→ Hank2(R+) is a completely bounded multiplier
with completely bounded norm ≤ C . See [Arnold et al. 2022, Remark 3.4] for more
on this. Thus the statement in [Arnold et al. 2022, Theorem 3.1] is equivalent to
the case p = 2 of Theorem 4.6. In this regard, Theorem 4.6 can be regarded as a
p-analogue of [Arnold et al. 2022, Theorem 3.1].

Remark 4.8. Let f ∈ L p(R+) and g ∈ L p′

(R+). For any s, t > 0, we may write

( f ∗ g)(s + t)=

∫
R

f (s + r)g(t − r) dr.

Equivalently,
( f ∗ g)(s + t)= ⟨τ−s f, τt ǧ⟩L p(R+),L p′

(R+)
.

According to the implication (ii) =⇒ (i) of Theorem 4.6 and Remark 4.4, f ∗ g
is therefore a pointwise multiplier of Ap(R+), with norm less than or equal to
∥ f ∥p∥g∥p′ . We deduce that every F ∈ Ap(R+) is a pointwise multiplier of Ap(R+),
with norm less than or equal to ∥F∥Ap . This means that Ap(R+) is a Banach algebra
for the pointwise product.
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STABLE FUNCTORIAL EQUIVALENCE OF BLOCKS

SERGE BOUC AND DENİZ YILMAZ

Let k be an algebraically closed field of characteristic p > 0, let R be a
commutative ring and let F be an algebraically closed field of characteristic 0.
We introduce the category F1

Rppk
of stable diagonal p-permutation func-

tors over R. We prove that the category F1
F ppk

is semisimple and give
a parametrization of its simple objects in terms of the simple diagonal
p-permutation functors.

We also introduce the notion of a stable functorial equivalence over R
between blocks of finite groups. We prove that if G is a finite group and if b
is a block idempotent of kG with an abelian defect group D and Frobenius
inertial quotient E, then there exists a stable functorial equivalence over F

between the pairs (G, b) and (D ⋊ E, 1).

1. Introduction

Various notions of equivalences between blocks of finite groups have been studied
such as splendid Morita equivalence, splendid Rickard equivalence, p-permutation
equivalence, isotypies and perfect isometries [Broué 1990; Boltje and Xu 2008;
Boltje and Perepelitsky 2020]. These equivalences are related to prominent con-
jectures in modular representation theory such as Broué’s abelian defect group
conjecture [Linckelmann 2018, Conjecture 9.7.6], Puig’s finiteness conjecture
[Linckelmann 2018, Conjecture 6.4.2] and Donovan’s conjecture [Linckelmann
2018, Conjecture 6.1.9].

In [Bouc and Yılmaz 2022] we introduced another equivalence of blocks, namely
functorial equivalence, using the notion of diagonal p-permutation functors: Let k
be an algebraically closed field of characteristic p > 0, let F be an algebraically
closed field of characteristic 0 and let R be a commutative ring. We denote by Rpp1

k
the category whose objects are finite groups and for finite groups G and H whose
morphisms from H to G are the Grothendieck group RT 1(G, H) of diagonal
p-permutation (kG, k H)-bimodules. An R-linear functor from Rpp1

k to RMod is
called a diagonal p-permutation functor. To each pair (G, b) of a finite group G
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and a block idempotent b of kG, we associate a canonical diagonal p-permutation
functor over R, denoted by RT 1

G,b. If (H, c) is another such pair, we say that (G, b)

and (H, c) are functorially equivalent over R if the functors RT 1
G,b and RT 1

H,c
are isomorphic.

In [Bouc and Yılmaz 2022] we proved that the category of diagonal p-permutation
functors over F is semisimple, parametrized simple functors and provided three
equivalent descriptions of the decomposition of the functor FT 1

G,b in terms of the
simple functors [Bouc and Yılmaz 2022, Corollary 6.15 and Theorem 8.22]. We
proved that the number of isomorphism classes of simple modules, the number of
ordinary irreducible characters, and the defect groups are preserved under functorial
equivalences over F [Bouc and Yılmaz 2022, Theorem 10.5]. Moreover we proved
that for a given finite p-group D, there are only finitely many pairs (G, b), where G
is a finite group and b is a block idempotent of kG, up to functorial equivalence
over F [Bouc and Yılmaz 2022, Theorem 10.6] and we provided a sufficient condi-
tion for two blocks to be functorially equivalent over F in the situation of Broué’s
abelian defect group conjecture [Bouc and Yılmaz 2022, Theorem 11.1].

In this paper, we introduce the notion of stable diagonal p-permutation functors
and stable functorial equivalences. We denote by Rpp1

k the quotient category
of Rpp1

k by the morphisms that factor through the trivial group. A stable diagonal
p-permutation functor over R is an R-linear functor from Rpp1

k to RMod, or
equivalently, a diagonal p-permutation functor which vanishes at the trivial group. In
particular, the simple diagonal p-permutation functors SL ,u,V with L ̸=1 are (simple)
stable diagonal p-permutation functors. Our first main result is the following.

Theorem 1.1. The category F1
Fppk

of stable diagonal p-permutation functors over F

is semisimple. The simple stable diagonal p-permutation functors are precisely the
simple diagonal p-permutation functors SL ,u,V with L ̸= 1.

Given a finite group G and a block idempotent b of kG, we define a stable
diagonal p-permutation functor RT 1

G,b similar to RT 1
G,b; see Definition 4.1. Note

that RT 1
G,b is the zero functor if and only if b has defect 0. We say that two

pairs (G, b) and (H, c) are stably functorially equivalent over R if the functors
RT 1

G,b and RT 1
H,c are isomorphic. For a block algebra kGb, let k(kGb) and l(kGb)

denote the number of irreducible ordinary characters and the number of irreducible
Brauer characters of b, respectively.

Theorem 1.2. Let b be a block idempotent of kG and let c be a block idempotent
of k H.

(i) The pairs (G, b) and (H, c) are stably functorially equivalent over F if and
only if the multiplicities of SL ,u,V in FT 1

G,b and FT 1
H,c are the same for any

simple diagonal p-permutation functor SL ,u,V with L ̸= 1. In this case, (G, b)

and (H, c) are functorially equivalent over F if and only if l(kGb) = l(k Hc).
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(ii) If the pairs (G, b) and (H, c) are stably functorially equivalent over F, then b
and c have isomorphic defect groups and one has

k(kGb) − l(kGb) = k(k Hc) − l(k Hc).

We also consider the blocks with abelian defect groups and Frobenius inertial
quotient.

Theorem 1.3. Let G be a finite group, b a block idempotent of kG with a nontrivial
abelian defect group D. Let E = NG(D, eD)/CG(D) denote the inertial quotient
of b. Suppose that E acts freely on D \ {1}. Then:

(i) There exists a functorial equivalence over F between (G, b) and (D ⋊ E, 1) if
and only if l(kGb) = l(k(D ⋊ E)).

(ii) Suppose that E is abelian. Then there exists a functorial equivalence over F

between (G, b) and (D ⋊ E, 1) if and only if (G, b) and (D ⋊ E, 1) are
p-permutation equivalent.

In Section 2 we recall diagonal p-permutation functors and functorial equiva-
lences between blocks. In Section 3 we introduce the category of stable diagonal
p-permutation functors and prove Theorem 1.1. In Section 4 we introduce the
notion of stable functorial equivalences between blocks and prove Theorem 1.2.
Finally, in Section 5 we prove Theorem 1.3.

2. Preliminaries

(a) Let (P, s) be a pair, where P is a p-group and s is a generator of a p′-group
acting on P . We write P⟨s⟩ := P ⋊ ⟨s⟩ for the corresponding semidirect product.
We say that two pairs (P, s) and (Q, t) are isomorphic and write (P, s) ∼= (Q, t),
if there is a group isomorphism f : P⟨s⟩ → Q⟨t⟩ that sends s to a conjugate of t .
We set Aut(P, s) to be the group of the automorphisms of the pair (P, s) and
Out(P, s) = Aut(P, s)/Inn(P⟨s⟩). Recall from [Bouc and Yılmaz 2020] that a
pair (P, s) is called a D1-pair, if C⟨s⟩(P) = 1.

(b) Let G and H be finite groups. We denote by T (G) the Grothendieck group
of p-permutation kG-modules and by T 1(G, H) the Grothendieck group of p-
permutation (kG, k H)-bimodules whose indecomposable direct summands have
twisted diagonal vertices. Let Rpp1

k denote the following category:

• objects: finite groups.

• MorRpp1
k
(G, H) = R ⊗Z T 1(H, G) = RT 1(H, G).

• composition is induced from the tensor product of bimodules.

• IdG = [kG].
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An R-linear functor from Rpp1
k to RMod is called a diagonal p-permutation functor

over R. Together with natural transformations, diagonal p-permutation functors
form an abelian category F1

Rppk
.

(c) Recall from [Bouc and Yılmaz 2022] that the category F1
Fppk

is semisimple.
Moreover, the simple diagonal p-permutation functors, up to isomorphism, are
parametrized by the isomorphism classes of triples (L , u, V ), where (L , u) is a
D1-pair, and V is a simple FOut(L , u)-module (see [loc. cit., Sections 6 and 7] for
more details on simple functors).

(d) Let G be a finite group and b a block idempotent of kG. Recall from [loc. cit.]
that the block diagonal p-permutation functor RT 1

G,b is defined as

RT 1
G,b : Rpp1

k → RMod, H 7→ RT 1(H, G) ⊗kG kGb.

See [loc. cit., Section 8] for the decomposition of FT 1
G,b in terms of the simple

functors SL ,u,V .

(e) Let b be a block idempotent of kG and let c be a block idempotent of k H . We say
that the pairs (G, b) and (H, c) are functorially equivalent over R, if the correspond-
ing diagonal p-permutation functors RT 1

G,b and RT 1
H,c are isomorphic in F1

Rppk

[loc. cit., Definition 10.1]. By [loc. cit., Lemma 10.2] the pairs (G, b) and (H, c)
are functorially equivalent over R if and only if there exists ω ∈ bRT 1(G, H)c and
σ ∈ cRT 1(H, G)b such that

ω ·H σ = [kGb] in bRT 1(G, G)b and σ ·G ω = [k Hc] in cRT 1(H, H)c.

3. Stable diagonal p-permutation functors

In this section we introduce the category of stable diagonal p-permutation functors.
For a finite group G, let P(G) denote the subgroup of T (G) generated by the

indecomposable projective kG-modules. Let also T (G) denote the quotient group
T (G)/P(G). For X ∈ T (G), we denote by X the image of X in T (G). If H is
another finite group, we define P(G, H) and T 1(G, H) similarly.

Lemma 3.1. For finite groups G and H one has P(G, H) = T 1(G, 1)◦ T 1(1, H).

Proof. This follows from the fact that the projective indecomposable k(G × H)-
modules are of the form P ⊗k Q, where P and Q are projective indecomposable kG
and k H -modules, respectively. □

Definition 3.2. Let Rpp1
k denote the following category:

• objects: finite groups.

• MorRpp1
k
(G, H) = R ⊗Z T 1(H, G) = RT 1(H, G).

• composition is induced from the tensor product of bimodules.

• IdG = [kG].
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Definition 3.3. An R-linear functor Rpp1
k → RMod is called a stable diagonal

p-permutation functor over R. Together with natural transformations, stable
diagonal p-permutation functors form an abelian category F1

Rppk
.

Remark 3.4. The functor
0 : F1

Rppk
→ F1

Rppk

obtained by composition with the projection Rpp1
k → Rpp1

k gives a description of
F1

Rppk
as a full subcategory of F1

Rppk
. Moreover, 0 has a left adjoint 6, constructed

as follows: If F is a diagonal p-permutation functor over R and G is a finite
group, set

F(G) := F(G)/RT 1(G, 1)F(1).

Then F is a diagonal p-permutation functor, equal to the quotient of F by the
subfunctor generated by F(1). Obviously, F vanishes at the trivial group, so it is a
stable diagonal p-permutation functor. The functor 6 : F 7→ F is a left adjoint to
the above functor 0. In particular, F1

Rppk
is a reflective subcategory of F1

Rppk
.

Let G be a finite group. Recall that by [Bouc and Yılmaz 2022, Corollary 8.23(i)],
the multiplicity of the simple diagonal p-permutation functor S1,1,F in the repre-
sentable functor FT 1(−, G) is equal to the number l(kG) of the isomorphism
classes of simple kG-modules. Let I(−, G) denote the sum of simple subfunctors
of FT 1(−, G) isomorphic to S1,1,F. Let also FProj(−, G) denote the subfunctor
of FT 1(−, G) sending a finite group H to FProj(H, G).

Lemma 3.5. The subfunctors I(−, G) and FProj(−, G) of the representable functor
FT 1(−, G) are equal.

Proof. For finite groups G and H , the number of isomorphism classes of projective
indecomposable k(G × H)-modules, or equivalently, the number of isomorphism
classes of simple k(G × H)-modules is equal to the number of conjugacy classes
of p′-elements of G × H . Hence the F-dimension of the evaluation FProj(H, G) is
equal to

l(k(G × H)) = l(kG)l(k H)

which is equal to the F-dimension of l(kG)S1,1,F(H) by [Bouc and Yılmaz 2022,
Corollary 8.23(i)], and hence to the F-dimension of I(H, G).

Note that FProj(−, G) is equal to the functor

FT 1(−, 1) ◦ FT 1(1, G).

Moreover SL ,u,V (1) = 0 for L ̸= 1, and hence FT 1(1, G) = I(1, G). Therefore,

FProj(−, G) = FT 1(−, 1) ◦ FT 1(1, G) = FT 1(−, 1) ◦ I(1, G) ⊆ I(−, G).

Since the F-dimensions of FProj(H, G) and I(H, G) are the same for any finite
group H , it follows that FProj(−, G) = I(−, G). □
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Proof of Theorem 1.1. For a finite group G, the representable diagonal p-permutation
functor FT 1(−, G) decomposes as a direct sum of simple functors SL ,u,V , and
hence we have

FT 1(−, G) ∼= I(−, G)
⊕

(L ,u,V )
L ̸=1

SmL ,u,V
L ,u,V ,

for some nonnegative integers mL ,u,V , where (L , u, V ) runs over a set of isomor-
phism classes of D1-pairs (L , u) with L ̸= 1, and simple FOut(L , u)-modules V .
By Lemma 3.5, the representable stable diagonal p-permutation functor FT 1(−, G)

is isomorphic to the direct sum ⊕
(L ,u,V )

L ̸=1

SmL ,u,V
L ,u,V

of simple diagonal p-permutation functors, and each of these simple functors is a
simple stable diagonal p-permutation functor. Since the functor category F1

Fppk
is

generated by the representable functors the result follows. □

4. Stable functorial equivalences

Let G and H be finite groups.

Definition 4.1. Let b a block idempotent of kG. The stable diagonal p-permutation
functor RT 1

G,b is defined as

RT 1
G,b : Rpp1

k → RMod, H 7→ RT 1(H, G) ⊗kG kGb.

See Section 2(d) for the definition of RT 1
G,b and note that RT 1

G,b = 6(RT 1
G,b).

Definition 4.2. Let b be a block idempotent of kG and let c be a block idempotent
of k H . We say that the pairs (G, b) and (H, c) are stably functorially equivalent
over R, if their corresponding stable diagonal p-permutation functors RT 1

G,b and
RT 1

H,c are isomorphic in F1
Rppk

.

Lemma 4.3. Let b be a block idempotent of kG and let c be a block idempotent
of k H.

(a) The pairs (G, b) and (H, c) are stably functorially equivalent over R if and
only if there exists ω ∈ bRT 1(G, H)c and σ ∈ cRT 1(H, G)b such that

ω·Hσ =[kGb]+[P] in bRT 1(G,G)b and σ ·Gω=[kHc]+[Q] in cRT 1(H, H)c

for some P ∈ RProj(kGb, kGb) and Q ∈ RProj(k Hc, k Hc).

(b) If the pairs (G, b) and (H, c) are functorially equivalent over R, then they are
also stably functorially equivalent over R.
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Proof. By the Yoneda lemma, the pairs (G, b) and (H, c) are stably functori-
ally equivalent over R if and only if there exists ω ∈ bRT 1(G, H)c and σ ∈

cRT 1(H, G)b such that

ω ·H σ = [kGb] in bRT 1(G, G)b and σ ·G ω = [k Hc] in cRT 1(H, H)c.

Hence (a) follows and (b) is clear. □

Proof of Theorem 1.2. (i) The first statement follows from Theorem 1.1 and the
second statement follows since by [Bouc and Yılmaz 2022, Corollary 8.23(i)] the
multiplicity of the simple functor S1,1,F in FT 1

G,b is equal to l(kGb).

(ii) The first statement follows from the proof of [loc. cit., Theorem 10.5(iii)] and
the second statement follows from the proof of [loc. cit., Theorem 10.5(ii)]. □

5. Blocks with Frobenius inertial quotient

(a) Recall the assumptions of Theorem 1.3: Let G be a finite group, b a block
idempotent of kG with a nontrivial abelian defect group D. Let (D, eD) be a maxi-
mal b-Brauer pair and let E = NG(D, eD)/CG(D) denote the inertial quotient of b.
Suppose that E acts freely on D\{1}. This condition is equivalent to requiring D⋊E
be a Frobenius group. Let Fb be the fusion system of b with respect to (D, eD).
Then Fb is equal to the fusion system FD⋊E(D) on D determined by D ⋊ E .

Under these assumptions, we know from [Linckelmann 2018, Theorem 10.5.1]
that there is a stable equivalence of Morita type between (G, b) and (D ⋊ E, 1),
induced by a bimodule with an endopermutation source. Since D is abelian, by
[Rickard 1996, Theorem 7.2] this bimodule admits an endosplit p-permutation
resolution, which yields a stable p-permutation equivalence between (G, b) and
(D ⋊ E, 1); see, for instance, [Linckelmann 2018, Remark 9.11.7]. In particu-
lar (G, b) and (D ⋊ E, 1) are stably functorially equivalent.

Hereafter we give an alternative proof of the existence of this stable functorial
equivalence, which relies only on Theorem 1.1. Together with Theorem 1.2, this
now implies Part (i) of Theorem 1.3. Part (ii) of Theorem 1.3 follows from Part (i)
and [Linckelmann 2018, Theorem 10.5.10].

(b) Let SL ,u,V be a simple diagonal p-permutation functor such that L is nontrivial
and isomorphic to a subgroup of D. Recall that by [Bouc and Yılmaz 2022,
Theorem 8.22] the multiplicity of SL ,u,V in FT 1

G,b is equal to the F-dimension of⊕
(P,eP )∈[Fb]

⊕
π∈[NG(P,eP )\P(P,eP )(L ,u)/Aut(L ,u)]

FProj(kePCG(P), u) ⊗Aut(L ,u)(P,eP ,π)
V,

where [Fb] denotes a set of isomorphism classes of objects in Fb, P(P,eP ) is
the set of group isomorphisms π : L → P with π iuπ

−1
∈ AutFb(P, eP), and

Aut(L , u)(P,eP ,π) is the stabilizer in Aut(L , u) of the G-orbit of (P, eP , π). Since b
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is a block with Frobenius inertial quotient, the block kCG(P)eP is nilpotent for every
nontrivial subgroup P of D; see, for instance, [Linckelmann 2018, Theorem 10.5.2].
Therefore, we have l(kePCG(P))= 1, and hence the multiplicity formula reduces to⊕

(P,eP )∈[Fb]

⊕
π∈[NG(P,eP )\P(P,eP )(L ,u)/Aut(L ,u)]

V Out(L ,u)(P,eP ,π) .

Let QD⋊E,p denote the set of pairs (P, s) of p-subgroups P of D ⋊ E and
p′-elements s of ND⋊E(P). Let also [QD⋊E,p] denote a set of representatives
of D ⋊ E-orbits on QD⋊E,p under the conjugation map. Recall from [Bouc and
Yılmaz 2022, Corollary 7.4] that the multiplicity of SL ,u,V in FT 1

D⋊E is equal to
the F-dimension of ⊕

(P,s)∈[QD⋊E,p]

(P̃,s̃)∼=(L ,u)

V ND⋊E (P,s),

where for a pair (P, s) ∈ QD⋊E,p with (P̃, s̃) ∼= (L , u), we fix an isomorphism
φP,s : L → P with φP,s(

ul) =
sφP,s(l) for all l ∈ L and we view V as an

FND⋊E(P, s)-module via the group homomorphism

(1) NG(P, s) → Out(L , u)

that sends g ∈ NG(P, s) to the image of φ−1
P,s ◦ ig ◦ φP,s in Out(L , u).

(c) Let Pb(G, L , u) denote the set of triples (P, e, π) where (P, e) ∈ Fb and
π ∈P(P,eP )(L , u). Let also QD⋊E,p(L , u) denote the set of pairs (P, s) in QD⋊E,p

with the property that (P̃, s̃) ∼= (L , u).
If (P, e, π) ∈ Pb(G, L , u), then π iuπ

−1
∈ AutFb(P, eP) by definition and

since Fb is equal to FD⋊E(D), it follows that there exists a p′-element s of
ND⋊E(P) with π iuπ

−1
= is . This implies by [Bouc and Yılmaz 2022, Lemma 3.3]

that (P̃, s̃) ∼= (L , u) and therefore we have a map

9 : Pb(G, L , u) → QD⋊E,p(L , u), (P, e, π) 7→ (P, s).

Lemma 5.1. The map 9 induces a bijection

9 : [G\Pb(G, L , u)/Aut(L , u)] → [QD⋊E,p(L , u)].

Proof. First we show that the map 9 is well-defined. Let (P, e, π) and (Q, f, ρ)

be two elements in Pb(G, L , u) that lie in the same G × Aut(L , u)-orbit. We
need to show that 9(P, e, π) = 9(Q, f, ρ). Write 9(P, e, π) = (P, s) and
9(Q, f, ρ) = (Q, t). Let g ∈ G and ϕ ∈ Aut(L , u) such that

g · (P, e, π) · ϕ = (Q, f, ρ).

Then (P, e) and (Q, f ) lie in the same isomorphism class in [Fb] and hence P
and Q are D ⋊ E-conjugate since Fb = FD⋊E(D). Thus, there exists h ∈ D ⋊ E
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with ig = ih : P → Q. Hence ρ = igπϕ = ihπϕ : L → Q. Since ϕ ∈ Aut(L , u),
one has ϕ ◦ iu = iu ◦ ϕ. Therefore,

it = ρiuρ
−1

= ihπϕiuϕ
−1π−1ih−1 = ihπ iuπ

−1ih−1 = ihisih−1 = ihsh−1 .

This shows that (Q, t) = h · (P, s) and hence the map 9 is well-defined.
Now we show that 9 is surjective. Let (P, s) ∈ QD⋊E,p(L , u). Since (P̃, s̃) ∼=

(L , u), again by [Bouc and Yılmaz 2022, Lemma 3.3], there exists π : L → P
such that π iu = isπ , i.e., π iuπ

−1
= is : P → P . Since FD⋊E(D) = Fb, it follows

that there exists g ∈ NG(P, e) with is = ig, and hence (P, e, π) ∈Pb(G, L , u) with
9(P, e, π) = (P, s). Thus, 9 is surjective.

Finally, we show that 9 is injective. Let (P, e, π), (Q, f, ρ) ∈ Pb(G, L , u) be
elements with 9(P, e, π) = 9(Q, f, ρ). Write (P, s) = 9(P, e, π) and (Q, t) =

9(Q, f, ρ). Then there exists h ∈ D ⋊ E such that

h · (P, s) = (Q, t).

Again, there exists g ∈ G such that ig = ih : P → Q. Define

ϕ := π−1
◦ i−1

g ◦ ρ : L → L .

One has

ϕ ◦ iu = π−1
◦ i−1

g ◦ ρ ◦ iu = π−1
◦ i−1

g ◦ it ◦ ρ = π−1
◦ i−1

g ◦ ig ◦ is ◦ i−1
g ◦ ρ

= π−1
◦ is ◦ i−1

g ◦ ρ = iu ◦ π−1
◦ i−1

g ◦ ρ = iu ◦ ϕ

which shows that ϕ ∈ Aut(L , u). Moreover, one has

g · (P, e, π) · ϕ = (Q, f, ρ)

and so the map 9 is injective. □

Lemma 5.2. Let (P,e,π)∈[G\Pb(G, L ,u)/Aut(L ,u)] and (P,s)=9(P,e,π)∈

[QD⋊E,p]. Then the image of ND⋊E(P, s) in Out(L , u) is equal to Out(L , u)(P,e,π).

Proof. We have π iuπ
−1

= is and hence the image of ND⋊E(P, s) is given by

ND⋊E(P, s) → Out(L , u), h 7→ π−1 ◦ ih ◦ π

Note that since hs = s, we have ihis = isih , i.e., ihπ iuπ
−1

= π iuπ
−1ih . Therefore

the image is

{π−1ihπ | h ∈ D ⋊ E, ih : P → P, hs = s}

= {π−1igπ | g ∈ NG(P, e), igπ iuπ
−1

= π iuπ
−1ig}

= {π−1igπ ∈ Out(L , u) | π−1igπ = ig, g ∈ NG(P, e)}

= Out(L , u)(P,e,π)

as was to be shown. □
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Proof of Theorem 1.3. We need to show that for any L ̸= 1, the multiplicities of a
simple diagonal p-permutation functor SL ,u,V in FT 1

G,b and in FT 1
D⋊E are equal. But

this follows from Lemmas 5.1 and 5.2. Now Part (i) follows from Theorem 1.2(i),
and Part (ii) follows from [Linckelmann 2018, Theorem 10.5.10]. □
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LORENTZ–SHIMOGAKI AND ARAZY–CWIKEL THEOREMS
REVISITED

LÉONARD CADILHAC, FEDOR SUKOCHEV AND DMITRIY ZANIN

By using the space L0 of finitely supported functions as a left endpoint on the
interpolation scale of L p-spaces, we present a new approach to the Lorentz–
Shimogaki and Arazy–Cwikel theorems which covers the whole range of
p, q ∈ (0, ∞]. In particular, we show that for 0 ≤ p < q < r < s ≤ ∞,

Int(Lq, L r) = Int(L p, L r) ∩ Int(Lq, Ls)

if the underlying space is (0, α), α ∈ (0, ∞] equipped with the Lebesgue
measure. As a byproduct of our result, we solve a conjecture of Levitina,
Sukochev and Zanin (2020).

1. Introduction

Descriptions of interpolation spaces for couples of L p-spaces for 1 ≤ p ≤ ∞ were
extensively researched from the 1960s to the 80s, providing satisfying answers to
most problems that were considered relevant at the time.

However, new questions arising from noncommutative analysis recently high-
lighted some gaps in our knowledge of this subject, especially for the case of p < 1
of quasi-Banach spaces. In this paper, we revisit some important results of the
literature [1; 21; 27], generalizing them and thus filling some of the holes that
were revealed in the theory. In particular, we answer a question asked by Levitina,
Sukochev and Zanin in [20] and already partially studied in [11] regarding the
interpolation theory of sequence spaces (see Theorem 1.2). Besides this new result,
this paper introduces a general approach that covers the range of all 0 ≤ p ≤ ∞

and is self-contained. It emphasizes the use of the space L0 of all finitely supported
measurable functions. As far as the authors know this space rarely appears in
interpolation theory (however, see [2; 16; 24] and [15]). We provide evidence that
L0 is a suitable “left endpoint” on the interpolation scale of L p-spaces, despite its
possessing an atypical structure, that of a normed abelian group.

A function space E is an interpolation space for the couple (L p, Lq) if any linear
operator T bounded on L p and Lq is also bounded on E (see Definition 2.4). This
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notion provides a way of transferring inequalities well known in L p-spaces to more
exotic ones. To both understand the range of applicability of this technique and be
able to check whether it applies to a given function space E , we are interested in
simple descriptions of interpolation spaces for the couple (L p, Lq).

This problem has a long history starting with the Calderón–Mityagin theorem
(see [9; 22]) on the couple (L1, L∞) and followed by Lorentz and Shimogaki’s [21]
results on the couples (L1, Lq) and (L p, L∞) with 1 ≤ p, q ≤ ∞. A remarkable
result of Arazy and Cwikel then states that a space E is an interpolation space for
the couple (L p, Lq), 1 < p < q < ∞ if and only if it is an interpolation space for
the couples (L1, Lq) and (L p, L∞).

Describing interpolation spaces often comes down to understanding certain
orders. In fact, at a very fundamental level, being an interpolation space can be
understood as a monotonicity property. Indeed, given two compatible quasi-Banach
spaces A, B, denote by C(A, B) the set of operators A + B → A + B that restrict
to contractions on A and B. Consider the following order on A + B:

f ≤p,q g ⇔ ∃T ∈ C(A, B), T (g) = f.

With this definition in mind, E is an interpolation space for the couple (A, B) if
and only if

∀ f ∈ E, ∀g ∈ L p + Lq , g ≤p,q f ⇒ g ∈ E .

In fact, the fundamental theorem of Calderón and Mityagin precisely describes the
order ≤L1,L∞

(from now on denoted by ≺≺hd). It states that for f, g ∈ L1 + L∞,

g ≺≺hd f ⇔ g ≤L1,L∞
f ⇔ ∀t > 0,

∫ t

0
µ(s, g) ds ≤

∫ t

0
µ(s, f ) ds,

where µ(g) : t →µ(t, g) denotes the right-continuous decreasing rearrangement of g.
We will call this order head majorization. Moreover, if f, g ∈ L1 and ∥ f ∥1 = ∥g∥1,
then we write g≺≺hd f . Variants of this order allow to describe interpolation spaces
for any couple (L p, L∞), p ∈ (0, ∞) (see [21] for the Banach range and [8] for
p < 1).

Another phenomenon, this time specific to the study of interpolation theory of
L p-spaces, is that to guarantee that a space E is an interpolation space for the
couple (L p, Lq), p < q it is natural to impose two conditions: one which will
impose that E is “on the right of L p” and one that will impose that E is “on the
left of Lq”. An example of such a result is the above-mentioned Arazy–Cwikel
theorem but one can think also of convexity/concavity conditions or Boyd indices
(see [18] for an overview and [8, Theorem 1.4]).
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In this spirit, the natural counterpart of head majorization is tail majorization
defined on L0 + L1 by

g ≺≺tl f ⇔ ∀t > 0,

∫
∞

t
µ(s, g) ds ≤

∫
∞

t
µ(s, f ) ds.

We’ll show later that this order is in fact equivalent to ≤L0,L1 . Moreover, if f, g ∈ L1

and ∥ f ∥1 = ∥g∥1, then we write g ≺tl f . Remark that g ≺tl f if and only if f ≺hd g.
Note that tail majorization coincides with the weak supermajorization of [13].

Let us now state our main theorem. Let X be the linear space of all measurable
functions. If not specified otherwise, the underlying measure space we are working
on is (0, ∞) equipped with the Lebesgue measure m. We obtain:

Theorem 1.1. Let E ⊂ X be a quasi-Banach function space (a priori, not necessar-
ily symmetric). Let p, q ∈ (0, ∞) such that p < q. Then:

(a) E is an interpolation space for the couple (L p, L∞) if and only if there exists
cp,E > 0 such that for any f ∈ E and g ∈ L p + L∞,

|g|
p
≺≺hd | f |

p
⇒ g ∈ E and ∥g∥E ≤ cp,E∥ f ∥E .

(b) E is an interpolation space for the couple (L0, Lq) if and only if there exists
cq,E > 0 such that for any f ∈ E and g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E and ∥g∥E ≤ cq,E∥ f ∥E .

(c) E is an interpolation space for the couples (L0, Lq) and (L p, L∞) if and only
if it is an interpolation space for the couple (L p, Lq).

This extends the results of Lorentz–Shimogaki and Arazy–Cwikel to the quasi-
Banach setting and contributes to the two first questions asked by Arazy in [12,
p. 232] in the particular case of L p-spaces for 0 < p < ∞. As mentioned before,
our approach places L0 as a left endpoint on the interpolation scale of L p-spaces,
in sharp contrast to earlier results which focused mostly on Banach spaces and had
L1 playing this part. An advantage of our approach is that it naturally encompasses
every symmetric quasi-Banach space since they are all interpolation spaces for the
couple (L0, L∞) (see [2; 16]). On the contrary, there exist some symmetric Banach
spaces which are not interpolation spaces for the couple (L1, L∞) (see [26]). This
led to some difficulties which were customarily circumvented with the help of
various technical conditions such as the Fatou property (as appears, e.g., in [4]).

Compared to [8] where the first author investigates similar characterizations, the
novelty of this theorem is statement (b) that deals with the space L0. A deeper
advantage of our new approach is that it no longer relies on Sparr’s K -monotonicity
result [27] for couples of L p-spaces which was instrumental in [8].

Indeed, our strategy in this paper is different from the techniques used in [1; 2;
3; 4; 8; 9; 10; 11; 12; 16; 18; 21; 22; 27] and is based on partition lemmas,
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which were originally developed in a deep paper due to Braverman and Mekler [7]
devoted to the study of the symmetric Banach function spaces E such that the set
{ f ∈ E : f ≺≺hd g} coincides with the closure of the convex hull of its extreme
points.

The approach of Braverman and Mekler was subsequently revised and redevel-
oped in [28] and precisely this revision constitutes the core of our approach in this
paper.

We restate partition lemmas based on [28, Proposition 19] in Section 4. These
lemmas allow us to restrict head and tail majorizations to very simple situations
and reduce the problem to functions taking at most two values. Then, we deduce
interpolation results from those structural lemmas.

Note that this scheme of proof is quite direct and in particular, does not involve
at any point duality related arguments which apply only to Banach spaces [21] or
more generally to L-convex quasi-Banach spaces [17; 25].

In Section 6, we pursue the same type of investigation, but in the setting of
sequence spaces. The nondiffuse aspect of the underlying measure generates
substantial technical difficulties. In particular, we require a new partition lemma
which is not as efficient as those in Section 4 (compare Lemmas 6.2 and 4.6). This
deficiency has been first pointed out to the authors by Cwikel. However, we are still
able to resolve the conjecture of [20] (in the affirmative) by combining Lemma 6.1
with a Boyd-type argument which we borrow from Montgomery and Smith [23].
In particular, we substantially strengthen the results in [11]. Here is the precise
statement:

Theorem 1.2. Let E ⊂ ℓ∞ be a quasi-Banach sequence space and q ≥ 1. The
following conditions are equivalent:

(a) There exists p < q such that E is an interpolation space for the couple (ℓp, ℓq).

(b) There exists c > 0 such that for any u ∈ E and v ∈ ℓ∞,

|v|
q
≺≺tl |u|

q
⇒ v ∈ E and ∥v∥E ≤ c∥u∥E .

(c) For any u ∈ E and v ∈ ℓ∞,

|v|
q
≺≺tl |u|

q
⇒ v ∈ E .

In this section, we freely use results of Cwikel [10] and Cadilhac [8] to avoid
repeating too many similar arguments.

Note that Theorem 1.2 was since proved independently in [5] where a deeper
analysis of the interpolation scale of sequence spaces ℓp, 0 ≤ p ≤ ∞ is presented.
In particular, it is shown in [5] that for any 0 < p < q < ∞, E is an interpolation
space for (ℓp, ℓq) if and only if it is an interpolation space for (ℓ0, ℓq) and (ℓp, ℓ∞),
thus providing a counterpart to our main theorem in the sequence setting.
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2. Preliminaries

Interpolation spaces. The reader is referred to [6] for more details on interpolation
theory and to [19] for an introduction to symmetric spaces. In the remainder of this
section, p and q will denote two nonnegative reals such that p ≤ q .

Let (�, m) be any measure space (in particular the following definitions apply
to N equipped with the counting measure, i.e., sequence spaces). As previously
mentioned, L0(�) ⊂ X (�) denotes the set of functions whose supports have finite
measures, it is naturally equipped with the group norm

∥ f ∥0 = m(supp f ), f ∈ L0(�).

The “norm” of a linear operator T : L0(�) → L0(�), is defined as

∥T ∥L0→L0 = sup
f ∈L0

m(supp(T f ))

m(supp( f ))
.

Definition 2.1. A linear space E ⊂ X (�) becomes a quasi-Banach function space
when equipped with a complete quasinorm ∥·∥E such that:

• If f ∈ E and g ∈ X (�) are such that |g| ≤ | f |, then g ∈ E and ∥g∥E ≤ ∥ f ∥E .

Definition 2.2. A quasi-Banach function space E ⊂ X (�) is called symmetric if

• f ∈ E and g ∈X (�) are such that µ( f )=µ(g), then g ∈ E and ∥g∥E =∥ f ∥E .

Definition 2.3 (bounded operator on a couple of quasi-Banach function spaces).
Let X and Y be quasi-Banach function spaces. We say that a linear operator T is
bounded on (X, Y ) if T is defined from X + Y to X + Y and restricts to a bounded
operator from X to X and from Y to Y . Set

∥T ∥(X,Y )→(X,Y ) = max(∥T ∥X→X , ∥T ∥Y→Y ).

Let us recall the precise abstract definition of an interpolation space (see [6; 19]).

Definition 2.4 (interpolation space between function spaces). Let X , Y and Z
be either quasi-Banach function spaces on � or L0(�). We say that Z is an
interpolation space for the couple (X, Y ) if X ∩ Y ⊂ Z ⊂ X + Y and any bounded
operator on (X, Y ) restricts to a bounded operator on Z . Denote by Int(X, Y ) the
set of interpolation spaces for the couple (X, Y ).

For quasi-Banach spaces, the above definition is equivalent to a seemingly
stronger quantitative property.

Proposition 2.5. Let X, Y, Z be quasi-Banach function spaces. If Z is an interpo-
lation space for the couple (X, Y ), then there exists a constant c(X, Y, Z) > 0 such
that for any bounded operator T on (X, Y ),

∥T ∥Z→Z ≤ c(X, Y, Z) · ∥T ∥(X,Y )→(X,Y ).
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The best possible value of c(X, Y, Z) is called interpolation constant of Z with
respect to the couple (X, Y ).

Proof. In [19, Lemma I.4.3], the assertion is proved for Banach spaces. The
argument for quasi-Banach spaces is identical (because it relies on the closed graph
theorem, which holds for F-spaces, and hence for quasi-Banach spaces). □

K-functional and E-functional. In the remainder of the subsection, X, Y and Z
will denote function spaces which are either quasi-Banach, or L0.

Definition 2.6. Let f ∈ X + Y and t > 0. Define

Kt( f, X, Y ) := inf
g+h= f

∥g∥X + t∥h∥Y and Et( f, X, Y ) := inf
∥g∥X ≤t

∥ f − g∥Y .

These two notions are closely related to one another (see [24]) and the K -
functional in particular plays a major role in the study of general interpolation
spaces. Note that

Kt( f, L1, L∞) =

∫ t

0
µ(s, f ) ds and Et( f, L0, L1) =

∫
∞

t
µ(s, f ) ds.

Thus the head and tail majorizations we consider can be in fact expressed in terms
of K and E functionals. We say that Z is K -monotone with respect to the couple
(X, Y ) if X ∩ Y ⊂ Z ⊂ X + Y and for any f ∈ Z , g ∈ X + Y ,

∀t > 0, Kt(g, X, Y ) ≤ Kt( f, X, Y ) ⇒ g ∈ Z .

Similarly, Z is E-monotone with respect to the couple (X, Y ) if X ∩Y ⊂ Z ⊂ X +Y
and for any f ∈ Z , g ∈ X + Y ,

∀t > 0, Et(g, X, Y ) ≤ Et( f, X, Y ) ⇒ g ∈ Z .

Remark 2.7. It is clear from the definitions that if Z is either E-monotone or
K -monotone for the couple (X, Y ) then Z is an interpolation space for (X, Y ).

Symmetry of interpolation spaces. In this subsection, we show that a quasi-Banach
interpolation space for a couple of symmetric spaces can always be renormed into
a symmetric space. Note that similar results can be found in the literature, see, for
example, [19, Theorem 2.1].

As usual, we will use the term measure preserving for a measurable map ω

between measure spaces (�1,A1, m1) and (�2,A2, m2) verifying,

∀A ∈ A1, ω(A) ∈ A2 and m2(ω(A)) = m1(A).

Lemma 2.8. Assume that � is (0, 1), (0, ∞) or N. Let 0 ≤ f, g ∈ L0(�)+L∞(�)

and let ε > 0. Assume that µ( f ) = µ(g). There exists a measure preserving map
ω : supp(g) → supp( f ) such that (1 + ε)( f ◦ ω) ≥ g.
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Proof. Case 1. Suppose first that µ(∞, f ) = µ(∞, g) = 0.
Define, for any n ∈ Z,

Fn = {t : (1 + ε)n < f (t) ≤ (1 + ε)n+1
}, Gn = {t : (1 + ε)n < g ≤ (1 + ε)n+1

}.

By assumption, m(Fn) = m(Gn) for every n ∈ Z. Let ωn : Gn → Fn be an arbitrary
measure preserving bijection.

Define the measure preserving map ω : supp(g) → supp( f ) by concatenating
ωn : Gn → Fn , n ∈ Z. For every t ∈ Gn , we have

f (ω(t)) ≥ (1 + ε)n, g ≤ (1 + ε)n+1.

Thus,
(1 + ε) f (ω(t)) ≥ g, t ∈ supp(g).

This completes the proof of Case 1.

Case 2. Let δ such that (1 + δ)2
= (1 + ε). Let a = µ(∞, f ) = µ(∞, g) > 0.

Define, for any n ≥ 1,

Fn = {t : a(1+δ)n < f (t) ≤ a(1+δ)n+1
}, Gn = {t : a(1+δ)n < g ≤ a(1+δ)n+1

}

and

F0 = {t : (1 + δ)−1a ≤ f (t) ≤ (1 + δ) a}, G0 = {t : 0 < g ≤ (1 + δ) a}.

By assumption, for any n ≥ 1, m(Gn) = m(Fn) and m(G0) = m(F0) = ∞. For
any n ≥ 0, choose a measure preserving bijection ωn from Gn to Fn .

Define the measure preserving map ω : supp(g) → supp( f ) by concatenating
the ωn’s. For any n ≥ 0 and any t ∈ Gn ,

f (ω(t)) ≥ a(1 + δ)n−1, g ≤ a(1 + δ)n+1.

Thus,
(1 + δ)2 f (ω(t)) = (1 + ε) f (ω(t)) ≥ g, t ∈ supp(g). □

Lemma 2.9. Assume that � is (0, 1), (0, ∞) or N. Let E, A, B ⊂ (L0 + L∞)(�)

be quasi-Banach function spaces. Assume that A and B are symmetric and that
E is an interpolation space for the couple (A, B). Then E admits an equivalent
symmetric quasinorm.

Proof. Let f ∈ E and g ∈ L0 + L∞. Assume that µ(g) ≤ µ( f ). By Lemma 2.8,
there exists a map ω : supp(g) → supp( f ) such that for any t ∈ supp(g),

2| f ◦ ω(t)| ≥ |g(t)|.

Define, for any h ∈ X (�),

T (h) :=

{ g
f ◦ω

h ◦ ω on supp(g),

0, elsewhere.
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Since ω is measure preserving, T is bounded on A and B of norm less than 2. Let
cE be the interpolation constant of E for the couple (A, B) (as in Proposition 2.5).
We know that T f = g ∈ E and

(2-1) ∥g∥ ≤ 2cE∥ f ∥.

Define, for any f ∈ E ,

∥ f ∥E ′ = inf
µ(g)≥µ( f )

∥g∥E .

By (2-1), ∥ f ∥E ′ ≤ ∥ f ∥E ≤ 2cE∥ f ∥E ′ and (E, ∥·∥E ′) is a symmetric space. □

Remark 2.10. It is not difficult to see that if the underlying measure space �

contains both a continuous part and atoms, then Lemma 2.9 is no longer true for
A = L p(�), B = Lq(�) and p < 1. However, one can observe that if A and B are
fully symmetric (i.e., interpolation spaces between L1(�) and L∞(�)), Lemma 2.9
remains valid for any �. This is reminiscent of the conditions required in [27,
Section 4].

3. Interpolation for the couple (L0, Lq)

In this section, � = (0, ∞) (for brevity, we omit � in the notations). We investigate
some basic properties of the interpolation couple (L0, Lq). First, we provide a
statement analogous to Proposition 2.5 and applicable to L0.

Since the closed graph theorem does not apply to L0 (it is not an F-space),
our proof uses concrete constructions that rely on the structure of the underlying
measure space.

For any f ∈ X , denote by M f the multiplication operator g 7→ f · g.

Theorem 3.1. Let E be a quasi-Banach function space and q ∈ (0, ∞]. Assume that
E is an interpolation space for the couple (L0, Lq). Then, there exists a constant c
such that for any contraction T on (L0, Lq), ∥T ∥E→E ≤ c.

Proof. Let (An)n≥1 be a partition of (0, ∞) such that m(An) = ∞ for every n ≥ 1.
Let γn : An → Ac

n be a measure preserving bijective transform. Set

(Unx)(t) =

{
x(γn(t)), t ∈ An,

0, t ∈ Ac
n,

(Vnx)(t) =

{
x(γ −1

n (t)), t ∈ Ac
n,

0, t ∈ An.

Obviously, Un and Vn are bounded operators on the couple (L0, Lq). By assumption,
Un, Vn : E → E are bounded mappings.

Note that
Vn Un = MχAc

n
, n ≥ 1.
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Let us argue by contradiction. For any n ≥ 1, choose an operator Tn which is a
contraction on (L0, Lq) and such that

(3-1) ∥Tn∥E→E ≥ 4n
· max{∥Un∥E→E , ∥Vn∥E→E , 1}

2.

It is immediate that

Tn = MχAn
Tn MχAn

+ MχAc
n
Tn MχAn

+ MχAn
Tn MχAc

n
+ MχAc

n
Tn MχAc

n

= T1,n + Vn T2,n + T3,n Un + Vn T4,n Un,

where

T1,n = MχAn
Tn MχAn

, T2,n =UnTn MχAn
, T3,n = MχAn

TnVn, T4,n =UnTnVn.

By quasitriangle inequality, we have

∥Tn∥E→E ≤ C2
E ·

( 4∑
k=1

∥Tk,n∥E→E

)
· max{∥Un∥E→E , ∥Vn∥E→E .1}

2.

Let kn ∈ {1, 2, 3, 4} be such that

∥Tkn,n∥E→E = max
1≤k≤4

∥Tk,n∥E→E .

We, therefore, have

(3-2) ∥Tn∥E→E ≤ 4C2
E∥Tkn,n∥E→E · max{∥Un∥E→E , ∥Vn∥E→E .1}

2.

Set Sn = Tkn,n . Note that ∥Sn∥L0→L0 ≤ 1 and ∥Sn∥Lq→Lq ≤ 1. A combination
of (3-1) and (3-2) yields

∥Sn∥E→E ≥ 4n−1C−2
E , n ≥ 1.

Note that Sn = MχAn
Sn MχAn

. Set

S =

∑
n≥1

Sn.

Since the Sn’s are in direct sum, we have

∥S∥L0→L0 = sup
n≥1

∥Sn∥L0→L0 ≤ 1 and ∥S∥Lq→Lq = sup
n≥1

∥Sn∥Lq→Lq ≤ 1.

Moreover, E is an interpolation space for the couple (L0, Lq), it follows that
S : E → E is bounded.

For any n ≥ 1, choose fn ∈ E such that ∥ fn∥E ≤ 1 and ∥Sn fn∥E ≥ 4n−2 C−2
E .

Recall that Sn = Sn MχAn
. Hence, we may assume without loss of generality that

fn is supported on An . Thus, S( fn) = Sn( fn) and

∥S( fn)∥E = ∥Sn( fn)∥E ≥ 4n−2 C−2
E .

This contradicts the boundedness of S. □
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Remark 3.2. Theorem 3.1 above remains true for other underlying measure spaces:

• For sequence spaces. Indeed, in the proof of Theorem 3.1, we only use properties
of the underlying measure space in the first sentence, namely when we consider a
partition of (0, ∞) into countably many sets, each of them isomorphic to (0, ∞).
Since a partition satisfying the same property exists for Z+, Theorem 3.1 remains
true for interpolation spaces between ℓ0 and ℓq .

• For (0, 1). The same general idea applies in this case but some modifications
have to be made because the maps γn introduced in the proof cannot be assumed to
be measure-preserving. The details are left to the reader.

Lemma 3.3. Let E, Y ⊂ L0 + L∞ be quasi-Banach function spaces. Assume that
Y is symmetric and that E is an interpolation space for the couple (L0, Y ). Then E
admits an equivalent symmetric quasinorm.

Proof. The argument follows that in Lemma 2.9 mutatis mutandi. □

The following assertion is a special case of Theorem 1.1 and an important
ingredient in the proof of the latter theorem.

Corollary 3.4. Let X be a quasi-Banach function space and q ∈ (0, ∞). Assume
that L0 ∩ Lq ⊂ X ⊂ L0 + Lq and that for any f ∈ E and g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E .

Then E is an interpolation space for the couple (L0, Lq).

Proof. It is clear that the condition on X is equivalent to E-monotonicity with
respect to the couple (L0, Lq) so by Remark 2.7, E is an interpolation space for
the couple (L0, Lq). □

Corollary 3.4 applies in particular to L p-spaces, p ≤ q. We decided to add a
more precise statement and to provide a direct proof of the latter.

Corollary 3.5. Let p, q ∈ (0, ∞) such that p < q. Then, L p is an interpolation
space for the couple (L0, Lq). More precisely, if T is a contraction on (L0, Lq),
then T is a contraction on L p.

Proof. Let us first consider characteristic functions. Let E be a set with finite
measure. Since T is a contraction on L0, the measure of the support of T (χE) is
less than m(E). So by Hölder’s inequality, setting r = (p−1

− q−1)−1, we have

∥T (χE)∥p ≤ ∥T (χE)∥q · m(E)1/r
≤ ∥χE∥q · m(E)1/r

= ∥χE∥p.

First, consider the case p ≤ 1. Let f ∈ L p be a step function, i.e.,

f =

∑
i∈N

ai χEi ,
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where ai ∈C and the sets Ei are disjoint sets with finite measure. By the p-triangular
inequality we write

∥T f ∥
p
p ≤

∑
i∈N

|ai |
p
∥T (χEi )∥

p
p ≤

∑
i∈N

|ai |
p
∥χEi ∥

p
p = ∥ f ∥

p
p.

Since T : L p → L p is bounded by Corollary 3.4 and since step functions are dense
in L p, it follows that T : L p → L p is a contraction (for p ≤ 1).

