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Over 10,000 structures have been protected in the world by antiseismic systems and devices, namely
by seismic isolation and energy dissipation systems, shape memory alloy devices and shock transmitter
units. Such structures are located mostly in Japan, but they are more or less numerous in over 30 other
countries as well — for example, in the Peoples’ Republic of China, the Russian Federation, the United
States, Italy and even countries with very a limited population like Armenia and New Zealand. The
number of such systems and devices is increasing everywhere, although the extent of their use is strongly
influenced by earthquake experience and the features of the design rules used. Applications have been
developed for both new and existing structures of all kinds: bridges and viaducts, civil and industrial
buildings, cultural heritage and industrial components and installations, including some high risk plants.
The use of such systems in a civil context already includes not only strategic structures (civil defense
centers, hospitals, etc.) and public ones (schools, churches, commercial centers, hotels, airports, etc.),
but also residential buildings and even many small private houses. This paper provides an overview on
the dissemination of such applications worldwide, based on the most recent information available to
the authors. Particular attention is paid to Italy, in the context of specific seismic events — for example,
the Molise and Puglia event (October 31, 2002) and that of Abruzzo (April 6, 2009) — and the lessons
learned from them. Information is also provided on the features of the Abruzzo event, the development
of national seismic design rules (which became obligatory only after that event) and some very recent
decisions on the part of the Italian government which promote the use of seismic isolation and energy
dissipation to enhance the safety level of structures, especially schools. The paper focuses mainly on
seismically isolated buildings, but some information is also provided on the use of other antiseismic
systems, devices, and applications to structures other than buildings.

Keywords: passive control, seismic isolation, energy dissipation, SMADs, STUs, new constructions, retrofit, schools,
hospitals, dwellings, residential buildings, cultural heritage, industrial installations and components, high risk plants.
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1. Introduction

Since the end of the 1980s, great efforts have been devoted by ENEA1, the Italian GLIS Association2,
the EU/WEC Territorial section of ASSISi3 and EAEE-TG54 to the development and application of
seismic vibration passive control (SVPC) systems and devices, namely to seismic isolation (SI) and
energy dissipation (ED) systems, shape memory alloy devices (SMADS) and shock transmitter units
(STUs). This activity was performed in the context of extensive collaborations with the Italian Civil
Defense Department (Dipartimento della Protezione Civile or DPC) and further national, regional and
local institutions [Dolce et al. 2006; Martelli et al. 2008; 2009a; 2009b; 2010a, Sannino et al. 2009;
Martelli and Forni 2009a]. Such collaborations also include support to the DPC for emergency and post-
emergency management, as well as rebuilding, in the case of earthquakes. In particular, this support was
provided after the 2002 Molise and Puglia earthquake and has been ensured in Abruzzo since the event
of April 6, 2009.

Recent information on the development and implementation of the SVPC systems and devices was
provided in some successful conferences that were organized or coorganized by GLIS, ENEA, ASSISi, its
EU/WEC Territorial Section and EAEE-TG5. The proceedings of such conferences were published by
[Erdik et al. 2007; 2008; Martelli et al. 2008; Santini and Moraci 2008; Sannino et al. 2009; Phocas et al.
2009; Mazzolani 2009; JSSI 2009; Zhou et al. 2009]. Numerous GLIS members and ENEA researchers
actively participated in special sessions dealing with the previously cited topics in these conferences and
other important recent events that were more generally devoted to seismic engineering and seismology
[Martelli 2008a; 2008b; 2009a; 2009b; 2009c; 2009d; 2009e; 2009f; Martelli and Forni 2008a; 2008b;
2009a; 2009b]; part of these sessions were organized by the first author of this paper [Martelli et al. 2008;
Santini and Moraci 2008; Katayama et al. 2008; Sannino et al. 2009; Phocas et al. 2009; Mazzolani 2009].

As witnessed by the proceedings of all these conferences, at present there are over 10,000 structures in
the world that are protected by SVPC systems and devices. These structures are located mostly in Japan,
but they are more or less numerous in about 30 other countries as well (see Figure 1, left), including
China, Russia, the United States and Italy, which follow Japan for the number of applications (however,
as pointed out in [JSSI 2009], should the number be normalized to that of the residents in each country,
Armenia and New Zealand would be those immediately following Japan). Everywhere, the number of
such structures is on the rise, although the extent of the use of the SVPC systems and devices is strongly
influenced by earthquake experience and the features of the design rules used. Applications address
both new and existing structures of all types: bridges and viaducts, civil and industrial buildings, cul-
tural heritage (monumental buildings, museums, ceilings of archaeological excavations, museum display

1 ENEA changed its full name from Ente per le nuove Tecnologie, l’Energia e l’Ambiente (Italian Agency for New Tech-
nologies, Energy and the Environment) to Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico
Sostenibile (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) in September
2009.