Now consider the case p > 1. Since p <q , it follows that q > 1. By the preceding
paragraph, T : L1 → L1 is a contraction. By complex interpolation, T : L p → L p

is also contraction. □

4. Construction of contractions on (L0, Lq) and (L p, L∞)

Let p, q ∈ (0, ∞). In this section, we are interested in the following question. Given
functions f and g in L0 + Lq (resp. L p + L∞), does there exist a bicontraction T
on (L0, Lq ) (resp. (L p, L∞)) such that T ( f ) = g? We show that such an operator
exists provided that |g|

q
≺≺tl | f |

q (resp. |g|
p
≺≺hd | f |

p. This directly implies a
necessary condition for a symmetric space to be an interpolation space for the
couple (L0, Lq) (resp. (L p, L∞)) which will be exploited in the next section.

Our method of proof is very direct. We construct the bicontraction T as direct
sums of very simple operators. This is made possible by two partition lemmas that
enable us to understand the orders ≺≺tl and ≺≺hd as direct sums of simple situations.

Partition lemmas. We state our first lemma without proof since it essentially repeats
that of Proposition 19 in [28].

Lemma 4.1. Let f, g ∈ L1 be positive decreasing step functions. Assume that
g ≺hd f . There exists a sequence of intervals {Ik, Jk}k≥0 of (0, ∞) such that:

(i) For every k ≥ 0, Ik and Jk are disjoint intervals of finite length.

(ii) (Ik ∪ Jk) ∩ (Il ∪ Jl) = ∅ for k ̸= l.

(iii) f and g are constant on Ik and on Jk .

(iv) g|Ik∪Jk ≺hd f |Ik∪Jk for every k ≥ 0.

(v) g ≤ f on the complement of
⋃

k≥0 Ik ∪ Jk .

If furthermore f, g ∈ L1 and g ≺hd f then f = g on the complement of
⋃

k≥0 Ik ∪ Jk .

Scholium 4.2. Let f, g ∈ X be positive decreasing functions. Let 1 ⊂ (0, ∞) be
an arbitrary measurable set.

(i) If f, g ∈ L1 + L∞ are such that∫
[0,t]∩1

g ≤

∫
[0,t]∩1

f, t > 0,

then gχ1 ≺≺hd f χ1.
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(ii) If f, g ∈ L0 + L1 are such that∫
(t,∞)∩1

g ≤

∫
(t,∞)∩1

f, t > 0,

then gχ1 ≺≺tl f χ1.

The second partition lemma deals with describing the order ≺≺tl in terms of ≺tl

and ≤.

Lemma 4.3. Let f, g ∈ L0 + L1 be such that f = µ( f ), g = µ(g) and g ≺≺tl f .
There exists a collection {1k}k≥0 of pairwise disjoint sets such that:

(i) f |1k ≺hd g|1k for every k ≥ 0.

(ii) g ≤ f on the complement of
⋃

k≥0 1k .

Proof. Consider the set {g > f }. Similarly to the previous proof, connected
components of the set {g > f } are intervals (closed or not) not reduced to points.
Let us enumerate these intervals as (ak, bk), k ≥ 0.

We have ∫
∞

t
( f − g)+ −

∫
∞

t
( f − g)− =

∫
∞

t
( f − g) ≥ 0.

Let
H(t) = sup

{
u :

∫
∞

u
( f − g)+ =

∫
∞

t
( f − g)−

}
.

Obviously, H is a monotone function, H(t) ≥ t for all t > 0 and∫
∞

H(t)
( f − g)+ =

∫
∞

t
( f − g)−.

Set
1k = (ak, bk) ∪

(
(H(ak), H(bk)) ∩ {g ≤ f }

)
.

Note that ∫
∞

bk

( f − g)+ =

∫
∞

ak

( f − g)+ ≥

∫
∞

ak

( f − g)−

and therefore, H(ak) ≥ bk .
We claim that 1k ∩ 1l = ∅ for k ̸= l. Indeed, let ak < bk ≤ al < bl . We have

H(ak) ≤ H(bk) ≤ H(al) ≤ H(bl). Thus, (H(ak), H(bk)) ∩ (H(al), H(bl)) = ∅.
We now have

1k ∩1l =
(
(1k ∩{ f < g})∩ (1l ∩{ f < g})

)
∪

(
(1k ∩{ f ≥ g})∩ (1l ∩{ f ≥ g})

)
.

Obviously,

(1k ∩ { f < g}) ∩ (1l ∩ { f < g}) = (ak, bk) ∩ (al, bl) = ∅,

(1k ∩{ f ≥ g})∩(1l ∩{ f ≥ g})= (H(ak), H(bk))∩(H(al), H(bl))∩{ f ≥ g}=∅.

This proves the claim.
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We now claim that ∫
(t,∞)∩1k

( f − g) ≥ 0.

If t ≥ bk , then taking into account that H(ak) ≥ bk , we infer that

(t, ∞) ∩ 1k ⊂ { f ≥ g}

and the claim follows immediately. If t ∈ (ak, bk), then∫
(t,∞)∩1k

( f − g) =

∫
(H(ak),H(bk))

( f − g)+ −

∫ bk

t
( f − g)−

≥

∫
(H(ak),H(bk))

( f − g)+ −

∫ bk

ak

( f − g)− = 0.

This proves the claim.
It follows from the claim and Scholium 4.2 that gχ1k ≺≺tl f χ1k . Since∫

1k

g =

∫
1k

f,

it follows that gχ1k ≺tl f χ1k , which immediately implies the first assertion.
By construction, (ak, bk) ⊂ 1k . Thus,

{g > f } =

⋃
k≥0

(ak, bk) ⊂

⋃
k≥0

1k .

The second assertion is now obvious. □

Construction of operators. We repeat the same structure as in the previous subsec-
tion, proving four lemmas, each one dealing with a certain order: ≺hd, ≺tl, ≺≺hd,
and finally ≺≺tl.

Lemma 4.4. Let p ∈ (0, ∞). Let f, g ∈ L p(0, ∞), assume that |g|
p

≺hd | f |
p,

f = µ( f ) and g = µ(g). There exists a linear operator T : X (0, ∞) → X (0, ∞)

such that g = T ( f ) and

∥T ∥L p→L p ≤ 2 · 31/p, ∥T ∥L∞→L∞
≤ 2 · 21/p.

Proof. Step 1. First, let us assume that f and g are step functions.
Apply Lemma 4.1 to the functions f p and g p and let Ik and Jk be as in Lemma 4.1.

Without loss of generality, the interval Ik is located to the left of the interval Jk .
For every k ≥ 0, let’s define the mapping Sk : X (Ik ∪ Jk) → X (Ik ∪ Jk) as

below. The construction of this mapping will depend on whether f p
|Jk ≤

1
2 g p

|Jk

or f p
|Jk > 1

2 g p
|Jk .
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If f p
|Jk ≤

1
2 g p

|Jk , then

g p
|Jk · m(Jk) ≤ g p

|Ik · m(Ik) + g p
|Jk · m(Jk)

= f p
|Ik · m(Ik) + f p

|Jk · m(Jk) ≤ f p
|Ik · m(Ik) +

1
2 g p

|Jk · m(Jk).

Therefore,
g p

|Jk · m(Jk) ≤ 2 f p
|Ik · m(Ik).

Let lk be a linear bijection from Jk to Ik . We set

Sk x =
g|Ik

f |Ik

· xχIk +
g|Jk

f |Ik

· (x ◦ lk) χJk .

Clearly, Sk is a contraction in the uniform norm.
Let x ∈ L p. We have

∥Sk x∥
p
p ≤

g p
|Ik

f p|Ik

· ∥xχIk ∥
p
p +

g p
|Jk

f p|Ik

· ∥(x ◦ lk) χJk ∥
p
p

≤
g p

|Ik

f p|Ik

· ∥x∥
p
p +

g p
|Jk

f p|Ik

·
m(Jk)

m(Ik)
· ∥x∥

p
p ≤ 3∥x∥

p
p.

Also, we have
∥Sk x∥∞ ≤ ∥x∥∞.

If f p
|Jk > 1

2 g p
|Jk , then we set Sk = Mg f −1 . Clearly, ∥Sk x∥∞ ≤ 21/p

∥x∥∞

and ∥Sk x∥p ≤ 21/p
∥x∥p.

We define S : X → X by
S =

⊕
k≥0

Sk .

Remark that ∥S∥r→r = supk≥0∥Sk∥Lr →Lr for any r ∈ [0, ∞]. Hence,

∥S∥L p→L p ≤ 31/p, ∥S∥L∞→L∞
≤ 21/p.

It remains only to note that S f = g.

Step 2. Now, only assume that f and g are positive and nonincreasing. Define, for
any n ∈ Z,

an = sup{t ∈ (0, ∞) : f (t) ≥ 2n/2
} and bn = sup{t ∈ (0, ∞) : g(t) ≥ 2n/2

}.

Let A be the σ -algebra generated by the intervals (an, an+1) and (bn, bn+1). Define

f p
0 = E[ f p

| A] and g p
0 = E[g p

| A].

Note that f0 and g0 are step functions such that

g p
0 ≺hd f p

0 , 2−1/2 f ≤ f0 ≤ 21/2 f and 2−1/2 g ≤ g0 ≤ 21/2 g.
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Apply Step 1 to f0 and g0 to obtain an operator S and set

T = M f f −1
0

◦ S ◦ Mg0g−1 .

Clearly, T f = g and

∥T ∥L p→L p ≤ 2∥S∥L p→L p ≤ 2 ·21/p, ∥T ∥L∞→L∞
≤ 2∥S∥L∞→L∞

≤ 22
·21/p. □

Lemma 4.5. Let f, g ∈ Lq(0, ∞) be positive nonincreasing functions such that
gq

≺tl f q . Let d > 1. There exists a linear operator T : X (0, ∞) → X (0, ∞) such
that g = T ( f ) and

∥T ∥L0→L0 ≤ 4, ∥T ∥Lq→Lq ≤ 2 · 31/q .

Proof. Following Step 2 of Lemma 4.4, we are reduced to dealing with step
functions.

Apply Lemma 4.1 to the functions gq and f q and let (Ik)k≥1 and (Jk)k≥1 be as
in Lemma 4.1. Without loss of generality, the intervals Ik is located to the left of
the intervals Jk .

Let k ≥ 1. Define the mappings Sk : X (Ik ∪ Jk) → X (Ik ∪ Jk) as below.
Note that since f q

|Ik∪Jk ≺hd gq
|Ik∪Jk , we have

g|Ik ≥ f |Ik ≥ f |Jk ≥ g|Jk .

The construction of Sk will depend on whether we have ∥ f χIk ∥q ≤ ∥ f χJk ∥q or
∥ f χIk ∥q > ∥ f χJk ∥q .

If ∥ f χIk ∥q ≤ ∥ f χJk ∥q , then m(Ik) ≤ m(Jk) and

gq
0 |Ik · m(Ik) ≤ 2 f q

|Jk · m(Jk).

Let lk : Ik → Jk be a linear bijection. We set

Sk x =
g|Ik

f |Jk

(x ◦ lk) χIk +
g
f

xχJk .

Let x ∈ Lq . We have

∥Sk x∥0 ≤ ∥xχJk ∥0 + ∥(x ◦ lk) χIk ∥0 ≤

(
1 +

m(Ik)

m(Jk)

)
∥x∥0.

Thus, ∥Sk∥L0→L0 ≤ 2. We have

∥Sk x∥
q
q =

gq
|Ik

f q |Jk

∥(x ◦ lk) χIk ∥
q
q +

gq
|Jk

f q |Jk

∥xχJk ∥
q
q

≤
gq

|Ik

f q |Jk

·
m(Ik)

m(Jk)
· ∥x∥

q
q +

gq
|Jk

f q |Jk

∥x∥
q
q ≤ 3∥x∥

q
q .

If ∥ f χIk ∥q > ∥ f χJk ∥q , then

gq
|Ik · m(Ik) ≤ 2 f q

|Ik · m(Ik)
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and therefore, g0 ≤ 21/q f0. We now set Sk = Mg f −1 . Obviously, ∥Sk∥L0→L0 ≤ 1
and ∥Sk∥Lq→Lq ≤ 21/q .

We set
S =

⊕
k≥0

Sk .

Since S : X (0, ∞) → X (0, ∞) is defined as a direct sum:

∥S∥L0→L0 = sup
k≥1

∥Sk∥L0→L0 ≤ 2, ∥S∥Lq→Lq = sup
k≥1

∥Sk∥Lq→Lq ≤ 31/q ,

it remains only to note that S f = g. □

Lemma 4.6. Let f, g ∈ (L p + L∞)(0, ∞) be such that |g|
p
≺≺hd | f |

p, f = µ( f )

and g = µ(g). There exists a linear operator T : X → X such that g = T ( f ) and

∥T ∥L p→L p ≤ 2 · 31/p, ∥T ∥L∞→L∞
≤ 2 · 21/p.

Proof. Let (1k)k≥0 be as in Lemma 4.1 and let 1∞ be the complement of
⋃

k≥0 1k .
By Lemma 4.4, there exists Tk : X (1k) → X (1k) such that Tk( f ) = g on 1k and

∥Tk∥L p(Xk)→L p(Xk) ≤ 2 · 91/p, ∥Tk∥L∞(Xk)→L∞(Xk) ≤ 2 · 41/p.

Set T∞ = Mg/ f on X (1∞). We now set

T = T∞

⊕(⊕
k≥0

Tk

)
.

Obviously, T f = g on (0, ∞) and

∥T ∥L p→L p ≤ 2 · 91/p, ∥T ∥L∞→L∞
≤ 2 · 41/p. □

Lemma 4.7. Let f, g ∈ (L0 + Lq)(0, ∞) be such that |g|
q
≺≺tl | f |

q , f = µ( f )

and g = µ(g). There exists a linear operator T : X → X such that g = T ( f ) and

∥T ∥L0→L0 ≤ 4, ∥T ∥Lq→Lq ≤ 2 · 31/q .

Proof. Without loss of generality, g = µ(g) and f = µ( f ). Let (1k)k≥0 be as in
Lemma 4.3 and let 1∞ be the complement of

⋃
k≥0 1k . By Lemma 4.5, there

exists Tk : X (1k) → X (1k) such that Tk( f ) = g on 1k and

∥Tk∥L0(Xk)→L0(Xk) ≤ 8, ∥Tk∥Lq (Xk)→Lq (Xk) ≤ 2 · 91/q .

Set T∞ = Mg/ f on X (1∞). We now set

T = T∞

⊕(⊕
k≥0

Tk

)
.

Obviously, T f = g on (0, ∞) and

∥T ∥L0→L0 ≤ 4, ∥T ∥Lq→Lq ≤ 2 · 31/q . □
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5. Interpolation spaces for the couple (L p, Lq)

In this section, we obtain characterizations of interpolation spaces for the couple
(L p, Lq), in terms of the majorization notions studied earlier. The necessity of the
condition we consider is a direct consequence of the constructions explained in the
previous section.

Theorem 5.1. Let 0 ≤ p < q ≤ ∞. Let E be a quasi-Banach function space such
that E ∈ Int(L p, Lq). There exist cp,E and cq,E in R>0 such that:

(i) Suppose p ̸= 0. For any f ∈ E and g ∈ L p + L∞ if |g|
p
≺≺hd | f |

p, then g ∈ E
and ∥g∥E ≤ cp,E∥ f ∥E .

(ii) Suppose q ̸= ∞. For any f ∈ E and g ∈ L0 + Lq if |g|
q
≺≺tl | f |

q , then g ∈ E
and ∥g∥E ≤ cq,E∥ f ∥E .

Proof. By Lemma 2.9 (for p > 0) or Lemma 3.3 (for p = 0), we may assume
without loss of generality that E is a symmetric function space.

Assume that p ̸= 0. Let f ∈ E and let g ∈ L p + L∞ be such that |g|
p
≺≺hd | f |

p.
Since E is symmetric, we may assume without loss of generality that f = µ( f )

and g = µ(g). By Lemma 4.6, there exists an operator T such that T ( f ) = g and

∥T ∥(L p,L∞)→(L p,L∞) ≤ 2 · 31/p.

Recall that Lq is an interpolation space for the couple (L p, L∞) (one can take,
for example, real or complex interpolation method). Let cp,q be the interpolation
constant of Lq for the couple (L p, L∞). We have

∥T ∥Lq→Lq ≤ cp,q · 2 · 31/p.

Let cE be the interpolation constant of E for (L p, Lq) (see Proposition 2.5).
Then,

∥T ∥E→E ≤ cE · max{1, cp,q} · 2 · 31/p.

Thus,
∥g∥E ≤ ∥T ∥E→E∥ f ∥E ≤ cE · max{1, cp,q} · 2 · 31/p

∥ f ∥E .

This proves the first assertion. The proof of the second one follows mutatis mutandi
using Corollary 3.5 instead of complex interpolation and (for p = 0) Theorem 3.1
instead of Proposition 2.5. □

Lemma 5.2. Assume that 0 < p < q < ∞. Let f, g ∈ L p + Lq such that f = µ( f )

and g = µ(g). Suppose that at every t > 0, one of the following inequalities holds:∫ t

0
g p ds ≤

∫ t

0
f p ds or

∫
∞

t
gq ds ≤

∫
∞

t
f q ds.

Then, there exist g1, g2 ∈ (L p + Lq)+ which satisfies g = g1 + g2, g p
1 ≺≺hd f p

and gq
2 ≺≺tl f q .



244 LÉONARD CADILHAC, FEDOR SUKOCHEV AND DMITRIY ZANIN

Proof. Set

A =

{
t > 0 :

∫ t

0
g(s)p ds ≤

∫ t

0
f (s)p ds

}
,

B =

{
t > 0 :

∫
∞

t
g(s)q ds ≤

∫
∞

t
f (s)q ds

}
.

Let
u+(t) = inf{s ∈ A : s ≥ t}, u−(t) = sup{s ∈ A : s ≤ t},

v+(t) = inf{s ∈ B : s ≥ t}, v−(t) = sup{s ∈ B : s ≤ t}.

Note that f pχ(u−(t),u+(t)) ≺hd g pχ(u−(t),u+(t)) for t /∈ A and, therefore,

g(u+(t) − 0) ≤ f (u+(t) − 0).

Set h1(t) = g(u+(t) − 0), t > 0. By definition, u+(t) ≥ t for all t > 0. Since g
is decreasing, it follows that h1 ≤ g. Set h2 = gχB . Since u+(t) = t for t ∈ A, it
follows that h1 = g on A. Thus, h1 + h2 ≥ gχA + gχB ≥ g.

We claim that ∫ t

0
µ(s, h1)

p ds ≤

∫ t

0
f (s)p ds.

Indeed, for t ∈ A, we have∫ t

0
h1(s)p ds ≤

∫ t

0
g(s)p ds ≤

∫ t

0
f (s)p ds.

For t /∈ A, we have h1(s) = g(u+(t)) for all s ∈ (u−(t), u+(t)). Thus,∫ t

0
h1(s)p ds =

∫ u−(t)

0
h1(s)p ds +

∫ t

u−(t)
h1(s)p ds

≤

∫ u−(t)

0
g(s)p ds +

∫ t

u−(t)
g(u+(t))p ds.

Since ∫ u−(t)

0
g(s)p ds =

∫ u−(t)

0
f (s)p ds, g(u+(t)) ≤ f (u+(t)),

it follows that∫ t

0
h1(s)p ds ≤

∫ u−(t)

0
f (s)p ds +

∫ t

u−(t)
f (u+(t))p ds ≤

∫ t

0
f (s)p ds.

Since h1 = µ(h1), the claim follows.
We claim that ∫

∞

t
µ(s, h2)

q ds ≤

∫
∞

t
f (s)q ds.
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For t ∈ B, we have∫
∞

t
h2(s)q ds ≤

∫
∞

t
g(s)q ds ≤

∫
∞

t
f (s)q ds.

For t /∈ B, we have∫
∞

t
h2(s)q ds =

∫
∞

v+(t)
h2(s)q ds ≤

∫
∞

v+(t)
g(s)q ds =

∫
∞

v+(t)
f (s)q ds ≤

∫
∞

t
f (s)q ds.

In either case, we have∫
∞

t
µ(s, h2)

q ds ≤

∫
∞

t
h2(s)q ds ≤

∫
∞

t
f (s)q ds.

This proves the claim.
Setting

g1 =
h1

h1 + h2
g, g2 =

h2

h1 + h2
g,

we complete the proof. □

Theorem 5.3. Let 0 ≤ p < q ≤ ∞ with either p ̸= 0 or q ̸= ∞. Let E be a
quasi-Banach function space. Assume that there exist cp,E and cq,E in R>0 such
that:

(i) Suppose p ̸= 0. For any f ∈ E and g ∈ L0 + L p, if |g|
p
≺≺hd | f |

p, then g ∈ E
and ∥g∥E ≤ cp,E∥ f ∥E .

(ii) Suppose q ̸= ∞. For any f ∈ E and g ∈ L0 + Lq , if |g|
q
≺≺tl | f |

q , then g ∈ E
and ∥g∥E ≤ cq,E∥ f ∥E .

Then E belongs to Int(L p, Lq).

Proof. Assume that p ̸= 0. Let us show that the first condition implies E ⊂ L p +L∞.
Indeed, assume the contrary and choose f ∈ E such that µ( f ) χ(0,1) /∈ L p. Let

fn = min
{
µ

(
1
n
, f

)
, µ( f ) χ(0,1)

}
, n ≥ 1.

Obviously, ∥ fn∥E ≤∥µ( f ) χ(0,1)∥E ≤∥ f ∥E . On contrary, ∥ fn∥
p
pχ(0,1)≺≺hd f p

n . By
the first condition on E , we have ∥ fn∥p∥χ(0,1)∥E ≤ cp,E∥ f ∥E . However, we have
∥ fn∥p ↑ ∥µ( f ) χ(0,1)∥p = ∞. This contradiction shows that our initial assumption
was incorrect. Thus, E ⊂ L p + L∞.

A similar argument shows that the second condition implies E ⊂ L0 + Lq . Thus,
a combination of both conditions implies E ⊂ L p + Lq .

Let T be a contraction on (L p, Lq) and f ∈ E . To conclude the proof, it suffices
to show that T f belongs to E . First, note that

K (t, T f, L p, Lq) ≤ K (t, f, L p, Lq).
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Assume that p > 0 and q < ∞. Let α−1
=

1
p −

1
q . By the Holmstedt formula for the

K -functional (see [14]), there exists a constant cp,q > 0 such that for any t ∈ R>0,(∫ tα

0
µ(s, T f )p ds

)1/p

+ t
(∫

∞

tα
µ(s, T f )q ds

)1/q

≤ cp,q

((∫ tα

0
µ(s, f )p ds

)1/p

+ t
(∫

∞

tα
µ(s, f )q ds

)1/q )
.

Hence, for any given t > 0, we have either∫ tα

0
µ(s, T f )p ds ≤

∫ tα

0
µ(s, cp,q f )p ds

or ∫
∞

tα
µ(s, T f )q ds ≤

∫
∞

tα
µ(s, cp,q f )q ds.

By Lemma 5.2, one can write

(5-1) µ(T f ) = g1 + g2, g p
1 ≺≺hd (cp,qµ( f ))p, g2 ≺≺tl (cp,qµ( f ))q .

By assumption, we have

∥g1∥E ≤ cp,E∥ f ∥E , ∥g2∥E ≤ cq,E∥ f ∥E .

By triangle inequality, we have

∥T f ∥E ≤ cp,q,E∥ f ∥E .

Assume now that p > 0 and q = ∞. This case is simpler since by the Holmstedt
formula (see [14]), there exists cp ∈ R>0 such that for any t ∈ R>0,(∫ t p

0
µ(s, T f )p ds

)1/p

≤ cp

(∫ t p

0
µ(s, f )p ds

)1/p

.

This means that |T f |
p
≺≺hd |cp f |

p so by assumption (1), T f belongs to E and

∥T f ∥E ≤ cp cp,E∥ f ∥E .

The case of p = 0 and q < ∞ is given by Corollary 3.4. □

Theorem 1.1 claimed in the introduction compiles some results of this section.

Proof of Theorem 1.1. Assertion (a) is obtained by combining Theorems 5.1 and 5.3
with q = ∞.

Assertion (b) is derived similarly from Theorems 5.1 and 5.3 by applying them
with p = 0.

Finally, using assertions (a) and (b) of Theorem 1.1, Theorems 5.1 and 5.3, for
0 < p < q < ∞, one obtains Theorem 1.1(c). □



LORENTZ–SHIMOGAKI AND ARAZY–CWIKEL THEOREMS REVISITED 247

Remark 5.4. In the spirit of Corollary 3.4, we could have used a nonquantitative
condition to deal with the case of q = ∞ in Theorem 5.3. Let E be a quasi-Banach
function space and p, q ∈ (0, ∞). This means that the following two conditions
are equivalent:

(i) For any f ∈ E , g ∈ L p + L∞,

|g|
p
≺≺hd | f |

p
⇒ g ∈ E .

(ii) There exists c > 0 such that for any f ∈ E , g ∈ L p + L∞,

|g|
p
≺≺hd | f |

p
⇒ g ∈ E and ∥g∥E ≤ c∥ f ∥E .

Similarly, the following two conditions are equivalent:

(i) For any f ∈ E , g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E .

(ii) There exists c > 0 such that for any f ∈ E , g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E and ∥g∥E ≤ c∥ f ∥E .

6. Interpolation spaces for couples of ℓ p-spaces

In this section, we show that our approach to the Lorentz–Shimogaki and Arazy–
Cwikel theorems also applies to sequence spaces. We follow a structure similar
to the previous sections, proving partition lemmas, then constructing bounded
operators on couples (ℓp, ℓq) with suitable properties to finally conclude on the
interpolation spaces of the couple (ℓp, ℓq). Additional arguments involving Boyd
indices will be required to prove Theorem 1.2.

We identify sequences with bounded functions on (0, ∞) which are almost
constant on intervals of the form (k, k + 1), k ∈ Z+ by

i : ℓ∞
→ L∞, (uk)k∈Z+ 7→

∞∑
k=0

uk 1(k,k+1).

An interpolation theorem for the couple (ℓ p, ℓq). We start with a partition lemma
playing, for sequence spaces, the role of Lemma 4.3.

Lemma 6.1. Let a = (an)n∈Z+ , b = (bn)n∈Z+ be two positive decreasing sequences
such that b ≺≺tl a. There exists a sequence (1n)n∈Z+ of subsets of Z+ such that:

(i) For every k ∈ Z+, we have |{n ∈ Z+
: k ∈ 1n}| ≤ 3.

(ii)
∑

k∈1n
ak ≥ bn for any n ∈ Z+.
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Proof. Define I = {n ∈ Z+
: bn > an}. For n /∈ I , set 1n = {n}.

For any n ∈ Z+, define

in = sup
{

i :

∞∑
k=i

ak ≥

∞∑
k=n

bk

}
and for n ∈ I , let 1n = {in, . . . , in+1}.

From the definition of in , we have∑
k≥in

ak ≥

∑
k≥n

bk .

From the definition of in+1, we have∑
k>in+1

ak <
∑

k≥n+1

bk .

Taking the difference of these inequalities, we infer that∑
k∈1n

ak ≥ bn.

This proves the second condition.
Note that since b ≺≺tl a, we write in ≥ n for any n ∈ Z+. Hence, if n ∈ I , then

bn > an ≥ ain+1 . Furthermore, by definition of in+1, we have∑
k>in+1

ak <

∞∑
k=n+1

bk, so
∞∑

k=in+1

ak <

∞∑
k=n

bk .

Hence, by definition of in , we have in+1 > in for n ∈ I .
Let us now check the first condition. Suppose there exist distinct numbers

n1, n2, n3 ∈ I such that k ∈ 1n1, 1n2, 1n3 . Without loss of generality, n1 < n2 < n3.
Since k ∈ 1n1 , it follows that k ≤ in1+1 ≤ in2 . Since k ∈ 1n3 , it follows that
k ≥ in3 ≥ in2+1. Hence, in2+1 ≤ k ≤ in2 and, therefore, in2+1 = in2 . Since n2 ∈ I ,
it follows in2+1 > in2 . This contradiction shows that |{n ∈ I : k ∈ 1n}| ≤ 2. By
definition, k also belongs to at most one set 1n , n /∈ I . Consequently,

|{n ∈ Z+
: k ∈ 1n}| ≤ 3. □

From the partition lemma, we deduce an operator lemma similar to Lemma 4.6.
It extends Proposition 2 in [3], which is established there for the special case p = 1
by a completely different method.

Lemma 6.2. Let p ≥ 1. Let a, b ∈ ℓp such that |b|
p
≺≺tl |a|

p. Then there exists an
operator T : ℓp

→ ℓp such that:

(i) T (a) = b.

(ii) ∥T ∥p→p ≤ 31/p and ∥T ∥0→0 ≤ 3.
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Proof. We can assume that both sequences are nonnegative and decreasing. Apply
Lemma 6.1 to |a|

p and |b|
p. For every n ∈ Z+, choose a linear form ϕn on ℓp of

norm less than 1, supported on 1n and such that ϕn(a) = ϕn(a11n ) = bn . Define

T : x ∈ ℓp
7→ (ϕn(x))n∈Z+ .

By construction, T (a) = b. Let us check the norm estimates. Let x ∈ ℓp, then

∥T (x)∥p
p =

∑
n∈Z+

|ϕn(x)|p
=

∑
n∈Z+

|ϕn(x11n)|
p

≤

∑
n∈Z+

∑
k∈1n

|xk |
p
=

∑
k∈Z+

|{n : k ∈ 1n}||xk |
p
≤ 3∥x∥

p
p.

The second estimate is clear, using once again the fact that an integer k belongs to
at most three 1n’s. □

The following remarks were communicated to the authors by Cwikel and Nilsson.

Remark 6.3. A bounded linear operator on ℓp, p ≤ 1 extends automatically to a
bounded linear operator on ℓ1.

Proof. Indeed, let (en)n∈Z+ be the canonical basis of ℓ∞. Let T be a contraction
on ℓp, p < 1. Then by Hölder’s inequality ∥T (en)∥1 ≤ ∥T (en)∥p ≤ ∥T ∥p→p. By
the triangle inequality, for any finite sequence a = (an)n∈Z+ ,

∥T (an)∥1 ≤

∑
n∈Z+

|an|∥T (en)∥1 ≤ ∥a∥1∥T ∥p→p.

Hence, T extends to a contraction on ℓ1. □

Remark 6.4. The condition p ≥ 1 in Lemma 6.2 is necessary.

Proof. Let us show that Lemma 6.2 cannot be true for p < 1. Assume by contradic-
tion that there exists c > 0 such that for any finite sequences a and b in ℓp such
that |b|

p
≺≺tl |a|

p there exists T with ∥T ∥p→p ≤ c and T (a) = b. By Remark 6.3
above, we also have ∥T ∥1→1 ≤ c. In particular, ∥b∥1 ≤ c∥a∥1. By considering
b = e1 and a =

1
N 1/p

∑N
i=1 ei for N large enough, one obtains a contradiction. □

We will not prove a sequence version of Lemma 4.5 to avoid the repetition of
too many similar arguments. Fortunately, the expected result already appears in the
literature, see [10, Theorem 3].

Lemma 6.5. Let p > 0. Let a, b ∈ ℓ∞ such that |b|
p
≺≺hd |a|

p. Then there exists
an operator T : ℓp

→ ℓp such that:

(i) T (a) = b.

(ii) ∥T ∥p→p ≤ 81/p and ∥T ∥∞→∞ ≤ 21/p.

We conclude this subsection with a new interpolation theorem.
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Theorem 6.6. Let p < q ∈ (0, ∞] such that q ≥ 1. Let E be a quasi-Banach
sequence space. Then E belongs to Int(ℓp, ℓq) if and only if there exists cp,E

and cq,E in R>0 such that:

(i) For any u ∈ E and v ∈ ℓ∞, if |v|
p
≺≺hd |u|

p, then v ∈ E and ∥v∥E ≤ cp,E∥u∥E .

(ii) Suppose q < ∞. For any u ∈ E and v ∈ ℓ∞, if |v|
q

≺≺tl |u|
q , then v ∈ E

and ∥v∥E ≤ cq,E∥u∥E .

Proof. The proof of the “only if” implication is identical to the proof of Theorem 5.1
using Lemmas 6.2 and 6.5 instead of Lemmas 4.5 and 4.4. The “if” implication is
given by [8, Theorem 4.7]. □

Upper Boyd index. Let us now recall the definition of the upper Boyd index, in the
case of sequence spaces. For any n ∈ N define the dilation operator

Dn : ℓ∞
→ ℓ∞, (uk)k∈Z+ 7→ (u⌊k/n⌋)k∈Z+ .

Let E be a symmetric function space. Define the Boyd index associated to E by

βE = lim
k→∞

log∥Dk∥E→E

log k
.

Note that since E is a quasi-Banach space, βE < ∞.
In the next proposition, we relate the upper Boyd index to an interpolation

property. We follow [23, Theorem 2].

Proposition 6.7. Assume that E is a quasi-Banach symmetric sequence space. Let
p < 1/βE . There exists a constant C such that for any u ∈ E and v ∈ ℓ∞, satisfying
|v|

p
≺≺hd |u|

p, we have v ∈ E and ∥v∥E ≤ C∥u∥E .

Define the map V : ℓ∞ → ℓ∞ by setting

V u =

∞∑
n=0

2−n D2n u

and the map C : ℓ∞ → ℓ∞ by

(Cu)(n) =
1

n + 1

n∑
i=0

un.

Lemma 6.8. If p < 1/βE , then

∥(V (u p))1/p
∥E ≤ cp,E∥u∥E , 0 ≤ u ∈ E .

Proof. Let E p be the p-concavification of E , that is,

E p = { f : | f |
1/p

∈ E}, ∥ f ∥E p = ∥| f |
1/p

∥
p
E .
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Obviously, E p is a quasi-Banach space. Apply the Aoki–Rolewicz theorem to the
space E p and fix q = qp,E > 0 such that∥∥∥∥∑

n≥0

xn

∥∥∥∥q

E p

≤ C p,E

∑
n≥0

∥xn∥
q
E p

.

For every u ∈ E , we have

∥(V (u p))1/p
∥

qp
E = ∥V (u p)∥

q
E p

=

∥∥∥∥ ∞∑
n=0

1
2n (D2n u)p

∥∥∥∥q

E p

≤ C p,E

∞∑
n=0

∥∥∥∥ 1
2n (D2n u)p

∥∥∥∥q

E p

= C p,E

∞∑
n=0

2−nq
∥D2n u∥

qp
E .

Let r ∈ (p, β−1
E ). By the definition of βE , there exists cp,E > 0 such that

∥Dn∥E→E ≤ cp,E n1/r for any n ∈ N. Therefore,

∥(V (u p))1/p
∥

qp
E ≤ C p,E · cq

p,E ·

∞∑
n=0

2−nq 2nqp/r
∥u∥

qp
E

= C p,E · cq
p,E ·

2q

2q − 2qp/r · ∥u∥
qp
E . □

Lemma 6.9. If x = µ(x), then Cx ≤ 3V x for every x ∈ ℓ∞.

Proof. Let k ≥ 0. Since x is decreasing, it follows that

(Cx)(2k
− 1) =

1
2k

(
x(0) +

k−1∑
i=0

2i+1
−1∑

j=2i

x( j)
)

≤
1
2k

(
x(0) +

k−1∑
i=0

2i x(2i )

)
.

On the other hand, we have

(V x)(2k+1
− 1) =

∑
n≥0

2−n x
(⌊

2k+1
− 1

2n

⌋)

=

k∑
n=0

2−nx(2k+1−n
− 1) +

∞∑
n=k+1

2−n x(0)

=
1
2k

(
x(0) +

k∑
i=0

2i x(2i+1
− 1)

)
.
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Again using the fact that x is decreasing, we obtain

k−1∑
i=0

2i x(2i ) = x(1) +

k−2∑
i=0

2i+1 x(2i+1)

≤ x(1) + 2
k−2∑
i=0

2i x(2i+1
− 1) ≤ 3

k∑
i=0

2i x(2i+1
− 1).

Combining the three previous inequalities, we have just shown that for any k ≥ 0,

(Cx)(2k
− 1) ≤ 3(V x)(2k+1

− 1).

Now let n ≥ 0 and choose k such that n ∈ [2k
− 1, 2k+1

− 1]. Since Cx and V x are
decreasing, we have

(Cx)(n) ≤ (Cx)(2k
− 1) ≤ 3(V x)(2k+1

− 1) ≤ 3(V x)(n). □

Proof of Proposition 6.7. Without loss of generality, u = µ(u) and v = µ(v). Since
v p

≺≺hd u p, it follows that

|v|
p
≤ C(|v|

p) ≤ C(|u|
p) ≤ 3V (|u|

p),

where we used Lemma 6.9 to obtain the last inequality. By Lemma 6.8, we have

∥v∥E ≤ 31/p
∥(V (|u|

p))1/p
∥E ≤ cp,E∥u∥p. □

We are now ready to deliver a complete resolution of the conjecture stated by
Levitina et al. in [20].

Proof of Theorem 1.2. Let E be a quasi-Banach sequence space. Let q ≥ 1. Recall
that Theorem 1.2 states that the following two conditions are equivalent:

(a) There exists p < q such that E is an interpolation space for the couple (ℓp, ℓq).

(b) There exists c > 0 such that for any u ∈ E and |v|
q

≺≺tl |u|
q , then v ∈ E

and ∥v∥E ≤ c∥u∥E .

Note that by Lemma 2.9, we may assume that E is a symmetric space.

(a) ⇒ (b). This is immediate by Theorem 6.6.

(b) ⇒ (a). Let p < 1/βE . By Proposition 6.7, for any sequence u ∈ E and v ∈ ℓ∞,
if |v|

p
≺≺hd |u|

p, v ∈ E and ∥v∥E ≤ cp,E∥u∥E . Applying Theorem 6.6 for indices
p and q , we obtain that E belongs to Int(ℓp, ℓq). □
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FINITE AXIOMATIZABILITY OF THE RANK
AND THE DIMENSION OF A PRO-π GROUP

MARTINA CONTE AND BENJAMIN KLOPSCH
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The Prüfer rank rk(G) of a profinite group G is the supremum, across
all open subgroups H of G, of the minimal number of generators d(H).
It is known that, for any given prime p, a profinite group G admits the
structure of a p-adic analytic group if and only if G is virtually a pro- p
group of finite rank. The dimension dim G of a p-adic analytic profinite
group G is the analytic dimension of G as a p-adic manifold; it is known that
dim G coincides with the rank rk(U) of any uniformly powerful open pro- p
subgroup U of G.

Let π be a finite set of primes, let r ∈ N and let r = (r p) p∈π , d = (dp) p∈π

be tuples in {0, 1, . . . , r}. We show that there is a single sentence σπ,r,r,d

in the first-order language of groups such that for every pro-π group G
the following are equivalent: (i) σπ,r,r,d holds true in the group G, that is,
G |Hσπ,r,r,d; (ii) G has rank r and, for each p∈π , the Sylow pro- p subgroups
of G have rank r p and dimension dp.

Loosely speaking, this shows that, for a pro-π group G of bounded rank,
the precise rank of G as well as the ranks and dimensions of the Sylow
subgroups of G can be recognized by a single sentence in the basic first-order
language of groups.

1. Introduction

Nies, Segal and Tent [Nies et al. 2021] carried out an investigation of the model-
theoretic concept of finite axiomatizability in the context of profinite groups. For
instance, a profinite group G is finitely axiomatizable within a class C of profinite
groups, with respect to the first-order language Lgp of groups, if there is a sentence
ψG,C in Lgp such that the following holds: a profinite group H in C is isomorphic
to G if and only if ψG,C holds true in H , in symbols H |H ψG,C . More generally,
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one takes interest in whether specific properties or invariants of profinite groups,
again within a given class C, can be detected uniformly by a single sentence in Lgp.

Our main interest is in finitely generated profinite groups. Nikolov and Segal
[2007] established that such groups are strongly complete; loosely speaking, this
means that the topology of a finitely generated profinite group is already pre-
determined by the abstract group structure. Jarden and Lubotzky [2008] used
Nikolov and Segal’s finite width results for certain words to prove that every finitely
generated profinite group is “first-order rigid”, i.e., determined up to isomorphism
by its first-order theory, within the class of profinite groups. By restricting to finite
axiomatizability, we probe for more delicate first-order properties within suitable
classes of finitely generated profinite groups.

In this paper we focus on the class of profinite groups of finite Prüfer rank, from
now on “rank” for short. This invariant is connected to, but not to be confused with,
the minimal number of generators: the rank of a profinite group G is defined as

rk(G)= sup{d(H) | H ≤o G} = sup{d(H) | H ≤c G},

where d(H) denotes the minimal number of generators of a topological group H
and, as indicated, H runs over all open or all closed subgroups of G. It is not
difficult to see that the rank of G is the supremum of the ranks of its finite continuous
quotients, i.e., rk(G)= sup{rk(G/N ) | N ⊴o G}. The rank plays a central role in
the structure theory of p-adic Lie groups. It is known that, for any given prime p,
a profinite group G admits the structure of a p-adic analytic group if and only
if G is virtually a pro-p group of finite rank. The dimension dim G of a p-adic
analytic profinite group G is the analytic dimension of G as a p-adic manifold; in
fact, dim G ≤ rk(G) and dim G coincides with the rank rk(U ) of any uniformly
powerful open pro-p subgroup U of G. Further details and related results about
p-adic analytic pro-p groups can be found in [Dixon et al. 1999]; the concise
introduction [Klopsch 2011] summarizes key aspects of the theory.

Loosely speaking, our aim is to show that, for every finite set of primes π , the
precise rank r as well as the ranks r = (rp)p∈π and dimensions d = (dp)p∈π of
the Sylow pro-p subgroups of any pro-π group G of finite rank can be recognized
by a single sentence σπ,r,r,d in the first-order language of groups Lgp. The starting
point for our investigation is Proposition 5.1 in [Nies et al. 2021] which states:
Given r ∈ N, there is an Lgp-sentence ρp,r such that for every pro-p group G, the
following implications hold:

rk(G)≤ r =⇒ G |H ρp,r =⇒ rk(G)≤ r(2 + log2(r)).

Our first theorem both strengthens and generalizes this result. The p-rank rkp(G)
of a profinite group G is the common rank of all Sylow pro-p subgroups of G.
A sentence φ in Lgp is called an ∃∀∃-sentence if it results from a quantifier-free
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formula φ0 by means of a sequence of existential, universal and existential quantifi-
cations (in this order), rendering the free variables of φ0 to be bound in φ; compare
with Example 3.1.

Theorem 1.1. Let π be a finite set of primes. Let r ∈ N and let r = (rp)p∈π be a
tuple in {0, 1, . . . , r}. Then there exists an ∃∀∃-sentence ϱπ,r,r in Lgp such that, for
every pro-π group G, the following are equivalent:

(i) rk(G)= r , and rkp(G)= rp for every p ∈ π .

(ii) ϱπ,r,r holds in G, i.e., G |H ϱπ,r,r.

It is no coincidence that the sentences ϱπ,r,r which we manufacture to prove the
theorem depend on the given set of primes π . A standard ultraproduct construction
reveals that, for every infinite set of primes π̃ and r ∈N, there is no Lgp-sentence ϑπ̃ ,r
which could identify, uniformly across p ∈ π̃ , among pro-p groups G those with
rank rk(G)= r ; see Proposition 3.3.

In addition to Theorem 1.1 we establish a corresponding theorem which concerns
the dimensions of the Sylow subgroups of a profinite group of finite rank.

Theorem 1.2. Let π be a finite set of primes. Let r ∈ N and let d = (dp)p∈π be a
tuple in {0, 1, . . . , r}. Then there exists an ∃∀∃-sentence τπ,r,d in Lgp such that, for
every pro-π group G with rk(G)= r , the following are equivalent:

(i) For every p ∈ π , the Sylow pro-p subgroups of G have dimension dp.

(ii) τπ,r,d holds in G, i.e., G |H τπ,r,d.

In combination, the two theorems provide the first-order sentences σπ,r,r,d with
the properties promised above. It is remarkable that such sentences exist in the
basic language Lgp of groups. In connection with p-adic analytic profinite groups,
it is often necessary to employ suitably expanded languages in order to capture part
of the topological or analytic structure; compare with [Macpherson and Tent 2016].
We do not need to enlarge the language at all. Moreover, the complexity of σπ,r,r,d
remains within three alternations of ∃- and ∀-quantifiers, even though the sentences
that we manufacture depend strongly on the given set of primes π .

As we will show, the proofs of Theorems 1.1 and 1.2 reduce, in a certain sense,
to the simpler setting of pronilpotent pro-π groups, termed Cπ -groups by [Nies et al.
2021, Section 5]. We recall that, even in the pronilpotent case, Sylow subgroups
are not in general definable and there is no standard reduction to pro-p groups; this
can be seen from relative quantifier elimination results (down to positive primitive
formulas) for modules over rings; see [Prest 1988, Sections 2.4 and 2.Z]. Part of
our task is to develop appropriate tools to by-pass this obstacle.

Key to our approach for proving Theorems 1.1 and 1.2 are purely group-theoretic
considerations leading to Theorem 2.1 and its corollary, about profinite groups
which are virtually pronilpotent and of finite rank. Specialising to the setting of
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finite nilpotent groups to ease the exposition at this point, we can formulate the
central insight as follows.

Theorem 1.3. Let G be a finite nilpotent group of rank r = rk(G). Then

rk(G)= rk
(
G/8 j (r)(G)

)
for j (r)= 2r + ⌈log2(r)⌉ + 2,

where 8 j (r)(G) denotes the j (r)-th iterated Frattini subgroup of G.

It is an open problem to identify, if at all possible, even smaller canonical
quotients which witness the full rank of a finite nilpotent group.

Following a suggestion of González-Sánchez, we derive from a result of Héthelyi
and Lévai [2003] a new description of the dimension of a finitely generated powerful
pro-p group; this is useful for establishing Theorem 1.2, but also of independent
interest.

Theorem 1.4. Let G be a finitely generated powerful pro-p group with torsion
subgroup T , and let �{1}(G) = {g ∈ G | g p

= 1} denote the set of all elements of
order 1 or p in G. Then

dim(G)= d(G)− logp|�{1}(G)| = d(G)− d(T ).

With a view toward possible future investigations, we add a final comment and
a question. Naturally one wonders whether “being of finite rank” per se can be
captured by a suitable first-order sentence. Results of Feferman and Vaught [1959]
imply that, even for a fixed prime p, there is no set Tp of Lgp-sentences (and in
particular no single sentence) which identifies among the collection of all pro-p
groups those that possess finite rank. Indeed, the class of pro-p groups of finite rank
is closed under taking finite cartesian products, but an infinite cartesian product
of nontrivial pro-p groups of finite rank is not even finitely generated. Therefore
[Feferman and Vaught 1959, Corollary 6.7] shows that no Tp with the desired
property exists. However, a modified question suggests itself. Given d ≥ 2, is there
a set Tp,d of Lgp-sentences (possibly a single sentence) such that the following
holds for pro-p groups G with d(G)≤ d: the group G has finite rank if and only
if G satisfies Tp,d?

Remark. Our proofs for Theorems 1.1 and 1.2 involve results of Lucchini [1997]
and an observation of Mazurov [1994] which currently rely on the classification
of finite simple groups. However, in suitable circumstances, e.g., if we restrict
attention to prosoluble groups, the required ingredients are known to hold without
use of the classification; compare with [Lucchini 1989, Section 5]. If 2 ̸∈ π , the
Odd Order Theorem guarantees that all pro-π groups are prosoluble.

Organization and Notation. In Section 2 we prove Theorem 2.1 and its corollary,
which specialize to Theorem 1.3. In Example 2.3 we discuss limitations of our
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strategy; Proposition 3.3 shows that Theorem 2.1 does not generalize to groups
involving infinitely many primes. In Section 3 we establish Theorem 1.1. In
Section 4 we prove Theorem 1.4 and deduce Theorem 1.2.

Our notation is mostly standard and in line with current practice. For instance,
Z(G) denotes the centre of a group G, and Cn denotes a cyclic group of order n.
The meaning of possibly less familiar terms, such as8(G) for the Frattini subgroup
and 8p(G) for the p-Frattini subgroup of a group G, are explained at their first
occurrence. We deal exclusively with profinite groups. Accordingly, notions such
as the Frattini subgroup, the commutator subgroup or the subgroup generated by a
given set are tacitly understood in the topological sense: in each case we mean the
topological closure of the corresponding abstract subgroup. Basic model-theoretic
concepts which are employed without further reference are covered by standard
texts such as [Hodges 1993].

2. Detecting the rank in bounded quotients

Every compact p-adic analytic group G has finite rank and contains an open normal
powerful pro-p subgroup F . Since F is a pro-p group, its Frattini subgroup 8(F)
coincides with [F, F]F p and F/8(F) is elementary abelian. Since F is powerful,
we know that rk(F)= d(F)= rk(F/8(F)); see [Dixon et al. 1999, Theorem 3.8].
Furthermore, the iterated Frattini series 8 j (F), j ∈ N, of F coincides with both
the lower p-series and the iterated p-power series of F . It provides a base of
neighbourhoods for 1 in G consisting of open normal subgroups. Consequently,
the rank of G is given by

rk(G)= sup{rk(G/8 j (F)) | j ∈ N} = max{rk(G/8 j (F)) | j ∈ N};

in other words, rk(G) is the terminal value of the nondecreasing, eventually constant
sequence rk(G/8 j (F)), j ∈ N.

It is natural to look for an upper bound for the smallest j ∈ N such that
rk(G)= rk(G/8 j (F)), a bound that is, as far as possible, independent of p and any
special features of the pair F ≤ G. Based on our current knowledge, the strongest
possible outcome could be that rk(G)= rk(G/8(F)) holds without any exceptions.
More modestly, one can ask for weaker bounds, possibly contingent on additional
information regarding rk(G).

We establish a result of the latter kind, which applies more generally to profinite
groups G of finite rank that admit a pronilpotent open normal subgroup F . We
recall that the p-rank rkp(G) of a profinite group G is simply the rank rk(P) of
a Sylow pro-p subgroup P of G. Furthermore, we write 8p(G) = [G,G]G p

for the p-Frattini subgroup of G; the p-Frattini quotient G/8p(G) is the largest
elementary abelian pro-p quotient of the profinite group G.
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Theorem 2.1. Let R ∈ N. Suppose that the profinite group G has an open normal
subgroup F ⊴o G which is pronilpotent and such that each Sylow subgroup of F
is powerful.

(i) For every prime p such that rkp(G)≤ R, the p-rank satisfies

rkp(G)= rkp
(
G/82R+1(F)

)
.

(ii) If rk(G)≤ R, then

rk(G)= rk
(
G/82R+1(F)

)
.

Proof. It is convenient to write Fi =8i (F) for i ∈ N.

(i) Let p be a prime such that rp = rkp(G)≤ R. We show that rp = rkp(G/F2R+1).
Since F is pronilpotent, its Hall pro-p′ subgroup P ′ is normal in G; compare with
[Ribes and Zalesskii 2010, Section 2.3]. Working modulo P ′, we may assume
without loss of generality that F is a powerful pro-p group. In this situation G is
virtually a pro-p group. Clearly, we have rp ≥ rkp(G/F2R+1). For a contradiction,
we assume that rp > rkp(G/F2R+1). Choose a pro-p subgroup H ≤o G of minimal
index among the open pro-p subgroups of G with d(H) = rp. In particular, this
means that d(H) > d(HF2R+1/F2R+1).

The sequence d(HF j/F j ), j ∈ N, is nondecreasing and eventually constant,
with final constant value d(H). Since d(H) = rp < 2R + 1, we conclude that
d(HF j/F j ), j ∈ N, cannot be strictly increasing until it becomes constant. Hence
there exists j = j (H) ∈ N such that

(2-1) d(HF j/F j )= d(HF j+1/F j+1) < d(HF j+2/F j+2)

< · · ·< d(HF j+k+1/F j+k+1)= d(H)

for suitable k = k(H) with 1 ≤ k ≤ rp ≤ R. In particular, this set-up implies that
j + k + 1> 2R + 1, hence j > R and 2 j ≥ j + R + 1 ≥ j + k + 1. Consequently,
we see that [F j , F j ] ⊆ F2 j ⊆ F j+k+1 and there is no harm in assuming that

[F j , F j ] = F2 j = 1.

This reduction renders G finite, with abelian normal p-subgroups

A = F j and B = F j+1 =8(F j )= Ap.

We set l = d(H/(H ∩ B)) = d(HB/B) < d(H) = rp and choose generators
y1, . . . , yl for H modulo H ∩ B so that

L = ⟨y1, . . . , yl⟩ ≤ H

satisfies LB = HB. Put m = d(H)− l = rp − l ≥ 1. A collection of elements
generates H if and only if it generates the Frattini quotient H/8(H); the latter
is elementary abelian, because H is a p-group. Thus the minimal generating set
y1, . . . , yl modulo H ∩ B can be supplemented to a minimal generating set for H :
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there are b1, . . . , bm ∈ B such that

H = ⟨y1, . . . , yl, b1, . . . , bm⟩ with d(H)= rp = l + m.

We put M = ⟨b1, . . . , bm⟩
H ⊴ H so that H = L M .

Choose a1, . . . , am ∈ A with bi = a p
i for 1 ≤ i ≤ m and set

H̃ = ⟨y1, . . . , yl, a1, . . . , am⟩ ≤ G.

We claim that H̃ is a p-subgroup of G such that

(2-2) |G : H̃ |< |G : H | and d(H̃)= rp,

which yields the required contradiction.

Clearly, H̃ ≤ HA is a p-group and H ⊆ H̃ . Moreover, we see that HA= H̃A=L A.
We may assume without loss of generality that G = L A. In this situation G
is a p-group; furthermore, L ∩ A ⊴ G is normal. By construction, compare
with (2-1), we have d(L/(L ∩ A)) = d(HA/A) = d(HB/B) = l = d(L). Thus
L ∩ A ⊆8(L)⊆8(H) and there is no harm in assuming L ∩ A = 1. This gives

G = L ⋉ A, H = L ⋉ M and H̃ = L ⋉ M̃ for M̃ = ⟨a1, . . . , am⟩
H̃ .

We supplement y1, . . . , yl to a minimal generating set y1, . . . , yl, ã1, . . . , ãn for
the p-group H̃ , for suitable n ∈ {0, 1, . . . ,m} and ã1, . . . , ãn ∈ M̃ . The p-power
map g 7→ g p induces a surjective L-invariant homomorphism α : M̃ → M between
finite abelian p-groups. This implies |M̃ | > |M | and thus |G : H̃ | < |G : H |.
Furthermore, using the identity map on L in combination with α, we obtain a
surjective homomorphism from H̃ = L ⋉ M̃ onto L ⋉ M = H . This shows that
rp = d(H)≤ d(H̃)≤ rp and hence d(H̃)= rp, which completes the proof of (2-2).

(ii) Now suppose that rk(G)≤ R. Clearly, the maximal local rank

mlr(G)= max
(
{rkp(G) | p prime}

)
is at most rk(G). Conversely, Lucchini [1997, Theorem 3 and Corollary 4] estab-
lished that

rk(G)≤ mlr(G)+ 1,

with equality if and only if there are

◦ an odd prime p such that rp = rkp(G)= mlr(G) and

◦ an open subgroup H ≤o G and N ⊴o H such that

H/8p(N )∼= H/N ⋉ N/8p(N )∼= Cq ⋉C mlr(G)
p ,

where H/N ∼= Cq is cyclic of prime order q | (p − 1), the p-Frattini quo-
tient N/8p(N ) ∼= C mlr(G)

p is elementary abelian of rank mlr(G), and H/N
acts via conjugation faithfully on N/8p(N ) by power automorphisms (i.e.,
by nonzero homotheties if we regard N/8p(N ) as an Fp-vector space).
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For short let us refer, somewhat effusively, within this proof to such a pair (H, N )
as a “runaway couple” for G with respect to p.

By (i), we have mlr(G) = mlr(G/F2R+1), and hence it suffices to show: if G
admits a runaway couple, then so does G/F2R+1, in fact, with respect to the same
prime. Suppose that (H, N ) is a runaway couple for G with respect to an odd
prime p so that H/8p(N )∼=Cq⋉C rp

p as detailed above, with the additional property
that |G : H | is as small as possible. Assume for a contradiction that G/F2R+1 does
not admit a runaway couple.

As in the proof of (i) there is no harm in factoring out the Hall pro-p′ subgroup P ′

of F , because H ∩ F ⊆ N and H ∩ P ′
⊆8p(N ). Consequently we may as well as-

sume that F ⊴o G is a powerful pro-p group, which makes G virtually a pro-p group.
As in the proof of (i), the sequence

d
(
H/

(
(H ∩ F j )8p(N )

))
= d

(
HF j/8p(N )F j

)
, j ∈ N,

is nondecreasing and eventually constant, with final constant value

d(H/8p(N ))= d(H)= rp + 1< 2R + 1.

We use the same arguments as before to conclude that there exists j = j (H) such
that the analogue of (2-1) for H/8p(N ) holds and we reduce to the situation
where [F j , F j ] = F2 j = 1. This reduction renders G finite, with abelian normal
p-subgroups

A = F j and B = F j+1 =8(F j )= Ap
;

furthermore, we have

(2-3) l =d
(
N/

(
(H∩A)8p(N )

))
=d

(
N/

(
(H∩B)8p(N )

))
<d(N/8p(N ))=rp.

It suffices to produce a runaway couple (H̃ , Ñ ) for the group HA with respect to p
such that |HA : H̃ |< |HA : H |; thus we may assume that

G = HA.

This reduction allows us to conclude that 8p(N ) ∩ A ⊴ G and there is no
harm in assuming 8p(N ) ∩ A = 1. Likewise M = H ∩ A ⊴ G, and reduction
modulo 8p(N ) induces an embedding of M ≤ N into the elementary abelian group
N/8p(N )∼= C rp

p . Using (2-3), we conclude that

M = H ∩ A = H ∩ B = ⟨b1, . . . , bm⟩ ∼= C m
p for m = rp − l ≥ 1.

The normal subgroup M8p(N )⊴ H decomposes as a direct product M ×8p(N ).
Recall that H/8p(N )∼= Cq ⋉C rp

p , with the action given by power automorphisms.
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We build a minimal generating set x, y1, . . . , yl, b1, . . . , bm for H modulo 8p(N )
by choosing

x ∈ H ∖ N and y1, . . . , yl ∈ N

which supplement b1, . . . , bm suitably. We set

L1 = ⟨x, y1, . . . , yl⟩ ≤ H and L = L18p(N )≤ H.

In this situation H = L M and we claim that L ∩ M = 1 so that

H = L ⋉ M.

Indeed, our construction yields that the intersection in H/8p(N )∼= Cq ⋉C l+m
p of

the subgroups

L/8p(N )= ⟨x⟩⋉ ⟨y1, . . . , yl⟩ ∼= Cq ⋉C l
p and M8p(N )/8p(N )∼= M ∼= C m

p

is trivial. This gives L ∩ M ⊆8p(N ) and consequently L ∩ M ⊆8p(N )∩ M = 1.
Put M̃ = {a ∈ A | a p

∈ M} ⊴ G. Recall that M = H ∩ B and B = Ap. The
p-power map constitutes a surjective G-equivariant homomorphism M̃ → M whose
kernel K ⊴ G, say, includes M . From L ∩ M = 1 we conclude that L K ∩ M̃ =

(L∩M̃)K ⊆ K . Moreover, we have L∩K ⊆ H∩A = M and thus L∩K ⊆ L∩M =1.
These considerations show that the group H̃ = L M̃ maps onto

H̃/K ∼= L K/K ⋉ M̃/K ∼= L ⋉ M = H,

and hence onto Cq ⋉ C rp
p . Thus H̃ gives rise to a runaway couple for G, with

respect to the prime p, just as H does. To conclude the proof we observe that
|K | ≥ |M | ≥ p implies |H̃ |> |H̃ |/|K | = |H | and hence |G : H̃ |< |G : H |. □

The following corollary yields in particular Theorem 1.3 about finite nilpotent
groups, which was showcased in the introduction for its succinctness.

Corollary 2.2. Let R ∈ N. Suppose that the profinite group G has an open normal
subgroup F ⊴o G which is pronilpotent.

(i) If rkp(G)≤ R for some prime p, then

rkp(G)= rkp
(
G/82R+⌈log2(R)⌉+2(F)

)
.

(ii) If rk(G)≤ R, then

rk(G)= rk
(
G/82R+⌈log2(R)⌉+2(F)

)
.

Proof. As in the proof of Theorem 2.1, one reduces to the case in which F is a pro-p
group for a single prime p. From rk(F)≤ R it follows that 8⌈log2(R)⌉+1(F)⊴o G
is powerful; compare with [Dixon et al. 1999, Chapter 2, Exercise 6]. Thus we can
apply Theorem 2.1 to 8⌈log2(R)⌉+1(F) in place of F . □
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The following example puts the basic idea behind the proof of Theorem 2.1 into
perspective. It indicates that one would need to take a different approach or at least
make more careful choices in order to eliminate the dependency on the parameter R.
Indeed, the example yields, for p > n ≥ 2, a pro-p group G, a powerful open
normal subgroup F ⊴o G and an open subgroup H ≤o G such that d(H)= rk(G)
but d(H̃8n(F)/8n(F)) < rk(G) for all H̃ ≤o G with H̃ ⊇ H .

Example 2.3. Let n ∈ N and consider the metabelian pro-p group

G = C ⋉ A, where C = ⟨c⟩ ∼= Zp, A = ⟨a1, . . . , an⟩ ∼= Z n
p

and the action of C on A is given by

a c
i = ai ai+1 for 1 ≤ i < n, and a c

n = an.

Here Zp denotes the additive group of the p-adic integers, viz. the infinite procyclic
pro-p group. Then G = ⟨c, a1⟩ is 2-generated, nilpotent of class n and has rank
rk(G)= n + 1. For instance,

H = ⟨c, a pn−1

1 , a pn−2

2 , . . . , a p
n−1, an⟩ ≤o G

requires n + 1 generators.
Suppose that p > n ≥ 2. Then F = ⟨cp

⟩⋉ A ⊴o G is powerful, and 8 j (F) =

⟨cp j
⟩ ⋉ Ap j−1

for j ∈ N. Thus any subgroup H̃ ≤o G with H̃ F = HF = ⟨c⟩F
and d(H̃)= d(H̃8n(F)/8n(F)) requires less than d(H)= n + 1 generators, but
nevertheless rk(G)= rk(G/8(F)). The group

K = ⟨cp, a1, . . . , an⟩,

which is unrelated to H , requires n + 1 generators, even modulo 8(F).

3. Finite axiomatizability of the rank

In this section we establish Theorem 1.1. We begin with a basic example which
illustrates the concept of an ∃∀∃-sentence in Lgp and related constructions which
we use frequently; compare with [Nies et al. 2021, Sections 2 and 5]. Despite its
simplicity, the example is a key building block in later proofs, where we need to
control the quantifier complexity of more involved first-order formulae.

Example 3.1. Let G be a profinite group and let N ⊆ G. Suppose that N is
definable in G; this means that there is an Lgp-formula ϕ(x), with a single free
variable x , such that N = {g ∈ G | ϕ(g)}.

Let B = {b1, . . . , bn} be a finite group of order n, with multiplication “table”

bi b j = bm(i, j)

encoded by a suitable function m : {1, . . . , n} × {1, . . . , n} → {1, . . . , n}.
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Then the sentence

∃a1, . . . an ∀x, y, z : ϕ(1)∧
(
(ϕ(x)∧ϕ(y))→ ϕ(x−1 y)

)
∧

(
ϕ(x)→ ϕ(y−1xy)

)
∧

( ∧
1≤i< j≤n

¬ϕ(a −1
i a j )

)
∧

( ∨
1≤i≤n

ϕ(a −1
i y)

)
∧

( ∧
1≤i, j≤n

ϕ(a −1
m(i, j)ai a j )

)
can be used to express that N ⊴ G and G/N ∼= B. The quantifier complexity of
this sentence is the same as the quantifier complexity of ϕ increased by ∃∀. In
particular, if N ⊆c G is ∃-definable as a closed set, i.e., definable by means of an
∃-formula which implicitly ensures that N is topologically closed, we obtain an
∃∀∃-sentence to express that N ⊴c G and G/N ∼= B.

For instance, if we know or suspect that the commutator word has a certain finite
width in G, we may consider the ∃-definable set

N =
{
[x1, y1] · · · [xr , yr ] | x1, y1, . . . , xr , yr ∈ G

}
⊆c G,

for a given parameter r ∈ N, and formulate an ∃∀∃-sentence in Lgp which expresses
that, indeed, N is equal to the entire commutator subgroup [G,G] and that the
abelianization G/[G,G] is isomorphic to a given finite group.

Sometimes we want to express, by means of an Lgp-sentence, extra features
of a definable subgroup H ≤c G. This process typically involves quantification
over elements of H rather than G which, in general, may increase the quantifier
complexity of the resulting sentences. However, if H ={g ∈ G |ϕ(g)} is ∃-definable,
where ϕ(x) takes the form ∃z : ϕ0(x, z) with ϕ0 quantifier-free in free variables x
and z1, . . . , zm , say, then H is “quantifier-neutral” in the following sense. First-
order assertions about H can be translated into assertions of the same quantifier
complexity about G, simply by expressing universal quantification over elements
of H as ∀x, z : (ϕ0(x, z)→ · · · ) and existential quantification over elements of H
as ∃x, z : (ϕ0(x, z)∧ · · · ). ⋄

It is convenient to establish the assertions of Theorem 1.1 first for pronilpotent
groups before considering the general situation.

Proposition 3.2. Let π be a finite set of primes, let r ∈ N and let r = (rp)p∈π be a
tuple in {0, 1, . . . , r}. Then there exists an ∃∀∃-sentence ωπ,r,r in Lgp such that, for
every pronilpotent pro-π group H , the following are equivalent:

(i) rk(H)= r , and rkp(H)= rp for every p ∈ π .

(ii) ωπ,r,r holds in H , i.e., H |H ωπ,r,r.

Proof. We set k = |π |, write π = {p1, . . . , pk} and put q = q(π) = p1 · · · pk .
As H is pronilpotent, it is the direct product H =

∏k
i=1 Hi of its Sylow pro-pi

subgroups Hi . We set m = m(r)= ⌈log2(r)⌉ + 1.
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Similar to Example 3.1, there is an ∃∀∃-sentence β1 in Lgp to express that there
are elements a1, . . . , ar in H such that every element h ∈ H can be written as
h =

∏r
j=1 a e j

j b, for suitable choices for e j ∈ {0, 1, . . . , q − 1} and

b ∈ B(H)=
{
[x1, y1] · · · [xr , yr ]zq

| x1, y1, . . . , xr , yr , z ∈ H
}

⊆c 8(H).

We recall that d(H) = d(H/8(H)) and that d(H) ≤ r implies B(H) = 8(H);
see [Dixon et al. 1999, Lemma 1.23]. Thus β1 holds for H if and only if d(H)≤ r .
Moreover, in this case 8(H) = B(H) is ∃-definable in H and hence quantifier-
neutral in the sense of Example 3.1. By recursion, there is an ∃∀∃-sentence βm+1

such that βm+1 holds for H if and only if

(3-1) rk(8 j (H)/8 j+1(H))≤ r for 0 ≤ j ≤ m;

in this case the subgroup F = 8m(H) is ∃-definable in H and hence quantifier-
neutral, moreover it satisfies d(F)≤r . Furthermore, there is an ∀∃-sentence γ which
expresses that every Sylow subgroup of F is powerful, viz. that F is semipowerful
in the terminology introduced in [Nies et al. 2021, Section 5]. Indeed, by [Dixon
et al. 1999, Proposition 2.6], it suffices to express that every commutator [x, y] of
elements x, y ∈ F is a (2q)-th power z2q of a suitable z ∈ F .

Once F is r -generated and semipowerful, we know that rk(F)≤ r . If, in addition,
the rank bounds specified in (3-1) hold, we deduce that rk(H/F)≤ mr and hence
rk(H)≤ R for R = (m + 1)r . Furthermore, the group

82R+1(F)=
{

xq2R+1
| x ∈ F

}
is ∃-definable in H and hence quantifier-neutral; in particular, H/82R+1(F) is
interpretable in H . Finally, |H/82R+1(F)| is bounded by q(2R+m+1)r and there
is an ∃∀∃-sentence θ which expresses that H/82R+1(F) is one of the finitely
many finite π -groups of suitable order which has rank r and whose p-ranks are in
agreement with the prescribed r; compare with Example 3.1.

With the backing of Theorem 2.1, we form the conjunction of the sentences
βm+1, γ, θ to arrive at an ∃∀∃-sentence ωπ,r,r with the desired property. □

Proof of Theorem 1.1. We analyse the structure of a pro-π group G of rank rk(G)=r
to build step-by-step a first-order sentence ηπ,r that is satisfied by any such group G.
Following that we check that, conversely, every pro-π group satisfying ηπ,r has
rank at most 2r . Applying Theorem 2.1, we extend ηπ,r to a sentence ϱπ,r,r which
pins down precisely the rank as being r and the ranks of the Sylow subgroups as
being given by r.

Our discussion involves upper bounds for certain integer parameters that depend
on π and r , but not on the specific group G used in our discussion; for short, we say
that such parameters are (π, r)-bounded. The proof proceeds in four steps along the
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following plan of action. In Step 1 we produce a pronilpotent open normal subgroup
K ⊴o G of (π, r)-bounded index. This is used in Step 2 to describe an ∃-definable
pronilpotent open normal subgroup H ⊴o G of (π, r)-bounded index. In Step 3
we show that the fact that H is pronilpotent can be expressed by an ∃∀∃-sentence.
This uses a simple but effective trick: we would like to express that H is a direct
product of its Sylow subgroups, but in general the latter fail to be definable; to
overcome this problem we work modulo the centre Z(H) which is sufficient for
our purposes. In Step 4 we use the tools that we already prepared in Example 3.1
and in Proposition 3.2 to conclude the argument.

Step 1. The classification of finite simple groups implies that, up to isomorphism,
there are only finitely many finite simple π-groups; see [Mazurov 1994, Remark
following Lemma 2]. A fortiori there is a finite set

S = Sπ,r

of representatives for the isomorphism classes of finite simple π -groups S such that
rk(S)≤ r . Consequently, the cardinality of the set

9 =9G,π,r =
{
ψ | ψ : G → Aut(Sl) a homomorphism for S ∈ S and 0 ≤ l ≤ r

}
is (π, r)-bounded, because G can be generated by at most r elements and any
homomorphism between groups is determined by its effect on a chosen set of
generators. From this we observe that the index of

K = KG,π,r =
⋂
ψ∈9

kerψ ⊴o G

in G is (π, r)-bounded. Thus there exists f (π, r) ∈ N, depending on π and r , but
not on the specific group G, such that |G : K | divides f (π, r).

We claim that K is pronilpotent. For this it suffices to show that K/(K ∩ L) is
nilpotent for each L ⊴o G. Let L ⊴o G. By pulling back a chief series for the finite
group G/L to G, we obtain a normal series

L = Gn+1 ⊴ Gn ⊴ · · · ⊴ G1 = G

of finite length n such that, for each i ∈ {1, . . . , n}, the group Gi/Gi+1 is a minimal
normal subgroup of G/Gi+1 and thus isomorphic to S m(i)

i for suitable choices of
Si ∈ S and m(i)∈ N. Since each of the groups S m(i)

i contains an elementary abelian
p-subgroup of rank m(i), for primes p dividing |Si |, we obtain m(i)≤ rk(S m(i)

i )≤

rk(G)= r for all i ∈ {1, . . . , n}. Intersecting with K , we obtain a series

(3-2) K ∩ L = K ∩ Gn+1 ⊴ K ∩ Gn ⊴ . . .⊴ K ∩ G1 = K

consisting of G-invariant subgroups with factors (K ∩Gi )/(K ∩Gi+1)∼= S l(i)
i satis-

fying 0≤ l(i)≤m(i)≤r , for i ∈{1, . . . , n}. By construction, K acts trivially on each
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of these factors so that [K ∩Gi , K ]⊆ K ∩Gi+1 for i ∈ {1, . . . , n}. Thus (3-2) consti-
tutes a central series for K/(K ∩L), and K/(K ∩L) is nilpotent (of class at most n).

Step 2. Next we consider the group

H = G f (π,r)
= ⟨g f (π,r)

| g ∈ G⟩ ⊴o G with H ⊆ K ;

the index |G : H | is (π, r)-bounded, by the positive solution to the restricted Burnside
problem. In fact, we do not require the general result, but a rather special case,
which is easy to establish. Indeed, assume for the moment that the pro-π group G of
rank r is finite of exponent f (π, r). We need to show that |G| is (π, r)-bounded. In
Step 1 we established that G has a nilpotent normal subgroup K of (π, r)-bounded
index. Thus there is no harm in assuming that G = K . Furthermore, K is a direct
product of its Sylow p-subgroups, where p ranges over the finite set π . Hence
we may even assume that G is a p-group of rank at most r , for some p ∈ π , and
that f (π, r) is a p-power, pe say. In this situation, G contains a powerful normal
subgroup of (p, r)-bounded index (see [Dixon et al. 1999, Theorem 2.13]), and we
may assume that G itself is powerful. The p-power series of a powerful p-group
coincides with its lower p-series, and we obtain the bound |G| ≤ pre.

Next we observe that the verbal subgroup H is an ∃-definable subgroup of G and
hence quantifier-neutral, in the sense discussed in Example 3.1. Indeed, by [Nikolov
and Segal 2011, Theorem 1], every element of H can be written as a product of a
(π, r)-bounded number of f (π, r)-th powers. But again we only require the bound
in a rather special case which is much easier to handle. Indeed, descending without
loss of generality to a subgroup of (π, r)-bounded index, as above, it suffices to
recall that in a powerful pro-p group every product of pe-th powers is itself a pe-th
power; see [Dixon et al. 1999, Corollary 3.5].

Step 3. Since K is pronilpotent, so is H . In the situation at hand, this fact
can be expressed by an ∃∀∃-sentence. Indeed, H is pronilpotent if and only if
H/Z(H) is pronilpotent. Hence it suffices to express the assertion that H/Z(H)
is pronilpotent. Clearly, Z(H) is ∀-definable in H and hence in G. We set
k = |π | and write π = {p1, . . . , pk}. As H is pronilpotent, H =

∏k
i=1 Hi is

the direct product of its Sylow pro-pi subgroups Hi and Z(H) =
∏k

i=1 Z(Hi ) so
that H/Z(H)∼=

∏k
i=1 Hi/Z(Hi ). From

Ci = CH (Hi )=
∏i−1

j=1 H j × Z(Hi )×
∏k

j=i+1 H j , for i ∈ {1, . . . , k},

we deduce that

Di =
⋂

{C j | 1 ≤ j ≤ k and j ̸= i} =
∏i−1

j=1 Z(H j )× Hi ×
∏k

j=i+1 Z(H j )

and thus
Di/Z(H)∼= Hi/Z(Hi ), for i ∈ {1, . . . , k}.
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As rk(G)≤ r , there exist, for each i ∈ {1, . . . , k}, elements xi,1, . . . , xi,r ∈ Hi such
that Hi = ⟨xi,1, . . . , xi,r ⟩ and thus

Ci = CH ({xi,1, . . . , xi,r }).

Subject to the kr parameters x1,1, . . . , xk,r , this makes Z(H)=
⋂k

i=1 Ci and each of
the groups Di quantifier-free definable, by suitable centralizer conditions; moreover
Qi = Di/Z(H) becomes interpretable in H , for 1 ≤ i ≤ k.

We conclude that it suffices to express in an ∀∃-sentence, subject to the (π, r)-
bounded number of parameters xs,t , that

(a)
⋂k

i=1 Ci = Z(H), hence Z(H)⊆ Di , for i ∈ {1, . . . k};

(b) Di/Z(H) is a pro-pi group for i ∈ {1, . . . k};

(c) [Di , D j ] ⊆ Z(H) for i, j ∈ {1, . . . , k} with i ̸= j ;

(d) H = D1 · D2 · . . . · Dk , where the right-hand side denotes the set of all products
y1 · · · yk with factors yi ∈ Di for i ∈ {1, . . . , k};

for this implies that H/Z(H)=
∏k

i=1 Di/Z(H) is the direct product of its Sylow
subgroups and thus pronilpotent. Turning the parameters xs,t into variables bound
by an extra existential quantifier at the front, we arrive at an ∃∀∃-sentence without
parameters which verifies that H is pronilpotent.

Subject to the parameters xs,t , the assertions in (a), (c) can be expressed by an
∀-sentence, and (d) can be achieved by means of an ∀∃-sentence. The only tricky
part occurs in (b) where we need to express that the group Qi = Di/Z(H) is a
pro-pi group. Since we know a priori that Qi is a pro-π group, this is achieved by
demanding that every element of Qi is a qi -th power, for qi = p1 · · · pi−1 pi+1 · · · pk .
This can be expressed by an ∀∃-sentence at the level of H , because Z(H)=

⋂k
i=1 Ci

is quantifier-free definable subject to the parameters xs,t .

Step 4. By Step 2, the group G/H is interpretable in G and finite of (π, r)-bounded
order. There is an ∃∀∃-sentence that expresses that the factor group G/H is among
the finitely many finite groups of rank at most r and exponent dividing f (π, r);
compare with Example 3.1. Using our results from Step 2, Step 3 and Proposition 3.2,
we produce an ∃∀∃-sentence that expresses that the power word x f (π,r) has (π, r)-
bounded width in G and that H = G f (π,r) is pronilpotent of rank at most r .

The conjunction of these two sentences yields an ∃∀∃-sentence ηπ,r such that

◦ every pro-π group G of rank rk(G)= r satisfies ηπ,r ;

◦ conversely, if a pro-π group G̃ satisfies ηπ,r , then H̃ = G̃ f (π,r) ⊴o G̃ is
pronilpotent and both H̃ and G̃/H̃ have rank at most r ; in particular, this
ensures that rk(G̃)≤ R for R = 2r .
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We put m = m(R)=⌈log2(R)⌉+1. As in the proof of Proposition 3.2 we see that
F =8m(R)(H)⊴o G is ∃-definable, hence quantifier-neutral, and semipowerful. Fur-
thermore, 82R+1(F) is ∃-definable, hence quantifier-neutral, and, by Theorem 2.1,

rk(G)= rk
(
G/82R+1(F)

)
and rkp(G)= rkp

(
G/82R+1(F)

)
for every p ∈ π .

Just as in the proof of Proposition 3.2 we find an ∃∀∃-sentence which in conjunction
with ηπ,r produces an ∃∀∃-sentence ϱπ,r,r with the desired property. □

The next result complements Theorem 1.1. It illustrates that the rank of a pro-p
group cannot be detected by a first-order sentence uniformly across all primes p,
even if the language Lgp was to be enlarged by an extra function to be interpreted as
the p-power map x 7→ x p in pro-p groups. (Note that regarding elementary abelian
p-groups it is futile to enlarge the language in this way.) We sketch a proof for
completeness; it relies on a standard ultraproduct construction and a well-known
quantifier elimination result in model theory.

Proposition 3.3. Let π̃ be an infinite set of primes and let r ∈ N. Then there is no
Lgp-sentence ϑπ̃ ,r such that, for every p ∈ π̃ and every finite elementary abelian
p-group G, the following are equivalent:

(i) rk(G)= r .

(ii) ϑπ̃ ,r holds in G, i.e., G |H ϑπ̃ ,r .

Proof. For a contradiction, assume that the Lgp-sentence ϑ = ϑπ̃ ,r has the desired
property. Then C r

p |H ϑ and C r+1
p |H ¬ϑ for all p ∈ π̃ . We regard C r

p and C r+1
p as

the additive groups of the vector spaces F r
p and F r+1

p over the prime field Fp.
Let U be a nonprincipal ultrafilter on the infinite index set π̃ . By Łoś’s theorem,

K =
(∏

p∈π̃ Fp
)
/∼U

is a field of characteristic 0, and

V =
(∏

p∈π̃ F r
p
)
/∼U and W =

(∏
p∈π̃ F r+1

p
)
/∼U

are nonzero K-vector spaces. Let LK-vs denote the language of K-vector spaces,
which comprises the language of groups (for the additive group of vectors) and,
for each scalar c ∈ K, a 1-ary operation fc (to denote scalar multiplication by c).
Clearly, the Lgp-sentence ϑ gives rise to an LK-vs-sentence θ , not involving scalar
multiplication at all, such that by Łoś’s theorem

V |H θ and W |H ¬θ,

in contradiction to the known fact that the infinite K-vector spaces V and W have
the same theory, due to quantifier elimination; see [Hodges 1993, Section 8.4]. □
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4. Finite axiomatizability of the dimension

In this section we establish Theorems 1.4 and 1.2. We derive the former from
a result of Héthelyi and Lévai [2003] about finite powerful p-groups; compare
with [Wilson 2002; Fernández-Alcober 2007]. We recall from [Dixon et al. 1999,
Theorem 4.20] that the elements of finite order in a finitely generated powerful
pro-p group form a powerful finite subgroup, its torsion subgroup.

Proof of Theorem 1.4. The torsion subgroup T is finite and characteristic in G so
that CG(T )⊴o G. We choose a uniformly powerful open normal subgroup U ⊴o G
such that U ⊆ CG(T ) and U ⊆8(G). Since U is torsion-free, this implies that

N = U × T ⊴o G and d(G)= d(G/U ).

We show below that there exists k ∈ N such that U pk
=8k(U )⊴o G satisfies

(4-1) �{1}(G/U pk
)=�{1}(N/U pk

).

Since N/U pk ∼= U/U pk
× T and because U is uniformly powerful, �{1}(N/U pk

)

is in bijection with the cartesian product of sets

�{1}(U/U pk
)×�{1}(T )= U pk−1

/U pk
×�{1}(G)

and furthermore logp|U
pk−1

/U pk
| = d(U ). Put s(G) = logp|�{1}(G)|. Stringing

all pieces together, we see that the finite powerful p-group P = G/U pk
satisfies

logp|�{1}(P)| = d(U )+ s(G)= dim(G)+ s(G).

The theorem of Héthelyi and Lévai [2003] yields logp|�{1}(P)| = d(P) and s(G)=
logp|�{1}(T )| = d(T ) so that

dim(G)= logp|�{1}(P)| − s(G)= d(P)− s(G)= d(G)− s(G)= d(G)− d(T ).

It remains to establish (4-1). Since U pk
, k ∈ N, is a base for the neighbourhoods

of 1 in G, it suffices to show that there exists an open normal subgroup W ⊴o G
such that for every x ∈ G ∖ N ⊆c G we have x p

̸∈ W , or in other words x p
̸≡W 1.

From T ⊆ N we see that G∖N does not contain any elements of finite order. Hence
for every x ∈ G ∖ N there exists Wx ⊴o G such that x p

̸≡Wx 1, and consequently
y p

̸≡Wx 1 for all y ∈ xWx ⊆o G. Since G ∖ N is compact, it is covered by a finite
union of such cosets xWx , i.e., G ∖ N ⊆

⋃
x∈X xWx with |X |<∞. This implies

that W =
⋂

x∈X Wx ⊴o G has the required property. □

Proof of Theorem 1.2. Let p ∈ π and put d = dp. It suffices to explain how one can
build an ∃∀∃-sentence τπ,r,p,d in Lgp which expresses that a pro-π group G of rank
rk(G)= r has Sylow pro-p subgroup dimension d . As in the proof of Theorem 1.1
we work with a general pro-π group G with rk(G)= r to concoct τπ,r,p,d .
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Using the same approach as in the proof of Theorem 1.1, we find an ∃-definable
and hence quantifier-neutral subgroup H ⊴o G that is pronilpotent and has (π, r)-
bounded index in G; moreover the arrangement can be expressed by means of
a suitable ∃∀∃-sentence. We put m = m(r) = ⌈log2(r)⌉ + 1. In the proof of
Proposition 3.2 we saw that we can use an ∃∀∃-sentence to describe that 8m(H) is
semipowerful and of (π, r)-bounded index in H ; in parallel we can realize 8m(H)
as an ∃-definable and hence quantifier-neutral subgroup. The Sylow subgroup
dimensions do not change if we pass from G to an open subgroup. Replacing G
by 8m(H), we may therefore assume without loss of generality that G itself is
pronilpotent and semipowerful.

As G is pronilpotent, G is the direct product of its powerful Sylow subgroups; let
G p denote the Sylow pro-p subgroup and Tp its torsion subgroup. By Theorem 1.4
it suffices to produce an ∃∀∃-sentence which pins down within the finite range
{0, 1, . . . , r} the invariants

d(G p)= logp|G p :8(G p)| and d(Tp)= logp|�{1}(G p)|,

where �{1}(G p)= {g ∈ G p | g p
= 1} is the set of all elements of order 1 or p. We

observe that G p/8(G p) ∼= G/8p(G) is essentially the p-Frattini quotient of G
and that �{1}(G p)= {g ∈ G | g p

= 1}.
The Frattini quotient G/8(G) has (π, r)-bounded order and maps onto the p-

Frattini quotient G/8p(G). As in the proof of Proposition 3.2, the group G/8(G)
is interpretable in G. There is an ∃∀∃-sentence which detects any prescribed
isomorphism type of G/8(G) among a (π, r)-bounded number of possibilities;
compare with Example 3.1. Forming a suitable disjunction, we can also detect
the isomorphism type of the p-Frattini quotient G/8p(G) and hence the minimal
numbers of generators d(G p).

Clearly, the closed subset {g ∈ G | g p
= 1} ⊆c G is quantifier-free definable in G.

Moreover, its size equals pd(Tp) and is thus at most pr . We can easily identify by
means of an ∃∀-sentence its precise size and hence the invariant d(Tp). □
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ELLIPTIC GENUS AND STRING COBORDISM
AT DIMENSION 24

FEI HAN AND RUIZHI HUANG

It is known that spin cobordism can be determined by Stiefel–Whitney
numbers and index theoretic invariants, namely KO-theoretic Pontryagin
numbers. We show that string cobordism at dimension 24 can be deter-
mined by elliptic genus, a higher index theoretic invariant. We also compute
the image of 24-dimensional string cobordism under elliptic genus. Using
our results, we show that under certain curvature conditions, a compact
24-dimensional string manifold must bound a string manifold.

1. Introduction

Cobordism is a fundamental tool in geometry and topology. For the oriented
cobordism ring �SO

∗
, there are spin cobordism �

Spin
∗ and string cobordism �

String
∗

as refinements through the Whitehead tower

· · · → String → Spin → SO.

It is a classical problem to classify cobordism classes in terms of characteristic
numbers. Historically, Wall [1960] showed that two closed oriented manifolds are
oriented cobordant if and only if they have the same Stiefel–Whitney numbers and
Pontryagin numbers. Anderson, Brown and Peterson [Anderson et al. 1967] showed
that two closed spin manifolds are spin cobordant if and only if they have the same
Stiefel–Whitney numbers and KO-theoretic characteristic numbers.

The problem for string manifolds is much more complicated. To our best
knowledge, it is unknown yet which set of characteristic numbers classifies string
cobordism. It is expected that TMF-theoretic characteristic numbers will play a
similar role for string cobordism as KO-theoretic characteristic numbers do for
spin cobordism. Here TMF stands for the topological modular form developed by
Hopkins and Miller [Hopkins 2002]. The Witten genus [1987; 1988] plays a similar
role in TMF as the Â-genus does in KO and is refined to be the σ -orientation from
the Thom spectrum of string cobordism to the spectrum TMF [Hopkins 2002; Ando
et al. 2001].
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In this paper we show that the elliptic genus [Ochanine 1987], a higher index
theoretic invariant, determines 24-dimensional string cobordism. As elliptic genus is
a twisted Witten genus [Witten 1987; 1988; Liu 1995a; 1995b], it can be viewed as
sort of TMF-theoretic characteristic numbers. This coincides with the expectation of
the role that TMF-theoretic characteristic numbers should play for string cobordism.
In the paper, we also compute the image of 24-dimensional string cobordism under
elliptic genus as well as give some application of our results in geometry. It is
worthwhile to remark that 24 is a dimension of special interest for string geometry.
For instance, in this dimension, one has (see [Hirzebruch et al. 1994, pp. 85–87])

W (M) = Â(M)1 + Â(M, T )1,

where W (M) is the Witten genus of M , Â(M) is the A-hat genus and Â(M, T ) is
the tangent bundle twisted A-hat genus of M , 1 = E3

4 − 744 · 1 with E4 being the
Eisenstein series of weight 4 and 1 being the modular discriminant of weight 12.
Hirzebruch raised his prize question in [Hirzebruch et al. 1994] that whether there
exists a 24-dimensional compact string manifold M such that W (M) = 1 (or
equivalently Â(M) = 1, Â(M, T ) = 0) and the Monster group acts on M as self-
diffeomorphisms. The existence of such a manifold was confirmed by Mahowald
and Hopkins [2002]. They determined the image of Witten genus at this dimension
via TMF. Based on their work, we [Han and Huang 2022] realized the kernel
of Witten genus at dimension 24 and determined an integral basis of �

String
24 . As

applications, various Rokhlin type divisibility theorems were proved there, which
significantly extend earlier relevant results of Chen and Han [2015] and Chen,
Han and Zhang [Chen et al. 2012]. Additionally, Milivojević [2021] used rational
homotopy theory to give a weak form solution to the Hirzebruch’s prize question.
However, the part of the question concerning the Monster group action is still open.

The elliptic genus, which was first constructed by Ochanine [1987] and Landwe-
ber and Stong [1988], is a graded ring homomorphism

(1-1) φ : �SO
∗

→ Z
[1

2

]
[δ, ε]

from the oriented cobordism ring to the graded polynomial ring Z
[ 1

2

]
[δ, ε] with the

degrees |δ| = 4, |ε| = 8, such that the logarithm is given by the formal integral

(1-2) g(z) =

∫ z

0

dt
√

1 − 2δt2 + εt4
.

The background and the developments of the theory of elliptic genus can be found
in [Landweber 1988b; Segal 1988; Kreck and Stolz 1993; Hirzebruch et al. 1994;
Liu 1996a; Hopkins 2002; Witten 1988].
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It is shown [Chudnovsky et al. 1988; Landweber 1988a] that the image of the
elliptic genus is

(1-3) φ(�SO
∗

) = Z[δ, 2γ, 2γ 2, . . . , 2γ 2s
, . . . ],

where γ =
1
4(δ2

− ε); and when restricted to spin cobordism,

(1-4) φ(�
Spin
∗ ) = Z[16δ, (8δ)2, ε].

It follows that at dimension 24 the image is spanned over Z by

(8δ)6, (8δ)4ε, (8δ)2ε2, ε3.

The map φ :�
Spin
24 →Z[8δ, ε] has nontrivial kernel. Actually E−F ·B is in the kernel,

where E is the total space of a fiber bundle of compact and connected structure
group with F being spin manifold as fiber and B being the base. This comes from
the multiplicativity of elliptic genus [Ochanine 1988], which is equivalent to the
Witten–Bott–Taubes–Liu rigidity [Bott and Taubes 1989; Taubes 1989; Liu 1996b].

Our main result is stated as follows.

Theorem 1. The elliptic genus

φ : �
String
24 → Z[8δ, ε]

is injective and its image is a subgroup of Z[8δ, ε] spanned by

(8δ)6, 24(8δ)4ε, (8δ)2ε2, 8ε3.

The theorem shows us the following picture:

�
String
24

∼= φ(�
String
24 ) ∼= Z ⊕ 24Z ⊕ Z ⊕ 8Z

≤ Z ⊕ Z ⊕ Z ⊕ Z ∼= φ(�
Spin
24 ).

In particular, it supports the expectation that TMF-theoretic characteristic numbers
will play a similar role for string cobordism as KO-theoretic characteristic numbers
do for spin cobordism.

The key to the proof of Theorem 1 is a result in [Han and Huang 2022], where we
determine an integral basis of �

String
24 , which consists of two explicitly constructed

manifolds in the kernel of the Witten genus, and another two-manifolds constructed
by Mahowald and Hopkins [2002] determining the image of the Witten genus. Then
we can apply two concrete elliptic genera (2-9) to reduce the computations of the
elliptic genus to those of classical twisted and untwisted genera on the generators
of �

String
24 . The details are carried out in Section 3.
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Theorem 1 has interesting application in geometry. A closed manifold M is
called almost flat if for any ε > 0, there is a Riemannian metric gε on M such that
the diameter diam(M, gε) ≤ 1 and gε is ε-flat, i.e., for the sectional curvature Kgε

,
we have |Kgε

| < ε. Given n, there is a positive number εn > 0 such that if an
n-dimensional manifold admits an εn-flat metric with diameter ≤ 1, then it is almost
flat. The classical result of Gromov [1978] says that every almost flat manifold is
finitely covered by a nilmanifold, and this was refined by Ruh [1982] by proving
that an almost flat manifold is diffeomorphic to an infranilmanifold. It has been
conjectured by Farrell and Zdravkovska [1983] and independently by Yau [1993]
that every almost flat manifold is the boundary of a closed manifold. Davis and
Fang [2016] showed that this conjecture holds under the assumption that the 2-Sylow
subgroup of holonomy group is cyclic or generalized quaternionic. The general
case of the conjecture remains open. Davis and Fang [2016] also pointed out that it
is a difficult question whether every almost flat spin manifold (up to changing spin
structures) bounds a spin manifold.

By Chern–Weil theory, it can be shown that the Pontryagin numbers of an oriented
almost flat manifold M all vanish [Davis and Fang 2016]. Since the elliptic genus
is determined by Pontryagin numbers, one can see from Theorem 1 that every
24-dimensional almost flat string manifold bounds a string manifold.

In [Chen and Han 2024], vanishing results for elliptic genus were proven under
almost nonpositive Ricci curvature condition. Theorem 1.3 there shows that given
n ∈ N and positive number λ, there exists some ε = ε(n, λ) > 0 such that if a
compact 4n-dimensional spin Riemannian manifold (M, g) satisfies diam(M, g) ≤

1, Ric(g) ≤ ε, sectional curvature ≥ −λ and has infinite isometry group, then the
elliptic genus of M vanishes. Combining with Theorem 1, we obtain:

Corollary 2. Given positive number λ, there exists some ε = ε(λ) > 0 such
that if a compact 24-dimensional string Riemannian manifold (M, g) satisfies
diam(M, g) ≤ 1, Ric(g) ≤ ε, sectional curvature ≥ −λ and has infinite isometry
group, then M bounds a string manifold. □

2. Preliminaries

In this section we collect some necessary knowledge of elliptic genus used in the
sequel. Details can be found in [Hirzebruch et al. 1994; Liu 1992; 1995a].

Let f be the formal inverse function of the logarithm g in (1-2). Then Y = f ′,
X = f solve the Jacobi quadrics

(2-1) Y 2
= 1 − 2δ · X2

+ εX4.

For concrete values of δ and ε, a solution f gives an elliptic genus with logarithm g.
For instance, when δ = ε = 1, f (z) = tanh z and φ reduces to the L-genus or the
signature, and when δ = −

1
8 , ε = 0, f (z) = 2 sinh z

2 and φ reduces to the Â-genus.
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Recall that the four Jacobi theta-functions (see [Chandrasekharan 1985]) defined
by infinite multiplications are

θ(v, τ ) = 2q1/8 sin(πv)

∞∏
j=1

[
(1 − q j )(1 − e2π

√
−1vq j )(1 − e−2π

√
−1vq j )

]
,

θ1(v, τ ) = 2q1/8 cos(πv)

∞∏
j=1

[
(1 − q j )(1 + e2π

√
−1vq j )(1 + e−2π

√
−1vq j )

]
,

θ2(v, τ ) =

∞∏
j=1

[
(1 − q j )(1 − e2π

√
−1vq j−1/2)(1 − e−2π

√
−1vq j−1/2)

]
,

θ3(v, τ ) =

∞∏
j=1

[
(1 − q j )(1 + e2π

√
−1vq j−1/2)(1 + e−2π

√
−1vq j−1/2)

]
,

where q = e2π
√

−1τ . They are holomorphic functions for (v, τ ) ∈ C × H, where C

is the complex plane and H is the upper half plane. Write θ j = θ j (0, τ ), 1 ≤ j ≤ 3,
and θ ′(0, τ ) =

∂
∂v

θ(v, τ )
∣∣
v=0.

When

δ = δ1(τ ) =
1
8
(θ4

2 + θ4
3 ) =

1
4

+ 6
∞∑

n=1

∑
d|n

d odd

dqn
=

1
4

+ 6q + 6q2
+ · · ·,

ε = ε1(τ ) =
1
16

θ4
2 θ4

3 =
1
16

+

∞∑
n=1

∑
d|n

(−1)dd3qn
=

1
16

− q + 7q2
+ · · ·,

(2-2)

equation (2-1) has the solution

f1(z, τ ) = 2π
√

−1
θ(z, τ )

θ ′(0, τ )

θ1(0, τ )

θ1(z, τ )
.

Similarly, when

δ = δ2(τ ) = −
1
8
(θ4

1 +θ4
3 ) = −

1
8
−3

∞∑
n=1

∑
d|n

d odd

dqn/2
= −

1
8
−3q1/2

−3q+·· ·,

ε = ε2(τ ) =
1
16

θ4
1 θ4

3 =

∞∑
n=1

∑
d|n

n/d odd

d3qn/2
= q1/2

+8q+·· ·,

(2-3)

equation (2-1) has the solution

f2(z, τ ) = 2π
√

−1
θ(z, τ )

θ ′(0, τ )

θ2(0, τ )

θ2(z, τ )
.
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Let M be a 4k-dimensional closed smooth oriented manifold. Let {±2π
√

−1xi ,
1 ≤ i ≤ 2k} be the formal Chern roots of the complexification TC M = TM ⊗ C.
Consider the two characteristic numbers

Ell1(M, τ ) = 22k
〈 2k∏

i=1

2π
√

−1xi

f1(xi , τ )
, [M]

〉
∈ Q[[q]],

Ell2(M, τ ) =

〈 2k∏
i=1

2π
√

−1xi

f2(xi , τ )
, [M]

〉
∈ Q[[q1/2

]].

(2-4)

Ell1(M, τ ), Ell2(M, τ ) can be written as signature and Â-genus twisted by the
Witten bundles. More precisely, let

(2-5) Â(M) =

2k∏
i=1

π
√

−1xi

sinh π
√

−1xi

be the Â-class and

(2-6) L̂(M) =

2k∏
i=1

2π
√

−1xi

tanh π
√

−1xi

the L̂-class. Let E be a complex vector bundle on M .
〈
L̂(M)chE, [M]

〉
is equal

to the index of the twisted signature operator ind(ds ⊗ E) = Sig(M, E). When M
is spin,

〈
Â(M)chE, [M]

〉
is equal to the index of the twisted Atiyah–Singer Dirac

operator ind(D ⊗ E). When twisted by bundles naturally constructed from the
tangent bundle TM of M , denote

Â(M, T i
⊗ 3 j

⊗ Sk) := Â(M, ⊗i TC M ⊗ 3 j (TC M) ⊗ Sk(TC M)),

Sig(M, T i
⊗ 3 j

⊗ Sk) := Sig(M, ⊗i TC M ⊗ 3 j (TC M) ⊗ Sk(TC M)),

where 3 j (TC M) and Sk(TC M) are the j-th exterior and k-th symmetric powers
of TC M respectively.

For any complex variable t , let

3t(E) = C + t E + t232(E) + · · ·, St(E) = C + t E + t2S2(E) + · · ·

denote respectively the total exterior and symmetric powers of E , which live
in K (M)[[t]]. Denote by

21(TC M) =

∞⊗
n=1

Sqn (TC M − C4k) ⊗

∞⊗
m=1

3qm (TC M − C4k),(2-7)

22(TC M) =

∞⊗
n=1

Sqn (TC M − C4k) ⊗

∞⊗
m=1

3−qm−(1/2)(TC M − C4k)(2-8)
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the Witten bundles, which are elements in K (M)[[q1/2
]]. Then one has

Ell1(M, τ ) =
〈
L̂(M)ch(21(TC M)), [M]

〉
,

Ell2(M, τ ) =
〈
Â(M)ch(22(TC M)), [M]

〉
.

(2-9)

3. Proof of Theorem 1

Let M be a 4k-dimensional closed smooth oriented manifold. By (1-3),

(3-1) φ(M) = a0(M)δ6
+ a1(M)δ4ε + a2(M)δ2ε2

+ a3(M)ε3,

where ai (M) ∈ Z
[ 1

2

]
, 0 ≤ i ≤ 3. First we show that one can express the 4 Pontryagin

numbers ai (M) (0 ≤ i ≤ 3) in terms of Â-genus, signature and their twists by the
tangent bundle.