2 The full name of GLIS is GLIS – Isolamento ed altre Strategie di Progettazione Antisismica (namely GLIS — Isolation
and Other Anti-Seismic Design Strategies).

3The EU/WEC Territorial Section of ASSISi is the Territorial Section for the European Union and Other Western European
Countries of the Anti-Seismic Systems International Society. GLIS has been a corporate member of ASSISi since the foundation
of the latter in 2002.

4EAEE-TG5 is Task Group 5 on Seismic Isolation of Structures of the European Association for Earthquake Engineering.
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Figure 1. Left: overall number of building applications of SI in the most active coun-
tries. Right: overall number of building applications of SI in Italy over the years.

cases and unique masterpieces) and industrial components and installations. The latter include some
high risk plants like nuclear reactors, other nuclear facilities and liquefied natural gas (LNG) storage
tanks. Applications to civil construction encompass not only strategic ones, such as civil defense centers,
hospitals, airports, bridges and viaducts, and public ones such as schools, churches, commercial centers,
and hotels, but also many residential buildings and even some private houses.

This paper includes parts of [Martelli and Forni 2009c] and [Martelli 2010a]; more precisely, it summa-
rizes the recent progress in the use of the SVPC systems and devices, mainly based on the information
made available at the International Workshop Celebrating the 15 Years Anniversary of JSSI (Tokyo,
Japan, September 2009; see [JSSI 2009]) and at the 11th World Conference on Seismic Isolation, Energy
Dissipation and Active Vibration Control of Structures (Guangzhou, China, November 2009; see [Zhou
et al. 2009]). Particular attention is devoted to applications in Italy (see Figure 1, right), other countries
where the use of the SVPC systems is less known and, in general, to isolated buildings, but information
is also provided on the use of other SVPC systems in the context of structures other than buildings.
With regard to Italy, some remarks are also reported on the seismic risk in this country, on the 6.3
magnitude earthquake that struck the Abruzzo region (in particular, the town of L’Aquila and several
surrounding villages) on April 6, 2009, and on the lessons learned from seismic events. Information is
also provided on the features of the new national seismic code and some very recent decisions of the
Italian government promoting the use of such systems and devices, to increase the seismic safety of
schools and other structures. More details on the adoption of the antiseismic systems and devices in Italy
and worldwide may be found in [Dolce et al. 2005; 2006; Martelli et al. 2008; Sannino et al. 2009], in a
recent DVD [Zhou et al. 2009], as well as (for Italy) in the article [Martelli and Forni 2010].

2. Japan

Japan, thanks to the availability of an adequate specific code since 2000 and the free adoption of SI since
2001, is more and more consolidating its worldwide leadership on the use of the SVPC systems and
devices, with over 5,000 buildings or houses protected by SI (Figure 1) and about 3,000 more provided
with ED systems [Zhou et al. 2009]. This country, where the first application of base SI dates back to
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Figure 2. Left and middle: The first Japanese application of SI to high-rises is a 87.4 m
high building that was seismically isolated in Tokyo in 2000 by means of 30 low-
damping rubber bearings (LDRBs) and 99 elastic-plastic dampers (EPDs), with a period
T = 4 s. Right: sketch of its LDRBs, provided with an anti-uplift system.

1985, is continuing the extensive adoption of the SVPC systems initiated after the excellent behavior of
two isolated buildings near Kobe during the 1995 Hyogo–ken Nanbu earthquake (this behavior was later
confirmed for all Japanese buildings protected by SI systems that were struck by subsequent events; see,
for instance, [Martelli 2009c].

The Japanese have confirmed the trend, initiated some years ago, of isolating even high-rise buildings
(Figure 2) and sets of buildings (Figure 3) supported by a common isolated reinforced concrete (r.c.)
structure, called an artificial ground, a solution that allows large savings in construction costs (see also
Figure 4). Moreover, an ever-increasing number of even very small private houses have been protected
by SI (Figures 4 and 5). The isolated high-rise buildings are over 120 and include many condominiums,
while the isolated houses are already about 3,000.