Proposition 3.1. Let M be a 4k-dimensional closed smooth oriented manifold.
One has

a0(M) = 218 Â(M),

a1(M) = −215
· 3 · 5 Â(M) − 212 Â(M, T ),

a2(M) = 216
· 3 Â(M) + 213 Â(M, T ) +

1
25

Sig(M, T ),

a3(M) = 215 Â(M) − 212 Â(M, T ) −
1
25

Sig(M, T ) + Sig(M).

Proof. From the preliminary in Section 2, we see that

Ell1(M) = 212(a0(M)δ6
1 + a1(M)δ4

1ε1 + a2(M)δ2
1ε

2
1 + a3(M)ε3

1
)
,(3-2)

Ell2(M) = a0(M)δ6
2 + a1(M)δ4

2ε2 + a2(M)δ2
2ε

2
2 + a3(M)ε3

2.(3-3)

On the other hand, by (2-7), (2-8) and (2-9), it is not hard to compute that

Ell1(M, τ ) = Sig(M) + (2 Sig(M, T ) − 48 Sig(M))q + · · ·,

Ell2(M, τ ) = Â(M) − ( Â(M, T ) − 24 Â(M))q1/2
+ · · ·.

(3-4)

With the help of (2-2) and (2-3), we can compare (3-4) with (3-3) and (3-2). For
instance, by modulo higher terms (q1/2)i with i ≥ 2,

Ell2(M) ≡
a0(M)

86 (−1 − 24q1/2)6
+

a1(M)

84 (−1 − 24q1/2)4(q1/2)

≡
a0(M)

218 +

(
32a0(M)

214 +
a1(M)

212

)
q1/2.

Combining the above formula with (3-4), we have

(3-5)
a0(M)

218 = Â(M),
32a0(M)

214 +
a1(M)

212 = − Â(M, T ) + 24 Â(M).
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Similarly, by modulo higher terms q i with i ≥ 2,

Ell1(M) ≡ 212
(

a0(M)

86 (2 + 48q)6
+

a1(M)

84 (2 + 48q)4
(

1
16

− q
)

+
a2(M)

82 (2 + 48q)2
(

1
16

− q
)2

+ a3(M)

(
1

16
− q

)3 )
≡ (a0(M) + a1(M) + a2(M) + a3(M))

+ (144a0(M) + 80a1(M) + 16a2(M) − 48a3(M))q.

Combining the above formula with (3-4), we have

a0(M)+a1(M)+a2(M)+a3(M) = Sig(M),

144a0(M)+80a1(M)+16a2(M)−48a3(M) = 2Sig(M,T )−48Sig(M).
(3-6)

The equalities in (3-5) and (3-6) can be organized to result in a matrix equation

(3-7)


1

218 0 0 0

32

214
1

212 0 0

1 1 1 1
144 80 16 −48

 ·


a0(M)

a1(M)

a2(M)

a3(M)

 =


Â(M)

− Â(M, T ) + 24 Â(M)

Sig(M)

2 Sig(M, T ) − 48 Sig(M)

 .

We can solve ai (M) from (3-7), and then the proposition is proved. □

Now suppose M is further a string manifold. With the string condition, we
can rewrite the equalities of ai (M) in Proposition 3.1 in terms of a new family of
(twisted) genera, which is helpful for proving Theorem 1.

Proposition 3.2. Let M be a 24-dimensional closed smooth string manifold. Then

(3-8)


a0(M)

a1(M)

a2(M)

a3(M)

 =


218 0 0 0

−215
· 3 · 5 −215

· 3 0 0
28

· 3 · 331 29
· 35 26 0

−28
· 97 −29

· 3 · 17 −26 23

 ·


Â(M)

1
24 Â(M, T )

Â(M, 32)
1
8 Sig(M)

 .

Proof. Under the string condition, the twisted and untwisted genera in Proposition 3.1
possess intrinsic relations. Indeed, by combining modularity of the Witten genus
and a modular form constructed in [Liu and Wang 2013], Chen and Han [2015]
showed that, when M is a 24-dimensional closed smooth string manifold, one has

(3-9) Sig(M, T ) = 211( Â(M, 32) − 47 Â(M, T ) + 900 Â(M)
)
.

With (3-9) we can rewrite the equalities of ai (M) in Proposition 3.1 as displayed in
this proposition. □
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In [Han and Huang 2022] we determined an integral basis of �
String
24 , which is

crucial for the proof of Theorem 1.

Theorem 3.3 [Han and Huang 2022, Theorem 1 and Corollary 3]. The correspon-
dence κ : �

String
24 → Z ⊕ Z ⊕ Z ⊕ Z defined by

κ(M) =

(
Â(M),

1
24

Â(M, T ), Â(M, 32),
1
8

Sig(M)

)
is an isomorphism of abelian groups. Moreover, there exists a basis {Mi }1≤i≤4 of
�

String
24 such that

K :=


κ(M1)

κ(M2)

κ(M3)

κ(M4)


τ

=


0 1 0 0

−1 0 0 0
23

· 33
· 5 22

· 3 · 17 · 1069 −1 0
28

· 3 · 61 28
· 5 · 37 22

· 7 1

 . □

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Suppose M satisfies that φ(M) = 0. Then by (3-1) ai (M) = 0
for 0 ≤ i ≤ 3. Notice that in (3-8) the coefficient matrix is invertible. Then by
Proposition 3.2, the 4 index numbers Â(M), 1

24 Â(M, T ), Â(M, 32) and 1
8 Sig(M)

vanish. This means that κ(M) = (0, 0, 0, 0). Since by Theorem 3.3 κ is an isomor-
phism, [M] = 0 ∈ �

String
24 . Hence φ is injective.

To compute the image of the elliptic genus, we need to compute the elliptic
genus of the generators Mi (1 ≤ i ≤ 4) in Theorem 3.3. By Proposition 3.2 and
Theorem 3.3, they can be computed by the matrix multiplication

218 0 0 0
−215

· 3 · 5 −215
· 3 0 0

28
· 3 · 331 29

· 35 26 0
−28

· 97 −29
· 3 · 17 −26 23

 ·


0 1 0 0

−1 0 0 0
23

· 33
· 5 22

· 3 · 17 · 1069 −1 0
28

· 3 · 61 28
· 5 · 37 22

· 7 1



=


0 218 0 0

215
· 3 −215

· 3 · 5 0 0
−211

· 33 211
· 33

· 257 −26 0
212

· 34
−212

· 34
· 41 25

· 32 23

 = (a j (Mi )) j×i .

Combining (3-1), the above matrix gives the 4 generators of the image φ(�
String
∗ ) as

23
· ε3

= φ(M4),

−(8δ)2ε2
+ 25

· 32
· ε3

= φ(M3),

23
· 3 · (8δ)4ε − 25

· 33
· (8δ)2ε2

+ 212
· 34

· ε3
= φ(M1),

(8δ)6
− 23

· 3 · 5 · (8δ)4ε + 25
· 33

· 257 · (8δ)2ε2
− 212

· 34
· 41 · ε3

= φ(M2).
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It follows that φ(�
String
∗ ) is generated by 23

· ε3, (8δ)2ε2, 23
· 3 · (8δ)4ε and (8δ)6.

This completes the proof of the theorem. □
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THE DOMINATION MONOID IN HENSELIAN VALUED FIELDS

MARTIN HILS AND ROSARIO MENNUNI

We study the domination monoid in various classes of structures arising from
henselian valuations, including RV-expansions of henselian valued fields of
equicharacteristic 0 (and, more generally, of benign valued fields), p-adically
closed fields, monotone D-henselian differential valued fields with many
constants, regular ordered abelian groups, and pure short exact sequences
of abelian structures. We obtain Ax–Kochen–Ershov-type reductions to
suitable fully embedded families of sorts in quite general settings, and full
computations in concrete ones.

In their seminal work [17] on stable domination, Haskell, Hrushovski and
Macpherson introduced the domination monoid

∼

Inv(U), and showed that in al-
gebraically closed valued fields it decomposes as

∼

Inv(k(U))×
∼

Inv(0(U)), where
k denotes the residue field, 0 the value group, and U a monster model, that is, a
sufficiently saturated and strongly homogeneous model. (Strictly speaking, Haskell
et al. [17] work with Inv(U), which is in general different, but coincides with

∼

Inv(U)
in their setting. See [21, Remark 2.1.14 and Theorem 5.2.22].) A similar result
was proven in [12; 23] in the case of real closed fields with a convex valuation.
This paper revolves around understanding

∼

Inv(U) in more general classes of valued
fields, and expansions thereof. A special case of our results is the following.

Theorem A (Corollary 6.19). Let T be the theory of a henselian valued field of
equicharacteristic 0, or algebraically maximal Kaplansky, possibly enriched on k
and 0. If all k×/(k×)n are finite, then

∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U)).

More generally, we obtain a two-step reduction, first to leading term structures,
and then, using technology on pure short exact sequences recently developed
in [2], to k and 0, albeit in a form which, in general, is (necessarily) slightly more
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involved. We also compute
∼

Inv(0(U)) when the theory of 0 has an archimedean
model, and prove several accessory statements.

Before stating our results in more detail, let us give an informal account of the
context (see Section 1 for the precise definitions). The starting point is the space
Sinv(U) of invariant types over a monster model U: those which are invariant over
a small subset. It is a dense subspace of S(U), whose points may be canonically
extended to larger parameter sets. Such extensions allow to define the tensor
product, or Morley product, obtaining a semigroup (Sinv(U),⊗), in fact a monoid.
The space Sinv(U) also comes with a preorder ≥D, called domination: roughly,
p ≥D q means that q is recoverable from p plus a small amount of information.
The quotient by the induced equivalence relation, domination-equivalence ∼D, is
then a poset, denoted by (

∼

Inv(U),≥D). If ⊗ respects ≥D, i.e., if (Sinv(U),⊗,≥D) is
a preordered semigroup, then ∼D is a congruence with respect to ⊗ and we say that
the domination monoid is well defined, and equip (

∼

Inv(U),≥D) with the operation
induced by ⊗. Compatibility of ⊗ and ≥D in a given theory can be shown by using
certain sufficient criteria, isolated in [22] and applied, e.g., in [24], or by finding a
nice system of representatives for ∼D-classes (see Proposition 1.3). Nevertheless, in
general, ⊗ may fail to respect ≥D [22]. Hence, when dealing with

∼

Inv(U) in a given
structure, one needs to understand whether it is well defined as a monoid; and, when
dealing with it in the abstract, the monoid structure cannot be taken for granted.

Recall that to a valued field K are associated certain abelian groups augmented
by an absorbing element, fitting in a short exact sequence

1 → (k,×)→ (K,×)/(1 +m)→ 0 ∪ {∞} → 0,

denoted by RV . This sequence is interpretable in K, and this interpretation endows
it with extra structure. The amount of induced structure clearly depends on whether
K has extra structure itself, but at a bare minimum k will carry the language of
fields and 0 that of ordered abelian groups. By [4] (see also [20], or [14; 15]
for a more modern treatment), henselian valued fields of residue characteristic 0
eliminate quantifiers relatively to RV , and the latter is fully embedded with the
structure described above. This holds resplendently, in the sense that it is still true
after arbitrary expansions of RV . The same holds in the algebraically maximal
Kaplansky case, by [20] (see also [15]).1 These are known after [30] as classes
of benign valued fields and, in several contexts, they turn out to be particularly
amenable to model-theoretic investigation. One of our main results says the context
of domination is no exception.

Theorem B (Theorem 6.18). In every RV-expansion of a benign theory of valued
fields there is an isomorphism of posets

∼

Inv(U) ∼=
∼

Inv(RV(U)). If ⊗ respects ≥D

in RV(U), then ⊗ respects ≥D in U, and the above is an isomorphism of monoids.

1Note that these quantifier elimination results are already implicitly contained in [9].
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Having reduced
∼

Inv(U) to the short exact sequence RV , the next step is to
reduce it to its kernel k and quotient 0. If we add an angular component map,
the sequence RV splits and we obtain a product decomposition as in Theorem A
(Remark 6.1). Without an angular component, a product decomposition is not
always possible; yet, k and 0 still exert a tight control on RV . This behaviour is
not peculiar of RV: it holds in short exact sequences of abelian structures, provided
they satisfy a purity assumption, using the relative quantifier elimination from [2].
For reasons to be clarified later (Remark 4.17), here it is natural to look at types in
infinitely many variables, say κ , and hence at the corresponding analogue

∼

Invκ(U)
of
∼

Inv(U).

Theorem C (Corollary 4.9). Let U be a pure short exact sequence

0 → A → B → C → 0

of L-abelian structures, where A and C may carry extra structure. Let κ ≥ |L| be
a small cardinal. There is an expansion AF of A by imaginary sorts yielding an
isomorphism of posets

∼

Invκ(U)∼=
∼

Invκ(AF (U))×
∼

Invκ(C(U)). If ⊗ respects ≥D in
both AF (U) and C(U), then ⊗ respects ≥D in U, and the above is an isomorphism
of monoids.

In algebraically or real closed valued fields, the isomorphism
∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U))

is complemented by a computation of the factors, carried out in [17; 23]. In
particular, if 0(U) is divisible, then

∼

Inv(0(U)) is isomorphic to the upper semilattice
of finite sets of invariant convex subgroups of 0(U) (in the sense of Definition 3.16).
A further contribution of this work is the computation of

∼

Inv(U) in the next simplest
class of theories of ordered abelian groups: those with an archimedean model,
known as regular. Denote by CSinv(U) the set of invariant convex subgroups of U,
by P≤κ(CSinv(U)) the upper semilattice of its subsets of size at most κ , and by κ̂
the ordered monoid of cardinals smaller or equal than κ with cardinal sum.

Theorem D (Corollary 3.33). Let T be the theory of a regular ordered abelian
group, κ a small infinite cardinal, and PT the set of primes p such that U/pU is
infinite. Then

∼

Invκ(Ueq) is well defined, and
∼

Invκ(Ueq)∼= P≤κ(CSinv(U))×
∏

PT
κ̂ .

Theorem D applies to Presburger arithmetic, the theory of (Z,+, <). Pairing
this with a suitable generalisation of Theorem B, we obtain the following.

Theorem E (Corollary 7.7). In the theory Th(Qp) of p-adically closed fields, ⊗ re-
spects ≥D, and

∼

Inv(U)∼= P<ω

(
CSinv(0(U))

)
.

A similar statement (Corollary 7.5) holds for Witt vectors over F
alg
p . Finally,

we move to monotone D-henselian differential valued fields with many constants.
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While Theorem B does not generalise to this context (Remark 8.5), its analogue
for

∼

Invκ(U) does (Theorem 8.2). We fully compute
∼

Invκ(U) in the model companion
VDFEC . Similar results hold for σ -henselian valued difference fields (Remark 8.6).

Theorem F (Theorem 8.4). In VDFEC , for every small infinite cardinal κ , the
monoid

∼

Invκ(U) is well defined, and we have isomorphisms

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U))∼=

≤κ∏
δ(U)

κ̂ × P≤κ

(
CSinv(0(U))

)
,

where δ(U) is a certain cardinal, and
∏

≤κ
δ(U) κ̂ denotes the submonoid of

∏
δ(U) κ̂

consisting of δ(U)-sequences with support of size at most κ .

The paper is structured as follows. In the first two sections we recall some prelim-
inary notions and facts, and deal with some easy observations about orthogonality
of invariant types. In Section 3 we prove Theorem D, while in Section 4 we study
expanded pure short exact sequences of abelian structures, proving Theorem C. The
results from these two sections are then combined in Section 5 to deal with the case of
ordered abelian groups with finitely many definable convex subgroups. In Section 6
we prove Theorem B, and illustrate how it may be combined with Theorem C
to obtain statements such as Theorem A. Section 7 deals with finitely ramified
mixed characteristic henselian valued fields and includes a proof of Theorem E,
and Section 8 deals with the differential case, proving Theorem F.

1. Preliminaries

Notation and conventions. We adopt the conventions and notations of [23, Sec-
tion 1.1] (e.g., we usually (and tacitly) fix a monster model U, and definable means
U-definable), with the following additions and differences. The set of prime natural
numbers is denoted by P. Sorts are denoted by upright letters, as in A,K, k, 0,
families of sorts by calligraphic letters such as C, and SC<ω(A) stands for the disjoint
union of all spaces of types in finitely many variables, each with sort in C. Terms
may contain parameters, as in t (x, d); we write t (x) if they do not.

Domination. We assume familiarity with invariant types, and recall some basic
definitions and facts about domination. See [23, Section 1.2], [21, Section 2.1.2]
and [22] for a more thorough treatment.

If p(x), q(y) ∈ S(U), let Spq(A) be the set of types over A in variables xy
extending (p(x) ↾ A) ∪ (q(y) ↾ A). We say that p(x) ∈ S(U) dominates q(y) ∈

S(U), and write p ≥D q, if there are a small A ⊂
+ U and r ∈ Spq(A) such that

p(x) ∪ r(x, y) ⊢ q(y). We say that p, q ∈ S(U) are domination-equivalent, and
write p ∼D q , if p ≥D q and q ≥D p. We denote the domination-equivalence class of
p by [[p]]. The domination poset

∼

Inv(U) is the quotient of Sinv(U) by ∼D, equipped
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with the partial order induced by ≥D, denoted by the same symbol. In other words,
domination is the semiisolation counterpart to Fs

κ(U)-isolation in the sense of [29,
Chapter IV]; the two notions are distinct, see [24, Example 3.3].

We will be mostly concerned with domination on Sinv(U). When describing
a witness to p ≥D q, we write, e.g., “let r contain ϕ(x, y)” with the meaning
“let r ∈ Spq(A) contain ϕ(x, y), for an A such that p, q ∈ Sinv(U, A)”. By [22,
Lemma 1.14], if p0, p1 ∈ Sinv(U) and p0 ≥D p1, then p0 ⊗ q ≥D p1 ⊗ q. We say
that ⊗ respects ≥D if q0 ≥D q1 implies p ⊗ q0 ≥D p ⊗ q1. If this is the case, the
domination monoid is the expansion of

∼

Inv(U) by the operation induced by ⊗, also
denoted by ⊗. If we say

∼

Inv(U) is well defined (as a partially ordered monoid) we
mean “⊗ respects ≥D”. As

∼

Inv(U) is always well defined as a poset, this should
cause no confusion.

Adding imaginary sorts to U may result in an enlargement of
∼

Inv(U) [22, Corol-
lary 3.8]. Yet, if T eliminates imaginaries, even just geometrically, then the natural
embedding

∼

Inv(U) ↪→
∼

Inv(Ueq) is easily seen to be an isomorphism. By [22,
Proposition 1.23], domination witnessed by algebraicity is compatible with ⊗: if
p, q0, q1 ∈ Sinv(U) and, for i<2, there are realisations ai ⊨qi such that a1 ∈acl(Ua0),
then for all invariant p we have p ⊗q0 ≥D p ⊗q1. In particular, if T has geometric
elimination of imaginaries, then

∼

Inv(Ueq) is well defined if and only if
∼

Inv(U) is.
Frequently, we will equip a family of sorts, say A = {As | s ∈ S}, with the traces

of some ∅-definable relations, and consider it as a standalone structure. We call
A fully embedded if, for each s0, . . . , sn ∈ S, every subset of (As0 × · · · × Asn )(U)

is definable in U if and only if it is definable in A(U). When talking of a fully
embedded A in the abstract, as below, we assume a structure on A to be fixed.

Fact 1.1 [21, Proposition 2.3.31]. Let A be a fully embedded family of sorts, and
let ι : SA<ω(A(U))→ S(U) send a type of A(U) to the unique type of U it entails.
The type p is invariant if and only if ι(p) is. The map ι ↾ Sinv(A(U)) is an injective
⊗-homomorphism inducing an embedding of posets ι̃ :

∼

Inv(A(U)) ↪→∼

Inv(U) which,
if ⊗ respects ≥D in U (hence also in A(U)), is also an embedding of monoids.

Remark 1.2. With the notation and assumptions from Fact 1.1, if p is an invariant
A(U)-type, U1 ≻ U, and A(U)⊆ B ⊆ A(U1), then (p | B) ⊢ (ιp | UB).

Proof. Suppose ϕ(x, w, t) ∈ L(∅), d ∈ U, e ∈ B, and ιp(x) | B ⊢ ϕ(x, d, e). Since
x, t are A-variables, and d ∈ U, full embeddedness yields an LA(A(U))-formula
ψ(x, t) equivalent to ϕ(x, d, t). So ψ(x, e) ∈ p | B and we are done. □

Proposition 1.3. Assume for all p ∈ Sinv(U) there is a tuple τ p of definable functions
with codomains in a fully embedded A such that p ∼D τ

p
∗ p and p⊗q ∼D τ

p
∗ p⊗τ

q
∗ q.

If ⊗ respects ≥D in A(U), then ⊗ respects ≥D in U.
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Proof. We need to show that if q0 ≥D q1 then p ⊗ q0 ≥D p ⊗ q1. By assumption,
p ⊗q0 ∼D τ

p
∗ p ⊗τ

q0
∗ q0 and τ p

∗ p ⊗τ
q1
∗ q1 ∼D p ⊗q1. Since ⊗ respects ≥D in A(U),

we obtain τ p
∗ p ⊗ τ

q0
∗ q0 ≥D τ

p
∗ p ⊗ τ

q1
∗ q1, and we are done. □

Note that a map τ as above induces an inverse of ι̃.

A word on ∗-types. We will deal with types in a small infinite number of variables,
also known in the literature as ∗-types. We define

∼

Invκ(U) as the quotient of S<κ+(U)

by ∼D. Note that, by padding with realised coordinates and permuting variables,
every ∼D-class has a representative with variables indexed by κ . We leave to the
reader easy tasks such as defining the α-th power p(α), for α an ordinal, or such as
convincing themselves that basic statements such as Fact 1.1 generalise.

Nevertheless, it is not clear if well-definedness of
∼

Inv(U) implies well-definedness
of
∼

Invκ(U) (the converse is easy): for instance, at least a priori, one could have a
situation where the finitary

∼

Inv(U) is well defined, but there are a 1-type q0 and a
κ-type q1 such that q0 ≥D q1 but, for some p, we have p ⊗ q0 ̸≥D p ⊗ q1. In the
rest of the paper we will say, e.g., “⊗ respects ≥D” with the understanding that,
whenever ∗-types are involved, this is to be read as “⊗ respects ≥D on ∗-types”.

Question 1.4. If ⊗ respects ≥D on finitary types, does ⊗ respect ≥D on ∗-types?

2. Orthogonality

Definition 2.1. We say that p, q ∈ S(A) are weakly orthogonal, and write p ⊥
w q ,

if p(x)∪ q(y) implies a complete xy-type over A. We say that p, q ∈ Sinv(U) are
orthogonal, and write p ⊥ q , if (p | B)⊥

w (q | B) for every B ⊇ U. Two definable
sets ϕ,ψ are orthogonal if for every n,m ∈ ω, every p ∈ Sϕn (U) and q ∈ Sψm (U),
we have p ⊥

w q . Two families of sorts A, C are orthogonal if every cartesian product
of sorts in A is orthogonal to every cartesian product of sorts in C.

It is easily seen that if p, q ∈ Sinv(U,M) are weakly orthogonal and U1 ≻ U is
|M |

+-saturated and |M |
+-strongly homogeneous, then (p |U1)⊥

w (q |U1). This can
fail for arbitrary B ⊇U, i.e., weak orthogonality is indeed weaker than orthogonality.
While this is folklore (Mennuni thanks E. Hrushovski for pointing this out), we
could not find any example in print, so we record one.

Example 2.2. There is a theory with invariant p, q such that p ⊥
w q but p ̸⊥ q.

Proof. Let L be a two-sorted language with sorts P,O (points, orders) and a relation
symbol x <t y of arity P2

× O. The class K of finite L-structures where, for every
d ∈ O, the relation x <d y is a linear order, is a (strong) amalgamation class. Let T
be the theory of the Fraïssé limit of K . Fix a small M ⊨T , and let p, q be the 1-types
of sort P defined as p(x) = {m <d x <d e | d ∈ O(U),m ∈ M, e ∈ P(U), e > M}

and q(y) := {e <d y | d ∈ O(U), e ∈ P(U)}. By quantifier elimination p, q are
complete, p is M-invariant, and q is ∅-definable, hence ∅-invariant.
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Since M is small, for every d ∈ O(U) it is <d-bounded, hence p ⊥
w q. Let

b be a point of sort O such that M is ≤b-cofinal in U, and set B := Ub. Then
(q(y) | B) ⊢ y ≥b P(U) and (p(x) | B) ⊢ x ≥b P(U), and both x <b y and y <b x
are consistent with (p(x) | B)∪ (q(y) | B), which is therefore not complete. □

Remark 2.3. If p ∈ S(A) is such that p ⊥
w p, then p is realised in dcl(A). If

p, q ∈ Sinv(U) and p ⊥
w q, then p(x)⊗ q(y) = q(y)⊗ p(x): they both coincide

with (the unique completion of) p(x)∪q(y). Two definable sets ϕ,ψ are orthogonal
if and only if every definable subset of ϕm(x)∧ψn(y) can be defined by a finite
disjunction of formulas of the form θ(x) ∧ η(y). If two M-definable sets are
orthogonal, then the definition of orthogonality still holds after replacing U with M .
Adding imaginaries preserves orthogonality, in the following sense. Let A be a
family of sorts, and let Ã be a larger family, consisting of A together with imaginary
sorts obtained as definable quotients of products of elements of A. Let C̃ be obtained
similarly from another family of sorts C. If A and C are orthogonal, then so are Ã
and C̃.

By [22, Proposition 3.13], if p0 ≥D p1 and p0 ⊥
w q , then p1 ⊥

w q . In particular,
if p0 ≥D q and p0 ⊥

w q, then q is realised. As a consequence, ⊥
w induces a well-

defined relation on the domination poset, which we may expand to (
∼

Inv(U),≥D,⊥
w).

By [22, Proposition 2.3.31] the map ι̃ from Fact 1.1 is a homomorphism for both ⊥
w

and ̸⊥
w. We prove the analogous statements for orthogonality.

Proposition 2.4. Let p0, p1, q ∈ Sinv(U). If p0 ⊥ q and p0 ≥D p1, then p1 ⊥ q. In
particular, ⊥ induces a well-defined relation on

∼

Inv(U).

Proof. Fix r witnessing p0 ≥D p1 and let B ⊇ U. Let b ⊨ p1 | B and c ⊨ q | B. By
[22, Lemma 1.13], (p0 | B)∪ r ⊢ (p1 | B). Let a be such that ab ⊨ (p0 | B)∪ r .
Since p0 ⊥ q, we have (p0 | B)⊥

w (q | B), and hence a ⊨ p0 | Bc. Again by [22,
Lemma 1.13] we have (p0 | Bc)∪ r ⊢ (p1 | Bc), therefore b ⊨ p1 | Bc. □

Proposition 2.5. In the setting of Fact 1.1, ι ↾ Sinv
A<ω(A(U)) is a ⊥-homomorphism

and a ̸⊥-homomorphism, and so is the induced map ι̃ :
∼

Inv(A(U)) ↪→∼

Inv(U).

Proof. Let p, q ∈ Sinv
A<ω(A(U)) be orthogonal and let U1 ≻ U be |U|

+-saturated and
|U|

+-strongly homogeneous. We show that, for ϕ(x, y, z) ∈ L(U) and d ∈ U1, if
(ιp(x)⊗ ιq(y)) | U1 ⊢ ϕ(x, y, d) then (ιp | Ud)(x) ∪ (ιq | Ud)(y) ⊢ ϕ(x, y, d).
By full embeddedness, there are χ(x, y, w) ∈ LA(A(U)) and e ∈ A(U1) such that
U1 ⊨ ∀x, y (χ(x, y, e)↔ ϕ(x, y, d)). Because (p | A(U)e)⊥

w (q | A(U)e), there
are θp(x, w), θq(y, w)∈ LA(A(U)) such that (p |A(U)e)⊢ θp(x, e), (q |A(U)e)⊢
θq(y, e), and A(U1) ⊨ ∀x, y ((θp(x, e) ∧ θq(y, e)) → χ(x, y, e)). By invariance
of p, q , we have

πp(x) := {θp(x, e′) | e′
∈ U1, e ≡Ud e′

} ⊆ ιp | U1,

πq(y) := {θq(y, e′) | e′
∈ U1, e ≡Ud e′

} ⊆ ιq | U1.
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So πp, πq are consistent. As Aut(U1/Ud) fixes them, they are equivalent to partial
types σp, σq over Ud . But σp ⊆ ιp |Ud , σq ⊆ ιq |Ud , and σp(x)∪σq(y)⊢ϕ(x, y, d),
proving that ⊥ is preserved.

Suppose there is B with A(U) ⊆ B ⊆ A(U1) such that (p | B) ̸⊥
w (q | B). By

Remark 1.2, this yields (ιp | UB) ̸⊥w (ιq | UB), proving that ̸⊥ is preserved as well.
The statement for ι̃ follows from Proposition 2.4. □

Lemma 2.6. Let p, q0, q1 ∈ S(U), with p ⊥
w q0 and (p(x) ∪ q0(y)) ≥D q1(z),

witnessed by r ∈ Sp⊗q0,q1(M). If (r ↾ x) ⊥
w (r ↾ yz), then q0 ≥D q1, witnessed

by r ↾ yz. Hence, if A, C are orthogonal families of sorts, p ∈ Sinv
A<ω(U), and

q0, q1 ∈ Sinv
C<ω(U), if (p ∪ q0)≥D q1, then q0 ≥D q1.

Proof. Routine, left to the reader. □

Recall that the product
∏

i∈I Pi of a family of posets (Pi ,≤i )i∈I is the cartesian
product of the Pi partially ordered by (pi )i∈I ≤ (qi )i∈I if ∀i ∈ I pi ≤i qi .

Corollary 2.7. Suppose that A, C are orthogonal, fully embedded families of sorts.
Assume that for every p ∈ Sinv(U) there are some pA ∈ Sinv

A<ω(U) and pC ∈ Sinv
C<ω(U)

such that p ∼D pA ∪ pC . Then the map [[p]] 7→ ([[pA]], [[pC]]) is an isomorphism of
posets

∼

Inv(U)→
∼

Inv(A(U))×∼

Inv(C(U)). Moreover, if ⊗ respects ≥D in U (hence
also in A(U), C(U)), then this is also an isomorphism of monoids.

Proof. Fact 1.1 yields embeddings of posets
∼

Inv(A(U)) ↪→∼

Inv(U) and
∼

Inv(C(U)) ↪→∼

Inv(U).

We define a morphism of posets
∼

Inv(A(U)) ×
∼

Inv(C(U)) →
∼

Inv(U) by setting
([[p(x)]], [[q(y)]]) 7→ ([[p(x)∪ q(y)]]). It follows from orthogonality of A and C
that this morphism is well defined: if p′

∼D p and q ′
∼D q, by just taking unions

of domination witnesses we find that p ∪ q ∼D p′
∪ q ′. As this map is injective

by Lemma 2.6, it is enough to show that the natural candidate for its inverse,
[[p]] 7→ ([[pA]], [[pC]]), is well defined and a morphism of posets. Both these
statements follow from the observation that, if (pA ∪ pC)∼D p ≥D q ∼D (qA ∪qC),
then by Lemma 2.6 we must have pA ≥D qA and pC ≥D qC . The “moreover” part
follows from Fact 1.1, and the fact that AC is fully embedded. □

Example 2.8. Let A, C be structures in disjoint languages, T the theory of their
disjoint union, in families of sorts A, C. Then A and C are orthogonal, and invari-
ant types in A are orthogonal to those in C. Therefore,

∼

Inv(U) is isomorphic to
∼

Inv(A(U))×∼Inv(C(U)), and is well defined as a monoid if and only if both factors are.

Orthogonality is preserved by the Morley product. The proof is folklore, and
essentially the same as in the stable case, but we record it here for convenience.

Proposition 2.9. If p0, p1 ∈ Sinv(U) are orthogonal to q, then so is p0 ⊗ p1.
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Proof. Let ab ⊨ p0 ⊗ p1 and c ⊨ q. Because p1 ⊥ q we have c ⊨ q | Ub, and by
definition of ⊗ we have a ⊨ p0 | Ub. Since p0 ⊥ q , this entails c ⊨ q | Uab. □

3. Regular ordered abelian groups

In this section we study the domination monoid in certain theories of (linearly)
ordered abelian groups, henceforth oags. Model-theoretically, the simplest oags
are the (nontrivial) divisible ones. Their theory is o-minimal and their domination
monoid was one of the first ones to be computed [17; 23]. It is isomorphic to the
finite powerset semilattice (P<ω(CSinv(U)),∪,⊆) of the set of invariant convex
subgroups of U, and weakly orthogonal classes of types correspond to disjoint finite
sets. Divisible oags eliminate quantifiers in the language Loag := {+, 0,−, <}. In
this section we compute the domination monoid in the next simplest case.

Definition 3.1. A (nontrivial) oag is discrete if it has a minimum positive element,
and dense otherwise. We view an oag M as a structure in the Presburger language
LPres := {+, 0,−, <, 1,≡n| n ∈ ω} by interpreting +, 0,−, < in the natural way, 1
as the minimum positive element if M is discrete and as 0 otherwise, and ≡n as
congruence modulo nM . An oag is regular if it eliminates quantifiers in LPres.

Fact 3.2 [7; 8; 27; 33; 34]. For an oag M , the following are equivalent.

(1) M is regular.

(2) The only definable convex subgroups of M are {0} and M .

(3) The theory of M has an archimedean model.

(4) For every n > 1, if the interval [a, b] contains at least n elements, then it
contains an element divisible by n.

(5) Every quotient of M by a nontrivial convex subgroup is divisible.

Fact 3.3 [27; 34]. Every discrete regular M is a model of Presburger Arithmetic,
i.e., M ≡ Z. If M, N are dense regular, then M ≡ N if and only if, for each p ∈ P,
either M/pM and N/pN are both infinite or they have the same finite size.

Notation 3.4. For the rest of the section we adopt the following (not entirely
standard) conventions. Let M be an oag and A ⊆ M . We denote by A>0 the set
{a ∈ A | a > 0}, by ⟨A⟩ the group generated by A, and by div(M) the divisible
hull of M . We allow intervals to have endpoints in the divisible hull. In other
words, an interval in M is a set of the form {x ∈ M | a ⊏0 x ⊏1 b}, for suitable
a, b ∈ div(M)∪ {±∞} and {⊏0,⊏1} ⊆ {<,≤}.

A cut (L , R) is given by subsets L , R ⊆ M such that L ≤ R and L ∪ R = M . We
call such a cut realised if L ∩ R ̸=∅, and nonrealised otherwise. The cut (L , R) of
c ∈ N > M is given by L = {m ∈ M | c ≥ m} and R = {m ∈ M | c ≤ m}. The cut of
a type p ∈ S1(M) is the cut of any c ⊨ p. We say that c ∈ N > M fills a cut (L , R)
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if the latter equals the cut of c. For a ∈ M , we denote by a+ the cut (L , R) with
L = {m ∈ M | m ≤ a} and R = {m ∈ M | a < m}, and similarly for a−. Analogous
notions are defined for a ∈ div(M).

Every interval is definable: e.g., (a/n,+∞) is defined by a< n ·x . If (L , R) is a
cut then |L ∩ R| ≤ 1. A type is realised if and only if its cut is. Let Lab := {0,+,−}.

Remark 3.5. By regularity, a 1-type over M ⊨ T is determined by a cut in M and a
choice of cosets modulo each nM (if M/nM is infinite a type may say that the
coset x + nM is not represented in M) consistent with the Lab-theory of M .

Lemma 3.6. If M is a dense regular oag then, for every n > 0, every coset of nM is
dense in M. In particular, given any nonrealised p ∈ S1(M), and any nonrealised
q0 ∈ S1(M ↾ Lab), there is q ∈ S1(M) restricting to q0 and in the same cut as p.

Proof. By density and point (4) of Fact 3.2, every nM is dense; as translations are
homeomorphisms for the order topology, each coset of nM is dense. □

Imaginaries in regular ordered abelian groups. The first step to compute
∼

Inv(Ueq)

is to take care of the reduct to a certain fully embedded family of imaginary sorts,
that suffice for weak elimination of imaginaries by a result of Vicaría [32]. Recall
that T has weak elimination of imaginaries if for every imaginary e there is a real
tuple a such that e ∈ dcleq(a) and a ∈ acleq(e). For p ∈ P and n ≥ 1, define Tpn as
the Lab-theory of

⊕
i∈ω Z/pnZ. The following is well known.

Fact 3.7. (1) Let A be an infinite abelian group. Then A ⊨ Tpn if and only if
pA = {a ∈ A | pn−1a = 0}.

(2) Tpn has quantifier elimination and is totally categorical.

(3) If A ⊨ Tpn , then pA is a model of Tpn−1 , and the induced structure on pA is
that of a pure abelian group.

(4) Tpn has weak elimination of imaginaries.

Proof sketch. For (4), as Tpn is stable, it suffices to show that canonical bases of
types over models are interdefinable with real tuples [13, Proposition 3]. This is an
application of the elementary divisor theorem, and is left to the reader. □

Let Tp∞ be the following multisorted theory:

• For every n > 0 there is a sort Qpn , endowed with a copy of Lab.

• For every n > 0 there is a function symbol ρpn+1 : Qpn+1 → Qpn .

• M ⊨ Tp∞ if and only if, for all n > 0, Qpn (M) ⊨ Tpn and ρpn+1 : Qpn+1(M)→

Qpn (M) is a surjective group homomorphism with kernel pn Qpn+1(M).

Remark 3.8. In an earlier version of this manuscript, we had claimed that Tp∞ has
quantifier elimination. This does not hold. But one may show that it is enough to
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add function symbols λn : Qpn → Qpn+1 for all n, interpreted as the definable group
isomorphism Qpn (A)→ pQpn+1(A) mapping a to pã where ã is any element with
ρpn+1(ã)= a. We thank A. Gehret for having pointed this out to us.

The quantifier elimination result above, which has been mentioned for the sake
of completeness, will not be used below. Let κ̂ be the monoid of cardinals not larger
than κ , with the usual sum and order.

Corollary 3.9. (1) The theory Tp∞ is complete, totally categorical, 1-based, and has
weak elimination of imaginaries.

(2) In Tp∞ , we have
∼

Inv(U) ∼= N and, for each infinite cardinal κ , the monoid
∼

Invκ(U) is (well defined and) isomorphic to κ̂ .

(3) More precisely, if tp(a/U) is M-invariant, then there is a basis b ∈ dcl(Ma)
of the Fp-vector space Qp(dcl(Ua)) over U, and tp(a/U) is domination-equivalent
to tp(b/U), witnessed by tp(ab/M) in both directions, and the isomorphism above
sends its domination-equivalence class to the cardinality of b.

Proof. Statement (1) is immediate from Fact 3.7 and the fact that abelian groups are
1-based. As for (2), each of the sorts Qpn is stable unidimensional, that is, if p ⊥ q
then one of p, q is algebraic, and it follows easily that so is Tp∞ . The conclusion
for finitary types then follows from [22, Corollary 5.19], and the version for ∗-types
is similar.

To prove (3), if b ∈ dcl(Ma) is a basis of Qp(dcl(Ma)) over M , by M-invariance
it is also a basis of Qp(dcl(Ua)) over U. Because in unidimensional theories
the domination-equivalence class of a tuple is determined by its weight [22, Re-
mark 5.12], it suffices to show that the cardinality κ of b equals the weight
w(tp(a/U)). For Tpn this is well known, and as Qpn (U) is a fully embedded model
of Tpn , the result is easily seen to transfer to Tp∞ . □

We now consider a regular oag M . Since it is well known that Presburger arith-
metic eliminates imaginaries (by definable choice), we may assume that M is dense.

We view M as a structure in the language with one sort for the oag itself, endowed
with Loag, one sort Qpn for each prime p and each n > 0, endowed with Lab and
interpreted as the group M/pn M , functions πpn for the quotient map from M
to M/pn M and functions ρpn+1 for the canonical surjections M/pn+1 M → M/pn M .
Moreover, for every prime p we definably expand the language on (Qpn )n>0 so that
the multisorted structure (Qpn (M))n>0 has quantifier elimination.

For every p∈ P, let dp ∈ N∪{∞} be such that (M : pM)= pdp . Set T := Th(M).
The proof of the following lemma is straightforward from Lemma 3.6 and quantifier
elimination for the one-sorted theory of M in LPres, and we leave it to the reader.

Lemma 3.10. The theory T eliminates quantifiers. For U ⊨ T , the following holds.
For every p prime and n>0, the sort Qpn (U) equipped with the natural Lab-structure
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is fully embedded. If dp = ∞, the structure given by (Qpn (U))n>0, together with
the maps ρpn+1 and the natural Lab-structure on each sort, is fully embedded and a
model of Tp∞ . If dp is finite, every sort Qpn (U) is finite. If p, q are distinct primes,
then Qpn (U)n>0 and Qqn (U)n>0 are orthogonal.

Definition 3.11. Denote by Q the family of sorts {Qpn |p∈ P, n>0}. If q = tp(c/U)
is a ∗-type, possibly with coordinates in the sorts in Q, for each p ∈ P, let κp(q)
be the dimension of the Fp-vector space dcl(Uc)/p(dcl(Uc)) over U/pU. Let PT

be the set of primes p such that if M ⊨ T then pM has infinite index, and denote
by

∏
PT
κ̂ the monoid of PT -indexed sequences of cardinals smaller or equal than κ

with pointwise cardinal sum, equipped with the product (partial) order.

Corollary 3.12. The family of sorts Q, equipped with the Lab-structure on each
sort and the maps ρpn+1 , is fully embedded. When viewed as a standalone structure,
⊗ respects ≥D and

∼

Invκ(Q(U))∼=
∏

PT
κ̂ .

Proof. This follows from Lemma 3.10, Corollary 3.9, and Fact 1.1. Compatibility
of ⊗ with ≥D is a consequence of stability, see [22, Propositions 1.21 and 1.25]. □

Fact 3.13 [32, Theorem 5.1]. The theory T has weak elimination of imaginaries.

Remark 3.14. Vicaría [32] proves a more general result, of which Fact 3.13 is a
special case. Note that she adds sorts for quotients of the form M/nM for all n > 0.
As M/nM is definably isomorphic to

∏m
i=1 M/pni

i M , where n =
∏m

i=1 p
ni
i is the

decomposition of n into prime powers, it suffices to add the sorts Qpn .
Observe that, for the above to go through, we need to have in our language

the sorts Qpn even when they are finite. Alternatively, one may dispense with the
finite Qpn by naming enough constants, e.g., by naming a model.

Moving to the right of a convex subgroup.

Assumption 3.15. Until the end of the section, T is the complete LPres-theory of a
regular oag. Imaginary sorts are not in our language until further notice.

Definition 3.16. Let B ⊆ M . A cut (L , R) is right of B if R ∩ B = ∅ and B is
cofinal in L . An element c ∈ N > M is right of B if its cut is, and a type q ∈ S1(M)
is right of B if any of its realisations is. A convex subgroup H of U is called
(A-)invariant if there is an (A-)invariant type to its right.

Remark 3.17. Let p ∈ S1(U) be an M-invariant type. If its cut (L , R) is definable,
then it is M-definable. If not, then exactly one between the cofinality of L and the
coinitiality of R is small, and M contains a set cofinal in L or coinitial in R.

Proof. The case of a definable cut is clear, so let us assume (L , R) is a nondefinable
cut of U. In particular, L ̸= ∅ ̸= R. If L ∩ M is not cofinal in L , there is ℓ ∈ L
with L ∩ M < ℓ, so by regularity of U and saturation there is ℓ0 ∈ L divisible by all
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n ≥ 1 such that L ∩ M < ℓ0 < ℓ. Similarly, if R ∩ M is not coinitial in M there is
r0 ∈ R, which is divisible by all n ≥ 1, such that r0 < R ∩ M . By Remark 3.5 it
follows that tp(ℓ0/M)= tp(r0/M), showing that (L , R) is not M-invariant. □

In particular, in a regular oag a nontrivial convex subgroup H of U is invariant if
and only if the cofinality of H or the coinitiality of (U \ H)>0 is small, while the
trivial subgroup {0} is invariant if and only if U is dense.

Lemma 3.18. In the theory of a regular oag, suppose that p ∈ Sinv
1 (U) and f is a

definable function such that f∗ p is not realised. Then p ∼D f∗ p.

Proof. Clearly p ≥D f∗ p. By [7, Corollary 1.10], f is piecewise affine. As f∗ p is
not realised, f cannot be constant at p, so it is invertible at p and

f∗ p ≥D f −1
∗
( f∗ p)= p. □

Proposition 3.19. In Presburger arithmetic, every invariant 1-type is domination-
equivalent to a type right of an invariant convex subgroup.

Proof. By Lemma 3.18 it suffices to show that, for every nonrealised p ∈ Sinv
1 (U)

there is a definable f such that f∗ p is right of an invariant convex subgroup. By
Fact 3.2, U/Z is divisible, and it is easy to see that U/Z inherits saturation and
strong homogeneity from U. The conclusion follows by lifting the analogous result
[17, Corollary 13.11] (see also [23, Proposition 4.8]) from U/Z. □

In the rest of the subsection we generalise the above to the regular case.

Assumption 3.20. Until the end of the subsection, M denotes a dense regular oag,
and U a monster model of T := Th(M).

Proposition 3.21. Let b ∈ U \ M be divisible by every n > 1 and let B := ⟨Mb⟩ =

M + Qb. If M>0 is coinitial in B>0, then M ≺ B ≺ U.

Proof. The inclusion M ⊆ B is pure, i.e., for every n > 1 we have nB ∩ M = nM .
Moreover, if c = a + γ b, with a ∈ M and γ ∈ Q, then for every n we clearly have
c − a ∈ nB, and hence B/nB may be naturally identified with M/nM .

Because M is dense and M>0 is coinitial in B>0, it follows that B is as well dense.
Let c < d ∈ B and n > 1. By assumption, (0, d − c) intersects M , so it contains an
interval I of M , and hence represents all elements of M/nM by Lemma 3.6. These
can be identified with the elements of B/nB, as observed above, so there is e ∈ I
such that c + e ∈ nB. Clearly, c + e ∈ (c, d), and hence B is regular by Fact 3.2.

By Fact 3.3 and the identification of M/nM with B/nB, we obtain B ≡ M .
Since M is pure in B, it is an LPres-substructure of B, and the conclusion follows
by quantifier elimination in LPres. □

Recall that an extension A < B of oags is an i-extension if there is no b ∈ B>0

such that the set {a ∈ A | a < b} is closed under sum.
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Lemma 3.22. Let H < M < N , with M dense regular and H convex. The set of
elements of N right of H is closed under sum. In particular, N is an i-extension if
and only if H 7→ H ∩ M is a bijection between the convex subgroups of N and M.

Proof. If H = M , the statement is trivial. If H = {0}, let 0< c, d < M>0 and pick
a ∈ M>0. By density, there is b ∈ M with 0< b< a, and since b and a −b are both
in M>0 we conclude c + d < b + a − b = a. If H is proper nontrivial, by Fact 3.2
the quotient M/H is divisible, and the conclusion follows from the previous case
applied to M/H as a subgroup of the quotient of N by the convex hull of H . □

Proposition 3.23. Every M ⊨ T has a maximal elementary i-extension.

Proof. This is easy, see, e.g., [21, Proposition 4.2.17]. □

Proposition 3.24. Suppose M ⊨ T has no proper elementary i-extension and let
p ∈ S1(M) be nonrealised. Then there are a ∈ M and β ∈ Z \ {0} such that, if
f (t)= a +βt , then the pushforward f∗ p is right of a convex subgroup.

Proof. Let b ⊨ p, and suppose first that b is divisible by every n. Consider
B := ⟨Mb⟩ = M +Qb. If there are a′

∈ M and β ′
∈ Q such that 0< a′

+β ′b<M>0,
by Lemma 3.22 multiplying by the denominator of β ′ yields a positive element
smaller than M>0, so we obtain the conclusion with the convex subgroup {0}. If
instead there is no such a′

+β ′b, then M>0 is coinitial in B>0, and by Proposition 3.21
B ≻ M . By maximality of M , there must be convex subgroups H0 ⊊ H1 of B such
that H0 ∩ M = H1 ∩ M . Hence any positive a +βb ∈ H1 \ H0 is right of H0 ∩ M .
We conclude again by clearing the denominator of β and using Lemma 3.22.

This shows the conclusion when b is divisible by all n. In the general case, by
Lemma 3.6, there is c ∈U with the same cut in M as b which is divisible by every n.
As we just proved, there is f (t) := a + βt , with β ∈ Z and a ∈ M , such that the
cut of f (c) in M is that of a convex subgroup. Because f (t) sends intervals to
intervals, it sends cuts to cuts, and hence the cut of f (b) equals that of f (c). □

Corollary 3.25. For every nonrealised p(x)∈ Sinv
1 (U) there is a definable function f

such that ( f∗ p)(y) is right of an invariant convex subgroup, and domination-
equivalent to p, witnessed by any small type containing y = f (x).

Proof. If p is M-invariant, up to enlarging M we may assume that it has no
proper elementary i-extension. Let f (t) be an M-definable function given by
Proposition 3.24 applied to p ↾ M . Then f∗ p is M-invariant, and its cut is either
the one to the left of ( f∗ p ↾ M)(U) or the one to its right, which are both cuts right
of convex subgroups of U by Lemma 3.22. Now apply Lemma 3.18. □

Computing the domination monoid. By Fact 3.13, regular oags weakly eliminate
imaginaries after adding the sorts Qpn . As already remarked, this implies that passing
to T eq does not affect the poset

∼

Inv(U), nor its well-definedness as a monoid. Hence,
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we will conflate the two settings, and refer to our theory in this language as T eq,
reserving T for the 1-sorted LPres-theory of a regular oag.

Assumption 3.26. Until the end of the section, we work in T eq.

Lemma 3.27. Let H0 ⊊ H1 be convex subgroups of M ⊨ T and, for i < 2, let
qi (x i ) ∈ S1(M) be right of Hi . Suppose that there is no prime p ∈ P such that
both qi (x i ) prove that x i is in a new coset modulo some pℓi Then q0 ⊥

w q1.

Proof. By Lemma 3.22 the cut of every k0 x0
+k1x1 is determined by q0(x0)∪q1(x1),

and we conclude by assumption and quantifier elimination. □

Proposition 3.28. Suppose that qH (x) ∈ Sinv
1 (U) is right of the convex subgroup H

and prescribes realised cosets modulo every n for x. For an invariant ∗-type q with
all coordinates in the home sort, the following are equivalent.