About 1,000 Japanese buildings and 2,000 private houses have also been protected by various kinds of
dampers: for instance, the applications of the buckling-restrained braces (BRBs) were already over 250
in 2003. The ED systems too behaved very well during various earthquakes. Moreover, approximately 40
Japanese buildings were seismically controlled by tuned mass dampers (TMDs), of active or hybrid types,
in June 2007, and so-called active damping bridges (ADBs) were installed between pairs of adjacent
high-rise buildings to reduce the seismic response of both (Figure 7).

The use of the SVPC systems and devices also recently increased in Japan for the protection of cultural
heritage (Figures 8 and 9) and for that of bridges and viaducts. For the latter it began rather later than for
buildings; it is being largely based on the use of high damping rubber bearings (HDRBs) and lead rubber
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Figure 3. Left: Applause Building in Osaka, with a hybrid control system moving an
heliport structure at the top. Right: sketch of the complex of 21 six- to fourteen-storey
buildings erected on a unique “artificial ground” isolated at Sagamihara (Tokyo area)
with 48 lead rubber bearings (LRBs), 103 sliding devices (SDs) and 83 ball bearings.

 

Figure 4. Lateral view of the isolated building complex of Figure 3 and the large garage
located below the artificial ground plate, with the isolators protected from fire (the SI
system lowers the period of the 111,600 t superstructure to T = 6.7 s, with a design
displacement of 800 mm).
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Figure 5. Japanese private houses protected by 2 SDs and 4 HDRBs.

 

Figure 6. A Japanese private house protected by an SI system formed by steel sphere
recirculation isolators, viscous dampers (VDs) and recentering devices.

 

Figure 7. Left: “green mass damper”, used as the TMD of a 45 m tall building of
the Keyaki-zaka residential complex, in Tokyo. The garden base is 1 m thick, weights
3,650 t, or 8% of the building mass, and is supported by 46 rubber bearings (RBs) and
22 visco-elastic dampers (VEDs). Right: ADB between Japanese high-rise buildings.
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Figure 8. Retrofits with SI in a subfoundation of the National
Western Art Museum, designed by Le Corbusier (above), and of
the “Gates of Hell” in Tokyo (right column), performed in 1999.

bearings (LRBs) and considerably extended especially after the 1995 Hygo–ken Nanbu earthquake (by
becoming obligatory for overpasses in Kobe).

Finally, as to the industrial plants, besides detailed studies for the SI (even with three-dimensional
systems) of various kinds of nuclear reactors, the construction of the Nuclear Fuel Related Facility, sup-
ported by 32 low damping rubber bearings (LDRBs) and LRBs, was completed (Figure 9). Application

  

Figure 9. Left: example of retrofit of cultural heritage in Japan, begun for the Daigoku-
den at Nara in 2001. Right: the Nuclear Fuel Related Facility, the first nuclear structure
to be isolated in Japan.



82 ALESSANDRO MARTELLI AND MASSIMO FORNI

 

Figure 10. First seismically isolated Japanese factory for the production of semiconduc-
tors (height = 24.23 m, total area ≈ 27,000 m2).

of SI to large industrial factories also began in 2006; the first was a semiconductor plant, built on LRBs
and VDs (Figure 10). At least two other similar factories are also already in use.

3. People’s Republic of China

In China very ancient monasteries, temples and bridges, protected by means of rough sliding SI systems,
are still standing, which withstood numerous earthquakes, including very violent events, up to 8.2 magni-
tude [Dolce et al. 2005; 2006]; however, the application of modern SI systems began only in 1991. In any
case, initially the SI systems, then the ED ones too have rapidly got a footing since that year, so that the
isolated buildings were already 490 in June 2005, by leading China to the third place at worldwide level
for the number of applications, only slightly after the Russian Federation. Many of these applications
were to residential buildings and no less than 270 to the masonry ones [Dolce et al. 2006].

At the end of 2006 the number of the Chinese isolated buildings had increased to more than 550 and
included even rather tall constructions (Figure 11); furthermore, SI had already been applied to 5 further

  

Figure 11. The tallest seismically isolated Chinese building (19 storeys), erected at
Taiyuan City, in Northern China (left), and a Chinese high-rise building protected by
VDs (center and right).
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large span structures and 20 road and railway bridges or viaducts, 30 buildings were already protected by
ED devices (Figure 11) and 5 buildings and 6 bridges by hybrid or semiactive seismic vibration control
systems. SI had also already been used, for the first time in China, to protect LNG tanks [Erdik et al.
2008].

In 2007 China passed Russia [Erdik et al. 2008]: in fact, Chinese isolated buildings reached 610 in
May 2007 (against the approximately 600 in Russia; see Section 4) and those protected by ED systems
reached 45. The former included the Isolation House Building on Subway Hub, completed near the
center of Beijing in 2006; it consists of 50 seven- to nine-storey buildings, all separately isolated above
a single huge two-storey isolated structure containing all services and infrastructures, including railways
and subways. The objective of this application had been to optimize the use of a wide and valuable central
area, which was previously occupied only by railway junctions and the subway, by also minimizing the
consequent vibrations and noise: SI enabled a 25% savings in construction costs, making it possible,
within the same budget, to increase the height of the 50 buildings by an average of three storeys.

In the same period, the Chinese started applying three-dimensional SI systems to civil buildings
(Figure 12) and isolators or SMADs to cultural heritage (Figure 13). In October 2008, isolated Chinese
buildings numbered about 650.

  

Figure 12. Left: new Chinese buildings protected at Guangzhou by 3D RBs from both
horizontal seismic vibrations and vertical traffic vibrations. Center: one of the 3D RBs.
Right: its sketch (4 = vertical element). Similar applications exist in Beijing.

 

Figure 13. Left: example of an SI-protected of Chinese masterpiece. Right: SI table for
the protection of vulnerable equipment or art objects.
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In November 2009, a further significant extension of the applications of the SVPC systems in China
was reported: the number of isolated buildings erected each year doubled there after the Wenchuan
earthquake of May 12, 2008, increasing from 50 to 100 per year [Zhou et al. 2009]. This rapid increase
in the number of building applications of SI was due, one the one hand, to the excellent behavior of two
r.c. isolated buildings (Figure 14) and a six-storey masonry one during that earthquake — although its
violence had been greatly underestimated, by a factor of 10 for the peak ground acceleration! — and, on
the other, the fact that the Chinese code (which still requires the submission of the projects the isolated
buildings to the approval of a special commission) permits to reduce the seismic loads acting on the
superstructure and foundations of such buildings.

 

 

Figure 14. Top left: heavy damage was inflicted on this conventionally founded r.c.
building by the 2008 Wenchuan earthquake; the building had been designed to withstand
events of intensity IMMS = 7. Top right and bottom: this isolated building remained free
of structural and nonstructural external and internal damage after the same earthquake.
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To date, SI systems have been installed in China in 32 bridges and 690 buildings, while 83 buildings
have been protected by ED devices such as EPDs, VDs or VEDs, 16 by TMDs or other type dampers
and 5 by semiactive or hybrid systems. The latter have also been installed in 8 bridges. SI is applied not
only at the building base or at the top of the lowest floor, but also on more elevated floors (for risings
or for erecting highly vertically asymmetric constructions), or at the building top (to sustain, in the case
of retrofit, one or more new floors acting as a TMD), or also on structures that join adjacent buildings
having different vibrational behaviors.

New applications include sets of buildings on artificial ground (Figure 15), base and roof SI of stadiums
(Figure 16) and the protection of valuable objects, such as electronic equipment and artwork, by means
of SI tables (Figure 13).

 

Figure 15. Set of buildings of the Headquarters of China Earthquake Administration
during their construction in Beijing on a seismically isolated “artificial ground” slab in
2008 (first Chinese application of this kind).

 

Figure 16. Left: Chinese stadium (23,000 m2) protected by RBs and VDs, for which SI
reduced the seismic response by a factor of 4.2. Right: and roof SI of the News Centre
and Restaurant of Shanghai F1 Autodrome.
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4. Russian Federation

The Russian Federation is now third in the number of isolated buildings, with over 600 applications [Zhou
et al. 2009]. The use of modern SI systems, formed by rubber bearings (RBs), frequently in conjunction
with steel-PTFE Sliding Devices (SDs) and/or dampers (similar to those adopted in the other countries),
is going on replacing that of the previous so-called low cost isolators (reversed mushroom-shaped r.c.
elements), which had been installed since the 1970s. After the retrofits of some important historical
buildings [Dolce et al. 2005; 2006; Sannino et al. 2009], new Russian applications include even high-
rise buildings, in particular in Sochi, where the 2014 Olympic games will take place (Figure 17). For
some of these, Italian HDRBs have been used.