(1) For every (equivalently, some) b ⊨ q , no type right of H is realised in ⟨Ub⟩.

(2) qH ⊥
w q.

(3) qH commutes with q.

(4) qH ⊥ q.

Moreover, if q ′ is a ∗-type with no coordinates in the home sort, then qH ⊥ q ′.

Proof. To show (1)⇒ (2), consider qH (x)∪ q(y). By assumption on qH we only
need to deal with inequalities of the form kx +

∑
i<|y|

ki yi + d ≥ 0, but (1) gives
immediately that the cut of kx in ⟨Ub⟩ is determined. If (1) fails, as witnessed
by f (b), say, then qH (x)⊗q(y) and q(y)⊗qH (x) disagree on the formula f (y)< x ,
proving (3)⇒ (1), and (2)⇒ (3) holds for every type in every theory.

We prove (2) ⇒ (4), the converse being trivial. Suppose that B ⊇ U is such
that (qH | B) ̸⊥

w (q | B). The cosets modulo every n of a realisation of qH are all
realised in U, so there must be some inequality of the form kx +

∑
i<|y|

ki yi +d ≥ 0,
with ki ∈ Z and d ∈ ⟨B⟩, that is not decided. Hence, if (4) fails, it fails for a 1-type q̃ ,
namely the pushforward of q under the map y 7→

∑
i<|y|

ki yi . By Corollary 3.25
and Proposition 2.4, we may assume q̃ is right of a convex subgroup. Therefore
qH (x) and q̃(z) are weakly orthogonal by (2) and [22, Proposition 3.13], to the
right of distinct (by weak orthogonality) convex subgroups, but the cut in ⟨B⟩ of
kx + z is not determined by (qH | B)(x)∪ (q̃ | B)(z). This contradicts Lemma 3.22.

Now we consider the “moreover” part. By Proposition 2.4 we may replace q ′

with any domination-equivalent type, so we may assume, using Corollary 3.12
and Proposition 2.5, that q ′(z) is the type of an independent tuple, with zi ∈ Qpi .
Let H ′ be any invariant convex subgroup different from H , let pi be the 1-type
right of H ′ in a new coset modulo pi and congruent to 0 modulo every other prime,
and let q be the tensor product, in any order, of the pi . Clearly q ≥D q ′ and, by
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construction, if b ⊨ q then no type right of H is realised in ⟨Ub⟩, so we conclude
by Proposition 2.4. □

Definition 3.29. Let q be an invariant global ∗-type, and c ⊨ q. Let H(q) be the
set of cuts of convex subgroups of U filled in ⟨Uc⟩.

Theorem 3.30. If p, q are invariant ∗-types, then p≥D q if and only if H(p)⊇H(q)
and ∀p ∈ P κp(p)≥ κp(q). Hence, [[q]] is determined by H(q) and p 7→ κp(q).

Proof. Let c ⊨ q, and write c = c0c1, with c0 a tuple in the home sort and c1 a
tuple from the sorts Qpn . By enlarging c1 with at most |c| points of dcl(Uc) if
necessary, we may assume that it contains bases of all Fp-vector spaces Qp(dcl(Uc))
over U. Observe that this is harmless domination-wise, and that it does not impact
compatibility of ⊗ with ≥D by [22, Proposition 1.23].

Index on a suitable cardinal κ , bounded by the cardinality of c0, the (necessarily
invariant) convex subgroups H j whose cuts are filled in ⟨Uc0

⟩. Note that, by
Corollary 3.25, we have κ ̸= 0 unless c0 is realised.

For j < κ , let q j (y j ) be the type right of H j divisible by every nonzero integer.
By Lemma 3.27 and Proposition 3.28, the q j are orthogonal, and it follows from
Proposition 2.9 and compactness that their union is a complete type; call it qH(y).
Let qQ(z) := tp(c1/U). By Propositions 3.28 and 2.9, qH ⊥ qQ. We prove that q(x)
is domination-equivalent to q ′(yz) := qH(y)⊗ qQ(z). If c0

∈ U, equivalently if qH

is realised, this is trivial, so we assume this is not the case.
To show q ′(yz) ≥D q(x), let b ∈ dcl(Uc) be maximal amongst the tuples with

each bk in the cut of an invariant convex subgroup, and such that if k < k ′ then
⟨bk⟩>0 < ⟨bk′⟩>0. A maximal such b exists because the size of b is at most that
of c0, by looking at Q-linear dimension over U in the divisible hull. Since c0 /∈ U,
by Corollary 3.25 there is a point of dcl(Uc) in the cut of an invariant convex
subgroup, and hence b is nonempty. By [7, Corollary 1.10] definable functions are
piecewise affine and, by clearing denominators using Lemma 3.22, we may assume
that b ∈ ⟨Uc0

⟩.
Write bk = fk(c0), for suitable affine functions fk . Let M ≺

+ U be large enough
to contain the parameters of the fk , such that q and q ′ are M-invariant, and such that
M has no proper elementary i-extension. Let r ∈ Sqq ′(M) contain the following.

(1) For each k, by choice of q ′ there is j < κ such that y j is in the same cut as bk

according to q ′. If the cut of bk has small cofinality on the right, put in r the formula
fk(x) > y j ; if it has small cofinality on the left, put in r the formula fk(x) < y j .

(2) For each j < |c1
|, the formula x|c0|+ j = z j .

By Lemma 3.10, point (2) above, the fact that c1 contains bases of all Fp-vector
spaces Qp(dcl(Uc)) over U, and Corollary 3.9, to prove q ′

≥D q it suffices to show
that q ′

∪ r decides the cut in U of every
∑

i δi xi . We first prove a special case.
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Claim. q ′
∪ r entails the quantifier-free {+, 0,−, <}-type of the fk(x) over U.

Proof of Claim. It is enough to show that the cut of every
∑

k βk fk(x) in U is decided,
where only finitely many βk ∈ Z are nonzero. By choice of r and Remark 3.17,
q ′

∪r determines the cut of each fk(x) over U. Moreover, r contains the information
that ⟨ fk(x)⟩>0 < ⟨ fk′(x)⟩>0 for k < k ′. By this, the fact that the fk(x) are right
of convex subgroups, and Lemma 3.22, the cut of

∑
k βk fk(x) must be that of

sign(βk) fk(x), with k the largest such that βk ̸= 0. □

As M has no proper elementary i-extension, given a term
∑

i δi xi , by Propo-
sition 3.24 we can compose with an M-definable injective affine function and
reduce to a term

∑
i γi xi + d, with d ∈ M and γi ∈ Z, with cut in M right of a

convex subgroup. As tp
(∑

i γi xi + d/U
)

is M-invariant,
∑

i γi xi + d is in the cut
of an M-invariant convex subgroup of U. By maximality of b, there must be k
and positive integers n,m such that nbk ≤ m

(∑
i γi xi + d

)
≤ (n + 1)bk . Thus

r ⊢ n fk(x)≤ m
(∑

i γi xi + d
)
≤ (n + 1) fk(x), and by the Claim q ′

≥D q .
Similar arguments show q ≥D q ′ and that, if H(p)⊇H(q) and κp(p)≥ κp(q) for

all p ∈ P, and p′ is defined analogously to q ′, then p′
≥D q ′. That H(p)⊇ H(q) is

necessary to have p ≥D q follows from Proposition 3.28 and [22, Proposition 3.13].
As ∀p ∈ P κp(p)≥ κp(q), if for some p ∈ P we have κp(q) > κp(p) then we easily
find a type in the quotient sorts dominated by q but not by p, a contradiction. □

Proposition 3.31. For all invariant ∗-types p, q and p ∈ P, we have

H(p ⊗ q)= H(p)∪H(q) and κp(p ⊗ q)= κp(p)+ κp(q).

Proof. By Proposition 3.28, H(q) is precisely the set of convex invariant sub-
groups H such that q ̸⊥ qH . By Proposition 2.9, we therefore have the first
statement. The second one is an easy consequence of the definition of ⊗. □

Note that if q ∈ Sinv
<κ+(U) then |H(q)| and each κp(q) are at most κ .

Definition 3.32. We denote by CSinv(U) the set of invariant convex subgroups of U,
and by P≤κ(CSinv(U)) the monoid of its subsets of size at most κ with union,
partially ordered by inclusion.

Corollary 3.33 (Theorem D). For T the theory of a regular oag and κ a small infi-
nite cardinal,

∼

Invκ(Ueq) is well defined, and
∼

Invκ(Ueq)∼= P≤κ(CSinv(U))×
∏

PT
κ̂ .

Proof. Compatibility of ⊗ and ≥D follows from Theorem 3.30 and Proposition 3.31.
The same results show that the map [[p]] to (H(p), p 7→ κp(p)) is well defined, an
embedding of posets, and a morphism of monoids. Surjectivity is easily checked. □

In general, the embedding
∼

Invκ(U) ↪→
∼

Invκ(Ueq) is not surjective, although its
image may be easily computed. We state the result of this computation, which we
leave to the reader, and of the analogous ones for finitary types. Denote by

∏bdd
PT
ω

the submonoid of
∏

PT
ω̂ consisting of bounded sequences of natural numbers.
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Corollary 3.34. The monoids
∼

Invκ(U),
∼

Inv(U),
∼

Inv(Ueq) are all well defined, and

∼

Invκ(U)∼=

(
P≤κ(CSinv(U))×

∏
PT

κ̂

)
\ {(a, b) | a = ∅, b ̸= 0},

∼

Inv(Ueq)∼=

(
P<ω(CSinv(U))×

bdd∏
PT

ω

)
\ {(a, b) | a = ∅, supp(b) infinite},

∼

Inv(U)∼=

(
P<ω(CSinv(U))×

bdd∏
PT

ω

)
\ {(a, b) | a = ∅, b ̸= 0}.

4. Pure short exact sequences

We study pure short exact sequences of abelian structures 0 → A ι
−→ B ν

−→

C → 0, where A and C may be equipped with extra structure. We view them as
multisorted structures, and use the relative quantifier elimination results from [2] to
describe the domination poset in terms of A and C. A decomposition of the form
∼

Inv(A(U))×∼

Inv(C(U)) only holds in special cases; in general we will need to look
at ∗-types and introduce a family of imaginaries of A which depends on B.

We refer the reader to [2, Section 4.5] for definitions. We adopt almost identical
notations, with the following differences. We write A for an abelian structure and L
for its language. We denote by F a fundamental family of pp formulas for B. The
corresponding family of quotient sorts of A is denoted by AF . An A-sort is simply
a sort in A. We write, e.g., t (x) for a tuple of terms, 0 for a tuple of zeroes of the
appropriate length, etc. Tuples of the same length may be added, and tuples of
appropriate lengths used as arguments, as in f (t (x, 0)− d)= 0.

Example 4.1. In the simplest abelian structures, namely abelian groups, we have
that F := {∃y x = n · y | n ∈ ω} is always fundamental. In an arbitrary abelian
structure, one may always resort to taking as F the trivially fundamental set of all
pp formulas.

Remark 4.2. In an L-abelian structure, each L-term t (x) is built from homomor-
phisms of abelian groups by taking Z-linear combinations and compositions. Hence,
t (x) is itself a homomorphism of abelian groups.

A short exact sequence of abelian groups 0 → A → B → C → 0 is pure if and
only if, for each n, we have nB ∩ A = nA. This holds, e.g., if C is torsion-free, and
in particular in the two examples below. We may take as F that of Example 4.1.

Example 4.3. Suppose that the expansion L∗
ac endows A, C with the structure of

oags. Note that one then recovers, definably, an oag structure on B, induced by
declaring that ι(A) is convex. Because of this, and of the fact that the kernel of
a morphism of oags is convex, this setting is equivalent to that of a short exact
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sequence of oags. This will be used in Section 5, with B an oag and A a suitably
chosen convex subgroup. The sorts Aϕ coincide with the quotients A/nA.

Example 4.4. In the valued field context (Section 6) we will deal with the sequence
1 → k×

→ RV \ {0} → 0 → 0, which is pure since 0 is torsion-free. The extra
structure in L∗

ac is induced by the field structure on k and the order on 0. The
sorts Aϕ are in this case k×/(k×)n .

We may and will assume that, for each variable x from an A-sort As , the formula
ϕ := x = 0 is in F , and identify As with Aϕ = As/0As . In other words, A ⊆ AF .

Remark 4.5. As pp formulas commute with cartesian products, every split short
exact sequence is pure. Since purity is first-order, a short exact sequence is pure in
case some elementarily equivalent structure splits. Note that, even if a short exact
sequence splits, it need not do so definably, and that the definition of expanded
pure short exact sequence does not allow to add splitting maps. If we add one, then
matters simplify considerably. For example, if in L∗

ac there is no symbol involving A
and C jointly, a splitting map makes the short exact sequence interdefinable with the
disjoint union of A and C, where

∼

Inv(U) decomposes as a product (Example 2.8).

Fact 4.6 [2, Remark 4.21]. Let ϕ(xa, xb, xc) be an L∗

abcq-formula with xa, xb, xc

tuples of variables from the AF -sorts, B-sorts and C-sorts respectively. There are
an L∗

acq-formulaψ and special terms σi such that, in the L∗

abcq-theory of all expanded
pure short exact sequences, we have ϕ(xa, xb, xc)↔ψ(xa, σ1(xb), . . . , σm(xb), xc).

Corollary 4.7. The L∗
acq-reduct is fully embedded. In particular, A and C are

orthogonal if and only if they are such in the L∗
acq-reduct.

We show that expanded pure short exact sequences are controlled, domination-
wise, by their L∗

acq-part, provided we pass to ∗-types. This is a necessity since, in
general, there are finite tuples from B that cannot be domination-equivalent to any
finitary tuple from the L∗

acq-reduct; see Remark 4.17.

Proposition 4.8. In an expanded pure short exact sequence of L-abelian structures,
let F be a fundamental family for B, and let κ ≥ |L| be a small cardinal. There is a
family of κ-tuples of definable functions {τ p

| p ∈ Sκ(U)} such that:

(1) Each function in τ p is defined at realisations of p.

(2) Each τ p is partitioned as (ρ p, ν p), where each function in ρ p is either the
identity on some Aϕ , or has domain a cartesian product of B-sorts and codomain
one of the Aϕ , and each function in ν p is either the identity on a C-sort, or one of
the νs .

(3) For each p ∈ Sκ(U) we have p ∼D τ
p
∗ p.

(4) For each p0, p1 ∈ Sinv
κ (U) we have p0 ⊗ p1 ∼D τ

p0
∗ p0 ⊗ τ

p1
∗ p1.
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Proof. Let abc ⊨ p(xa, xb, xc), in the notation of Fact 4.6. Define the tuples ν p

and ρ p as follows. For each coordinate in xc of sort Cs , put in ν p the corresponding
identity map on Cs . For each coordinate in xb of sort Bs , put in ν p the corresponding
map νs : Bs → Cs . For each coordinate in xa of sort Aϕ , put in ρ p the corresponding
identity map on Aϕ . For each finite tuple of Lb-terms t (xb, w) and ϕ ∈ F , if there
is d ∈ U such that p ⊢ t (xb, 0)− d ∈ ν−1(ϕ(C)), choose such a d, call it dp,ϕ,t,xb ,
and put in ρ p the map ρϕ(t (xb, 0)− dp,ϕ,t,xb).

Let τ p be the concatenation of ρ p and ν p, let q(y) := τ p
∗ p(x), let Dp be the set of

all dp,ϕ,t,xb as above, and let r(x, y)∈ Spq(Dp) contain y = τ(x). Clearly p∪r ⊢ q .
By Fact 4.6, to show q ∪ r ⊢ p it suffices to prove that q ∪ r recovers the formulas
ϕ(xa, da, σ1(xb, db), . . . , σm(xb, db), xc, dc) implied by p, where the σi are special
terms, ϕ is an L∗

acq-formula, and the d• are tuples of parameters from the appropriate
sorts of U. Let us say that q ∪ r has access to the term (with parameters) σ(xb, d)
if for some U-definable function f we have q(y)∪ r(x, y) ⊢ f (y)= σ(xb, d). We
show that q ∪r has access to all special terms with parameters, and hence q ∪r ⊢ p.

By construction, q ∪ r has access to each νs(xb
i ). Because ν is a homomorphism

of L-structures, q ∪ r also has access to each ν(t0(xb, d)), for t0 an Lb-term. In
particular, q ∪r decides whether a given tuple t (xb, d) of Lb-terms with parameters
is in ν−1(ϕ(C)) or not. If not, then q ∪ r entails ρϕ(t (xb, d))= 0.

If instead q ∪ r ⊢ t (xb, d) ∈ ν−1(ϕ(C)), by Remark 4.2 we have

t (xb, d)= t (xb, 0)+ t (0, d),

and by construction and the fact that p is consistent with q ∪ r we have that p
entails t (xb, 0)−dp,ϕ,t,xb ∈ ν−1(ϕ(C)). As this formula is over Dp, it is in r . Hence

q ∪ r ⊢ t (0, d)+ dp,ϕ,t,xb = t (xb, 0)+ t (0, d)− (t (xb, 0)− dp,ϕ,t,xb) ∈ ν−1(ϕ(C)).

But t (0, d)+dp,ϕ,t,xb ∈ U, and ρϕ ↾ ν−1(ϕ(C)) is a homomorphism of L-structures.
Because of this, and because q ∪ r has access to ρϕ(t (xb, 0)− dp,ϕ,t,xb) by con-
struction, it also has access to

ρϕ(t (xb, 0)− dp,ϕ,t,xb)+ ρϕ(t (0, d)+ dp,ϕ,t,xb)= ρϕ(t (xb, d)).

We are left to prove (4). By definition of ⊗, if

p0(x)⊗ p1(y) ⊢ t (xb, yb, d) ∈ ν−1(ϕ(C)),

then there is b̃ ∈ U with p0(x) ⊢ t (xb, b̃, d) ∈ ν−1(ϕ(C)). Hence, by arguing as
above, p0 ⊢ t (xb, 0, 0)− dp0,ϕ,t,xb ∈ ν−1(ϕ(C)). So p0(x)⊗ p1(y) entails

ν−1(ϕ(C))∋ t (xb, yb, d)−t (xb, 0, 0)+dp0,ϕ,t,xb = t (0, yb, 0)+t (0, 0, d)+dp0,ϕ,t,xb
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and because t (0, 0, d)+ dp0,ϕ,t ∈ U, by construction we have

p1(y) ⊢ t (0, yb, 0)− dp1,ϕ,t,yb ∈ ν−1(ϕ(C)).

Similar arguments show that, in order to have access to ρϕ(t (xb, yb, d)), it is enough
to have access to ρϕ(t (xb, 0, 0)−dp0,ϕ,t,xb) together with ρϕ(t (0, yb, 0)−dp1,ϕ,t,yb),
and the conclusion follows. □

Corollary 4.9 (Theorem C). Suppose that U is an expanded pure short exact
sequence of L-abelian structures and κ ≥ |L| is a small cardinal.

(1) There is an isomorphism of posets
∼

Invκ(U)∼=
∼

Invκ(U ↾ L∗
acq).

(2) If ⊗ respects ≥D in U ↾ L∗
acq, then the same is true in U, and the above is also

an isomorphism of monoids.

(3) If A and C are orthogonal, then there is an isomorphism of posets
∼

Invκ(U)∼=
∼

Invκ(AF (U))×
∼

Invκ(C(U)). Moreover, if ⊗ respects ≥D in both AF (U) and C(U),
then the same is true in U, and the above is also an isomorphism of monoids.

Proof. By Fact 1.1 we have an embedding of posets
∼

Invκ(U ↾ L∗
acq) ↪→

∼

Invκ(U). This
embedding is surjective by Proposition 4.8, its inverse being induced by the maps τ ,
hence an isomorphism. For (2), by Proposition 4.8 we may apply Proposition 1.3
to the family of sorts AF C. We conclude by combining (2) with Corollary 2.7. □

Remark 4.10. Variants of Fact 4.6 for settings such as abelian groups augmented
by an absorbing element are presented in [2, Section 4]. These yield variants of
Proposition 4.8 and its consequences, with no significant difference in the proofs.

Specialised to abelian groups, the results above enjoy a form of local finiteness.

Notation 4.11. For the rest of the section, L is just the language of abelian groups,
and F the family of formulas {∃y x = n · y | n ∈ ω}. We will write ρn : B → A/nA
in place of ρϕ : B → Aϕ , and identify A with A/0A for notational convenience.

Definition 4.12. A ∗-type p(x) is locally finitary if x has finitely many coordinates
of each sort.

Proposition 4.13. Consider a pure short exact sequence of abelian groups equipped
with an L∗

abcq-structure. Let p(x) be a locally finitary global type. Then, in Proposi-
tion 4.8, we may choose τ p in such a way that τ p

∗ p is locally finitary.

Proof. Write p(x)= p(xa, xb, xc) as in the proof of Proposition 4.8, and recall that
an L-term is just a Z-linear combination. For each n ∈ ω, consider the subgroup

K p
n := {k ∈ Z|xb

|
| ∃d ∈ B(U) p ⊢ k · xb

− d ∈ ν−1(nC)} of Z|xb
|,

say generated by kn
0 , . . . , kn

m(n). Choose dp,n,i,xb witnessing kn
i ∈ K p

n . Proceed as
in Proposition 4.8 but, instead of putting in ρ p each ρϕ(t (xb, 0)− dp,ϕ,t,xb), use
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a locally finite ρ p extending (ρn(kn
i · xb

− dp,n,i,xb))n∈ω,i≤m(n). Besides this, τ p

contains a finite tuple of identity maps and finitely many ν, therefore τ p
∗ p is locally

finitary.
The proof of Proposition 4.8 now goes through, with a pair of modifications

which we now sketch. The first one concerns proving access to each ρn(t (xb, d)).
Fix n and t (xb, d). Without loss of generality we have that d is a singleton and
t (xb, d)= ℓ · xb

− d . If p ⊢ t (xb, d) ∈ ν−1(nC), by definition we have ℓ ∈ K p
n , so

we may write ℓ=
∑

i≤m(n) ei kn
i for suitable ei ∈ Z. This allows us to rewrite

t (xb, d)= ℓ · xb
− d =

( ∑
i≤m(n)

ei kn
i

)
· xb

− d

=

∑
i≤m(n)

ei (kn
i · xb

− dp,n,i,xb)+
∑

i≤m(n)

ei dp,n,i,xb − d.

Since ℓ·xb
−d and all kn

i ·xb
−dp,n,i,xb are in ν−1(nC), so is

∑
i≤m(n) ei dp,n,i,xb −d .

Since ρn ↾ ν−1(nC) is a homomorphism and
∑

i≤m(n) ei dp,n,i,xb − d ∈ U, we have
that q ∪ r has access to ρn(t (xb, d)).

Finally, proving (4) of Proposition 4.8 boils down to showing K p⊗q
n = K p

n × K q
n ,

where we identify, e.g., K p
n with K p

n ×{0}. Since by construction K p
n ∩ K q

n = {0},
one only needs to show generation. We leave the easy proof to the reader. □

Remark 4.14. In the case of abelian groups, we therefore have an analogue of
Corollary 4.9 where κ-types are replaced by locally finitary ω-types.

Corollary 4.15. Let U be an expanded pure short exact sequences of abelian groups
where, for all n > 0, the sort A/nA is finite. If A and C are orthogonal, there is
an isomorphism of posets

∼

Inv(U)∼=
∼

Inv(A(U))×
∼

Inv(C(U)). If ⊗ respects ≥D in A
and C, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. Use Proposition 4.13 and observe that for each p we may replace τ p by its
composition with the projection on the nonrealised coordinates of τ p

∗ p and still have
the same results. If A/nA is finite for all n > 0 and p is finitary, this yields another
finitary type. The conclusion now follows as in the proof of Corollary 4.9. □

Remark 4.16. The A/n A are in general necessary to obtain a product decompo-
sition. For example, let A be a regular oag divisible by all p ∈ P \ {2}, and with
[A : 2A] infinite, and let C be a nontrivial divisible oag. The expanded short exact
sequence 0 → A → B → C → 0 induces a group ordering on B (Example 4.3). Let
p(y) concentrate on B, at +∞, in a new coset modulo 2B. For every nonrealised
1-type q of an element of sort A divisible by all n, we have p ⊥

w q. It follows
that p cannot dominate any nonrealised p′ in a cartesian power of A: such a p′

must have a coordinate in a nonrealised cut, and hence dominate a type q as above.
Hence, if we had a product decomposition as in Corollary 4.15, then p would be
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domination-equivalent to a type in a cartesian power of C. This is a contradiction,
because C is orthogonal to (A/nA)n<ω, while p dominates a nonrealised type
in A/2A.

Remark 4.17. Analogously, ω-types are a necessity: let A be a regular oag with
each [A : nA] infinite, C a nontrivial divisible oag, and take as p ∈ SB(U) the type
at +∞ in a new coset of each nA. For each n > 1, there is a nonrealised 1-type qn

of sort A/nA such that p ≥D qn . One shows that the only way for a finitary type in
((A/nA)n∈ω,C) to dominate all of the qn is to have a nonrealised coordinate in the
sort A, hence to dominate a type orthogonal to p.

5. Finitely many definable convex subgroups

Using the previous two sections we may describe
∼

Inv(U) in oags with finitely many
Loag-definable convex subgroups. The arguments still work if the subgroups are
defined “by fiat” using additional predicates, so we work in this setting.

Definition 5.1. Let G be an oag with unary predicates H0, . . . , Hs , each defining
a convex subgroup, with 0 = H0 ⊊ H1 ⊊ . . . ⊊ Hs−1 ⊊ Hs = G, and such that
G has no other definable convex subgroup. Denote by T the union of the set of
prime powers with {0} and work with the following sorts. For 0 ≤ i < s, a sort
Si for G/Hi , carrying Loag together with predicates for H j/Hi for i < j < s. For
1 ≤ i ≤ s and n ∈ T, sorts Qi,n for Hi/(nHi + Hi−1), carrying Lab if n ̸= 0 and Loag

if n = 0. We denote by Qi the family of sorts (Qi,n)n∈T. We include the canonical
projection and inclusion maps together with, for each n ∈ T and 1 ≤ i ≤ s − 1, the
maps ρn,i : Si−1 → Qi,n as in Notation 4.11, relative to the short exact sequence
0 → Qi,0 → Si−1 → Si → 0.

For 1 ≤ i < s the short exact sequence 0 → Hi/Hi−1 → G/Hi−1 → G/Hi → 0
is pure and, as pointed out in Example 4.4, interdefinable with an expanded pure
short exact sequence of abelian groups.

Lemma 5.2. Every Hi+1/Hi is regular. For each i ̸= j , the sort Si is fully embedded
as an oag, the family Qi (with Loag-structure on Qi,0, Lab-structure on other sorts,
and projection maps) is fully embedded, orthogonal to Si , and orthogonal to Q j .

Proof. Apply Fact 3.2 to Hi+1/Hi , whose only definable convex subgroups are
itself and {0}. The rest is by Corollary 4.7, Remark 2.3, and induction on i . □

Theorem 5.3. Let G be as in Definition 5.1, and κ a small infinite cardinal. Then
⊗ respects ≥D, and

∼

Invκ(Ueq)∼=
∏s

i=1
∼

Invκ(Qi (U)).

Proof. By the previous lemma, Corollaries 4.9, 3.33 and induction we get that
⊗ respects ≥D, and

∼

Invκ(U)∼=
∏s

i=1
∼

Invκ(Qi (U)).
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If the Hi are Loag-definable,2 a result of Vicaría [32, Theorem 5.1] yields weak
elimination of imaginaries in the language with sorts Si/nSi for 0≤ i< s and n ∈T,3

and one may check that her proof goes through also in the case where the Hi are
explicitly named by predicates, i.e., not necessarily Loag-definable.

After adding the sorts from Vicaría’s result, for 1≤ i ≤ s the short exact sequences
0 → Qi,n → Si−1/nSi−1 → Si/nSi → 0 are fully embedded, and Corollary 4.9 may
thus be applied to these. From this, we obtain an embedding

∏s
i=1

∼

Invκ(Qi (U)) ↪→
∼

Invκ(Ueq). As Qs,n = Ss−1/nSs−1, by induction on i one obtains surjectivity of this
embedding. We leave to the reader to check this, along with the proof of transfer
of compatibility of ⊗ and ≥D, by showing that every ∗-type is dominated by its
image among a suitable tuple of definable maps. □

6. Benign valued fields

In this section T is a complete RV-expansion of a theory of henselian valued
fields with elimination of K-quantifiers and “enough saturated maximal models”
(see below for the precise definitions). We show the existence of an isomorphism
∼

Inv(U)∼=
∼

Inv(RV(U)). In particular, our results hold in any benign valued field in
the sense of [30],4 i.e., in any henselian valued field which is of equicharacteristic 0,
or algebraically closed, or algebraically maximal Kaplansky of characteristic p> 0.

Associate to a valued field K the pure (Example 4.4) short exact sequence
1 → k×

→ K×/(1+m)→0→ 0. Add absorbing elements 0, 0, ∞, and view it as a
short exact sequence of abelian monoids 1 → k → K/(1+m)→0∪{∞} → 0. We
may harmlessly conflate the two settings (Remark 4.10) and write 0 for 0 ∪ {∞}.

The middle term K/(1 +m) is called the leading term structure RV, and comes
with a natural map rv : K → K/(1+m)= RV through which the valuation v : K →0

factors. Besides the structure of a (multiplicatively written) monoid, RV is equipped
with a “partially defined sum”: a ternary relation defined by

⊕(x0, x1, x2)
def

⇐⇒ ∃y0, y1, y2 ∈ K
(

y2 = y0 + y1 ∧

∧
i<3

rv(yi )= xi

)
.

When there is a unique x2 such that ⊕(x0, x1, x2), we write x0 ⊕ x1 = x2, and say
that x0 ⊕ x1 is well defined. It turns out that rv(x)⊕ rv(y) is well defined if and only
if v(x + y) = min{v(x), v(y)}. If we say that

⊕
i<ℓ xi is well defined, we mean

that, regardless of the choice of parentheses and order of the summands, the “sum”
is well defined and always yields the same result.

2Oags with finitely many definable convex subgroups are known as the oags of finite regular rank.
Note that every Hi must be fixed by every automorphism, and is therefore ∅-definable.

3Vicaría uses sorts indexed by n ∈ ω; as in Remark 3.14, it suffices to work with n ∈ T.
4Definition 1.57 of [30] allows {k}-{0}-expansions in the definition of benign. Since we are shortly

going to allow more general expansions, the difference is immaterial for our purposes.
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Let RV be the expansion of 1 → k ι
−→ RV v

−→ 0 → 0 by the field structure
on k and the order on 0. This induces an expansion of RV, which is precisely that
given by multiplication and ⊕ [2, Lemma 5.17], is biinterpretable with RV , and
can be axiomatised independently [30, Appendix B]. Hence, we may view RV as a
standalone structure (RV, · ,⊕), fully embedded in (K,RV, rv), and in RV .

By the (short) five lemma, an extension of valued fields is immediate, i.e., does
not change k nor 0, if and only if it does not change RV .

In this section, L has sorts K, k,RV, 0, function symbols rv :K→RV, ι :k→RV,
v : RV → 0. We abuse the notation and also write v for the composition v ◦ rv. The
sorts K and k carry disjoint copies of the language of rings, 0=0∪{∞} carries the
(additive) language of ordered groups, together with an absorbing element ∞ and an
extra constant symbol v(Char(K)), and RV carries the (multiplicative) language of
groups, together with an absorbing element 0 and a ternary relation symbol ⊕. We
denote by RV the reduct to the sorts k,RV, 0. There may be other arbitrary symbols
on RV , i.e., as long as they do not involve K. An RV-expansion of a theory T ′ of
valued fields is a complete L-theory T ⊇ T ′. Until the end of the section, T denotes
such a theory. We identify k with the image of its embedding ι in RV.

Remark 6.1. Angular components factor through the map rv, yielding a splitting
of RV . Therefore, the Denef–Pas language (and each of its {k, 0}-expansions)5

may be seen as an RV-expansion. In that case RV is definably isomorphic to k×0.

Fact 6.2. Fix a language L as above. The theory of all RV-expansions of benign
valued fields eliminates K-sorted quantifiers.

Proof. In equicharacteristic this follow from [9, Théorème 2.1]. The residue charac-
teristic 0 case is explicitly done in [4, Theorem B] (see also [20, Corollary 2.2]), the
algebraically maximal Kaplansky case in [20, Theorem 2.6] (see [15, Corollary A.3]
for a modern treatment). The algebraically closed case is folklore (see, e.g., [18,
Fact 2.4]). □

Remark 6.3. If T eliminates K-quantifiers, then every formula is equivalent to one
of the form ϕ

(
x, rv( f0(y)), . . . , rv( fm(y))

)
, where ϕ(x, z0, . . . , zm) is a formula in

RV , x and z tuples of RV-variables, y a tuple of K-variables, and the fi polynomials
over Z. In particular, RV (with the restriction of L to its sorts) is fully embedded.

Proof. By inspecting the formulas without K-sort quantifiers and observing that,
for example, if y is of sort K then T ⊢ y = 0 ↔ rv(y)= 0. □

Definition 6.4. Let K0 ⊆ K1 be an extension of valued fields. A basis (ai )i of
a K0-vector subspace of K1 is separating if for all finite tuples d from K ℓ

0 and
pairwise distinct i j , we have v

(∑
j<ℓ d j ai j

)
= min j<ℓ(v(d j )+ v(ai j )).

5A {k, 0}-expansion is one where the new symbols only involve the sorts k and 0, possibly
simultaneously. If we want to exclude the latter possibility, we speak of {k}-{0}-expansions.
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Fact 6.5. A basis (ai )i is separating if and only if each sum
⊕

j<ℓ rv(d j ) rv(ai j ) is
well defined. If this is the case, it equals rv

(∑
j<ℓ d j ai j

)
.

Lemma 6.6. Let p ∈ Sinv
K≤ω(U,M0), M0 ⪯ M ≺

+ U ⊆ B, a ⊨ p | B, and ( fi )i∈I a
family of M-definable functions Kω

→ K such that ( fi (a))i∈I is a separating basis
of the K(M)-vector space they generate. If M is |M0|

+-saturated, or p is definable,
then ( fi (a))i∈I is a separating basis of the K(B)-vector space they generate.

Proof. Towards a contradiction, suppose there are an L(M)-formula

ϕ(x, w) := v

(∑
i<ℓ

wi fi (x)
)
>min

i<ℓ
{v(wi )+ v( fi (x))}

and d ∈ B |w| such that a ⊨ ϕ(x, d). Let H be the set of parameters appearing in
ϕ(x, w). Choose d̃ ∈ M with d̃ ≡M0 H d if M is |M0|

+-saturated, or in dp ϕ if p is
definable. Then a ⊨ ϕ(x, d̃) contradicts that ( fi (a))i∈I is separating over M . □

Hence, saturation of M allows to lift separating bases. As maximality of M
guarantees their existence (see Lemma 6.13 below), we give the following definition.

Definition 6.7. We say that T has enough saturated maximal models if for every
κ > |L|, for every M0 ⊨ T of size at most κ there is M ≻ M0 of size at most 22κ

which is maximally complete and |M0|
+-saturated.

Remark 6.8. If we restrict to definable types, saturation is not necessary to lift
separating bases (see Lemma 6.6), and it is enough to assume only “enough maximal
models” for weak versions of the results of this section to go through.

Proposition 6.9. Let T be an RV-expansion of a theory of henselian valued fields
eliminating K-quantifiers, where every M ⊨ T has a unique maximal immediate
extension up to isomorphism over M. If M ′ ⊨ T is maximal, κ > |L|, and RV(M ′)

is κ-saturated, then M ′ is κ-saturated.

The proposition above is folklore, but we include a proof for convenience. As
pointed out to us by the referee, uniqueness of the maximal immediate extension is
not needed, and maximality of M ′ may be relaxed to requiring that chains of balls of
length smaller than κ have nonempty intersection; the result then follows by using
Swiss cheese decomposition. Nevertheless, the proof below has the advantage that
it can be adapted to more general contexts, which we will need in Proposition 8.1.

Proof. If κ is limit κ-saturation equals λ-saturation for all λ< κ , so we may assume
κ is successor, and hence regular. It suffices to prove that if M ≡ M ′ is κ-saturated,
then the set S of partial elementary maps between M and M ′ with domain of size
less than κ has the back-and-forth property. In fact, we only need the “forth” part
(and the “back” part is true by κ-saturation of M). So assume f ∈ S, with

f : A = (K(A),RV(A))→ A′
= (K(A′),RV(A′))
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and suppose that A ⊆ B ⊆ M , with |B|< κ . In order to extend f to some g ∈ S
with domain containing B, consider the following two constructions.

Construction 1. Enlarge A to an elementary substructure. That is, there are A1 ⊇ A
and f1 : A1 → A′

1 extending f such that f1 ∈ S and A1 ⪯ M . To do this, we find A′

1
with A′

⊆ A′

1 ⪯ M ′ and |A′

1| < κ using the Löwenheim–Skolem theorem, and
invoke κ-saturation of M to obtain the desired A1, f1.

Construction 2. For a given B̂ such that A ⊆ B̂ ⊆ M and |B̂| < κ , enlarge
RV(A) so that it contains RV(B̂). That is, there are A1 ⊇ A and f1 : A1 → A′

1
extending f such that f1 ∈ S and RV(A1) ⊇ RV(B̂). To do this, it suffices to
set A1 = (K(A),RV(B̂)) and extend f on RV using κ-saturation of RV(M ′); by
elimination of K-quantifiers, the extension is still an elementary map.

By repeated applications of the constructions above, we find an elementary chain
(Mn)n∈ω of elementary submodels of M , with A ⊆ M0, and fn ∈S with domain Mn

such that f0 ⊇ f , fn+1 ⊇ fn , and that if Bn is the structure generated by Mn B
then RV(Bn)⊆ RV(Mn+1). Let Mω :=

⋃
n∈ω Mn and let fω :=

⋃
n∈ω fn . Since κ

is regular and uncountable we have f ∈ S, and by construction the structure Bω
generated by Mω B is K-generated and an immediate extension of Mω. Since M ′ is
maximal and the maximal immediate extension of Mω is uniquely determined up to
Mω-isomorphism, we may extend fω to a map g ∈ S with domain Bω ⊇ B. □

Remark 6.10. Above (and in {k}-{0}-expansions of the Denef–Pas language), if k
and 0 are orthogonal it suffices to assume that k(M ′) and 0(M ′) are κ-saturated.

Corollary 6.11. Suppose that T satisfies the assumptions of Proposition 6.9, and
furthermore that every maximal immediate extension of every M ⊨ T is an elemen-
tary extension. Then T has enough saturated maximal models.

Proof. Given κ > |L| and M0 ⊨ T of size |M0| ≤ κ , find M1 ≻ M0 which is |M0|
+-

saturated of size |M1| ≤ 2|M0|. Let M be a maximal immediate extension of M1.
Then RV(M) = RV(M1), and the latter is |M0|

+-saturated because M1 is. By
assumption, M ≻ M1, and by Proposition 6.9 M is |M0|

+-saturated. To conclude,
observe that, since by Krull’s inequality [10, Proposition 3.6] we have |K| ≤ k0,
we obtain

|M | ≤ |k(M)||0(M)| = |k(M1)|
|0(M1)| ≤ (2|M0|)2

|M0|

= 22|M0|

. □

Corollary 6.12. Every RV-expansion of a benign T has enough saturated maximal
models.

Proof. Since the assumptions of Fact 6.2 are preserved by taking maximal immediate
extensions (which are unique by [19, Theorem 5]) elementarity follows from
elimination of K-quantifiers. We conclude by Corollary 6.11. □
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Lemma 6.13. Let p, q ∈ Sinv
K<ω(U,M0), let (a, b) ⊨ p ⊗ q and M0 ≺ M ≺

+ U.

(1) If M is maximally complete, then there are polynomials ( fi )i<ω in K(M)[x]

such that ( fi (a))i<ω is a separating basis of K(M)[a] as a K(M)-vector space.

(2) If M is |M0|
+-saturated then, for each ( fi )i<ω as above, { fi (a) | i < ω} is a

separating basis of K(U)[a].

(3) If ( f p
i (a))i<ω, ( f q

j (b)) j<ω are separating bases of K(U)[a] and K(U)[b], then
( f p

i (a) · f q
j (b))i, j<ω is a separating basis of K(U)[ab].

Proof. Part (1) is by [5, Lemma 3] (see also [17, Lemma 12.2]) and does not
require saturation, and part (2) is by Lemma 6.6 applied to ( fi )i<ω. So we only
need to prove (3). By the definition of ⊗, the tuple ( f p

i (a) · f q
j (b))i, j<ω is linearly

independent, and clearly it generates K(U)[ab] as a K(U)-vector space. Let us
check that this basis is separating. Let B be the structure generated by Ub. By
Lemma 6.6, ( f p

i (a))i<ω is a separating basis of the K(B)-vector space K(B)[a],
so we have

v

(∑
i, j

di j f p
i (a) f q

j (b)
)

= v

(∑
i

(∑
j

di j f q
j (b)

)
f p
i (a)

)
= min

i

(
v

(∑
j

di j f q
j (b)

)
+ v( f p

i (a))
)

= min
i

(
min

j

(
v(di j )+ v( f q

j (b))
)
+ v( f p

i (a))
)

= min
i, j

(
v(di j )+ v( f q

j (b))+ v( f p
i (a))

)
= min

i, j

(
v(di j )+ v( f q

j (b) · f p
i (a))

)
. □

Proposition 6.14. Suppose that T eliminates K-quantifiers and has enough satu-
rated maximal models. For every p ∈ Sinv(U) there is q ∈ Sinv

RVω(U) such that p ∼D q.
More precisely, let p(x, z) ∈ Sinv(U,M0), where x is a tuple of K-variables and z
a tuple of RV-variables. Let (a, c) ⊨ p(x, z), let M ≻ M0 be |M0|

+-saturated and
maximally complete, and let ( fi )i<ω be given by Lemma 6.13 applied to a and M.
Then p is domination-equivalent to the ∗-type q(y, t) := tp(rv( fi (a))i<ω, c/U),
witnessed by r(x, z, y, t) := tp(a, c, rv( fi (a))i<ω, c/M).

Proof. That p ∪ r ⊢ q is trivial. By elimination of K-quantifiers (Fact 6.2), to
prove q ∪ r ⊢ p it is enough to show that q ∪ r has access to every rv( f (x)),
that is, that for every f ∈ K(U)[x], there is a U-definable function g such that
q ∪ r ⊢ rv( f (x)) = g(y). Write f (x) =

∑
i<ℓ di fi (x). By Fact 6.5, we have

rv( f (a))=
⊕

i<ℓ rv(di ) rv( fi (a)), and we only need to ensure that this information
is in q ∪ r . But by Fact 6.5 whether the ( fi (a))i<ω form a separating basis or not
only depends on the type of their images in RV, which is part of q by definition. □
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The work done so far is enough to obtain an infinitary version of Theorem B.
After stating such a version, we will proceed to finitise it.

Remark 6.15. Separating bases of vector spaces of uncountable dimension need
not exist. Nevertheless, a ∗-type version of Lemma 6.13 still holds, with the fi (a)
now enumerating separating bases of all finite dimensional subspaces of K(M)[a].

Corollary 6.16. If κ is a small infinite cardinal, there is an isomorphism of posets
∼

Invκ(U) ∼=
∼

Invκ(RV(U)). If ⊗ respects ≥D on ∗-types in RV(U), then the same
holds in U, and the above is also an isomorphism of monoids.

Proof. By the ∗-type versions of Lemma 6.13 and Propositions 6.14 and 1.3. □

Lemma 6.17. Let M0 ≺
+ M ≺

+ U, let e ⊨ q ∈ Sinv
RVω(U,M0). Let I ⊆ω be such that

(v(ei ))i∈I generates Q⟨0(U)v(e)⟩ over Q0(U) as Q-vector spaces. Let G ⊆ RV
be the multiplicative group generated by RV(U)e. Let (g j ) j∈J ⊆ k ∩ G be such that
k ∩ G ⊆ acl(U(g j ) j∈J ) and J is countable. Let b := (ei , g j | i ∈ I, j ∈ J ). Then
there is M ≺ N ≺

+ U such that e and b are interalgebraic over N.

Proof. By assumption, for ℓ ∈ ω \ I there are nℓ > 0, dℓ ∈ U, a finite I0 ⊆ I
and, for i ∈ I0, integers nℓ,i ∈ Z, with nℓv(eℓ) = v(dℓ) +

∑
i∈I0

nℓ,i v(ei ). By
M0-invariance, we may assume dℓ ∈ M . Let hℓ(x) be the M-definable function
hℓ(y) := (ynℓ

ℓ )/
(
dℓ

∏
i∈I0

ynℓ,i
i

)
. By construction, we have v(hℓ(e))= 0, and hence

hℓ(e)∈ G ∩k×, so by assumption hℓ(e)∈ acl(U(g j ) j∈J ). Let N ≻ M be small such
that {hℓ(e) | ℓ ∈ ω \ I } ⊆ acl(N (g j ) j∈J ) and {g j | j ∈ J } is contained in the group
generated by RV(N )e. By definition of hℓ, for each ℓ ∈ ω \ I , we therefore have
enℓ
ℓ ∈ acl(Nb). As 0 is ordered and the kernel of v : RV → 0 is the multiplicative

group of a field, RV has finite n-torsion for each n, so eℓ is algebraic over enℓ
ℓ ,

and hence e ∈ acl(Nb). □

Theorem 6.18 (Theorem B). For T an RV-expansion of a theory of valued fields
with enough saturated maximal models eliminating K-quantifiers (e.g., a benign
one), there is an isomorphism of posets

∼

Inv(U) ∼=
∼

Inv(RV(U)). If ⊗ respects ≥D

in RV(U), then ⊗ respects ≥D in U, and the above is an isomorphism of monoids.

Proof. Fix p(x, z) ∈ Sinv(U) and ac ⊨ p, where x is a tuple of K-variables and z
a tuple of RV-variables. Let ( fi )i<ω be given by Lemma 6.13. As usual, de-
note by U(a) the field generated by a over U. As trdeg(U(a)/U) is finite, by
the Abhyankar inequality so is dimQ(Q0(U(a))/Q0(U)). Let m be such that
v( fi (a))i<m generates Q0(U(a)) over Q0(U). Again by the Abhyankar inequality,
trdeg(k(U(a))/ k(U)) is finite. By the choice of the f j and Fact 6.5, we may choose
a transcendence basis (g j | j < n) of k(U(a)) over k(U), which is contained in
the group generated by RV(U)

(
rv( fi (a))

)
i<ω. Write each g j as h j (a), for suitable

definable functions h j . We may now apply Lemma 6.17 to e =
(
rv( fi (a))

)
i<ω,
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the g j defined above, and I = {i ∈ ω | i < m}. Together with Proposition 6.14, we
obtain

(1) p ∼D p′
:= tp

(
rv( fi (a))i<m, (h j (a)) j<n, c/U

)
Therefore, every (finitary) type is equivalent to one in RV . By full embeddedness
of RV , and Fact 1.1, we obtain the required isomorphism of posets.

By Proposition 1.3 it is enough to show that if p′, q ′ are obtained from p, q as
in (1) above, then p ⊗ q ∼D p′

⊗ q ′. Denote by

ρ p(x, z) :=
(
rv( f p

i (x))i<m p , (h
p
j (x)) j<n p , idp(z)

)
the tuple of definable functions from (1), and similarly for q and p⊗q . By point (3)
of Lemma 6.13 we may take as ( f p⊗q

i )i<ω (a reindexing on ω of) the concatenation
of ( f p

i )i<ω with ( f q
i )i<ω. By the properties of ⊗, the concatenation of ( f p

i (a))i<m p

and ( f q
i (b))i<mq is a basis of the vector space

Q
〈
0(U)

(
v( f p

i (a))
)

i<ω

(
v( f q

i (b))
)

i<ω

〉
over Q0(U), and so as ( f p⊗q

i )i<m p⊗q we may take the concatenation of ( f p
i )i<m p

with ( f q
i )i<mq . Similarly, as (h p⊗q

j ) j<n p⊗q we may take the concatenation of the
respective tuples for p and q, and ultimately we obtain that as ρ p⊗q we may take
the concatenation of ρ p with ρq . By (1), we have p ⊗ q ∼D p′

⊗ q ′ and we are
done. □

For {k, 0}-expansions, we are in the setting of Section 4, so we may combine
the above with, e.g., Theorem C or Corollary 4.15. We spell out two nice cases; the
special subcases of ACVF and RCVF were previously known (see the introduction).

Corollary 6.19 (Theorem A). Let T be a complete {k}-{0}-expansion of a benign
theory of valued fields where, for all n > 1, the group k×/(k×)n is finite. There is
an isomorphism of posets

∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U)). If ⊗ respects ≥D in k
and 0, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. Apply Theorem 6.18. By Fact 6.2, if the extra structure on RV involves only
k and 0, and never both at the same time, then the sorts k and 0 are orthogonal.
As RV is an expanded pure short exact sequence, we conclude by Corollary 4.15. □

Corollary 6.20. Let T be a complete {k}-{0}-expansion of a benign theory of valued
fields, and let Ak denote the family of sorts (k×/(k×)n)n∈ω. For κ ≥ |L|, there is an
isomorphism of posets

∼

Invκ(U)∼=
∼

Invκ(Ak(U))×
∼

Invκ(0(U)). If ⊗ respects ≥D in
Ak and 0, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. As in Corollary 6.19, but using Corollary 4.9 instead of Corollary 4.15. □

In special cases, results such as the previous corollaries may also be obtained by
using domination by a family of sorts in the sense of [12, Definition 1.7] (see [23,
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Section 6]). This kind of domination was proven in the algebraically closed case
in [17], in the real closed case in [12], and in the equicharacteristic zero case in [31].

In algebraically or real closed valued fields, the decomposition
∼

Inv(U)∼=
∼

Inv(k(U))×
∼

Inv(0(U))

remains valid after passing to T eq, as can be shown using resolutions [12; 17; 23].
A natural question is whether Theorem 6.18 generalises to T eq, or at least to T G ,
the expansion of T by the geometric sorts of [16].

Question 6.21. Let T be an RV-expansion of a theory of valued fields with enough
saturated maximal models eliminating K-quantifiers. Are there conditions guaran-
teeing that the isomorphism

∼

Inv(U) ∼=
∼

Inv(RV(U)) holds in T G , or even in T eq?
Does compatibility of ≥D with ⊗ transfer?