 

 

Figure 17. Top: new Sea Plaza Hotel at Sochi (27 storeys, in addition to 2 underground
ones; height ≈ 93 m; total living area = 40,000 m2), protected by 102 HDRBs. Bot-
tom: new r.c. commercial center, with cinema, underground parking and offices, again
at Sochi (21 storeys, in addition to the ground and 2 underground floors; height ≈ 100 m;
total living area = 50,000 m2), protected by 200 LRBs.
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5. United States

The United States rank second, after Japan, in the overall number of applications of the SVPC systems and
devices [JSSI 2009]. In this country, however, such applications are progressing satisfactorily only for
bridges and viaducts and for buildings protected by ED systems. They include both new constructions and
retrofits. More precisely, HDRBs, LRBs and, more recently ED devices and STUs have been installed in
about 1,000 US bridges and viaducts, in several states (Figure 18), while dampers of various types protect
over 1,000 buildings: VDs and friction dampers (FDs) protected approximately 40 and, respectively, 12
buildings in 2001 and BRBs 39 further buildings in 2003 [Dolce et al. 2005; 2006].

By contrast, the number of new applications of SI to buildings remains limited (recently 3 or 4 per year),
in spite of the excellent behavior of some important US isolated buildings during the 1994 Northridge
earthquake [Dolce et al. 2005; 2006] and the long experience of application of this technique to such
structures (since 1985). This is a consequence of very penalizing design codes for isolated buildings.
According to recent information, US seismically isolated buildings number between 100 and 200, though
they are generally important ones, including monumental buildings (Figures 20–23). About half of them
are retrofits.

 

Figure 18. Left: Carquinez Bridge, California, retrofitted by means of Italian STUs.
Right: Marquam Bridge, Oregon, retrofitted by means of Italian RBs and EPDs.

 

Figure 19. San Francisco City Hall, destroyed by the 1906 earthquake (left), rebuilt in
1912, damaged by the 1989 Loma Prieta earthquake and retrofitted in 2000 using 530
LRBs and 62 SDs (retrofit cost = 105 MUS$, with savings of 11 MUS$ thanks to SI).
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Figure 20. Left: construction of the 911 Emergency Communications Center in San
Francisco, designed to withstand earthquakes to magnitude M = 8.3. Right: view of one
of its RBs and the fail-safe system (late 1990s).

Figure 21. Asian Art Museum in San Francisco, during its seismic retrofit (with cut
of the foundations and insertion of HDRBs) performed according to the design of the
Italian architect Gae Aulenti (late 1990s).

Figure 22. Retrofit with HDRBs of the Berkeley Civic Centre (California).
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Figure 23. Further US building retrofits with SI. Left: San Francisco Court of Appeal,
retrofitted with FPS. Right: Kerckhoff Hall at the University of California, Los Angeles
(total living area = 8,300 m2, 6 storeys).

Buildings in the US have been isolated using HDRBs, LRBs (in some cases in conjunction with
LDRBs, SDs, VDs and other ED devices) and, more recently, the friction pendulum system (FPS), too.
With regard to the design earthquake levels adopted in California, it is noted that they correspond to very
large magnitudes M (for example, M = 8.3 for the new 911 Emergency Communications Center in San
Francisco in the 1990s — see Figure 20 — and M = 8.0 for the retrofit of the San Francisco City Hall
with 530 LRBs and 62 SDs in 2000 (see Figure 19). This imposes the use of SI as the only possibility
for these applications, in spite of its high cost in the US.

6. Italy

Seismic risk in Italy. Despite a significantly lower seismic hazard than, say, Japan, China, or California,
Italy is characterized by the highest seismic risk in the European Union and by one of the highest in the
industrialized countries; see [Dolce et al. 2005; 2006; Martelli 2009b; 2010a] and Table 1. In fact, the
vulnerability of Italian constructions is such that more than half of them (including 75,000 strategic and
public buildings) are incapable of bearing the seismic actions to which they may be subjected.

This situation is due to several factors. Italy is home to a good fraction of the world’s cultural heritage.
There has been, in the last few decades, significant progress in seismology and seismic engineering, and
consequently also changes in seismic codes and in the seismic classification of the country’s regions.

Event of magnitude M = 7.0

dead wounded

Southern Apennines 5,000–11,000 > 15,000
World (average) 6,500 20,500
Japan 50 250

Event of magnitude M = 7.5

dead wounded

Calabria 15,000–32,000 > 37,000
World (average) 18,500 75,000
Japan 400 2,000

Table 1. Number of victims expected in high seismic hazard areas of Italy, as well as
(for an equal population) in Japan and (on average) worldwide [Dolce et al. 2005; 2006].
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Italian region or area Year Violence

Abruzzo (L’Aquila area) 1639 severe
Abruzzo (L’Aquila area) 1703 severe
Messina and Reggio Calabria 1908 very severe
Abruzzo (Avezzano) 1915 very severe
Friuli (2 main shocks, within 6 months) 1976 severe
Irpinia (Campano–Lucano earthquake) 1980 severe
Marche and Umbria (2 main shocks in the first day) 1997–98 moderate/severe
Molise and Puglia (2 main shocks, in the first and second day) 2002 moderate
Abruzzo (L’Aquila area) 2009 severe

Table 2. Violence of earthquakes in Abruzzo and of the most recent Italian events.

Equally importantly, traditionally there has been a certain lack of awareness, at both the institutional
and individual levels, that severe earthquakes occur in Italy too, though less frequently than in other
countries. Paradoxically, Italy’s problem has been that severe earthquakes are not sufficiently frequent in
this country and that, in any case, their return periods are much longer than the duration of its governments
(see Table 2). In the past, the consequence was that, when a severe earthquake occurred, the government
in office at that time strictly limited its action to emergency management, without investing any resources
in prevention, and that seismic risk was soon forgotten even in the struck areas. It has been estimated
that the overall cost of this lack of prevention policies has already been almost three times larger than
the overall amount of money which would have been necessary to adequately seismically upgrade all the
existing Italian constructions (apart from the thousands of avoidable victims).

Lessons learned from the San Giuliano di Puglia tragedy in 2002. With regard to the evolution of
knowledge on the seismic hazard in Italy [Dolce et al. 2005; 2006; Erdik et al. 2007; 2008; Martelli
et al. 2007; 2008; Sannino et al. 2009], it is noted that 70% of the Italian territory is now defined
as seismic, while this percentage was estimated to be only 45% prior to 1998 and 25% prior to 1980
(seismic classification began in Italy after the 1908 Messina and Reggio Calabria earthquake, but, down
to the middle of the 1970s, Italian areas were classified as seismic only after having been struck by an
earthquake). In addition, although the present seismic hazard map was already known and had already
been proposed by the Italian seismologists in 1998, it became official only in 2003, after the collapse of
Francesco Jovine Primary School at San Giuliano di Puglia during the 2002 Molise and Puglia earthquake
(Figure 24). This collapse killed 27 children, including all the youngest (those born in 1996), and it has
been officially recognized that the earthquake itself was not to blame: the deaths were mainly caused by
poor construction, worsened by the shoddy addition of another storey.

This seismic reclassification was enforced by an ordinance of the Italian Prime Minister (Ordinanza
del Presidente del Consiglio dei Ministri), published in May 2003 (OPCM 3274/2003), just because of
the inertia shown by the normally responsible national and local institutions (Ministry of Constructions
and regional governments). Thanks to this ordinance a new seismic code was also enforced (although
not yet obligatorily), which was fully different from the previous (very old and inadequate) one: while
the latter was prescriptive, the new one was based on performance, consistently with Eurocodes.
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Figure 24. Collapse of the Francesco Jovine primary school in San Giuliano di Puglia
(Campobasso) during the 2002 Molise and Puglia earthquake, and search for survivors
amid the debris.

In addition, the new Italian seismic code freed and even simplified the use of SI, ED and other modern
SVPC systems and devices. In fact, it canceled the previously existing need for submitting the designs of
structures protected by such systems and devices to the approval of the High Council of Public Works of
the Ministry of Constructions and allowed to partly take into account the decrease of the seismic forces
acting on the superstructure caused by SI, when designing the superstructure itself and the foundations.
With regard to the need for submitting the aforesaid designs to the approval of the High Council of
Public Works, it is worth stressing that, due to the very complicated, time-consuming and uncertain
approval process, such a need, instead of correctly being a check of the adequacy of the new technologies,
had hindered their development and extensive application, although they aim at saving human life and
minimizing damage. Finally, OPCM 3274/2003 prescribed that the seismic safety of all strategic and
public structures should have been checked by the responsible national or regional institutions within
five years.