7. Mixed characteristic henselian valued fields

Let K be henselian of characteristic (0, p) for p ∈ P. For n ∈ ω, we define mn :=

{x ∈ K | v(x) > v(pn)}. Let RVn be the multiplicative monoid RVn := K/(1 +mn)

and RV×
n := RVn \ {0}. For each n, denote by rvn : K → RVn the quotient map. For

m > n, we have natural maps rvm,n : RVm → RVn , and the valuation v : K → 0

induces maps RVn → 0, still denoted by v. The kernel kn of v fits in a short exact
sequence 1 → kn → RVn

v
−→0→ 0. We have relations ⊕n , defined analogously to

⊕, and again well defined precisely when v(x + y)= min{v(x), v(y)}. For n = 0 we
recover the notions from the previous section. The following generalises Fact 6.5.

Fact 7.1. A basis (ai )i is separating if and only if, for each n ∈ ω, each sum
rvn(d0) rvn(ai0)⊕n . . .⊕n rvn(dℓ) rvn(aiℓ) is well defined, if and only if this happens
for n = 0. If this is the case, then the sum equals rvn

(∑
j≤ℓ d j ai j

)
.

In this section, L is a language as follows. We have sorts K, 0 and, for each
n ∈ ω, sorts kn,RVn . There are function symbols rvn : K → RVn , ι : kn → RVn ,
v : RVn → 0. The sort K carries a copy of the language of rings, while the sort
0 = 0 ∪ {∞} carries the (additive) language of ordered groups, together with an
absorbing element ∞ and an extra constant symbol v(p). Each RVn and kn carries
the (multiplicative) language of groups, together with an absorbing element 0 and a
ternary relation symbol ⊕n . We denote by RV∗ the reduct to the sorts kn,RVn, 0.
There may be other arbitrary symbols on RV∗, i.e., as long as they do not involve K.

An RV∗-expansion of a theory T ′ of henselian valued fields of characteristic
(0, p) is a complete L-theory T ⊇ T ′, with the sorts and symbols above interpreted
in the natural way. Until the end of the section, T denotes such a theory. We
will freely confuse the sort kn with the image of its embedding in RVn . By [4,
Theorem B] (see also [14, Proposition 4.3]) T eliminates K-quantifiers, so RV∗ is
fully embedded.
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Proposition 7.2. Suppose T eliminates K-quantifiers and has enough saturated
maximal models. For every p ∈ Sinv(U) there is q ∈ Sinv

RVω∗
(U) such that p ∼D q. More

precisely, let p(x, z)∈ Sinv(U,M0), where x is a tuple of K-variables and z a tuple of
RV∗-variables. Let (a, c)⊨ p(x, z), let M ≻ M0 be |M0|

+-saturated and maximally
complete, and let ( fi )i<ω be given by the ∗-type version of Lemma 6.13 applied
to a and M (see Remark 6.15). Then p ∼D q(y, t) := tp(rvn( fi (a))i,n<ω, c/U),
witnessed by

r(x, z, y, t) := tp(a, c, rvn( fi (a))i,n<ω, c/M).

If κ ≥ |L| is small, there is an isomorphism of posets
∼

Invκ(U)∼=
∼

Invκ(RV∗(U)). If ⊗

respects ≥D in RV∗(U), then the same holds in U, and the above is an isomorphism
of monoids.

Proof. Adapt the proofs of Lemma 6.13, Proposition 6.14 and Corollary 6.16,
replacing Facts 6.2 and 6.5 by [4, Theorem B] and Fact 7.1 respectively. □

The assumptions of Proposition 7.2 are satisfied in a number of cases of interest.
Besides the algebraically closed case, we note the following.

Remark 7.3. Every RV∗-expansion of a finitely ramified henselian valued field
has enough saturated maximal models.

Proof. Finite ramification ensures immediate extensions are precisely those where
RV∗ does not change. By this and [14, Proposition 4.3], maximal immediate
extensions are elementary, and by [10, Corollary 4.29] they are also unique. We
may therefore adapt the proof of Proposition 6.9, replacing RV with RV∗. □

Remark 7.4. RV∗ may be viewed as a short exact sequence of abelian structures,
each consisting of an inverse system of abelian groups. Since 0 is torsion-free, this
sequence is pure.6 Hence, the results from Section 4 apply to this setting, e.g., by
taking as F the family of all pp formulas.

If k eliminates imaginaries, we can get rid of those arising from F and obtain a
product decomposition. We state a special case as an example application of the
results above. We thank the referee for pointing out the “moreover” part.

Corollary 7.5. In the theory of the Witt vectors over F
alg
p , the domination monoid is

well defined. If κ is a small infinite cardinal, then

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U))∼= κ̂ × P≤κ

(
CSinv(0(U))

)
.

Moreover,
∼

Inv(U)∼= ω̂× P<ω

(
CSinv(0(U))

)
.

6Another way of seeing this is that, in a saturated enough model of T , the valuation map has a
section, inducing a compatible system of angular components, i.e., a splitting of RV∗.
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Proof. The residue field k is fully embedded. Moreover, kn = Wn(k)× for each n,
where Wn(k) is the truncated ring of Witt vectors over k, and kn is in definable
bijection with kn−1

× k× (see [30, Corollary 1.62 and Proposition 1.67]). The
computation of

∼

Invκ(U) follows. As for
∼

Inv(U), using discreteness of the value group
it is possible to build a prodefinable surjection K → kω [30, proof of Remark 3.23];
together with the argument above, this gives the “moreover” part. □

Remark 7.6. The product decomposition fails for finitary types: the surjection
K → kω yields a 1-type in K dominating the type of an infinite independent k-tuple.

However, finitisation is possible in the case of the p-adics.

Corollary 7.7 (Theorem E). Let T be a complete {0}-expansion of Th(Qp). There
is an isomorphism of posets

∼

Inv(U)∼=
∼

Inv(0(U)). If ⊗ respects ≥D in 0(U), then the
same holds in U, and the above is also an isomorphism of monoids. In particular,
in Th(Qp), ⊗ respects ≥D, and (

∼

Inv(U),⊗,≥D)∼=
(
P<ω

(
CSinv(0(U))

)
,∪,⊇

)
.

Proof. By Remark 7.3 we may apply Proposition 7.2. Since each kn is finite,
each RVn is a finite cover of 0, so each element of RVn is interalgebraic with an
element of 0. Thus if p(x, z)∈ Sinv(U,M0), where x is a tuple of K-variables and z a
tuple of RV∗-variables, and if ac ⊨ p, then dimQ

(
Q0

(
dcl(U(ac))

)
/Q0(U)

)
≤ |xz|

by the Abhyankar inequality, so there is a finitary invariant type in 0 which is
interalgebraic with the type q(y, t)∼D p found in Proposition 7.2. We conclude
by Proposition 1.3. The “in particular” part then follows from Corollary 3.34. □

The infinite ramification case remains open.

Problem 7.8. Compute
∼

Inv(U) in an infinitely ramified mixed characteristic hensel-
ian valued field that is not algebraically closed.

8. D-henselian valued fields with many constants

Here we deal with certain differential valued fields. As the proofs are adaptations
of those in Section 6, we give sketches and leave it to the reader to fill in the details.

We let T be a complete theory with sorts K, k, 0,RV, as in Section 6, naturally
interpreted, and use the notation RV . The fields k and K have characteristic 0
and both carry a derivation ∂ (denoted by the same symbol), commuting with the
residue map. The valued differential field K is monotone, i.e., v(∂x)≥ v(x), has
many constants,7 i.e., for every γ ∈0 there is x ∈K with ∂x =0 and v(x)=γ , and is
D-henselian, i.e., the following holds. If P(X)∈O{X}=O[∂ i X ]i∈ω is a differential
polynomial over the valuation ring O, and a ∈ O is such that v(P(a)) > 0 and for
some i we have v(d P/d(∂ i X))(a) = 0, then there is b ∈ O such that P(b) = 0
and v(a − b) > 0. The family of sorts RV may carry additional structure.

7Here we follow the terminology of [1]. In [28], this condition is called having enough constants.
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The derivation ∂ on K induces a map ∂RV on RV which, for all γ ∈ 0, fixes
v−1(γ ) ∪ {0} setwise, defined by ∂RV(rv(x)) = rv(∂(x)) if v(∂(x)) = v(x), and
∂RV(rv(x))= 0 otherwise, which extends the derivation ∂ on k.

By [28, Theorem 6.4 and Corollary 5.8] (see also [1, Corollary 8.3.3]) the
theory T given by the list of properties above (in a fixed language) eliminates
K-quantifiers.

Proposition 8.1. The theory T has enough saturated maximal models.

Proof sketch. By [28, Remark 6.2], k is linearly surjective in the terminology
of [1], so by [1, Theorem 7.4.3] T has uniqueness of maximal immediate exten-
sions. The maximal immediate extension N of M is monotone and D-henselian
by [1, Lemma 6.3.5 and Theorem 7.4.3] with many constants. As T eliminates
K-quantifiers, M ≺ N , so the proofs of Proposition 6.9 and Corollary 6.11 may be
adapted. □

Theorem 8.2. Let κ be a small infinite cardinal. There is an isomorphism of posets
∼

Invκ(U) ∼=
∼

Invκ(RV(U)). If ⊗ respects ≥D in RV(U), then the same holds in U,
and the above is also an isomorphism of monoids.

Proof sketch. By elimination of K-quantifiers, RV(M) is fully embedded in M . If
we replace “polynomial” by “differential polynomial”, K(M)[a] by K(M){a}, and
so on, in the statements of Lemma 6.13 and Proposition 6.14, essentially the same
proofs go through. We can then conclude as in the proof of Corollary 6.16. □

Lemma 8.3. ∂RV is definable from the short exact sequence structure, the differential
field structure on k, and a predicate for C := {c ∈ RV | ∂RV(c)= 0}.

Proof. Suppose a ∈ RV and v(a) /∈ {0,∞}. Since K has many constants, there
is c ∈ RV(M) with ∂RV(c) = 0 and v(c) = v(a). Then we have a/c ∈ k(U)
and ∂RV(a) = c∂(a/c). Because this does not depend on the choice of c, the
function y = ∂RV(x) is ∅-definable by the formula

ϕ(x, y) := ∃z ∈ C
(
(v(z)= v(x))∧ (y = z∂(x/z))

)
. □

If L had a section of the valuation, or an angular component compatible with ∂ ,
we could recover C from the constant field of k, and conclude by (the ∗-type version
of) Remark 4.5. Yet, the absence of definable splitting is not a serious obstacle. For
simplicity, we only give a result in the model companion VDFEC .

Theorem 8.4 (Theorem F). In VDFEC , for every small infinite cardinal κ , the
monoid

∼

Invκ(U) is well defined, and we have isomorphisms

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U))∼=

≤κ∏
δ(U)

κ̂ × P≤κ

(
CSinv(0(U))

)
,
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where δ(U) is a cardinal, and
∏

≤κ
δ(U)κ̂ denotes the submonoid of

∏
δ(U)κ̂ consisting

of δ(U)-sequences with support of size at most κ .

Proof. By Theorem 8.2 we reduce to RV . Let LC := Lab ∪ {C}, with C a unary
predicate. Expand the language of RV by a predicate C on each sort, interpreted
as the constants in both k and RV and as the full 0 in 0, obtaining a short exact
sequence of LC -abelian structures (to be precise, of abelian structures augmented by
an absorbing element, see Remark 4.10) expanded by the differential field structure
on k and the order on 0. By Lemma 8.3, we may apply the material from Section 4,
say, by taking as a fundamental family that of all pp LC -formulas, provided we
show that RV is pure. If M ⊨ VDFEC is ℵ1-saturated then, since M has many
constants, we may find a section s : 0(M)→ RV(M) of the valuation with image
included in C(RV(M)). Hence the short exact sequence RV(M) of LC -abelian
structures splits, so is pure by Remark 4.5. Since k is a model of DCF0, which
eliminates imaginaries, we may get rid of the auxiliary sorts Aϕ . We conclude
by Corollary 3.33 and the fact that DCF0 is ω-stable multidimensional (see [22,
Section 5] for the relation between our setting and that of domination via forking
in stable theories). □

Remark 8.5. In VDFEC , finitisation is not to be expected (e.g., by [26, Propo-
sition 4.2]), and in fact not possible: one may construct a 1-type p ∈ Sinv

K (U)

with ((v ◦ ∂n)∗ p)n∈ω nonalgebraic and pairwise weakly orthogonal, and hence not
domination-equivalent.

Computing the image of the home sort in finitely many variables seems difficult.

Remark 8.6. Most arguments in this section may be adapted to σ -henselian valued
difference fields of residue characteristic 0. An analogue of Theorem 8.2 goes
through, using quantifier reduction to RV and a σ -Kaplansky theory yielding
uniqueness and elementarity of maximal immediate extensions [11, Theorems 5.8
and 7.3]. In every completion of the model companion of the isometric case
(see [6]), in sufficiently saturated models there is a section of the valuation with
values in the fixed field, and hence one may obtain the decomposition

∼

Invκ(U)∼=
∼

Invκ(k(U))×
∼

Invκ(0(U)), by regarding RV as a pure short exact sequence of Z[σ ]-
modules, and using elimination of imaginaries in ACFA0. The same goes through in
the multiplicative setting, provided that, in the notation of [25], ρ is transcendental.
This applies, e.g., to the model companion of the contractive case (see [3]).
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[12] C. Ealy, D. Haskell, and J. Maříková, “Residue field domination in real closed valued fields”,
Notre Dame J. Form. Log. 60:3 (2019), 333–351. MR Zbl

[13] D. Evans, A. Pillay, and B. Poizat, “Le groupe dans le groupe”, Algebra i Logika 29:3 (1990),
368–378, 382. MR

[14] J. Flenner, “Relative decidability and definability in Henselian valued fields”, J. Symbolic Logic
76:4 (2011), 1240–1260. MR Zbl

[15] Y. Halevi and A. Hasson, “Eliminating field quantifiers in strongly dependent Henselian fields”,
Proc. Amer. Math. Soc. 147:5 (2019), 2213–2230. MR Zbl

[16] D. Haskell, E. Hrushovski, and D. Macpherson, “Definable sets in algebraically closed valued
fields: elimination of imaginaries”, J. Reine Angew. Math. 597 (2006), 175–236. MR Zbl

[17] D. Haskell, E. Hrushovski, and D. Macpherson, Stable domination and independence in al-
gebraically closed valued fields, Lecture Notes in Logic 30, Cambridge University Press,
Cambridge, 2008. MR Zbl

[18] M. Hils, M. Kamensky, and S. Rideau, “Imaginaries in separably closed valued fields”, Proc.
Lond. Math. Soc. (3) 116:6 (2018), 1457–1488. MR Zbl

[19] I. Kaplansky, “Maximal fields with valuations”, Duke Math. J. 9 (1942), 303–321. MR Zbl

[20] F.-V. Kuhlmann, “Quantifier elimination for Henselian fields relative to additive and multiplica-
tive congruences”, Israel J. Math. 85:1-3 (1994), 277–306. MR Zbl

http://dx.doi.org/10.1515/9781400885411
http://dx.doi.org/10.1515/9781400885411
http://msp.org/idx/mr/3585498
http://msp.org/idx/zbl/1430.12002
http://dx.doi.org/10.1090/tran/8661
http://dx.doi.org/10.1090/tran/8661
http://msp.org/idx/mr/4439488
http://msp.org/idx/zbl/1498.03073
http://dx.doi.org/10.1016/j.jalgebra.2010.08.003
http://msp.org/idx/mr/2725200
http://msp.org/idx/zbl/1218.12004
http://dx.doi.org/10.1016/0168-0072(91)90058-T
http://msp.org/idx/mr/1114178
http://msp.org/idx/zbl/0734.03021
http://msp.org/idx/mr/648293
http://msp.org/idx/zbl/0505.03009
http://dx.doi.org/10.1353/ajm.2007.0018
http://msp.org/idx/mr/2325101
http://msp.org/idx/zbl/1121.03043
http://dx.doi.org/10.1142/S1793744211000473
http://msp.org/idx/mr/2899905
http://msp.org/idx/zbl/1246.03059
http://dx.doi.org/10.2307/2034163
http://msp.org/idx/mr/146272
http://msp.org/idx/zbl/0111.03401
http://dx.doi.org/10.1007/978-3-642-54936-6_4
http://msp.org/idx/mr/3330198
http://msp.org/idx/zbl/1347.03074
http://dx.doi.org/10.1007/s00029-015-0183-0
http://dx.doi.org/10.1007/s00029-015-0183-0
http://msp.org/idx/mr/3397448
http://msp.org/idx/zbl/1334.12010
http://dx.doi.org/10.1215/00294527-2019-0015
http://msp.org/idx/mr/3985616
http://msp.org/idx/zbl/1479.03017
http://dx.doi.org/10.1007/BF01979940
http://msp.org/idx/mr/1118931
http://dx.doi.org/10.2178/jsl/1318338847
http://msp.org/idx/mr/2895394
http://msp.org/idx/zbl/1237.03022
http://dx.doi.org/10.1090/proc/14203
http://msp.org/idx/mr/3937695
http://msp.org/idx/zbl/1487.03052
http://dx.doi.org/10.1515/CRELLE.2006.066
http://dx.doi.org/10.1515/CRELLE.2006.066
http://msp.org/idx/mr/2264318
http://msp.org/idx/zbl/1127.12006
http://msp.org/idx/mr/2369946
http://msp.org/idx/zbl/1149.03027
http://dx.doi.org/10.1112/plms.12116
http://msp.org/idx/mr/3816386
http://msp.org/idx/zbl/1414.03008
http://projecteuclid.org/euclid.dmj/1077493226
http://msp.org/idx/mr/6161
http://msp.org/idx/zbl/0063.03135
http://dx.doi.org/10.1007/BF02758645
http://dx.doi.org/10.1007/BF02758645
http://msp.org/idx/mr/1264348
http://msp.org/idx/zbl/0809.03028


THE DOMINATION MONOID IN HENSELIAN VALUED FIELDS 323

[21] R. Mennuni, “Invariant types in model theory”, Bull. Symb. Log. 26:3-4 (2020), 296–297. MR
Zbl

[22] R. Mennuni, “Product of invariant types modulo domination-equivalence”, Arch. Math. Logic
59:1-2 (2020), 1–29. MR Zbl

[23] R. Mennuni, “The domination monoid in o-minimal theories”, J. Math. Log. 22:1 (2022),
art. id. 2150030. MR Zbl

[24] R. Mennuni, “Weakly binary expansions of dense meet-trees”, MLQ Math. Log. Q. 68:1 (2022),
32–47. MR Zbl

[25] K. Pal, “Multiplicative valued difference fields”, J. Symbolic Logic 77:2 (2012), 545–579. MR
Zbl

[26] S. Rideau, “Imaginaries and invariant types in existentially closed valued differential fields”, J.
Reine Angew. Math. 750 (2019), 157–196. MR Zbl

[27] A. Robinson and E. Zakon, “Elementary properties of ordered abelian groups”, Trans. Amer.
Math. Soc. 96 (1960), 222–236. MR Zbl

[28] T. Scanlon, “Quantifier elimination for the relative Frobenius”, pp. 323–352 in Valuation theory
and its applications, II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc.,
Providence, RI, 2003. MR Zbl

[29] S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed., Studies in
Logic and the Foundations of Mathematics 92, North-Holland Publishing Co., Amsterdam, 1990.
MR Zbl

[30] P. Touchard, “Burden in Henselian valued fields”, Ann. Pure Appl. Logic 174:10 (2023),
art. id. 103318. MR Zbl

[31] M. Vicaria, “Residue field domination in henselian valued fields of equicharacteristic zero”,
preprint, 2021. arXiv 2109.08243

[32] M. Vicaría, “Elimination of imaginaries in ordered abelian groups with bounded regular rank”, J.
Symb. Log. 88:4 (2023), 1639–1654. MR Zbl

[33] V. Weispfenning, “Quantifier eliminable ordered abelian groups”, pp. 113–126 in Algebra and
order (Luminy-Marseille, 1984), Res. Exp. Math. 14, Heldermann, Berlin, 1986. MR Zbl

[34] E. Zakon, “Generalized archimedean groups”, Trans. Amer. Math. Soc. 99 (1961), 21–40. MR
Zbl

Received November 10, 2021. Revised February 13, 2024.

MARTIN HILS

INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG

UNIVERSITÄT MÜNSTER

MÜNSTER

GERMANY

hils@uni-muenster.de

ROSARIO MENNUNI

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ DI PISA

PISA

ITALY

r.mennuni@posteo.net

http://dx.doi.org/10.1017/bsl.2020.25
http://msp.org/idx/mr/4244774
http://msp.org/idx/zbl/1480.03018
http://dx.doi.org/10.1007/s00153-019-00676-9
http://msp.org/idx/mr/4050032
http://msp.org/idx/zbl/1480.03018
http://dx.doi.org/10.1142/S0219061321500306
http://msp.org/idx/mr/4439585
http://msp.org/idx/zbl/1509.03105
http://dx.doi.org/10.1002/malq.202000045
http://msp.org/idx/mr/4413643
http://msp.org/idx/zbl/1521.03072
http://dx.doi.org/10.2178/jsl/1333566637
http://msp.org/idx/mr/2963021
http://msp.org/idx/zbl/1245.03056
http://dx.doi.org/10.1515/crelle-2016-0036
http://msp.org/idx/mr/3943320
http://msp.org/idx/zbl/1496.03159
http://dx.doi.org/10.2307/1993461
http://msp.org/idx/mr/114855
http://msp.org/idx/zbl/0096.24504
http://msp.org/idx/mr/2018563
http://msp.org/idx/zbl/1040.03031
http://msp.org/idx/mr/1083551
http://msp.org/idx/zbl/0713.03013
http://dx.doi.org/10.1016/j.apal.2023.103318
http://msp.org/idx/mr/4620558
http://msp.org/idx/zbl/07741121
http://msp.org/idx/arx/2109.08243
http://dx.doi.org/10.1017/jsl.2023.6
http://msp.org/idx/mr/4679247
http://msp.org/idx/zbl/07781917
http://msp.org/idx/mr/891454
http://msp.org/idx/zbl/0631.06010
http://dx.doi.org/10.2307/1993441
http://msp.org/idx/mr/120294
http://msp.org/idx/zbl/0118.01503
mailto:hils@uni-muenster.de
mailto:r.mennuni@posteo.net




PACIFIC JOURNAL OF MATHEMATICS
Vol. 328, No. 2, 2024

https://doi.org/10.2140/pjm.2024.328.325

INVERSE SEMIGROUP FROM METRICS ON DOUBLES III:
COMMUTATIVITY AND (IN)FINITENESS OF IDEMPOTENTS

VLADIMIR MANUILOV

We have shown recently that, given a metric space X , the coarse equivalence
classes of metrics on the two copies of X form an inverse semigroup M(X).
Here we study the property of idempotents in M(X) of being finite or infinite,
which is similar to this property for projections in C∗-algebras. We show
that if X is a free group then the unit of M(X) is infinite, while if X is a free
abelian group then it is finite. As a by-product, we show that the inverse
semigroup M(X) is not a quasiisometry invariant. We also show that M(X)

is commutative if it is Clifford, and give a geometric description of spaces X
for which M(X) is commutative.

1. Introduction

Given metric spaces (X, dX ) and (Y, dY ), a metric d on X⊔Y that extends the metrics
dX on X and dY on Y , depends only on the values d(x, y), x ∈ X , y ∈ Y , and it may
be not easy to check which functions d : X×Y → (0,∞) determine a metric on X⊔Y .
The problem of description of all such metrics is difficult due to the lack of a nice
algebraic structure on the set of metrics, but, passing to coarse equivalence of metrics,
we get an algebraic structure, namely, that of an inverse semigroup [Manuilov 2021a].
Recall that two metrics, b, d , on a space Z are coarsely equivalent, b ∼ d , if there
exist monotone functions ϕ,ψ : [0,∞)→ [0,∞) such that

lim
t→∞

ϕ(t)= lim
t→∞

ψ(t)= ∞

and
ϕ(d(z1, z2))≤ b(z1, z2)≤ ψ(d(z1, z2))

for any z1, z2 ∈ Z . We denote by [d] the coarse equivalence class of a metric d.
Our standard reference on metric spaces is [Burago et al. 2001].

Let M(X, Y ) denote the set of all metrics d on X ⊔ Y such that:

• The restriction of d onto X and Y are dX and dY respectively.

• infx∈X,y∈Y d(x, y) > 0.
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Coarse equivalence classes of metrics in M(X, Y ) can be considered as mor-
phisms from X to Y [Manuilov 2019], where the composition b ◦ d of a metric d
on X ⊔ Y and a metric b on Y ⊔ Z is given by the metric determined by

(b ◦ d)(x, z)= inf
y∈Y

[d(x, y)+ b(y, z)], x ∈ X, z ∈ Z .

When Y = X , we call X ⊔ X the double of X . In what follows we identify the
double of X with X × {0, 1}, and write X for X × {0} (resp., x for (x, 0)) and X ′

for X × {1} (resp., x ′ for (x, 1)). We also write M(X) for M(X, X).
The main result of [Manuilov 2021a] is that the semigroup M(X)= M(X)/∼

(with respect to this composition) of coarse equivalence classes of metrics on the
double of X is an inverse semigroup with the unit element 1 and the zero element 0,
and the unique pseudoinverse for [d] ∈ M(X) is the coarse equivalence class of the
metric d∗ given by d∗(x, y′)= d(x ′, y), x, y ∈ X .

Recall that a semigroup S is an inverse semigroup if for any s ∈ S there exists a
unique t ∈ S (denoted by s∗ and called a pseudoinverse) such that s = sts and t = tst
[Lawson 1998]. Philosophically, inverse semigroups describe local symmetries in a
similar way as groups describe global symmetries, and technically, the construction
of the (reduced) group C∗-algebra of a group generalizes to that of the (reduced)
inverse semigroup C∗-algebra [Paterson 1999]. It is known that any two idempotents
in an inverse semigroup S commute, and that there is a partial order on S defined
by s ≤ t if s = ss∗t . Our standard references for inverse semigroups are [Lawson
1998] and [Howie 1995].

Close relation between inverse semigroups and C∗-algebras allows to use classifi-
cation of projections in C∗-algebras for idempotents in inverse semigroups. Namely,
as in C∗-algebra theory, we call two idempotents, e, f ∈ E(S) von Neumann
equivalent (and write e ∼ f ) if there exists s ∈ S such that s∗s = e, ss∗

= f . An
idempotent e ∈ E(S) is called infinite if there exists f ∈ E(S) such that f ⪯ e,
f ̸= e, and f ∼ e. Otherwise e is finite. An inverse semigroup is finite if every
idempotent is finite, and is weakly finite if it is unital and the unit is finite. A
commutative unital inverse semigroup is patently finite.

In [Manuilov 2021b] we gave a geometric description of idempotents in the
inverse semigroup M(X) (there are two types of idempotents, named type I and type
II) and showed in Lemma 3.3 of [loc. cit.] that the type is invariant under the von Neu-
mann equivalence. In Part I, we study the property of weak finiteness for M(X) (i.e.,
finiteness of the unit element) and discuss its relation to geometric properties of X .

We start with several examples of finite or infinite idempotents, and then show
that if X is a free group then M(X) is not weakly finite, while if X is a free abelian
group then it is weakly finite. We also show that the inverse semigroup M(X) is
not a quasiisometry invariant. The property of being weakly finite is also not a
coarse invariant. We don’t know if it is a quasiisometry invariant.
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In Part II, we give a geometric description of spaces, for which the inverse
semigroup M(X) is commutative, and show that the condition of being a Clifford
inverse semigroup (i.e., that ss∗

= s∗s for any s ∈ S) guarantees that M(X) is
commutative.

Part I. Weak finiteness of M(X)

2. Geometric description of weak finiteness

Two maps f, g : X → X are called equivalent if there exists C > 0 such that
dX ( f (x), g(x)) < C for any x ∈ X . A map f : X → X is an almost isometry if
there exists C > 0 such that:

• |dX ( f (x), f (y))− dX (x, y)|< C for any x, y ∈ X .

• For any y ∈ X there exists x ∈ X such that dX ( f (x), y) < C .

(The latter condition provides existence of an “inverse” map g : X → X such that
f ◦ g and g ◦ f are equivalent to the identity map; this map is also an almost
isometry, but with possibly greater constant C ; if f is surjective then this property
is superfluous.) We call f a C-almost isometry when we need an explicit value of
the constant C .

In a metric space, it makes sense to define equivalence of subsets as follows:
for A, B ⊂ X we say that A ∼ B if there exists C > 0 such that A ⊂ NC(B) and
B ⊂ NC(A), where NC(Y )= {x ∈ X : dX (x, Y ) < C} denotes the C-neighborhood
of Y ⊂ X . In particular, a subset A ⊂ X is equivalent to X if it is a C-net, i.e., if
there exists C > 0 such that for any x ∈ X there exists y ∈ A with dX (x, y) < C .

Theorem 2.1. The following are equivalent:

(1) M(X) is weakly finite.

(2) If there exists an almost isometry X → A ⊂ X then the subset A is equivalent
to X.

Proof. For B ⊂ X , set

d B(x, y′)= inf
u∈B

[dX (x, u)+ 1 + dX (u, y)].

Then dX is a metric on the double of X , and [d B
] is an idempotent in M(X)

[Manuilov 2021a]. It was shown in Lemma 3.3 of [Manuilov 2021b] that if d is a
metric on the double of X and [d∗

][d] = [d B
] then there exists A ⊂ X such that

[d][d∗
] = [d A

].
Suppose that there exists a C-almost isometry f : X → A for some A ⊂ X and

for some C > 0. Then set

d(x, y′)= inf
u∈X

[dX (x, u)+ C + dX ( f (u), y)].
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It was shown in Lemma 3.2 of [Manuilov 2019] that this defines a metric on the
double of X . Then

d∗
◦ d(x, x ′)= inf

y∈X
[d(x, y′)+ d∗(y, x ′)] = 2 inf

y∈X
d(x, y′)

= 2 inf
u,y∈X

[dX (x, u)+ C + dX ( f (u), y)] ≤ 2C

(we might take y = f (u) and u = x), hence [d∗
][d] = 1.

d ◦ d∗(x, x ′)= inf
y∈X

[d∗(x, y′)+ d(y, x ′)] = 2 inf
y∈X

d(y, x ′)

= 2 inf
u,y∈X

[dX (y, u)+ C + dX ( f (u), x)]

= 2C + 2 inf
u∈X

dX (x, f (u))= 2C + 2dX (x, f (X))

(taking u = y), so, using that f (X) is C-dense in A, we see that

|d ◦ d∗(x, x ′)− dX (x, A)| ≤ 4C,

hence [d][d∗
] = [d A

] by Proposition 3.2 of [Manuilov 2021a]. If M(X) is weakly
finite then [d A

] = 1, hence, by Proposition 4.2 of [Manuilov 2021a], X lies in a
C-neighborhood of A for some C > 0.

In the opposite direction, let M(X) be not weakly finite. Then there exists a
metric d on the double of X such that [d∗

][d] = 1, but [d][d∗
] ̸= 1. By Lemma 3.3

of [Manuilov 2021b], [d ◦ d∗
] = [d A

], where A ⊂ X is constructed as follows. As
[d∗

][d] = 1, there exists C > 0 such that

d∗
◦ d(x, x ′)= 2d(x, X ′) < 2C

for any x ∈ X , i.e., for any x ∈ X there exists y ∈ X such that d(x, y′) < C . Then
A = {y ∈ X : d(X, y′) < C}.

Given x ∈ X , there may be several y’s such that d(x, y′) < C . Choose one of
them and set f (x)= y. It follows from

d(X, f (x)′)≤ d(x, f (x)′) < C

that f (x) ∈ A. If x1, x2 ∈ X then the triangle inequality for the quadrangle
x1, x2, f (x1)

′, f (x2)
′ gives |dX ( f (x1), f (x2))− dX (x1, x2)| < 2C . If z ∈ A then

d(X, z′) < C , hence there exists x ∈ X such that d(x, z′) < C . Then

dX (z, f (x))= dX (z′, f (x)′)≤ d(z′, x)+ d(x, f (x)′) < 2C,

hence f is a 2C-almost isometry. Finally, the condition [d][d∗
] ̸= 1 implies that A

is not equivalent to X . □
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3. Some examples

The following example shows that in M(X), for an appropriate X , we can imitate
examples of partial isometries and projections in a Hilbert space.

Example 3.1. Let l1(N) be the space of infinite l1 sequences, with the metric given
by the l1-norm, and let

Xn = {(0, . . . , 0, t, 0, . . .) : t ∈ [0,∞)}

with t at the n-th place, n ∈ N. Set

X =

∞⋃
n=1

Xn ⊂ l1(N), A =

∞⋃
n=2

Xn ⊂ l1(N).

The set A is not equivalent to X , and there is an obvious isometry f : X → A that
isometrically maps Xn to Xn+1, n ∈ N. Thus, 1 is infinite. Let d be a metric on
the double of X induced by f . Although d seems similar to a one-sided shift in a
Hilbert space, it behaves differently: h = [d ◦ d∗

] is orthogonally complemented,
i.e., there exists e ∈ E(M(X)) such that e ∨ h = 1, e ∧ h = 0 (recall that E(M(X))
is a lattice [Manuilov 2021b]), but the complement e is not a minimal idempotent,
i.e., there exists a lot of idempotents j ∈ E(M(X)) such that j ≤ e, j ̸= e.

On the other hand, if X ⊂ [0,∞) with the standard metric then the inverse
semigroup M(X) is commutative [Manuilov 2021a, Proposition 7.1], hence any
idempotent can be equivalent only to itself, hence is finite. In Part II, we shall give
a geometric description of all metric spaces with commutative M(X), which is then
patently finite.

The next example shows that the picture may be more complicated.

Proposition 3.2. There exists an amenable space X of bounded geometry and
s ∈ M(X) such that s∗s = 1, but ss∗

̸= 1.

Proof. Consider l∞(N) with sup metric, and let

xn = (log 2, log 3, . . . , log(n − 1), log n, 0, 0, . . . ) ∈ l∞(N),

X = {xn : n ∈ N} ⊂ l∞(N); A = {x2n : n ∈ N}.

Set
f : X → A; f (xn)= x2n, n ∈ N.

Given n < m, we have

dX (xn, xm)= log m, dX ( f (xn), f (xm))= dX (x2n, x2m)= log(2m),
hence

dX ( f (xn), f (xm))− dX (xn, xm)= log(2m)− log m = log 2.

As f is surjective, it is an almost isometry.
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Note that

dX (x2n−1, x2m)=

{
log(2m) if 2n − 1< 2m,
log(2n − 1) if 2n − 1> 2m,

hence
dX (x2n−1, A)= inf

m∈N
dX (x2n−1, x2m)= log(2m),

thus A ⊂ X is not equivalent to X , hence M(X) is not weakly finite.
Note that X is amenable. Set Fn = {x1, . . . , xn} ⊂ X . Let Nr (A) denote the

r-neighborhood of the set A. Then Nr (Fn) \ Fn is empty when log(n + 1) > r ,
hence {Fn}n∈N is a Følner sequence. For r = log m, the ball Br (xn) of radius r
centered at xn contains either no other points besides xn (if n ≥ m +1), or it consists
of the points x1, . . . , xm (if n ≤ m), hence the metric on X is of bounded geometry.
In fact, this space is of asymptotic dimension zero. □

4. Case of free groups

In this section we show that M(X) is not weakly finite for two classes of groups,
both of which include free groups.

Let X =0 be a finitely generated group with the word length metric dX . Consider
the following Property (I):

(i1) X = Y ⊔ Z , and for any D > 0 there exists z ∈ Z such that dX (z, Y ) > D.

(i2) There exist g, h ∈ 0 such that gY ⊂ Y , h Z ⊂ Y and gY ∩ h Z = ∅.

(i3) There exists C > 0 such that |dX (gy, hz)−dX (y, z)|<C for any y ∈ Y , z ∈ Z .

Property (I) looks similar to nonamenability, but, at least formally, is neither
stronger nor weaker than nonamenability.

Lemma 4.1. The free group F2 on two generators satisfies Property (I).

Proof. Let a and b be the generating elements of F2, and let Y ⊂ X be the set of
all reduced words in a, a−1, b and b−1 that begin with a or a−1, Z = X \ Y . Let
g = ab, h = a2. Clearly, gY ⊂ Y and h Z ⊂ Y .

If z begins with an , n > D, then dX (z, Y )≥ n.
If y ∈ Y , z ∈ Z then

dX (aby, a2z)= |y−1b−1a−1a2z| = |y−1b−1az| = |y−1z| + 2 = dX (y, z)+ 2,

as the word y−1b−1az cannot be reduced any further (y−1 ends with a±, and z
either begins with b±, or is an empty word). □

Theorem 4.2. Let X = 0 be a group with Property (I). Then X is not weakly finite.

Proof. We shall prove that there exists an almost isometry f : X → A ⊂ X , where
A is not equivalent to X .
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Let X = Y ⊔ Z , g, h ∈ 0 satisfy the conditions of Property (I). Define a map
f : X → X by setting

f (x)=

{
gx if x ∈ Y ;

hx if x ∈ Z .

The maps f |Y and f |Z are left multiplications by g and h, respectively, hence
are isometries. If y ∈ Y , z ∈ Z then (i3) holds for some C > 0, hence

|dX ( f (x), f (y))− dX (x, y)|< C

holds for any x, y ∈ X . Set A = f (X), then f is an almost isometry from X to A.
By (i1), A is not equivalent to X . □

Our next argument also works for free groups, but refers to non-co-Hopfian
groups, i.e., groups isomorphic to a proper subgroup.

Theorem 4.3. Let X = G be a finitely generated group with the word length metric,
and let A = H ⊂ G be an infinite index subgroup. Suppose that there exists a map
f : G → H that is both an isomorphism and an almost isometry. Then X is not
weakly finite.

Proof. We need only to check that A is not equivalent to X . Suppose it is, i.e.,
there exists C > 0 such that for any x ∈ X there exists y ∈ H with dX (x, y) < C .
As H is of infinite index, there are infinitely many different cosets Hgi , gi ∈ G,
i ∈ N. Let hi ∈ H satisfy dX (gi , hi ) < C , i ∈ N, which means that |g−1

i hi | < C .
As G is finitely generated, the set of group elements g with |g| < C is finite, so
there exist i ̸= j such that g−1

i hi = g−1
j h j , or, equivalently, h−1

i gi = h−1
j g j , hence

Hgi = Hg j — a contradiction. □

Remark 4.4. It is easy to find examples of isomorphisms that are also almost
isometries. Indeed, if γ ∈ G then the map f (g)= γ−1gγ is an example: it follows
from dX ( f (g1), f (g2))= |γ−1g−1

1 g2γ | and dX (g1, g2)= |g−1
1 g2| that

|dX ( f (g1), f (g2))− dX (g1, g2)| ≤ 2|γ |

for any g1, g2 ∈ G. There are many examples when the subgroup H = γ−1Gγ is
of infinite index in G, e.g., if G is a free group, and γ is not a generator.

5. Case of abelian groups

A positive result is given by the following theorem.

Theorem 5.1. Let X = Rn , with a norm ∥·∥, and let the metric dX be determined
by the norm ∥·∥. Then M(X) is weakly stable.
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Proof. We have to show that if f : X → X is a C-almost isometry for some C > 0
then f (X) is equivalent to X . Suppose the contrary: for any n ∈ N there exists
xn ∈ X such that dX (xn, f (X)) > n.

First, note that we can replace f by another almost isometry g, which is continu-
ous and close to f . Namely, choose a triangulation of X by simplices with length
of edges greater than C and with a uniform lower bound for their volumes. Then set
g(v)= f (v) for all vertices and extend this map to the inner points of the simplices
by linearity. Then g : X → X is continuous and there exists C ′> 0 depending on the
dimension of X and on the norm ∥·∥, such that dX ( f (x), g(x)) <C ′ for any x ∈ X .
As f was a C-almost isometry, g is a D-almost isometry, where D = 2C ′

+ C .
Let x0 denote the origin of X . Without loss of generality, we may assume that

f (x0)= x0 (we may compose f with a translation).
Denote by SR the sphere of radius R centered at x0. Then g(x) lies between

SR−D and SR+D for any x ∈ SR . Let dX (x0, xn)= Rn . Clearly, limn→∞ Rn = ∞.
Passing to a subsequence, we may assume that limn→∞ Rn+1 − Rn = ∞. Then,
once again, we can replace g by a continuous D′-almost isometry h : X → X with
supx∈X dX ( f (x), h(x)) < D′ for some D′ > 0 such that h(SRn )⊂ SRn .

As dX (xn, f (X)) > n, dX (xn, h(X)) > n − D′, hence xn /∈ h(SRn ) when n > D′.
Thus, the map h|SRn

: SRn → SRn is not surjective. Then, by the Borsuk–Ulam
theorem, there exists a pair of antipodal points y1, y2 ∈ SRn such that h(y1) =

h(y2)= z. But this contradicts the almost isometricity of h:

|dX (h(y1), h(y2))− dX (y1, y2)| = |dX (z, z)− dX (y1, y2)| = |0 − 2Rn| = 2Rn

is not bounded. □

Corollary 5.2. Let X = Zn with an lp-metric, 1 ≤ p ≤ ∞. Then M(X) is weakly
finite.

Proof. By Proposition 9.2 of [Manuilov 2021a], M(Zn)= M(Rn). □

Corollary 5.3. M(X) is weakly finite for any finitely generated free abelian group
X with a word length metric with respect to any finite set of generators.

6. M(X) doesn’t respect equivalences

Proposition 6.1. The inverse semigroup M(X) is not a coarse invariant.

Proof. The space X from Proposition 3.2 is coarsely equivalent to the space
Y = {n2

: n ∈ N} with the standard metric, which we denote by bX . Indeed,
for n < m, we have bX (xn, xm) = m2

− n2 and dX (xn, xm) = log(m + 1). As
m2

− (m − 1)2 = 2m − 1 > log(m + 1) for m > 1, we have dX (x, y) ≤ bX (x, y)
for any x, y ∈ X , and taking f (t)= 2et , we have bX (x, y)≤ f (dX (x, y)) for any
x, y ∈ X .
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For the metric dX from Proposition 3.2, the inverse semigroup M(X, dX ) is not
commutative ([d∗d] ̸= [dd∗

]), while the inverse semigroup M(X, bX ) is commuta-
tive by Proposition 7.1 of [Manuilov 2021b]. □

Theorem 6.2. The inverse semigroup M(X) is not a quasiisometry invariant.

Proof. Let X = N be endowed with the metric bX given by bX (n,m)= |2n
− 2m

|,
n,m ∈ N, and let yn = s(n)4[n/2], where s(n)= (−1)[(n−1)/2] and [t] is the greatest
integer not exceeding t . Let dX be the metric on X given by dX (n,m)= |yn − ym |,
n,m ∈ N. The two metrics are quasiisometric. Indeed, suppose that n > m. If
s(n)= −s(m) then

dX (n,m)= 4[n/2]
+ 4[m/2]

≤ 4n/2+1
+ 4m/2+1

= 4(2n
+ 2m)≤ 12bX (n,m);

dX (n,m)= 4[n/2]
+ 4[m/2]

≥ 4n/2
+ 4m/2

≥ 2n
− 2m

= bX (n,m).

We use here that (2r
+ 1)/(2r

− 1)≤ 3 for any r = n − m ∈ N. If s(n)= s(m) then

dX (n,m)= 4[n/2]
− 4[m/2]

≤ 4n/2+1
− 4m/2

= 4 · 2n
− 2m

≤ 7bX (n,m).

We use here that (4 · 2r
− 1)/(2r

− 1) ≤ 7 for any r = n − m ∈ N. To obtain an
estimate in other direction, note that s(n)= s(m) implies that [n/2] ≥ [m/2] + 1,
and that n − m ̸= 2. If n = m + 1 then

dX (m + 1,m)= 3 · 4[m/2]
≥

3
2 · 2m

=
3
2 bX (m + 1,m),

If n ≥ m + 3 then

dX (n,m)= 4[n/2]
− 4[m/2]

≥ 4n/2
− 4m/2+1

= 2n
− 4 · 2m

≥
4
7 bX (n,m).

We use here that (2r
− 4)/(2r

− 1)≥
4
7 for any r = n − m ≥ 3. Thus,

3
7 bX (n,m)≤ dX (n,m)≤ 12 · bX (n,m)

for any n,m ∈ N, so the two metrics are quasiisometric.
We already know that M(X, bX ) is commutative, so it remains to expose two

noncommuting elements in M(X, dX ).
Let

X = {(yn, 0) : n ∈ N}, X ′
= {(−yn, 1) : n ∈ N},

and let d be the metric on X ⊔ X ′ induced from the standard metric on the plane R2,
s = [d]. Note that −yn = yn−1 if yn > 0 and n > 1, and −yn = yn+1 if yn < 0.
Hence, d∗

= d and s2
= 1.

Let

A+ = {yn : n ∈ N; yn > 0}, A− = {yn : n ∈ N; yn < 0},
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X = A+ ⊔ A−, and let the metrics d+ and d− on X ⊔ X ′ be given by

d±(n,m′)= inf
k∈A±

[dX (n, k)+ 1 + dX (k,m)],

e = [d+], f = [d−]. Then es = 0, while se = f , i.e., e and s do not commute. □

Note that, unlike M(X), the set E(M(X)) of idempotents of M(X) is a coarse
invariant. This follows from the geometric description of idempotents in [Manuilov
2021b].

Part II. When M(X) is commutative

7. R-spaces

Definition 7.1. A metric space X is an R-space (R for rigid) if, for any C > 0 and
any two sequences {xn}n∈N, {yn}n∈N of points in X satisfying

(7-1) |dX (xn, xm)− dX (yn, ym)|< C for any n,m ∈ N

there exists D > 0 such that dX (xn, yn) < D for any n ∈ N.

Example 7.2. As M(X) is commutative for any X ⊂ [0,∞), it would follow from
Theorem 8.2 below that such X is an R-space. A less trivial example is a planar
spiral X given by r = eϕ in polar coordinates with the metric induced from the
standard metric on the plane. Indeed, take any two sequences {xn}n∈N, {yn}n∈N,
in X . Without loss of generality we may assume that x1 = y1 = 0 is the origin. If
these sequences satisfy (7-1) then

|dX (0, xn)− dX (0, yn)|< C

for some fixed C > 0 (we take m = 1). If xn = (rn, ϕn), yn = (sn, ψn) then
dX (0, xn)= rn , dX (0, yn)= sn , and we have |rn − sn|< C . Then xn and yn lie in a
ring of width C , say R ≤ r ≤ R + C . If R is sufficiently great then

dX (xn, yn)≤ (log(R + C)− log R)(R + C),

which is bounded as a function of R.

Consider the set AI (X) of all equivalence classes of almost isometries of X . It
is easy to see that it is a group with respect to the composition. A metric space X
is called AI-rigid [Kar et al. 2016] if the group AI (X) is trivial.

Proposition 7.3. A countable R-space X is AI-rigid.

Proof. Let {xn}n∈N be a sequence of all points of X , and let f : X → X be an almost
isometry. Set yn = f (xn). Then there exists C > 0 such that

|dX ( f (xn), f (xm))− dX (xn, xm)|< C
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for any n,m ∈ N, hence there exists D > 0 such that

dX (xn, f (xn))= dX (xn, yn) < D

for any n ∈ N, i.e., f is equivalent to the identity map, hence X is AI-rigid. □

Example 7.4. Euclidean spaces Rn , n ≥1, are not R-spaces, as they have a nontrivial
symmetry. The Archimedean spiral r = ϕ is not an R-space, as it is π -dense in R2.

8. Criterion of commutativity

Let a, b : T → [0,∞) be two functions on a set T . We say that a ⪯ b if there exists
a monotone increasing function ϕ : [0,∞)→ [0,∞) with lims→∞ ϕ(s)= ∞ (we
call such functions reparametrizations) such that a(t)≤ ϕ(b(t)) for any t ∈ T .

The following lemma should be known, but we could not find a reference.

Lemma 8.1. Let a, b : T → [0,∞) be two functions. If a ⪯ b is not true then there
exists C > 0 and a sequence (tn)n∈N of points in T such that b(tn) < C for any
n ∈ N and limn→∞ a(tn)= ∞.

Proof. If a ⪯ b is not true then for any reparametrization ϕ there exists t ∈ T such
that a(t) > ϕ(b(t)). Suppose that for any C > 0, the value max{a(t) : b(t)≤ C} is
finite. Then set

f (C)= max(max{a(t) : b(t)≤ C},C).

This gives a reparametrization f . If b(t) = C then a(t) ≤ f (C) = f (b(t))— a
contradiction. Thus, there exists C > 0 such that max{a(t) : b(t) ≤ C} = ∞.
It remains to choose a sequence (tn)n∈N in the set {t ∈ T : b(t) ≤ C} such that
a(tn) > n. □

Theorem 8.2. X is an R-space if and only if M(X) is commutative.

Proof. Let X be an R-space. We shall show that any s ∈ M(X) is a projection. It
would follow that M(X) is commutative. First, we shall show that any s ∈ M(X)
is selfadjoint. Let d ∈ M(X), [d] = s. Suppose that [d∗

] ̸= [d]. This means that
either d∗

⪯ d or d ⪯ d∗ is not true, where d and d∗ are considered as functions
on T = X × X ′. Without loss of generality we may assume that d∗

⪯ d is not
true. Then there exist sequences (xn)n∈N in X and (y′)n∈N in X ′ and L > 0
such that d(xn, y′

n) < L for any n ∈ N and limn→∞ d(yn, x ′
n) = ∞ (recall that

d∗(x, y′) := d(y, x ′)).
Take n,m ∈ N. Since d(xn, y′

n) < L , d(xm, y′
m) < L , we have

|dX (xn, xm)− dX (yn, ym)| = |dX (xn, xm)− dX (y′

n, y′

m)|< 2L ,

and, since X is an R-space, there exists D > 0 such that dX (xn, yn) < D for any
n ∈ N.
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Then, using the triangle inequality for the quadrangle xn ynx ′
n y′

n , we get

d(yn, x ′

n)≤ dX (yn, xn)+ d(xn, y′

n)+ dX (y′

n, x ′

n)

= dX (yn, xn)+ d(xn, y′

n)+ dX (yn, xn) < D + L + D,

which contradicts the condition limn→∞ d(yn, x ′
n)= ∞.

Now, let us show that [d] ∈ M(X) is idempotent if X is an R-space. Let
a(x)= d(x, X ′), b(x)= d(x, x ′). It was shown in [Manuilov 2021a, Theorem 3.1
and remark at the end of Section 11] that if [d] is selfadjoint then it is idempotent
if and only if b ⪯ a. Suppose that the latter is not true. Then there exists L > 0
and a sequence {xn}n∈N of points in X such that d(xn, X ′) < L for any n ∈ N

and limn→∞ d(xn, x ′
n)= ∞. In particular, this means that there exists a sequence

{yn}n∈N of points in X such that d(xn, y′
n)< L for any n ∈N. Since [d] is selfadjoint,

for any L > 0 there exists R > 0 such that if d(x, y′) < L then d(x ′, y) < R.
It follows from the triangle inequality for the quadrangle xnxm y′

n y′
m that

|dX (xn, xm)−dX (yn, ym)|= |dX (xn, xm)−dX (y′

n, y′

m)|≤d(xn, y′

n)+d(xm, y′

m)<2L

for any n,m ∈ N, hence, the property of being an R-space implies that there exists
D > 0 such that dX (xn, yn) < D for any n ∈ N. Therefore,

d(xn, x ′

n)≤ dX (xn, yn)+ d(yn, x ′

n) < D + R

for any n ∈ N — a contradiction with limn→∞ d(xn, x ′
n)= ∞.

In the opposite direction, suppose that X is not an R-space. i.e., that there exists
C > 0 and sequences {xn}n∈N, {yn}n∈N of points in X such that (7-1) holds and
limn→∞ dX (xn, yn)= ∞.

Note that these sequences cannot be bounded. Indeed, if there exists R > 0 such
that dX (x1, xn) < R for any n ∈ N then

dX (y1, yn)≤ dX (x1, xn)+ C = R + C

for any n ∈ N, but then

dX (xn, yn)≤ dX (xn, x1)+ dX (x1, y1)+ dX (y1, yn) < R + dX (x1, y1)+ R + C,

which contradicts limn→∞ dX (xn, yn) = ∞. Passing to a subsequence, we may
assume that

dX (xk, xn) > k, dX (xk, yn) > k, dX (yk, xn) > k, dX (yk, yn) > k

for any n < k, and dX (xk, yk) > k for any k ∈ N. In particular, this means that

(8-1) dX (xk, yn) > k for any k, n ∈ N.

Let us define two metrics on the double of X and show that they don’t commute.
For x, y ∈ X set

d1(x, y′)= min
n∈N

[dX (x, xn)+ C + dX (yn, y)];

d2(x, y′)= min
n∈N

[dX (x, yn)+ C + dX (xn, y)]
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(it is clear that the minimum is attained on some n ∈ N as xn, yn → ∞). Let us
show that d1 is a metric on X ⊔ X ′ (the case of d2 is similar).

Due to symmetry, it suffices to check the two triangle inequalities for the triangle
xzy′, z ∈ X :

d1(x, y′)+ d1(z, y′)

= min
n∈N

[dX (x, xn)+ C + dX (yn, y)] + min
m∈N

[dX (z, xm)+ C + dX (ym, y)]

= dX (x, xnx )+ dX (ynx , y)+ dX (y, ynz )+ dX (z, xnz )+ 2C

≥ dX (x, xnx )+ dX (ynx , ynz )+ dX (z, xnz )+ 2C

≥ dX (x, xnx )+ (dX (xnx , xnz )− C)+ dX (z, xnz )+ 2C

= dX (x, xnx )+ dX (xnx , xnz + dX (z, xnz )+ C

≥ dX (x, z)+ C ≥ dX (x, z).

and

d1(x, y′)= min
n∈N

[dX (x, xn)+ C + dX (yn, y)]

≤ dX (x, xnz )+ dX (ynz , y)+ C

≤ dX (x, z)+ dX (z, xnz )+ dX (ynz , y)+ C = dX (x, z)+ d1(z, y′).

Let us evaluate (d2 ◦ d1)(xk, x ′

k) and (d1 ◦ d2)(xk, x ′

k).
Taking fixed values n = m = k, u = yk , we get

(d2 ◦ d1)(xk, x ′

k)

= inf
u∈X

{min
n∈N

[dX (xk, xn)+ C + dX (yn, u)] + min
m∈N

[dX (u, ym)+ C + dX (xm, xk)]}

≤ inf
u∈X

{[dX (xk, xk)+ C + dX (yk, u)] + [dX (u, yk)+ C + dX (xk, xk)]}

= [dX (xk, xk)+ C] + [C + dX (xk, xk)]

= 2C.

Using the triangle inequality for the triangle xnxmu and (8-1), we get

(d1 ◦ d2)(xk, x ′

k)

= inf
u∈X

{min
n∈N

[dX (xk, yn)+ C + dX (xn, u)] + min
m∈N

[dX (u, xm)+ C + dX (ym, xk)]}

≥ inf
u∈X

{min
n∈N

[dX (xk, yn)+ dX (xn, u)] + min
m∈N

[dX (u, xm)+ dX (ym, xk)]}

≥ min
n,m∈N

[dX (xk, yn)+ dX (xn, xm)+ dX (ym, xk)]> k + dX (xn, xm)+ k > 2k.

Thus, for the sequence {xk}k∈N of points in X , the distances (d2 ◦ d1)(xk, x ′

k) are
uniformly bounded, while limk→∞(d1 ◦ d2)(xk, x ′

k)= ∞, hence the metrics d2 ◦ d1

and d1 ◦ d2 are not equivalent, i.e., [d2][d1] ̸= [d1][d2]. □
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Recall that an inverse semigroup S is Clifford (see [Howie 1995], Theorem 4.2.1)
if s∗s = ss∗ for any s ∈ S. If S is commutative then it is patently Clifford, but not
the other way. Nevertheless, for inverse semigroups of the form M(X) these two
properties are the same.

Corollary 8.3. If M(X) is Clifford then X is an R-space (and M(X) is commuta-
tive).

Proof. Let {xn}n∈N and {yn}n∈N are sequences in X satisfying (7-1), and let d1, d2

are metrics on the double of X defined above. Note that d∗

1 = d2, and let s = [d1].
We have s∗s ̸= ss∗, which contradicts that M(X) is Clifford. □
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THE NUMBER OF Fq-POINTS ON DIAGONAL
HYPERSURFACES WITH MONOMIAL DEFORMATION

DERMOT MCCARTHY

We consider the family of diagonal hypersurfaces with monomial deformation

Dd,λ,h : xd
1 + xd

2 + · · · + xd
n − dλ xh1

1 xh2
2 . . . xhn

n = 0,

where d = h1 + h2 +· · ·+ hn with gcd(h1, h2, . . . , hn) = 1. We first provide
a formula for the number of Fq-points on Dd,λ,h in terms of Gauss and
Jacobi sums. This generalizes a result of Koblitz, which holds in the special
case d | q − 1. We then express the number of Fq-points on Dd,λ,h in terms
of a p-adic hypergeometric function previously defined by the author. The
parameters in this hypergeometric function mirror exactly those described by
Koblitz when drawing an analogy between his result and classical hypergeo-
metric functions. This generalizes a result by Sulakashna and Barman, which
holds in the case gcd(d, q − 1) = 1. In the special case h1 = h2 = · · · = hn = 1
and d = n, i.e., the Dwork hypersurface, we also generalize a previous result
of the author which holds when q is prime.

1. Introduction

Counting the number of solutions to equations over finite fields using character
sums dates back to the works of Gauss and Jacobi. A renewed interest in such
problems followed subsequent important contributions from Hardy and Littlewood
[1922] and Davenport and Hasse [1935]. In a seminal paper, Weil [1949] gives an
exposition on the topic up to that point (as well as going on to make his famous
conjectures on the zeta functions of algebraic varieties). Specifically, he develops
a formula for the number of solutions over Fq , the finite field with q elements,
and its extensions, of a0xn0

0 + a1xn1
1 + · · · + ak xnk

k = 0, in terms of what we now
call Gauss sums and Jacobi sums. The techniques involved have since become
standard practice and can be found in many well-known text books, e.g., [Berndt
et al. 1998; Ireland and Rosen 1990]. Since then, many authors have used and
adapted the techniques outlined in Weil’s paper to study other equations, e.g.,
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[Delsarte 1951; Furtado Gomide 1949; Koblitz 1983]. Of particular interest is the
work of Koblitz [1983] where he examines the family of diagonal hypersurfaces
with monomial deformation

(1-1) Dd,λ,h : xd
1 + xd

2 + · · · + xd
n − dλ xh1

1 xh2
2 . . . xhn

n = 0,

where hi ∈ Z+, with gcd(h1, h2, . . . , hn) = 1, and d = h1 +h2 +· · ·+hn . Koblitz’s
main result [1983, Theorem 2] gives a formula for the number of Fq -points on Dd,λ,h

in the terms of Gauss and Jacobi sums, in the case d | q − 1. Using the analogy
between Gauss sums and the gamma function, he notes that the main term in his
formula can be considered a finite field analogue of a classical hypergeometric
function. The purpose of this paper is to study Dd,λ,h more generally, i.e., when the
condition d | q − 1 is removed. Firstly, we generalize Koblitz’s result and provide
a formula for the number of Fq-points on Dd,λ,h in terms of Gauss and Jacobi
sums without the condition d | q − 1. We then express the number of Fq-points
on Dd,λ,h in terms of a p-adic hypergeometric function previously defined by
the author. The parameters in this hypergeometric function mirror exactly those
described by Koblitz when drawing an analogy between his result and classical
hypergeometric functions. This generalizes a result of [Sulakashna and Barman
2022], which holds in the case gcd(d, q − 1) = 1. We also examine the special
case when h1 = h2 = · · · = hn = 1 and d = n, i.e., the Dwork hypersurface, and
generalize a previous result of the author, which holds when q is prime.

2. Statement of results

Let q = pr be a prime power and let Fq denote the finite field with q elements.
Let F̂∗

q denote the group of multiplicative characters of F∗
q . We extend the domain

of χ ∈ F̂∗
q to Fq by defining χ(0) := 0 (including for the trivial character ε) and

denote χ̄ as the inverse of χ . Let T be a fixed generator of F̂∗
q . Let θ be a

fixed nontrivial additive character of Fq and for χ ∈ F̂∗
q we define the Gauss sum

g(χ) :=
∑

x∈Fq
χ(x)θ(x). For χ1, χ2, . . . , χk ∈ F̂∗

q , we define the Jacobi sum
J (χ1, χ2, . . . , χk) :=

∑
ti ∈Fq ,t1+t2+···+tk=1 χ1(t1)χ2(t2) · · · χk(tk).

We consider the family of diagonal hypersurfaces with monomial deformation
described in (1-1). Let t := gcd(d, q − 1) throughout and define

(2-1) W :=

{
w = (w1, w2, . . . , wn) ∈ Zn

: 0 ≤ wi < t,
n∑

i=1

wi ≡ 0 (mod t)
}
.

Define an equivalence relation ∼h on W by

(2-2) w ∼h w′ if w − w′ is a multiple modulo t of h = (h1, h2, . . . , hn).

We denote the class containing w by [w]. If h = (1, 1, . . . , 1) we write ∼1. We
note, in this case, that each class contains a representative w where some wi = 0,
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for 1≤ i ≤n. We will write [w0] to indicate that we have chosen such a representative
for a particular class.

Our first result provides a formula for the number of Fq -points on Dd,λ,h in terms
of Gauss and Jacobi sums, without the condition d | q − 1. We will use An(Fq)

and Pn(Fq) to denote the affine and projective n-spaces, respectively, over Fq . We
denote the subset of elements in these spaces where all coordinates are nonzero
by An(F∗

q) and Pn(F∗
q).

Theorem 2.1. Let Nq(Dd,λ,h) be the number of points in Pn−1(Fq) on Dd,λ,h . Then

Nq(Dd,λ,h) =
qn−1

−1
q −1

−

∑
w∗

J (T w1
q−1

t ,T w2
q−1

t , . . . ,T wn
q−1

t )

+
1

q −1

∑
s,w

g(T w1
q−1

t +h1s)g(T w2
q−1

t +h2s) . . .g(T wn
q−1

t +hns)

g(T ds)
T ds(dλ),

where the first sum is over all w∗
= (w1, w2, . . . , wn) ∈ W such that 0 < wi < t

for all i , and the second sum is over all s ∈
{
0, 1, . . . ,

q−1
t − 1

}
and all w =

(w1, w2, . . . , wn) ∈ W .

Theorem 2.1 generalizes [Koblitz 1983, Theorem 2], which holds in the case
d | q − 1. Using an analogy between Gauss sums and the gamma function, Koblitz
noted that the second summand in his formula, which corresponds to the second
summand in Theorem 2.1 above with t = d , can be considered a finite field analogy
of the classical hypergeometric function

(2-3)
n∏

i=1

0
(wi

d
)
· d Fd−1

[
· · · · · ·

wi
dhi

+
bi
hi

· · · · · ·

1
d

2
d · · ·

d−1
d

∣∣∣∣ λdhh1
1 . . . hhn

n

]
,

where the top line parameters range over all i = 1, . . . , n and, for each i , all
bi = 0, . . . , hi − 1. The main purpose of this paper is to express Nq(Dd,λ,h) in
terms of a p-adic hypergeometric function previously defined by the author, whereby
the parameters in this p-adic hypergeometric function mirror exactly those described
by Koblitz in (2-3) above.

Next, we rewrite Theorem 2.1 in a way more amenable to manipulation when
we pass to the p-adic setting.

Corollary 2.2.

Nq(Dd,λ,h) =
qn−1

− 1
q − 1

−
1
q

∑
w∈W

some wi = 0

n∏
i=1

g(T wi
q−1

t )

+
1

q(q − 1)

∑
s,w

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ)
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where the first sum is over all w = (w1, w2, . . . , wn) ∈ W such that at least
one wi = 0, and the second sum is over either all s ∈

{
0, 1, . . . ,

q−1
t − 1

}
and all w = (w1, w2, . . . , wn) ∈ W or all s ∈ {0, 1, . . . , q − 2} and all w =

(w1, w2, . . . , wn) ∈ W/ ∼h . In the latter case, the sum is independent of the choice
of equivalence class representatives.

We now define our p-adic hypergeometric function. Let Zp denote the ring of
p-adic integers, Qp the field of p-adic numbers, Qp the algebraic closure of Qp,
and Cp the completion of Qp. Let Zq be the ring of integers in the unique unramified
extension of Qp with residue field Fq . Recall that for each x ∈ F∗

q , there is a unique
Teichmüller representative ω(x) ∈ Z×

q such that ω(x) is a (q−1)-st root of unity
and ω(x) ≡ x (mod p). Therefore, we define the Teichmüller character to be
the primitive character ω : F∗

q → Z×
q given by x 7→ ω(x), which we extend with

ω(0) := 0.

Definition 2.3 [McCarthy 2013, Definition 5.1]. Let q = pr for p an odd prime.
Let λ ∈ Fq , m ∈ Z+ and ai , bi ∈ Q ∩ Zp for 1 ≤ i ≤ m. Then define

mGm

[
a1, a2, . . . , am

b1, b2, . . . , bm

∣∣∣∣ λ ]
q

:=
−1

q−1

q−2∑
s=0

(−1)sm ωs(λ)

×

m∏
i=1

r−1∏
k=0

0p
(〈(

ai −
s

q−1
)

pk
〉)

0p(⟨ai pk⟩)

0p
(〈(

−bi +
s

q−1
)

pk
〉)

0p(⟨−bi pk⟩)
(−p)

−
⌊
⟨ai pk

⟩−
spk
q−1

⌋
−
⌊
⟨−bi pk

⟩+
spk
q−1

⌋
.

We note that the value of mGm[· · · ] depends only on the fractional part of the ai

and bi parameters, and is invariant if we change the order of the parameters. Our
main result expresses Nq(Dd,λ,h) in terms of this function.

Theorem 2.4. Let q = pr for p an odd prime. Then, for p ∤ dh1 · · · hn ,

Nq(Dd,λ,h) =
qn−1

−1
q−1

−
(−1)n

q

∑
w∈W

some wi = 0

C(w)

+
(−1)n

q

∑
[w]∈W/∼h

C(w) d Gd

[
· · · · · ·

wi
thi

+
bi
hi

· · · · · ·

1 1
d

2
d · · ·

d−1
d

∣∣∣∣ (λdhh1
1 · · ·hhn

n )−1
]

q

where the top line parameters in d Gd are the list[
wi

thi
+

bi

hi

∣∣∣ i = 1, . . . , n; bi = 0, 1, . . . , hi − 1
]
,
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and

(2-4) C(w) :=

n∏
i=1

r−1∏
a=0

0p
(〈(wi

t
)

pa 〉)(−p)

〈(wi
t

)
pa

〉
.

As we can see, the parameters of d Gd in Theorem 2.4 mirror exactly those
in (2-3) (when d | q − 1 and so t = d) up to inversion of the argument λdhh1

1 · · · hhn
n .

This inversion is a feature of the definition of the function mGm . Because we
are summing over W/ ∼h , we can remove this inversion while also swapping the
top and bottom line parameters, which gives a more natural representation, in the
opinion of the author. This can be seen more clearly later, in Corollary 2.9, where
we get an all integral bottom line parameters.

Corollary 2.5. Let q = pr for p an odd prime. Then, for p ∤ dh1 · · · hn ,

Nq(Dd,λ,h) =
qn−1

−1
q−1

−
(−1)n

q

∑
w∈W

some wi = 0

C(w)

+
(−1)n

q

∑
[w]∈W/∼h

C(−w) d Gd

[ 1 1
d

2
d · · ·

d−1
d

· · · · · ·
wi
thi

+
bi
hi

· · · · · ·

∣∣∣∣ λdhh1
1 · · ·hhn

n

]
q
.

Ideally, in Theorem 2.4 and Corollary 2.5, we would like to combine both sums
into a single hypergeometric term. In general, it seems that this is not possible.
However, it can be achieved in two special cases as we see in the next two results.
The first is when gcd(d, q − 1) = 1 and the second is when all hi = 1, i.e., the
Dwork hypersurface.

Corollary 2.6. Let q = pr for p an odd prime. If gcd(d, q − 1) = 1 then, for
p ∤ dh1 · · · hn ,

Nq(Dd,λ,h) =
qn−1

− 1
q − 1

+ (−1)n
d−1Gd−1

[ 1
d

2
d · · ·

d−1
d

· · ·
bi
hi

· · ·

∣∣∣∣ λdhh1
1 · · · hhn

n

]
q

where the bottom line parameters in d−1Gd−1 are the list[
bi

hi

∣∣∣ i = 1, . . . , n; bi = 0, 1, . . . , hi − 1
]

with exactly one zero removed.

Corollary 2.6 is Theorem 1.2 of [Sulakashna and Barman 2022].
When h1 = h2 = · · · = hn = 1 and d = n in (1-1), we recover the Dwork

hypersurface, which we will denote Dλ, i.e.,

Dλ : xn
1 + xn

2 + · · · + xn
n − nλ x1x2 . . . xn = 0.

We now provide formulas for the number of Fq -points on Dλ, first in terms of Gauss
and Jacobi sums, and then in terms of the p-adic hypergeometric function. For a
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given w = (w1, w2, . . . , wn) ∈ W , define nk to be the number of k’s appearing in w,
i.e., nk = |{wi | 1 ≤ i ≤ n, wi = k}|. We then let Sw := {k | 0 ≤ k ≤ t − 1, nk = 0}

and Sc
w denote its complement in {0, 1, . . . , t − 1}. So the elements of Sw are the

numbers from 0 to t − 1, inclusive, which do not appear in w. We define the
following lists:

Aw :

[
t−k

t

∣∣∣ k ∈ Sw

]
∪

[
b
n

∣∣∣ 0 ≤ b ≤ n − 1, b ̸≡ 0
(

mod n
t

)]
;(2-5)

Bw :

[
t−k

t
repeated nk − 1 times

∣∣∣ k ∈ Sc
w

]
.(2-6)

We note both lists contain n − |Sc
w| numbers.

Corollary 2.7 (corollary to Theorem 2.1). Let Nq(Dλ) be the number of points in
Pn−1(Fq) on Dλ. Let t = gcd(n, q − 1). Then, for λ ̸= 0,

Nq(Dλ)

=
qn−1

−1
q−1

+
1

q(q−1)

∑
s,w

[ ∏
k∈Sc

w

g(T k q−1
t +s)nk−1

g(T −k q−1
t −s)

T k q−1
t +s(−1)q

]
g(T −ns)T ns(−nλ)

where the sum is over either all s∈
{
0,1,...,

q−1
t −1

}
and all w=(w1,w2,...,wn)∈W

or all s ∈ {0,1,...,q − 2} and all w = (w1,w2,...,wn) ∈ W/ ∼1. In the latter case,
the sum is independent of the choice of equivalence class representatives.

Theorem 2.8. Let q = pr for p an odd prime. Let Nq(Dλ) be the number of points
in Pn−1(Fq) on Dλ for some λ ∈ F∗

q . Let t = gcd(n, q − 1) and let C(w) be defined
by (2-4). Then, for p ∤ n,

Nq(Dλ) =
qn−1

− 1
q − 1

+ (−1)n
∑

[w0 ]∈W/∼1

C(w0) l Gl

[
Aw0

Bw0

∣∣∣∣ λn
]

q
.

Theorem 2.8 generalizes Theorem 2.2 in [McCarthy 2017] which holds for q = p.
Finally, if we let gcd(n, q −1) = 1 in Theorem 2.8, or we let h1 = h2 = · · · = hn = 1
in Corollary 2.6, it easy to see that we arrive at the following result.

Corollary 2.9. If gcd(n, q − 1) = 1 then, for p ∤ n,

Nq(Dλ) =
qn−1

− 1
q − 1

+ (−1)n
n−1Gn−1

[ 1
n

2
n · · ·

n−1
n

1 1 · · · 1

∣∣∣∣ λn
]

q
.

Corollary 2.9 generalizes Corollary 2.3 in [McCarthy 2017] which holds for q = p.

3. Preliminaries

We start by recalling some properties of Gauss and Jacobi sums. See [Berndt et al.
1998; Ireland and Rosen 1990] for further details, noting that we have adjusted
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results to take into account ε(0) = 0, where ε is the trivial character. We first note
that G(ε) = −1. For χ ∈ F̂∗

q ,

(3-1) G(χ)G(χ̄) =

{
χ(−1)q if χ ̸= ε,

1 if χ = ε.

For χ1, χ2, . . . , χk ∈ F̂∗
q and α ∈ Fq , we define the generalized Jacobi sum

Jα(χ1, χ2, . . . , χk) :=

∑
ti ∈Fq ,t1+t2+···+tk=α

χ1(t1)χ2(t2) · · · χk(tk).

When α = 1 we recover the usual Jacobi sum as defined in Section 2.

Proposition 3.1. For χ1, χ2, . . . , χk ∈ F̂∗
q ,

J0(χ1, χ2, . . . , χk)

=


(q − 1)k

− (q − 1) J (χ1, χ2, . . . , χk) if χ1, χ2, . . . , χk all trivial,

−(q − 1)J (χ1, χ2, . . . , χk) if χ1χ2 · · · χk trivial but at least
one of χ1, χ2, . . . , χk nontrivial,

0 if χ1χ2 · · · χk nontrivial.

Proposition 3.2. For χ1χ2 · · · χk trivial but at least one of χ1, χ2, . . . , χk nontrivial
then

J (χ1, χ2, . . . , χk) = −χk(−1)J (χ1, χ2, . . . , χk−1) .

Proposition 3.3. For χ1, χ2, . . . , χk all trivial,

J (χ1, χ2, . . . , χk) = [(q − 1)k
+ (−1)k+1

]/q.

Proposition 3.4. For χ1, χ2, . . . , χk not all trivial,

J (χ1, χ2, . . . , χk) =


G(χ1)G(χ2) · · · G(χk)

G(χ1χ2 · · · χk)
if χ1χ2 · · · χk ̸= ε,

−
G(χ1)G(χ2) · · · G(χk)

q
if χ1χ2 · · · χk = ε.

We now recall the p-adic gamma function. For further details, see [Koblitz 1980].
Let p be an odd prime. For n ∈ Z+ we define the p-adic gamma function as

0p(n) := (−1)n
∏

0< j<n
p∤ j

j

and extend it to all x ∈ Zp by setting 0p(0) := 1 and 0p(x) := limn→x 0p(n)

for x ̸= 0, where n runs through any sequence of positive integers p-adically
approaching x . This limit exists, is independent of how n approaches x , and
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determines a continuous function on Zp with values in Z∗
p. The function satisfies

the following product formula.

Theorem 3.5 [Gross and Koblitz 1979, Theorem 3.1]. If h ∈ Z+, p ∤ h and 0 ≤ x < 1
with (q − 1)x ∈ Z, then

(3-2)
r−1∏
a=0

h−1∏
b=0

0p
(〈 x+b

h pa 〉)
= ω(h(q−1)x)

r−1∏
a=0

0p(⟨xpa
⟩)

h−1∏
b=1

0p
(〈 b

h pa 〉).
We note that in the original statement of Theorem 3.5 in [Gross and Koblitz

1979], ω is the Teichmüller character of F∗
p. However, the result above still holds

as ω|F∗
p

is the Teichmüller character of F∗
p.

The Gross–Koblitz formula allows us to relate Gauss sums and the p-adic
gamma function. Let π ∈ Cp be the fixed root of x p−1

+ p = 0 that satisfies
π ≡ ζp − 1 (mod (ζp − 1)2).

Theorem 3.6 [Gross and Koblitz 1979, Theorem 1.7]. For j ∈ Z,

g(ω j ) = −π
(p−1)

∑r−1
a=0

〈 j pa

q−1

〉 r−1∏
a=0

0p
(〈 j pa

q−1
〉)
.

We now recall some results of [Weil 1949; Koblitz 1983; Furtado Gomide 1949].
Note that the definitions and notation used for characters and for Gauss and Jacobi
sums vary among those papers and differ from what’s defined in this paper. So, we
have adjusted the statement of their results accordingly. For d ∈ Z+, let Dd denote
the diagonal hypersurface

Dd : xd
1 + xd

2 + · · · + xd
n = 0.

Theorem 3.7 [Weil 1949]. Let N A
q (Dd) be the number of points in An(Fq) on Dd .

Let t := gcd(d, q − 1). Then

N A
q (Dd) = qn−1

− (q − 1)
∑
w∗

J (T w1
q−1

t , T w2
q−1

t , . . . , T wn
q−1

t ),

where the sum is over all w∗
= (w1, w2, . . . , wn) ∈ W such that 0 < wi < t .

Using similar methods to those in [Weil 1949; Koblitz 1983, Theorem 2] it is
easy to see that

Theorem 3.8. Let N A,∗
q (Dd) be the number of points in An(F∗

q) on Dd Let t :=

gcd(d, q − 1). Then

N A,∗
q (Dd) =

∑
w∈W

J0(T w1
q−1

t , T w2
q−1

t , . . . , T wn
q−1

t ).
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The next result appears in [Koblitz 1983] in the homogenous case, and in general
in [Furtado Gomide 1949]. We note that [Furtado Gomide 1949] contains a minor
error. A term is omitted in the determination, but is easily fixed.

Theorem 3.9 [Furtado Gomide 1949; Koblitz 1983, Theorem 1]. Let N A,∗
q be the

number of points in An(F∗
q) on

r∑
i=1

ai x
m1i
1 xm2i

2 . . . xmni
n = 0

for some ai ∈ F∗
q , m j i ∈ Z≥0, such that for a given i , m j i are not all zero. Then

N A,∗
q =

1
q

[
(q − 1)n

+ (−1)r (q − 1)n−r+1]
− (q − 1)n−r+1

∑
α

T −α1(a1)T −α2(a2) . . . T −αr (ar )J (T α1, T α2, . . . , T αr ),

where the sum is over all α = (α1, α2, . . . , αr ) ̸= 0 satisfying 0 ≤ αi < q − 1,∑r
i=1 αi ≡0 (mod q − 1), and

∑r
i=1 m j iαi ≡0 (mod q − 1) for all j ∈{1,2, . . . ,n}.

A key step in proving the main results of this paper is to adapt Theorem 3.9
to Dd,λ,h .

Corollary 3.10. Let t := gcd(d, q − 1). For λ ̸= 0,

N A,∗
q (Dd,λ,h) =

∑
s,w

J (T w1
q−1

t +h1s, T w2
q−1

t +h2s, . . . , T wn
q−1

t +hns) T ds(dλ)

where the sum is over all s ∈
{
0, 1, . . . ,

q−1
t −1

}
and all w = (w1, w2, . . . , wn)∈ W .

Corollary 3.10 generalizes Corollary 1 in [Koblitz 1983], which holds in the
case d | q − 1.

4. Proofs

Proof of Corollary 3.10. We take r = n +1; ai = 1, for i = 1, . . . , n, and ar = −dλ;
m j i = d if i = j and zero otherwise, and, m jr = h j , for all j = 1, . . . , n, in
Theorem 3.9. This yields

(4-1) N A,∗
q (Dd,λ,h)

=
1
q
[
(q − 1)n

+ (−1)n+1]
−

∑
α

T −αn+1(−dλ)J (T α1, T α2, . . . , T αn+1)

where the sum is over all α = (α1, α2, . . . , αn+1) ̸= 0 satisfying 0 ≤ αi < q − 1,∑n+1
i=1 αi ≡0 (mod q−1), and d α j +h j αn+1 ≡0 (mod q−1) for all j =1, 2, . . . , n.
The condition d α j + h j αn+1 ≡ 0 (mod q −1), for all j ∈ {1, 2, . . . , n}, implies

t = gcd(d, q − 1) divides h j αn+1 for all j ∈ {1, 2, . . . , n}. If le is a prime power
dividing t but not αn+1, then l divides h j for all j ∈ {1, 2, . . . , n}. This is a
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contradiction, as gcd(h1, . . . , hn) = 1. Therefore, le divides αn+1, which implies t
divides αn+1. So αn+1

t ∈
{
0, 1, . . . ,

q−1
t − 1

}
. Let

s ≡ −

(
d
t

)−1 αn+1

t

(
mod q−1

t

)
such that s ∈

{
0,1, . . . ,

q−1
t −1

}
. Then s runs around

{
0,1, . . . ,

q−1
t −1

}
as αn+1

t does.
We now express the conditions on α in terms of s. Firstly,

d α j ≡ −h j αn+1 (mod q − 1) =⇒
d
t

α j ≡ −h j
αn+1

t

(
mod q−1

t

)
=⇒ α j ≡ h j s

(
mod q−1

t

)
.

So α j = h j s + w j
q−1

t for w j ∈ {0, 1, . . . , t − 1}, for j ∈ {1, 2, . . . , n}. Also,

(4-2) αn+1

t
≡ −

(
d
t

)
s

(
mod q−1

t

)
=⇒ αn+1 ≡ −ds (mod q − 1).

Using the fact that
∑n

i= j h j = d , it is easy to see that

(4-3)
n∑

j=1

w j =

n∑
j=1

t
q−1

(α j − h j s) =
t

q−1

( n∑
j=1

α j − ds
)

.

Combining (4-2) and (4-3) we get that

n∑
j=1

w j ≡ 0 (mod t) ⇐⇒

n+1∑
i=1

αi ≡ 0 (mod q − 1).

Substituting for α, (4-1) becomes

(4-4) N A,∗
q (Dd,λ,h) =

1
q
[(q − 1)n

+ (−1)n+1
]

−

∑
s,w

T ds(−dλ)J (T w1
q−1

t +h1s, . . . , T wn
q−1

t +hns, T −ds),

where the sum is over all s ∈
{
0, 1, . . . ,

q−1
t −1

}
and all w= (w1, w2, . . . , wn), such

that 0 ≤wi < t and
∑n

i=1 wi ≡ 0 (mod t), and such that not all of s, w1, w2, . . . , wn

are zero.
As

∑n
i=1 wi

q−1
t + hi s − ds ≡ 0 (mod q − 1), by Proposition 3.2 we have

J (T w1
q−1

t +h1s,...,T wn
q−1

t +hns,T −ds)=−J (T w1
q−1

t +h1s,...,T wn
q−1

t +hns)T −ds(−1),

and by Proposition 3.3 we have

J (T 0,T 0,...,T 0︸ ︷︷ ︸
n times

) =
1
q
[(q − 1)n

+ (−1)n+1
],

completing the proof. □
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Proof of Theorem 2.1. We follow Koblitz [1983, Theorem 2] and note that

(4-5) Nq(Dd,λ,h) − N ∗

q (Dd,λ,h) = Nq(Dd,0,h) − N ∗

q (Dd,0,h).

We know

(4-6) Nq(Dd,0,h)=
N A

q (Dd)−1

q −1
=

qn−1
−1

q −1
−

∑
w∗

J (T w1
q−1

t ,T w2
q−1

t ,...,T wn
q−1

t )

by Weil’s result, Theorem 3.7 above;

N ∗

q (Dd,λ,h) =
1

q − 1

∑
s,w

J (T w1
q−1

t +h1s, T w2
q−1

t +h2s, . . . , T wn
q−1

t +hns) T ds(dλ)

when λ ̸= 0, by Corollary 3.10; and

N ∗

q (Dd,0,h) = N ∗

q (Dd) =
1

q − 1

∑
w

J0(T w1
q−1

t , T w2
q−1

t , . . . , T wn
q−1

t )

by Theorem 3.8.
Using Propositions 3.1, 3.3 and 3.4, we get that for λ ̸= 0,

(4-7) (q−1)
(
N ∗

q (Dd,λ,h)−N ∗

q (Dd,0,h)
)

=

∑
s,w
s ̸=0

J (T w1
q−1

t +h1s,T w2
q−1

t +h2s,...,T wn
q−1

t +hns)T ds(dλ)

+

∑
w

J (T w1
q−1

t ,T w2
q−1

t ,...,T wn
q−1

t )−
∑
w

J0(T w1
q−1

t ,T w2
q−1

t ,...,T wn
q−1

t )

=

∑
s,w
s ̸=0

J (T w1
q−1

t +h1s,T w2
q−1

t +h2s,...,T wn
q−1

t +hns)T ds(dλ)

+q
∑
w

w ̸=0

J (T w1
q−1

t ,T w2
q−1

t ,...,T wn
q−1

t )+q J (ε,ε,...,ε)−(q−1)n

=

∑
s,w
s ̸=0

J (T w1
q−1

t +h1s,T w2
q−1

t +h2s,...,T wn
q−1

t +hns)T ds(dλ)

+q
∑
w

w ̸=0

J (T w1
q−1

t ,T w2
q−1

t ,...,T wn
q−1

t )+(−1)n+1

=

∑
s,w

g(T w1
q−1

t +h1s)g(T w2
q−1

t +h2s)...g(T wn
q−1

t +hns)

g(T ds)
T ds(dλ).

Combining (4-5), (4-6) and (4-7), which trivially hold for λ = 0 also, yields
the result. □
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Proof of Corollary 2.2. Applying (3-1) and Proposition 3.4 to Theorem 2.1 we
get that

Nq(Dd,λ,h)

=
qn−1

− 1
q − 1

+
1
q

∑
w∗

n∏
i=1

g(T wi
q−1

t ) −
1

q − 1

∑
w

n∏
i=1

g(T wi
q−1

t )

+
1

q(q − 1)

∑
s,w
s ̸=0

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ)

=
qn−1

− 1
q − 1

+
1
q

∑
w∗

n∏
i=1

g(T wi
q−1

t ) −
1

q − 1

∑
w

n∏
i=1

g(T wi
q−1

t )

(
1 −

1
q

)

+
1

q(q − 1)

∑
s,w

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ)

=
qn−1

− 1
q − 1

−
1
q

∑
w

some wi = 0

n∏
i=1

g(T wi
q−1

t )

+
1

q(q − 1)

∑
s,w

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ),

where the last sum is over all s ∈
{
0,1,...,

q−1
t −1

}
and all w = (w1,w2,...,wn)∈ W,

as required. To get the alternative summation limits, we note that

(4-8)

q−1
t −1∑
s=0

∑
w∈W

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ)

=

q−1
t −1∑
s=0

t−1∑
j=0

∑
[w]∈W/∼

g(T (wi + jhi )
q−1

t +hi s)g(T −ds) T ds(−dλ)

=

q−1
t −1∑
s=0

t−1∑
j=0

∑
[w]∈W/∼

g(T wi
q−1

t +hi (s+ j q−1
t ))g(T −ds) T ds(−dλ)

=

q−2∑
s=0

∑
[w]∈W/∼

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ).

This sum is independent of the choice of equivalence class representatives [w], as
changing representative can be countered by a simple change of variable in s. □
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Proof of Corollary 2.7. We start from Corollary 2.2 with h = (1, 1, . . . , 1) and
d = n, and rewrite using the notation described in Section 2, i.e.,

(4-9) Nq(Dλ) =
qn−1

− 1
q − 1

−
1
q

∑
w∈W
0∈Sc

w

∏
k∈Sc

w

g(T k q−1
t )nk

+
1

q(q − 1)

∑
s,w

∏
k∈Sc

w

g(T k q−1
t +s)nk g(T −ns) T ns(−nλ),

where t = gcd(n, q − 1), and the second sum is over all s ∈
{
0, 1, . . . ,

q−1
t − 1

}
and all w ∈ W . We proceed in the same fashion as the proof of Theorem 2.2 in
[McCarthy 2017]. By (3-1) it is easy to see that

(4-10)
∑
w

0∈Sc
w

∏
k∈Sc

w

g(T k q−1
t )nk =

∑
w

0∈Sc
w

[ ∏
k∈Sc

w

g(T k q−1
t )nk−1

g(T −k q−1
t )

][ ∏
k∈Sc

w\{0}

T k q−1
t (−1)q

]
.

We now focus on the second sum in (4-9). If T k q−1
t +s

= ε then k q−1
t + s ≡

0 (mod q − 1), which can only happen if s ≡ 0
(
mod q−1

t

)
, in which case s = 0.

So, if s ̸= 0 then T k q−1
t +s

̸= ε. Again using (3-1), we see that, for λ ̸= 0,

(4-11)
∑
w∈W

q−1
t∑

s=0

∏
k∈Sc

w

g(T k q−1
t +s)nk g(T −ns)T ns(−nλ)

=

∑
w∈W

q−1
t∑

s=1

[ ∏
k∈Sc

w

g(T k q−1
t +s)nk−1

g(T −k q−1
t −s)

T k q−1
t +s(−1)q

]
g(T −ns)T ns(−nλ)

−

∑
w∈W

[ ∏
k∈Sc

w

g(T k q−1
t )nk−1

g(T −k q−1
t )

][ ∏
k∈Sc

w\{0}

T k q−1
t (−1)q

]

=

∑
w∈W

q−1
t∑

s=0

[ ∏
k∈Sc

w

g(T k q−1
t +s)nk−1

g(T −k q−1
t −s)

T k q−1
t +s(−1)q

]
g(T −ns)T ns(−nλ)

+

∑
w∈W

[ ∏
k∈Sc

w

g(T k q−1
t )nk−1

g(T −k q−1
t )

][ ∏
k∈Sc

w

T k q−1
t (−1)q−

∏
k∈Sc

w\{0}

T k q−1
t (−1)q

]

=

∑
w∈W

q−1
t∑

s=0

[ ∏
k∈Sc

w

g(T k q−1
t +s)nk−1

g(T −k q−1
t −s)

T k q−1
t +s(−1)q

]
g(T −ns)T ns(−nλ)

+(q−1)
∑
w

0∈Sc
w

[ ∏
k∈Sc

w

g(T k q−1
t )nk−1

g(T −k q−1
t )

][ ∏
k∈Sc

w\{0}

T k q−1
t (−1)q

]
.
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Accounting for (4-10) and (4-11) in (4-9) yields

Nq(Dλ) =
qn−1

−1
q−1

+
1

q(q−1)

∑
w∈W

q−1
t∑

s=0

[ ∏
k∈Sc

w

g(T k q−1
t +s)nk−1

g(T −k q−1
t −s)

T k q−1
t +s(−1)q

]
g(T −ns)T ns(−nλ).

To get the alternative summation limit, proceed in the same manner as in (4-8). □

Proof of Theorem 2.4. We start from Corollary 2.2, which we rewrite as

(4-12) Nq(Dd,λ,h)=
qn−1

−1
q−1

−
1
q

∑
w∈W

some wi = 0

n∏
i=1

g(T wi
q−1

t )+
1

q(q−1)

∑
[w]∈W/∼

R[w],

where

R[w] :=

q−2∑
s=0

n∏
i=1

g(T wi
q−1

t +hi s)g(T −ds) T ds(−dλ).

We note R[w] is independent of the choice of equivalence class representative.
We now let T = ω and apply the Gross–Koblitz formula, Theorem 3.6, to both

summands in (4-12). From the first summand we get that

(4-13)
n∏

i=1

g(T wi
q−1

t ) = (−1)n(−p)
∑n

i=1
∑r−1

a=0

〈(wi
t

)
pa

〉 n∏
i=1

r−1∏
a=0

0p
(〈(wi

t
)

pa 〉)
= (−1)n C(w).

The second, R[w], yields

(4-14) R[w] = (−1)n+1
q−2∑
s=0

[ r−1∏
a=0

n∏
i=1

0p
(〈(wi

t +
hi s

q−1
)

pa 〉)][ r−1∏
a=0

0p
(〈(

−ds
q−1

)
pa 〉)]

× (−p)v ωds(−dλ),

where

v =

r−1∑
a=0

n∑
i=1

〈(wi
t +

hi s
q−1

)
pa 〉

+

r−1∑
a=0

〈(
−ds
q−1

)
pa 〉

=

r−1∑
a=0

n∑
i=1

(wi
t +

hi s
q−1

)
pa

+

r−1∑
a=0

(
−ds
q−1

)
pa

−

r−1∑
a=0

n∑
i=1

⌊(wi
t +

hi s
q−1

)
pa⌋

−

r−1∑
a=0

⌊(
−ds
q−1

)
pa⌋

=

r−1∑
a=0

n∑
i=1

(wi
t

)
pa

−

r−1∑
a=0

n∑
i=1

⌊(wi
t +

hi s
q−1

)
pa⌋

−

r−1∑
a=0

⌊
(−ds

q−1)pa⌋
∈Z

as
∑n

i=1 hi = d and
∑n

i=1 wi ≡ 0 (mod t).



DIAGONAL HYPERSURFACES WITH MONOMIAL DEFORMATION 353

We will now use Theorem 3.5 to expand the terms involving the p-adic gamma
function in (4-14). Let k ∈ Z such that

k ≤
wi
t +

hi s
q−1 < k + 1.

Then 0 ≤ x :=
wi
t +

hi s
q−1 −k < 1 and (q −1)x ∈ Z. So, by Theorem 3.5, with h = hi

and p ∤ hi ,

r−1∏
a=0

hi −1∏
b=0

0p
(〈( wi

thi
+

s
q−1 +

b−k
hi

)
pa 〉)

= ω(h
wi

q−1
t +hi s

i )

r−1∏
a=0

0p
(〈(wi

t +
hi s

q−1
)

pa 〉) hi −1∏
b=1

0p
(〈( b

hi

)
pa 〉).

As {b | b = 0, 1, . . . , hi − 1} ≡ {b − k | b = 0, 1, . . . , hi − 1} (mod hi ) we have

(4-15)
r−1∏
a=0

hi −1∏
b=0

0p
(〈( wi

thi
+

s
q−1 +

b
hi

)
pa 〉)

= ω(h
wi

q−1
t +hi s

i )

r−1∏
a=0

0p
(〈(wi

t +
hi s

q−1
)

pa 〉) hi −1∏
b=1

0p
(〈( b

hi

)
pa 〉).

Similarly, with k ∈ Z chosen such that 0 ≤ x :=
wi
t − k < 1, we apply Theorem 3.5

to get that

(4-16)
r−1∏
a=0

hi −1∏
b=0

0p
(〈( wi

thi
+

b
hi

)
pa 〉)
= ω

(
h

wi
q−1

t
i

) r−1∏
a=0

0p
(〈(wi

t
)

pa 〉) hi −1∏
b=1

0p
(〈( b

hi

)
pa 〉).

Combining (4-15) and (4-16) we have, for p ∤ hi ,

(4-17)
r−1∏
a=0

0p
(〈(wi

t +
hi s

q−1
)

pa 〉)
=

r−1∏
a=0

hi −1∏
b=0

0p
(〈( wi

thi
+

s
q−1 +

b
hi

)
pa

〉)
0p

(〈( wi
thi

+
b
hi

)
pa

〉) r−1∏
a=0

0p
(〈(wi

t
)

pa 〉) ωs(hhi
i ).

A final application of Theorem 3.5, this time with k ∈Z such that 0≤ x :=k−
ds

q−1 <1
and p ∤ d , we get, after some simplification, that

(4-18)
r−1∏
a=0

0p
(〈(

−ds
q−1

)
pa 〉)

=

r−1∏
a=0

d−1∏
b=0

0p
(〈(

−b
d −

s
q−1

)
pa

〉)
0p

(〈(
−b
d

)
pa

〉) ωs(d−d).
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Accounting for (4-17) and (4-18) in (4-14) and making the change of variable
s → (q − 1) − s we get that

(4-19) R[w] = (−1)n+1
n∏

i=1

r−1∏
a=0

0p
(〈(wi

t
)

pa 〉) q−2∑
s=0

(−1)sd

×

[ n∏
i=1

hi −1∏
b=0

r−1∏
a=0

0p
(〈( wi

thi
+

b
hi

−
s

q−1
)

pa
〉)

0p
(〈( wi

thi
+

b
hi

)
pa

〉) ]

×

[ d−1∏
b=0

r−1∏
a=0

0p
(〈(

−b
d +

s
q−1

)
pa

〉)
0p

(〈(
−b
d

)
pa

〉) ]
(−p)y ωs

([
λd

n∏
i=1

hhi
i

]−1)
,

where

y =

r−1∑
a=0

n∑
i=1

(wi
t

)
pa

−

r−1∑
a=0

n∑
i=1

⌊(wi
t −

hi s
q−1

)
pa⌋

−

r−1∑
a=0

⌊( ds
q−1

)
pa⌋,

and we have used the fact that ω(−1) = −1. Let

z := −

[ n∑
i=1

r−1∑
a=0

hi −1∑
b=0

⌊〈( wi
thi

+
b
hi

)
pa 〉

−
spa

q−1
⌋

+

r−1∑
a=0

d−1∑
b=0

⌊〈(
−b
d

)
pa 〉

+
spa

q−1
⌋]

.

Using the fact that ⌊mx⌋ =
∑m−1

b=0
⌊

x +
b
m

⌋
we get that

y − z =

r−1∑
a=0

n∑
i=1

(wi
t

)
pa

−

r−1∑
a=0

n∑
i=1

hi −1∑
b=0

⌊( wi
thi

−
s

q−1
)

pa
+

b
hi

⌋
−

r−1∑
a=0

d−1∑
b=0

⌊ spa

q−1 +
b
d
⌋

+

n∑
i=1

r−1∑
a=0

hi −1∑
b=0

⌊〈( wi
thi

+
b
hi

)
pa 〉

−
spa

q−1
⌋

+

r−1∑
a=0

d−1∑
b=0

⌊〈(
−b
d

)
pa 〉

+
spa

q−1
⌋

As gcd(p, d) = 1, {b | b = 0, 1, . . . , d − 1} ≡ {bpa
| b = 0, 1, . . . , d − 1} (mod d)

and so
d−1∑
b=0

⌊〈(
−b
d

)
pa 〉

+
spa

q−1
⌋

=

d−1∑
b=0

⌊〈( b
d
)

pa 〉
+

spa

q−1
⌋

=

d−1∑
b=0

⌊〈 b
d
〉
+

spa

q−1
⌋

=

d−1∑
b=0

⌊ b
d +

spa

q−1
⌋
.

Similarly, as gcd(p, hi ) = 1,

hi −1∑
b=0

⌊〈( wi
thi

+
b
hi

)
pa 〉

−
spa

q−1
⌋

=

hi −1∑
b=0

⌊〈( wi
thi

)
pa

+
b
hi

〉
−

spa

q−1
⌋

=

hi −1∑
b=0

⌊( wi
thi

)
pa

+
b
hi

−
⌊( wi

thi

)
pa

+
b
hi

⌋
−

spa

q−1
⌋
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=

hi −1∑
b=0

⌊( wi
thi

−
s

q−1
)

pa
+

b
hi

⌋
−

hi −1∑
b=0

⌊( wi
thi

)
pa

+
b
hi

⌋
=

hi −1∑
b=0

⌊( wi
thi

−
s

q−1
)

pa
+

b
hi

⌋
−

⌊(wi
t

)
pa⌋.

So

y − z =

r−1∑
a=0

n∑
i=1

(wi
t

)
pa

−

r−1∑
a=0

n∑
i=1

⌊(wi
t

)
pa⌋

=

r−1∑
a=0

n∑
i=1

〈(wi
t

)
pa 〉.

Thus

(4-20)
1

q−1
R[w] = (−1)nC(w)

×
−1

q−1

q−2∑
s=0

(−1)sd
[ n∏

i=1

hi −1∏
b=0

r−1∏
a=0

0p
(〈(

wi
thi

+
b
hi

−
s

q−1

)
pa

〉)
0p

(〈(
wi
thi

+
b
hi

)
pa

〉) ]

×

[ d−1∏
b=0

r−1∏
a=0

0p
(〈(

−b
d +

s
q−1

)
pa

〉)
0p

(〈(
−b
d

)
pa

〉) ]
(−p)z ωs

([
λd

n∏
i=1

hhi
i

]−1)

= (−1)nC(w) d Gd

[
· · · · · ·

wi
thi

+
b
hi

· · · · · ·

1 1
d

2
d · · ·

d−1
d

∣∣∣ (λdhh1
1 · · ·hhn

n )−1
]

q
.

Substituting for (4-13) and (4-20) in (4-12), we get the required result. □

Proof of Corollary 2.5. In Theorem 2.4, we make the change of variables w →

−w (mod t), which is a bijection on W/ ∼, and s → (q − 1)− s in the expansion
of d Gd by definition. □

Proof of Corollary 2.6. If t = gcd(d, q − 1) = 1 then w = (0, 0, . . . , 0) is the only
element in W and C(0) = 1. So, by Corollary 2.5

Nq(Dd,λ,h) =
qn−1

−1
q−1

+
(−1)n

q

(
−1+d Gd

[ 0 1
d

2
d · · ·

d−1
d

· · · · · ·
bi
hi

· · · · · ·

∣∣∣∣ λdhh1
1 · · ·hhn

n

]
q

)
.

The first bottom line parameter in d Gd is 0
h1

= 0. We will “cancel” the zero from
both top and bottom to get the required d−1Gd−1. From Definition 2.3 we see that
the contribution to the summand of the top and bottom line zero is

r−1∏
k=0

0p
(〈(

0 −
s

q−1

)
pk

〉)
0p(⟨0pk⟩)

0p
(〈(

0 +
s

q−1

)
pk

〉)
0p(⟨0pk⟩)

(−p)
−
⌊
⟨0pk

⟩−
spk
q−1

⌋
−
⌊
⟨0pk

⟩+
spk
q−1

⌋
which, by Theorem 3.6 and (3-1), equals

g(ω−s)g(ωs) =

{
ωs(−1) q if s ̸= 0,

1 if s = 0.
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We also note that when s = 0 the summand in Definition 2.3 equals 1. Therefore,

d Gd

[
0, a2, . . . , an

0, b2, . . . , bn

∣∣∣∣ λ

]
q

= 1 + q · d−1Gd−1

[
a2, . . . , an

b2, . . . , bn

∣∣∣∣ λ

]
q

as required. □

Proof of Theorem 2.8. We start from Corollary 2.7 and proceed in the same fashion
as the second half of the proof of Theorem 2.2 in [McCarthy 2017]. We let T = ω

and apply the Gross–Koblitz formula, Theorem 3.6, to get

(4-21) Nq(Dλ) =
qn−1

− 1
q − 1

+
1

q(q − 1)

∑
[w]∈W/∼1

R[w],

where

R[w] =

q−2∑
s=0

(−1)n+1(−p)v ωns(−nλ)

r−1∏
a=0

0p
(〈(

−ns
q−1

)
pa 〉)

×

∏
k∈Sc

w

ω(−1)k q−1
t +s q

r−1∏
a=0

0p
(〈( k

t +
s

q−1
)

pa
〉)nk−1

0p
(〈(

−k
t −

s
q−1

)
pa

〉)
with

v =

∑
k∈Sc

w

nkk
t

r−1∑
a=0

pa
−

∑
k∈Sc

w

(nk − 1)

r−1∑
a=0

⌊( k
t +

s
q−1

)
pa⌋

+

∑
k∈Sc

w

r−1∑
a=0

⌊(
−

k
t −

s
q−1

)
pa⌋

−

r−1∑
a=0

⌊(
−ns
q−1

)
pa⌋.

As p ∤ n we derive from (4-18) that

r−1∏
a=0

0p
(〈(

−ns
q−1

)
pa 〉)

=

r−1∏
a=0

t−1∏
k=0

0p
(〈( k

t −
s

q−1
)

pa
〉) n−1∏

b=0
b ̸≡0 (mod n

t )

0p
(〈(b

n −
s

q−1
)

pa
〉)

n−1∏
b=0

0p
(〈(b

n
)

pa
〉) ωs(n−n).
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So, after some manipulation,

(4-22) R[w] = (−1)n+1
q−2∑
s=0

(−p)v ωns(−λ)

[ ∏
k∈Sw

r−1∏
a=0

0p
(〈( t−k

t −
s

q−1
)

pa
〉)

0p
(〈 t−k

t pa
〉) ]

×

[ n−1∏
b=0

b ̸≡0 (mod n
t )

r−1∏
a=0

0p
(〈(b

n −
s

q−1
)

pa
〉)

0p
(〈b

n pa
〉) ]

×

[ ∏
k∈Sc

w

r−1∏
a=0

0p
(〈(

−
t−k

t +
s

q−1
)

pa
〉)nk−1

0p
(〈
−

t−k
t pa

〉)nk−1

]
F[w],

where

F[w] :=

[ ∏
k∈Sc

w

r−1∏
a=0

0p
(〈(

−k
t

)
pa 〉)]−1[ ∏

k∈Sc
w

r−1∏
a=0

0p
(〈 k

t pa 〉)nk−1
][ ∏

k∈Sc
w

ω(−1)k q−1
t +s q

]
.

Applying the Gross–Koblitz formula, Theorem 3.6, in reverse and (3-1) we get that∏
k∈Sc

w

r−1∏
a=0

0p
(〈(

−k
t

)
pa 〉)0p

(〈 k
t pa 〉)
=

∏
k∈Sc

w

g(ω−k q−1
t )g(ωk q−1

t )(−p)
−

∑r−1
a=0

〈(
−k
t

)
pa

〉
+
〈( k

t

)
pa

〉
= (−1)r |Sc

w\{0}|
∏

k∈Sc
w

ω(−1)k q−1
t .

Thus

(4-23) F[w] = (−1)r |Sc
w\{0}| q |Sc

w| ω(−1)s|Sc
w|

∏
k∈Sc

w

r−1∏
a=0

0p
(〈 k

t pa 〉)nk
.

If we let

−z =

∑
k∈Sc

w

(nk − 1)

r−1∑
a=0

⌊〈
−

t−k
t pa 〉

+
spa

q−1
⌋

+

∑
k∈Sw

r−1∑
a=0

⌊〈 t−k
t pa 〉

−
spa

q−1
⌋

+

n−1∑
b=0

b ̸≡0 (mod n
t )

⌊〈b
n pa 〉

−
spa

q−1
⌋
,

then, after a lengthy but straightforward calculation, we find that

(4-24) v − z = −r |Sc
w \ {0}| +

n∑
i=1

r−1∑
a=0

〈wi
t pa 〉.

Accounting for (4-23) and (4-24) in (4-22), and then (4-21), yields the result. □
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5. Concluding remarks

When d | q − 1 it is possible express the results of Koblitz, and those in this paper, in
terms of hypergeometric functions over finite fields, as defined in [Greene 1987], or
using a normalized version defined in [McCarthy 2012]. For example, see [Goodson
2017a; McCarthy 2017; Nakagawa 2021] for related results. To extend these results
beyond q ≡ 1 (mod d) it is necessary to move to the p-adic setting as we have done
in this paper. Other results where the p-adic hypergeometric function, mGm , is
used to count points on certain hypersurfaces, which are special cases of the results
in this paper, can be found in [Barman et al. 2016; Goodson 2017b].
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DEFORMATION OF PAIRS AND SEMIREGULARITY

TAKEO NISHINOU

We study relative deformation of a map into a Kähler manifold whose image
is a divisor. We show that if the map satisfies a condition called semiregularity,
then it allows relative deformations if and only if the cycle class of the
image remains Hodge in the family. This gives a refinement of the so-called
variational Hodge conjecture. We also show that the semiregularity of maps
is related to classical notions such as Cayley–Bacharach conditions and
d-semistability.

1. Introduction

Let π : X → D be a deformation of a compact Kähler manifold X0 of dimension
n ≥ 2 over a disk D in the complex plane. Let C0 be a compact reduced curve
(when n = 2) or a compact smooth complex manifold of dimension n − 1 (when
n > 2). Let ϕ0 : C0 → X0 be a map which is an immersion, that is, for any p ∈ C0,
there is an open neighborhood p ∈ Vp ⊂ C0 such that ϕ0|Vp is an embedding. Then,
the image of ϕ0 determines an integral cohomology class [ϕ0(C0)] of type (1, 1),
that is, a Hodge class which is the Poincaré dual of the cycle ϕ0(C0). Note that the
class [ϕ0(C0)] naturally determines an integral cohomology class of each fiber of π .
Therefore, it makes sense to ask whether this class remains Hodge in these fibers
or not. Clearly, the condition that the class [ϕ0(C0)] remains Hodge is necessary
for the existence of deformations of the map ϕ0 to other fibers.

The notion of semiregularity plays a role in this context, though it was intro-
duced [21] and developed [16] originally for submanifolds of codimension one in a
fixed complex manifold. The main result of these studies is that if a submanifold
of codimension one is semiregular, then the obstruction to deforming it in the
ambient manifold vanishes. Bloch [5] generalized the notion of semiregularity to
subvarieties of any codimension in a projective manifold which are local complete
intersection. He generalized the results of [16; 21] to this case, and also related the
notion of semiregularity to deformation of pairs. Namely, he proved that if C0 is
a subvariety of a projective manifold X0 which is local complete intersection and
semiregular, and if the class [C0] remains Hodge in an algebraic family X → C
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whose central fiber is X0, then there is a deformation of C0 relative to the base. In
other words, a local complete intersection subvariety which is semiregular satisfies
the variational Hodge conjecture. More precisely, the variational Hodge conjecture
asks the existence of a family of cycles of the class [C0] which need not restrict
to C0 on the central fiber. Therefore, Bloch’s theorem in fact shows that the
semiregularity gives a result stronger than the variational Hodge conjecture. We
also note that Ran [20] generalized Bloch’s result to cases where a weaker version
of semiregularity holds. However, although Bloch’s and Ran’s theorems guarantee
the existence of a relative deformation of a cycle on the central fiber X0, it gives
little control of the geometry of the deformed cycle.

More recently, the notion of semiregularity has been generalized to maps between
varieties [6; 11]. In [11], maps between compact Kähler manifolds were investigated,
and it was shown that if the map is semiregular, then it deforms in a fixed target
manifold. In [6], the notion of semiregularity was generalized to a very broad
context using cotangent complexes, and many known results were generalized. The
case of maps was also considered (see [6, Theorem 7.23]), but not in the context
of the variational Hodge conjecture as we will do. See also [2; 3; 12; 17; 19] for
recent developments related to semiregularity.

Our purpose is to show that the semiregularity in fact suffices to control the
geometry of the deformed cycles when the cycle is of codimension one, and also
that we can extend the result to maps to a family of Kähler manifolds. Recall that
ϕ0 : C0 → X0 is an immersion where dim C0 = dim X0 − 1.

Theorem 1. Assume that the map ϕ0 is semiregular in the sense of Definition 4. If
the class [ϕ0(C0)] remains Hodge, then the map ϕ0 deforms to other fibers.

For example, if the image ϕ0(C0) has normal crossing singularity, then there is
a natural map ϕ̃0 : C̃0 → X0, where C̃0 is the normalization of C0 (when n > 2,
C0 = C̃0). Then, if ϕ̃0 is semiregular, Theorem 1 implies that it deforms to a general
fiber and the singularity of the image remains the same (e.g., it gives a relative
equigeneric deformation when n = 2).

On the other hand, if the image ϕ0(C0) has normal crossing singularity, the
semiregularity turns out to be related to some classical notions appeared in different
contexts. Namely, we will prove the following (see Corollary 17).

Theorem 2. Assume that the subvariety ϕ0(C0) is semiregular in the classical sense.
That is, the inclusion of ϕ0(C0) into X0 is semiregular in the sense of Definition 4.
Then, if the map H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S) is surjective, the map ϕ0 is
semiregular. In particular, if the class [ϕ0(C0)] remains Hodge on the fibers of X,
the map ϕ0 can be deformed to general fibers of X.

Here, Nι is the normal sheaf of ϕ0(C0) in X0 and S is the infinitesimal normal
sheaf of the variety ϕ0(C0), see Section 6 for the definition. A variety with normal
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crossing singularity is called d-semistable if the infinitesimal normal sheaf is trivial,
see [8]. The notion of d-semistability is known to be related to the existence of
log-smooth deformations (see [13; 14]). By the above theorem, it turns out that it
is also related to deformations of pairs, see Corollary 19.

In the case where n = 2, if X0 is a K3 surface, any immersion ϕ0 is semiregular,
and Theorem 1 can be applied to any such ϕ0. This result is well known and was
proved, for example, using the twistor family associated with the hyperkähler
structure of K3 surfaces. Theorem 1 gives a generalization of it to general surfaces.
In general, we need to check whether a given map ϕ0 is semiregular or not. For
that purpose, Theorem 31 in [18] combined with Theorem 1 above implies the
following. Let ϕ0 : C0 → X0 be an immersion such that the image ϕ0(C0) is a
reduced nodal curve. Let p : C0 → ϕ0(C0) be the natural map (which is a partial
normalization of ϕ0(C0)) and P = {pi } be the set of nodes of ϕ0(C0) whose inverse
image by p consists of two points.

Theorem 3. Assume that ϕ0(C0) is semiregular in the classical sense and the class
[ϕ0(C0)] remains Hodge on the fibers of X. Then, the map ϕ0 deforms to general
fibers of X if for each pi ∈ P , there is a first-order deformation of ϕ0(C0) which
smooths pi , but does not smooth the other nodes of P. □

The condition in Theorem 20 is related (in a sense opposite) to the classical
Cayley–Bacharach condition, see [4], which requires that if a first-order deformation
does not smooth the nodes P \ {pi }, then it does not smooth pi , either. Using this,
we can also deduce a geometric criterion for the existence of deformations of pairs,
see Corollary 21.

Notation. We will work in the complex analytic category. Later in the paper, we
will study nonconstant maps ϕ0 :C0 → X0 from a variety C0 to a Kähler manifold X0

and their deformations. We denote by X a family of compact Kähler manifolds over
a disk D ⊂ C whose central fiber is X0. A deformation of ϕ0 over Spec C[t]/tk+1

will be written as ϕk : Ck → Xk =X×D Spec C[t]/tk+1. By the image of a map ϕ0

or ϕk , we mean the analytic locally ringed space with the annihilator structure,
see [9, Chapter I, Definition 1.45]. That is, if U is an open subset of Ck with the
induced structure of an analytic locally ringed space, and V is an open subset of Xk

such that ϕk(U ) is closed in V , we associate the structure sheaf

OV /AnnOV ((ϕk)∗OU )

to the image ϕk(U ).

2. Semiregularity for local embeddings

Let n and p be positive integers with p < n. Let M be a complex variety (not
necessarily smooth or reduced) of dimension n − p and X a compact Kähler
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manifold of dimension n. Let ϕ : M → X be a map which is an immersion, that
is, for any p ∈ M , there is an open neighborhood p ∈ Up ⊂ M such that ϕ|Up is
an embedding. We assume that the image is a local complete intersection. Then,
the normal sheaf Nϕ is locally free of rank p. Define the locally free sheaves Kϕ

and ωM on M by

Kϕ = ∧
pN∨

ϕ and ωM = K∨

ϕ ⊗ ϕ∗KX ,

where KX is the canonical sheaf of X .
When ϕ is an inclusion, the natural inclusion

ε : N∨

ϕ → ϕ∗�1
X

gives rise to an element

∧
p−1ε ∈ HomOM (∧p−1N∨

ϕ , ϕ∗�
p−1
X ) = 0

(
M, (ϕ∗�

n−p+1
X )∨⊗ϕ∗KX ⊗K∨

ϕ ⊗N∨

ϕ

)
= HomOX (�

n−p+1
X , ωM ⊗N∨

ϕ ).

This induces a map on cohomology:

∧
p−1ε : H n−p−1(X, �

n−p+1
X ) → H n−p−1(M, ωM ⊗N∨

ϕ ).

When ϕ is not an inclusion, then 0
(
M, (ϕ∗�

n−p+1
X )∨ ⊗ ϕ∗KX ⊗K∨

ϕ ⊗N∨
ϕ

)
is not

necessarily isomorphic to HomOX (�
n−p+1
X , ωM ⊗N∨

ϕ ), but the map

∧
p−1ε : H n−p−1(X, �

n−p+1
X ) → H n−p−1(M, ωM ⊗N∨

ϕ )

is still defined.

Definition 4. We call ϕ semiregular if the natural map ∧
p−1ε is surjective.

In this paper, we are interested in the case where p = 1 and M is reduced when
n = 2, and M is smooth when n > 2. In this case, we have ωM ⊗N∨

ϕ
∼= ϕ∗KX and

the map ∧
p−1ε will be

H n−2(X,KX ) → H n−2(M, ϕ∗KX ).

Remark 5. As we mentioned in the introduction, in [6; 11], Buchweitz–Flenner
and Iacono also considered semiregularity of maps between varieties in broader
contexts. In the case of maps we consider in this paper, their definitions coincide
with ours.

3. Local calculation

Let π : X → D be a deformation of a compact Kähler manifold X0 of dimension
n ≥ 2. Here, D is a disk on the complex plane centered at the origin. Let

{(Ui , (xi,1, . . . , xi,n)}
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be a coordinate system of X0. Taking D small enough, the sets

{Ui = Ui × D, (xi,1, . . . , xi,n, t)}

gives a coordinate system of X. Precisely, we fix an isomorphism between Ui and a
suitable open subset of X which is compatible with π and the inclusion Ui → X0.
Here, t is a coordinate on D pulled back to Ui . The functions xi,l are also pulled
back to Ui from Ui by the natural projection.

Take coordinate neighborhoods Ui ,U j and Uk . On the intersections of these
open subsets, the coordinate functions on one of them can be written in terms of
those on another. Namely, on Ui ∩ U j , xi,l can be written as xi,l(xj , t), here we
write

xj = (xj,1, . . . , xj,n).

Similarly, on U j ∩Uk , we have xj,l = xj,l(xk, t). Then, on Ui ∩U j ∩Uk , we have

xi,l = xi,l(xk, t) = xi,l(xj (xk, t), t).

For simplicity we often write xi,l(xk,t) as xi,l(xk) and xi,l(xj (xk,t),t) as xi,l(xj (xk)).
Let X t = π−1(t) be the fiber of the family π over t ∈ D. Assume that the map

ϕ0 : C0 → X0

exists from a variety C0 of dimension n − 1 to X0, which is an immersion.
We can take an open covering {Vi } of C0 such that the restriction of ϕ0 to Vi is

an embedding, the image ϕ0(Vi ) is contained in Ui and is defined by an equation
fi,0 = 0 for some holomorphic function fi,0. Moreover, we assume that if Vi ∩ Vj

is nonempty, we have

ϕ0(Vi ∪ Vj ) ∩ (Ui ∩ Uj ) = ϕ0(Vi ∩ Vj ).

Let Spec C[t]/tm+1 be the m-th order infinitesimal neighborhood of the origin
of D. Note that

{Ui,m = Ui ×D Spec C[t]/tm+1
}

gives a covering by coordinate neighborhoods of Xm = X×D Spec C[t]/tm+1. We
write by xi,l,m the restriction of xi,l to Ui,m . Let us write

xi,m = {xi,1,m, . . . , xi,n,m}.

Assume that we have constructed an m-th order deformation ϕm : Cm → Xm

of ϕ0. Here, m is a nonnegative integer and Cm is an m-th order deformation of C0.
Let Vi,m be the locally ringed space obtained by restricting the structure of a locally
ringed space on Cm to Vi .

Let { fi,m(xi,m, t)} be the set of local defining functions of ϕm(Vi,m) in Ui,m . We
will often write fi,m(xi,m, t) as fi,m(xi,m) for notational simplicity. In particular,
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on the intersection Ui,m ∩ U j,m , there is an invertible function gi j,m which satisfies

fi,m(xi,m(xj,m, t), t) = gi j,m(xj,m, t) f j,m(xj,m, t) mod tm+1.

Define a holomorphic function νi j,m on Ui,m ∩ U j,m by

tm+1 νi j,m(xj,m+1) = tm+1 νi j,m(xj,0)

= fi,m(xi,m+1(xj,m+1)) − gi j,m(xj,m+1) f j,m(xj,m+1),

which is an equality over C[t]/tm+2. Note that νi j,m can be regarded as a function
on Ui ∩ Uj .

Proposition 6. Assume that the intersection Ui ∩ Uj ∩ Uk is nonempty. Then, on
Ui ∩ Uj ∩ Uk ∩ ϕ0(Vi ), the following identities hold:

νik,m(xk,m+1) = νi j,m(xj,m+1(xk,m+1)) + gi j,0(xj,0(xk,0)) ν jk,m(xk,m+1)

and
νi j,m = −gi j,0 ν j i,m .

Remark 7. The equality

Ui ∩ Uj ∩ Uk ∩ ϕ0(Vi ) = Ui ∩ Uj ∩ Uk ∩ ϕ0(Vj ) = Ui ∩ Uj ∩ Uk ∩ ϕ0(Vk)

holds by the way we took {Vi }.

Proof. We have

xi,m+1(xk,m+1) ≡ xi,m+1(xj,m+1(xk,m+1)) mod tm+2,

on Ui,m+1 ∩ U j,m+1 ∩ Uk,m+1. Then,

tm+1 νik,m(xk,m+1)

= fi,m(xi,m+1(xk,m+1)) − gik,m(xk,m+1) fk,m(xk,m+1)

= fi,m
(
xi,m+1(xj,m+1(xk,m+1))

)
− gi j,m(xj,m+1(xk,m+1)) f j,m(xj,m+1(xk,m+1))

+ gi j,m(xj,m+1(xk,m+1)) f j,m(xj,m+1(xk,m+1)) − gik,m(xk,m+1) fk,m(xk,m+1)

= tm+1 νi j,m(xj,m+1(xk,m+1)) + gi j,m(xj,m+1(xk,m+1))( f j,m(xj,m+1(xk,m+1))

− g jk,m(xk,m+1) fk,m(xk,m+1))

+ gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) fk,m(xk,m+1)

− gik,m(xk,m+1) fk,m(xk,m+1)

= tm+1 νi j,m(xj,m+1(xk,m+1)) + tm+1gi j,m(xj,m+1(xk,m+1)) ν jk,m(xk,m+1)

+ (gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) − gik,m(xk,m+1)) fk,m(xk,m+1),

mod tm+2. Since

(gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1)−gik,m(xk,m+1)) fk,m(xk,m+1)≡0 mod tm+1,
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we have

gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) ≡ gik,m(xk,m+1) mod tm+1.

Therefore, we have

(gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) − gik,m(xk,m+1)) fk,m(xk,m+1)

≡ (gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) − gik,m(xk,m+1)) fk,0(xk,m+1) mod tm+2.

Since fk,0(xk) = 0 on the image of ϕ0|Vk , we have the first identity. The second
identity follows from this by taking k = i . □

Note that the pull back ϕ∗

0 |Vi ∩Vj gi j,0 of the set of functions {gi j,0} is the set of
transition functions for the normal sheaf of ϕ0. Thus, the proposition shows that
the pull back {ϕ∗

0 |Vi ∩Vj νi j,m+1} of the set of functions {νi j,m+1} behaves as a Čech
1-cocycle with values in the normal sheaf Nϕ0 of ϕ0. Then, the following is a
straightforward generalization of an argument in [16, Section 3], whose proof we
omit.

Lemma 8. The cohomology class of the cocycle {ϕ∗

0 |Vi ∩Vj νi j,m+1} represents the
obstruction to deforming ϕm one step further. □

The assumption that ϕ0 : C0 → X0 is an immersion and dim C0 = dim X0 − 1 is
crucial for this lemma. For simplicity, we will write {ϕ∗

0 |Vi ∩Vj νi j,m+1} as {νi j,m+1}

if no confusion would occur.

4. Explicit description of the Kodaira–Spencer class

Let π : X → D be a deformation of a compact Kähler manifold X0 as before. We
have the exact sequence

0 → π∗�1
D → �1

X → �1
X/D → 0

The Kodaira–Spencer class is, by definition, the corresponding class in

µ ∈ Ext1(�1
X/D, π∗�1

D).

Lemma 9. The class µ is represented by the Čech 1-cocycle

µi j =

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l dt.

Proof. See [10, Section II.1]. □

From now on, we drop dt from these expressions since it plays no role below.
Restricting this to a presentation over C[t]/tm+1, we obtain the Kodaira–Spencer
class for the deformation Xm+1 := X ×D Spec C[t]/tm+2. We denote this class
by µm .
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Assume that we have constructed an m-th order deformation ϕm : Cm → Xm

of ϕ0. Let Nm/D be the relative normal sheaf of ϕm and

pm : ϕ∗

mTXm/D → Nm/D

be the natural map, where TXm/D is the relative tangent sheaf of Xm . Pulling µm

back to Cm and taking the image by pm , we obtain a class µ̄m ∈ H 1(Cm,Nm/D).
As before, let { fi,m(xi,m, t)} be the set of local defining functions of ϕm(Vi,m)

on Ui,m .

Lemma 10. The class µ̄m is represented by the pull back of

ηi j,m =

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l fi,m(xi , t)

to Cm .

Proof. We check the cocycle condition. Namely, we have

ηik,m − ηi j,m − gi j,m η jk,m

=

n∑
l=1

∂xi,l(xk, t)
∂t

∂xi,l fi,m(xi , t) −

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l fi,m(xi , t)

− gi j,m

n∑
l=1

∂xj,l(xk, t)
∂t

∂xj,l f j,m(xi , t)

=

n∑
l=1

∂xi,l(xk, t)
∂t

∂xi,l fi,m(xi , t) −

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l fi,m(xj , t)

− gi j,m

n∑
l=1

∂xj,l(xk, t)
∂t

∂xj,l (g
−1
i j,m fi,m(xi (xj , t), t))

= (µik − µi j − µ jk) fi,m − gi j,m fi,m(xi (xj , t), t)
n∑

l=1

∂xj,l(xk, t)
∂t

∂xj,l (g
−1
i j,m).

Since µik − µi j − µ jk = 0 by the cocycle condition, and fi,m(xi (xj , t), t) is zero
on the image of ϕm , we see that ηik,m = ηi j,m + gi j,m η jk,m on Cm . Also, note that
gi j,m is the transition function of the normal sheaf Nm/D . Then, it is clear that ηi j,m

represents the class µ̄m . □

Recall that a complex analytic cycle of codimension r in a Kähler manifold
determines a cohomology class of type (r, r), which is the Poincaré dual of the
homology class of the cycle. Let ζC0 ∈ H 1(X0, �

1
X0/D) be the class corresponding

to the image of ϕ0. Note that since the family X is differential geometrically trivial,
the class ζC0 determines a cohomology class in H 2(X, C). We denote it by ζ̃C0 .
Then, we have:
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Lemma 11. When ϕ0 is semiregular, the class ζ̃C0 remains Hodge in Xm+1 if and
only if the class µ̄m is zero.

Proof. Since we are assuming we have constructed ϕm : Cm → Xm , the class ζ̃C0 is
Hodge on Xm . That is,

ζ̃C0 |Xm ∈ H 1(Xm, �1
Xm/D).

Bloch [5, Proposition 4.2] showed that ζ̃C0 remains Hodge on Xm+1 if and only if
the cup product

ζ̃C0 |Xm ∪ µm ∈ H 2(Xm,OXm )

is zero. This is the same as the claim that the cup product ζ̃C0 |Xm ∪µm ∪α is zero
for any α ∈ H 2n−2(Xm, C). On the other hand, we have:

Claim 12. The cup product ζ̃C0 |Xm ∪ µm ∪ α is zero for any α ∈ H 2n−2(Xm, C) if
and only if the cup product µ̄m ∪ ϕ∗

m α is zero on Cm .

Proof of Claim 12. By definition of ζ̃C0 |Xm , the class ζ̃C0 |Xm ∪ µm ∪ α is zero
if and only if the class ϕ∗

m µm ∪ ϕ∗
m α is zero. Note that the cohomology group

H 2n−2(Xm, C) decomposes as

H 2n−2(Xm, C) ∼= H n(Xm, �n−2
Xm/D) ⊕ H n−1(Xm, �n−1

Xm/D) ⊕ H n−2(Xm,KXm/D),

here, KXm/D is the relative canonical sheaf. By dimensional reason, the cup product
between ϕ∗

m µm and the pull back of the classes in

H n(Xm, �n−2
Xm/D) ⊕ H n−1(Xm, �n−1

Xm/D)

is zero. Therefore, we can assume that α belongs to H n−2(Xm,KXm/D), and so the
class ϕ∗

m α belongs to H n−2(Cm, ϕ∗
mKXm/D). On the other hand, ϕ∗

m µm belongs to
H 1(Cm, ϕ∗

mTXm/D) and we have the natural map

H 1(Cm, ϕ∗TXm/D) → H 1(Cm,Nm/D).

Here, µ̄m is the image of ϕ∗
m µm by this map. Recall that the dual of H 1(Cm,Nm/D)

is given by H n−2(Cm, ϕ∗
mKXm/D). So, it follows that the cup product ϕ∗

m µm ∪ϕ∗
m α

reduces to µ̄m ∪ ϕ∗
m α. This proves the claim. □

It immediately follows that if µ̄m is zero, then ζ̃C0 remains Hodge in Xm+1. For
the converse, assume that ζ̃C0 remains Hodge in Xm+1. There is a natural map

ι : H 2n−2(Xm, C) → H 1(Cm,Nm/D)∨

as in the proof of the claim. Namely, for a class α of

H 2n−2(Xm, C) = H n(Xm, �n−2
Xm/D) ⊕ H n−1(�n−1

Xm/D) ⊕ H n−2(�n
Xm/D)



370 TAKEO NISHINOU

and β ∈ H 1(Cm,Nm/D), let ι(α)(β) be the cup product β∪ϕ∗
m α composed with the

trace map H n−1(Cm, ωCm ) → C. Here, ωCm is the dualizing sheaf of Cm , see [1].
The restriction of this map to X0 is a surjection by the semiregularity of ϕ0. Since
the surjectivity is an open condition, ι is also a surjection. This shows that µ̄m ∪ϕ∗

m α

is zero for any α ∈ H 2n−2(Xm, C) is equivalent to the claim that µ̄m is zero. □

Thus, when the class ζ̃C0 remains Hodge in Xm+1, we can write µ̄m as the
coboundary of a Čech 0-cochain with values in Nm/D on Cm . We choose one such
representative {δi } where δi ∈ 0(Vi,m,Nm/D) such that

δi − gi j,m δj = ηi j,m .

Here, {ηi j,m} is a representative of µ̄m (see Lemma 10). Also, note that by the exact
sequence

0 → OUi,m → OUi,m (ϕm(Vi,m)) → Nm/D|Vi,m → 0,

there is a section δ̃i of OUi,m (ϕm(Vi,m)) which maps to δi . Then, we have a lift
of ηi j,m to an open subset of X0 as follows.

Lemma 13. When the class ζ̃C0 remains Hodge in Xm+1, the section

η̃i j,m = δ̃i (xi (xj , t), t) − gi j,m(xj , t) δ̃j (xj , t)

of OUi,m∩U j,m (ϕm(Vi,m ∩ V j,m)) coincides with ηi j,m when restricted to Vi,m . □

5. Proof of Theorem 1

As we mentioned in the introduction, in [16], it was shown that if C0 ⊂ X0 is
a submanifold of codimension one that is semiregular, then the obstruction to
deforming C0 in X0 vanishes. The point of their proof is to construct a Čech
1-cocycle on X0 with values in the sheaf OX (C0), whose restriction to C0 is the
relevant obstruction class. Then, the vanishing of such a class in cohomology
is a straightforward consequence of the definition of semiregularity. Thus, it is
important to represent the obstruction as a restriction of a Čech cocycle on the
ambient space. In the case which was studied in [16], the construction of such a
cocycle on the ambient space can be done by a direct calculation. In our case of
maps where ϕ0(C0) may be singular, we need an additional argument which is a
variant of that in [18]. Also, we need to take account of the effect of the deformation
of the ambient space, but it is covered by Lemma 13. In this section, we unify these
arguments and complete the proof of the main theorem.

Recall that the obstruction to deforming ϕm is given by a cocycle

{ϕ∗

0 |Vi ∩Vj νi j,m+1} on C0,



DEFORMATION OF PAIRS AND SEMIREGULARITY 371

where νi j,m is defined by

tm+1 νi j,m(xj ) = fi,m(xi (xj , t), t) − gi j,m(xj , t) f j,m(xj , t).

For the explicit calculation of the obstruction, we eliminate gi j,m(xj , t) from this
expression as follows.

Lemma 14. On Ui,m ∩ U j,m , we have

(∗) (m + 1) tm νi j,m(xj )

fi,m(xi , t)

=
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)
−

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+ δ̃j

)
,

modulo functions holomorphic on the image of ϕm |Vi,m∩V j,m .

Proof. First, by differentiating the equation

tm+1 νi j,m(xj ) = fi,m(xi (xj , t), t) − gi j,m(xj , t) f j,m(xj , t)

with respect to t , we have

(m + 1) tm νi j,m(xj )

=
∂ fi,m(xi , t)

∂t
+

n∑
l=1

∂xi,l(xj , t)
∂t

∂ fi,m(xi , t)
∂xi,l

− gi j,m(xj , t)
∂ f j,m(xj , t)

∂t
−

∂gi j,m(xj , t)
∂t

f j,m(xj , t)

=
∂ fi,m(xi , t)

∂t
− gi j,m(xj , t)

∂ f j,m(xj , t)
∂t

+ ηi j,m −
∂gi j,m(xj , t)

∂t
f j,m(xj , t)

on Vi,m ∩ V j,m . Since f j,m is zero on the image of ϕm |V j,m , we can ignore the last
term. By the same reason, we can replace ηi j,m by η̃i j,m introduced in Lemma 13,
and we can regard the above equation as an equation on Ui,m ∩ U j,m .

Dividing this by fi,m(xi , t), we have

(∗) (m+1) tm νi j,m(xj )

fi,m(xi , t)

=
1

fi,m(xi , t)
∂ fi,m(xi , t)

∂t
−

gi j,m(xj , t)
fi,m(xi , t)

∂ f j,m(xj , t)
∂t

+
ηi j,m

fi,m(xi , t)

=
1

fi,m(xi , t)
∂ fi,m(xi , t)

∂t
−

gi j,m(xj , t)
fi,m(xi , t)

∂ f j,m(xj , t)
∂t

+
δ̃i

fi,m(xi , t)
−

gi j,m δ̃ j

fi,m(xi , t)

=
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+δ̃i

)
−

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+δ̃j

)
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modulo functions holomorphic on Cm . Note that this is an equation over C[t]/tm+1,
and so we have gi j,m(xj , t) f j,m(xj , t)

fi,m(xi , t)
= 1. □

Let [
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m

be the coefficient of tm in
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)
.

Note that the above equation still holds when we replace

1
fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)
and

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+ δ̃j

)
by[

1
fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m

and
[

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+ δ̃j

)]
m
,

respectively. Also, we can think of[
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m

as a function on Ui by forgetting tm .
Now, introduce any Riemannian metric on X0. Recall that we fixed an open

covering {Vi } of C0. If Vi does not contain a singular point of C0, we write V̊i = Vi .
If Vi contains a singular point of C0, we write by V̊i the complement of a small
closed disk around the singular point in Vi . For each V̊i , let Nϕ0 |V̊i

be the normal
bundle of ϕ0 restricted to V̊i . Let Sδ|V̊i

be the circle bundle of radius δ in Nϕ0 |V̊i
.

Here, δ is a small positive real number. If δ is small enough, the exponential map
gives an embedding of Sδ|V̊i

into a small neighborhood of the image ϕ0(V̊i ). We
can assume that the image of Sδ|V̊i

is disjoint from ϕ0(Vi ) even if Vi contains a
singular point of C0. Note that the bundles Sδ|V̊i

on each V̊i glue and give a circle
bundle Sδ on the open subset

⋃
i V̊i of C0. When n ≥ 3, this is actually a bundle

over C0.
Note that the obstruction class

[ϕ∗

0 |Vi ∩Vj νi j,m+1] ∈ H 1(C0,Nϕ0)

is zero if and only if the pairing of it with any class in H n−2(C0, ϕ
∗KX0) is zero.

By semiregularity, any class in H n−2(C0, ϕ
∗KX0) is a restriction of an element
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of H n−2(X0,KX0). Let 2 be any closed C∞ (2n − 2)-form on X0. In particular,
2 represents a class in

H 2n−2(X0, C) = H n−2(X0,KX0) ⊕ H n−1(X0, �
n−1
X0

) ⊕ H n(X0, �
n−2
X0

).

Here, �i
X0

is the sheaf of holomorphic i-forms on X0. Integrating the restriction of
the singular (2n − 2)-form[

1
fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m
2

to the circle bundle along the fibers, we obtain a closed (2n − 3)-forms γi on V̊i .
Then, we have:

Lemma 15. On V̊i ∩ V̊j , the limit limδ→0 γi − γj exists, and is m + 1 times the
fiberwise pairing between ϕ∗

0 |Vi ∩Vj νi j,m(xj ) and ϕ∗

02.

Proof. Note that νi j,m(xj ) is a local section of the normal sheaf Nϕ0 of ϕ0 : C0 → X0.
Thus, it naturally pairs with the pull back of 2 and gives a (2n −3)-form on V̊i ∩ V̊j .
Then, the claim is a consequence of the equation (∗) and standard estimates of
integrations.

Now, if C0 is nonsingular (in particular if n ≥ 3), let C2n−3(C0) be the sheaf of
smooth closed (2n − 3)-forms on C0. It has a resolution

0 → C2n−3(C0) → A2n−3(C0) → A2n−2(C0) → 0

by flabby sheaves. Here, Ai (C0) is the sheaf of complex valued smooth i-forms
on C0. Thus, the cohomology group H 1(C0, C2n−3) is naturally isomorphic to
H 2n−2(C0, C) ∼= H n−1(C0,KC0).

By Lemma 15, as the radius δ goes to zero, the Čech 1-cocycle {γi j } with
values in closed (2n − 3)-forms obtained as the differences of {γi } converges to the
obstruction class [νi j,m] paired with the pull back of 2 by ϕ0, considered as a class
in H 1(C0, C2n−3). However, by the above isomorphism between H 1(C0, C2n−3)

and H n−1(C0,KC0), this class is the same as the obstruction class paired with ϕ∗

02.
Thus, the obstruction to deforming ϕm vanishes if and only if the limit class in
Lemma 15 vanishes for any 2 ∈ H n−2(X0,KX0).

If C0 is nonsingular, {γi } is defined on a genuine open covering of C0. Thus, the
Čech cocycle {γi j } vanishes for all δ. So, the limit also vanishes. This finishes the
proof of Theorem 1 for C0 nonsingular.

When n = 2 and C0 is singular,
⋃

i V̊i covers only an open subset of C0. However,
one can show that the Čech 1-cocycle defined by γi j = γi −γj still does not depend
on the radius δ, and limδ→0 γi − γj gives the obstruction class paired with ϕ∗

02.
Thus, it suffices to prove the vanishing of the class [γi j ] for a small δ. This can be
reduced to an application of the Stokes theorem. See [18] for full details. □
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6. Criterion for semiregularity

In this section, we give necessary conditions for a map ϕ0 : C0 → X0 to be
semiregular. It turns out that some classical notions which appeared in different
contexts such as Cayley–Bacharach condition and d-semistability are related to
relative deformations of maps.

The case n > 2. First, we consider the case n > 2. Let π : X → D be a family
of n-dimensional Kähler manifolds. Let ϕ0 : C0 → X0 be a map from a compact
smooth complex manifold of dimension n − 1 which is an immersion. We also
assume that the image ϕ0(C0) has normal crossing singularity.

Consider the exact sequence on ϕ0(C0) given by

0 → ι∗KX0 → p∗ ϕ∗

0 KX0 → Q → 0,

where ι : ϕ0(C0) → X0 is the inclusion, and p : C0 → ϕ0(C0) is the normalization.
The sheaf Q is defined by this sequence. It is supported on the singular locus
sing(ϕ0(C0)) of ϕ0(C0). We have an associated exact sequence of cohomology
groups

(1) · · · → H n−2(ϕ0(C0), ι
∗KX0) → H n−2(ϕ0(C0), p∗ ϕ∗

0 KX0)

→ H n−2(ϕ0(C0),Q)

→ H n−1(ϕ0(C0), ι
∗KX0)

→ H n−1(ϕ0(C0), p∗ ϕ∗

0 KX0)

→ H n−1(ϕ0(C0),Q).

By dimensional reason, we have H n−1(ϕ0(C0),Q) = 0. Also, note that

H i (ϕ0(C0), p∗ ϕ∗

0 KX0)
∼= H i (C0, ϕ

∗

0 KX0)

for i = n − 2, n − 1, by the Leray spectral sequence. Therefore, if ϕ0(C0) is
semiregular in the classical sense, that is, the natural map

H n−2(X0,KX0) → H n−2(ϕ0(C0), ι
∗KX0)

is surjective, then the map ϕ0 is semiregular if and only if the map

H n−2(ϕ0(C0), ι
∗KX0) → H n−2(ϕ0(C0), p∗ ϕ∗

0 KX0)

is surjective.

Corollary 16. Assume that ϕ0(C0) is semiregular in the classical sense and the
class [ϕ0(C0)] remains Hodge on the fibers of X. Then, if the map

H n−2(ϕ0(C0), ι
∗KX0) → H n−2(ϕ0(C0), p∗ ϕ∗

0 KX0)

is surjective, ϕ0 can be deformed to general fibers of X. □
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On the other hand, consider the exact sequence

0 → p∗ Nϕ0 → Nι → S → 0,

of sheaves on ϕ0(C0), where S is defined by this sequence. The associated exact
sequence of cohomology groups is

(2) 0 → H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

→ H 0(ϕ0(C0),S)

→ H 1(ϕ0(C0), p∗ Nϕ0)

→ H 1(ϕ0(C0),Nι) → · · ·

We have
H i (ϕ0(C0), p∗ Nϕ0)

∼= H i (C0,Nϕ0)

again by the Leray spectral sequence. Note that the group H i (C0,Nϕ0) is isomorphic
to the dual of H n−1−i (C0, ϕ

∗

0 KX0), i = 0, 1. Similarly, the group H i (ϕ0(C0),Nι)

is isomorphic to the dual of H n−1−i (ϕ0(C0), ι
∗KX0), i = 0, 1.

Comparing the dual of the cohomology exact sequence (1) with (2), we obtain
H n−2(ϕ0(C0),Q)∨ ∼= H 0(ϕ0(C0),S). In particular, we can restate Corollary 16 as
follows.

Corollary 17. Assume that ϕ0(C0) is semiregular in the classical sense and the
class [ϕ0(C0)] remains Hodge on the fibers of X. Then, if the map

H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S)

is surjective, ϕ0 can be deformed to general fibers of X. □

The sheaf S is the infinitesimal normal sheaf of the singular locus of ϕ0(C0),
as we will see below. Recall that we assume that the image ϕ0(C0) has normal
crossing singularity. Then, for any point p ∈ ϕ0(C0), we can take a coordinate
system (z1, . . . , zn) on a neighborhood U of p in X0 so that U ∩ ϕ0(C0) is given
by x1 · · · xk = 0, 1 ≤ k ≤ n. Let Ij be the ideal of OU generated by xj and let I be
the ideal defining ϕ0(C0) ∩ U in U . Then,

I1/I1I ⊗ · · · ⊗ Ik/Ik I

gives an invertible sheaf on the singular locus of ϕ0(C0) ∩ U . Globalizing this
construction, we obtain an invertible sheaf on the singular locus of ϕ0(C0). Then,
the dual invertible sheaf of this is called the infinitesimal normal sheaf of the singular
locus of ϕ0(C0), see [8]. We note that the infinitesimal normal sheaf is canonically
isomorphic to the sheaf (see [8, Proposition 2.3])

Ext1Oϕ0(C0)
(�1

ϕ0(C0)
,Oϕ0(C0)).
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Lemma 18. The sheaf S is isomorphic to the infinitesimal normal sheaf.

Proof. Note that the sheaf I1/I1I ⊗ · · · ⊗ Ik/Ik I is generated by the element
x1 ⊗ · · · ⊗ xk . The sheaf p∗ Nϕ0 is given by

k⊕
i=1

Hom(Ii/I2
i ,OU ) on U.

The sheaf Nι is given by Hom(I/I2,OU ). The sheaf Nι is an invertible sheaf
and generated by the morphism which maps x1 · · · xk to 1 ∈ OU . In particular,
by multiplying any x1 · · · x̌i · · · xk , the generator is mapped into the image of
p∗ Nϕ0 → Nι, namely, the image of the generator of Hom(Ii/I2

i ,OU ). Also,
note that the ideal of the singular locus of ϕ0(C0) is generated by x1 · · · x̌i · · · xk ,
i = 1, . . . , k. From these, it is easy to see that the cokernel of the map p∗ Nϕ0 →Nι

is isomorphic to the dual of I1/I1I ⊗ · · · ⊗ Ik/Ik I. □

Recall that the infinitesimal normal sheaf is related to deformations of ϕ0(C0)

which smooth the singular locus, see [8]. In particular, ϕ0(C0) is called d-semistable
if the infinitesimal normal sheaf is trivial, and d-semistable variety carries a log
structure log smooth over a standard log point, so that one can study its deformations
via log smooth deformation theory [13; 14; 15].

By Corollary 17, the infinitesimal normal sheaf plays a crucial in the deformation
theory even if it is not d-semistable.

On the other hand, the notion of d-semistability gives a sufficient condition for
the existence of deformations in this situation, too, as follows.

Corollary 19. Let the image ϕ0(C0) be very ample and H 1
(
X0,OX0(ϕ0(C0))

)
= 0.

Let ϕ0(C0) be d-semistable and the singular locus of ϕ0(C0) is connected. Then,
the map ϕ0 is semiregular.

Proof. First, we note that the subvariety ϕ0(C0) is semiregular in the classical sense.
Namely, consider the cohomology exact sequence

· · · → H 1(X0,OX0(ϕ0(C0))
)
→ H 1(ϕ0(C0),Nι) → H 2(X0,OX0) → · · · ,

here ι : ϕ0(C0) → X0 is the inclusion and Nι is the normal sheaf of it. When
H 1

(
X0,OX0(ϕ0(C0))

)
= 0, the map H 1(ϕ0(C0),Nι) → H 2(X0,OX0) is injective.

Since this map is the dual of the semiregularity map

H n−2(X0,KX0) → H n−2(ϕ0(C0), ι
∗KX0),

it follows that ϕ0(C0) is semiregular.
To prove that ϕ0 is semiregular, it suffices to show the map

H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S)
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is surjective. When ϕ0(C0) is d-semistable, the sheaf S is the trivial line bundle on
the singular locus of ϕ0(C0). Since we assume that the singular locus is connected,
it suffices to show that the map H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S) is not the zero
map. This in turn is equivalent to the claim that the injection

H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

is not an isomorphism. Since ϕ0(C0) is very ample, there is a section s of
OX (ϕ0(C0)) which does not entirely vanish on the singular locus of ϕ0(C0). Then,
if σ is a section of OX (ϕ0(C0)) defining ϕ0(C0), the sections σ + τ s, where τ ∈ C

is a parameter, deforms ϕ0(C0), and the nonvanishing of s on the singular locus
of ϕ0(C0) implies that this smooths a part of the singular locus of ϕ0(C0). Since
the sections of H 0(ϕ0(C0), p∗ Nϕ0) give first-order deformations which does not
smooth the singular locus, it follows that the map

H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

is not an isomorphism. This proves the claim. □

The case n = 2. Now, let us consider the case n = 2. Although we can work in a
more general situation, we assume ϕ0(C0) is a reduced nodal curve for simplicity.
However C0 need not be smooth. Let p : C0 → ϕ0(C0) be the natural map, which
is a partial normalization. In this case, we can deduce very explicit criterion for the
semiregularity. Again, we have the exact sequence

0 → H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

→ H 0(ϕ0(C0),S)

→ H 1(ϕ0(C0), p∗ Nϕ0) → H 1(ϕ0(C0),Nι) → · · · ,

and if ϕ0(C0) is semiregular in the classical sense, then ϕ0 is semiregular if and
only if the map H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S) is surjective. Let P = {pi } be
the set of nodes of ϕ0(C0) whose inverse image by p consists of two points. Then,
the sheaf S is isomorphic to ⊕i Cpi , where Cpi is the skyscraper sheaf at pi . By
an argument similar to the one in the previous subsection, we proved Theorem 20
below in [18].

Theorem 20. Assume that ϕ0(C0) is semiregular in the classical sense. Then,
the map ϕ0 is semiregular if and only if for each pi ∈ P , there is a first-order
deformation of ϕ0(C0) which smooths pi , but does not smooth the other nodes
of P. □

For applications, it will be convenient to write this in a geometric form. Consider
the exact sequence

0 → OX0 → OX0(ϕ0(C0)) → Nι → 0
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of sheaves on X0 and the associated cohomology sequence

0 → H 0(X0,OX0) → H 0(X0,OX0(ϕ0(C0))
)

→ H 0(ϕ0(C0),Nι) → H 1(X0,OX0) → · · · .

Let V be the image of the map H 0(ϕ(C0),Nι) → H 1(X0,OX0). Since we are
working in the analytic category, we have the exact sequence

0 → Z → OX0 → O∗

X0
→ 0

of sheaves on X . Let V be the image of V in Pic0(X0) = H 1(X0,O∗

X0
). In [18],

we proved the following.

Corollary 21. In the situation of Theorem 20, the map ϕ0 is unobstructed if for
each pi ∈ P , there is an effective divisor D such that OX (ϕ0(C0) − D) ∈ V which
avoids pi but passes through all points in P \ {pi }.

A particularly nice case is when the map H 0(ϕ0(C0),Nι) → H 1(X0,OX0) is
surjective. This is the case when ϕ0(C0) is sufficiently ample. Then, if for each
pi ∈ P there is an effective divisor D which is algebraically equivalent to ϕ0(C0)

which avoids pi but passes through all points in P \ {pi }, the map ϕ0 is semiregular.
This is, in a sense, the opposite to the classical Cayley–Bacharach property, see,
for example, [4].

Combined with Theorem 1, we have:

Corollary 22. Assume that ϕ0(C0) is reduced, nodal and semiregular in the classi-
cal sense and the class [ϕ0(C0)] remains Hodge on the fibers of X. Then, the map ϕ0

deforms to general fibers of X if the condition in Theorem 20 or Corollary 21 is
satisfied. □

In the case of n = 2, the original exact sequence

· · · → H 0(ϕ0(C0), ι
∗KX0) → H 0(ϕ0(C0), p∗ ϕ∗

0 KX0)

→ H 0(ϕ0(C0),Q)

→ H 1(ϕ0(C0), ι
∗KX0)

→ H 1(ϕ0(C0), p∗ ϕ∗

0 KX0) → H 1(ϕ0(C0),Q)

before taking the dual is sometimes also useful. In this case, if ϕ0(C0) is semiregular
in the classical sense, then ϕ0 is semiregular if and only if the map

H 0(ϕ0(C0), ι
∗KX0) → H 0(ϕ0(C0), p∗ ϕ∗

0 KX0)
∼= H 0(C0, ϕ

∗

0 KX )

is surjective. For example, when the canonical sheaf KX0 is trivial, then it is clear
that this map is surjective and also ϕ0(C0) is semiregular in the classical sense. In
fact, in this case it is not necessary to assume that the image ϕ0(C0) is nodal or
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reduced, and any immersion ϕ0 from a reduced curve C0 is semiregular. It is known
that when X0 is a K3 surface and the image ϕ0(C0) is reduced, then the map ϕ0

deforms to general fibers if the class [ϕ0(C0)] remains Hodge. This claim is proved
using the twistor family associated with the hyperkähler structure of K3 surfaces,
see, for example, [7]. Corollary 22 gives a generalization of this fact to general
surfaces.
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