The enforcement of OPCM 3274/2003 (which was later improved by two subsequent OPCMs, then
by decrees of the Ministry of Constructions in 2005 and 2008 and, finally by the new Technical Norms
for Constructions) can be considered as the birth of a real prevention policy in Italy. In particular, thanks
to this ordinance, the use of the SVPC systems and devices soon significantly increased in Italy (Figure 1,
right), especially for the protection of schools (as a consequence of the San Giuliano di Puglia tragedy):
SI of the new Francesco Jovine at San Giuliano di Puglia, which was opened to activity in September
2008, was followed by that of further 16 schools (4 of these were completed in 2009, see below).

Lessons not yet learned prior to the Abruzzo earthquake of April 6, 2009. The change of attitude to-
wards the prevention of seismic risk caused by the San Giuliano di Puglia tragedy was, however, only
partial. The consolidated general convincement that earthquakes are not a major problem in Italy was
not fully canceled. For instance, only half of the new Italian hospitals designed after OPCM 3274/2003
included SI, although this kind of protection is now indispensable to ensure their full integrity and oper-
ability after an earthquake. In addition, since the use of the new code was not obligatory, many (not only
designers, but, unfortunately, also some institutions owning public buildings) accelerated the completion
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of the designs of even strategic and public buildings and/or of the related approval processes just to make
sure that they were allowed to use the old, less stringent, code, which implied lower construction costs.

Moreover, the prescribed verifications of seismic safety of the existing strategic and public construc-
tions went much slower than planned; even now it is far from being completed and no interventions have
been undertaken, yet, in several cases, even when the problems detected are not limited to the seismic
safety, but also concern the static one. Such unexpected, very worrying, situations were numerous,
especially in Southern Italy, even for r.c. buildings (see, for instance, Figure 39). Finally, the obligatory
use of the new seismic code was deferred year by year, thus also causing a lot of confusion: even in
February 2009 it had been postponed from the end of June 2009 to that of June 2010 and only thanks
to the polemics following the Abruzzo earthquake this further extension was canceled during Summer
2009 (also thanks to a resolution of the Commission on Environment, Territory and Public Works of the
Italian Chamber of Deputies drafted with the collaboration of the first author of this paper).

Remarks on the Abruzzo earthquake of April 6, 2009. The earthquake which struck the L’Aquila town
and 48 further municipalities in Abruzzo on April 6, 2009 (Figure 25), had a magnitude Mw = 6.3 and an
epicentral depth of 9 km. It occurred at 3:33 local time at about 5 km south east from L’Aquila (seismic
zone 1, according to the 2003 seismic reclassification of the Italian territory). It caused 298 dead, 1,600
wounded and 36,000 homeless people. Costs of 8.5 billion Euro have been estimated as necessary for the
reconstruction. Here are the values of peak ground acceleration (PGA) predicted in this area for various
return periods TR , according to the Italian seismic classification, which is based on probabilistic seismic
hazard assessment (PSHA):

TR : 475 yr 975 yr 2475 yr
PGA : 0.261 g 0.334 g 0.452 g

Thanks to seismic monitoring systems which had been installed in the area, a large amount of data
was made available by this event: in fact, there were 55 recordings of DPC and 114 of the Italian Institute
for Geophysics and Volcanology (Istituto Nazionale di Geofisica e Vulcanologia or INGV), at epicentral

 

Figure 25. Epicenter of the Abruzzo earthquake of April 6, 2009, and area struck by this earthquake.
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distances varying from 4.3 km to 280 km. These recordings form the largest amount of seismological
data ever obtained in Italy. The following results of these measurements will be mentioned:

• a PGA value larger than 1 g was measured in one station;

• a residual maximum vertical displacement of 15 cm was detected close to the fault (zero distance);

• amplification of the seismic motion at 0.6 Hz was also detected in the epicentral zone (namely at
zero distance from the fault and less than 10 km from the epicenter);

• the attenuation laws which are available in the literature underestimated the PGA values at small
epicentral distances and overestimate those at large distances;

• the measurements in the epicentral zone were strongly influenced by source effects;

• the recordings of the main shock showed a clear directivity effect towards south-east;

• most recordings in the epicentral zone showed PGA > 0.3 g and in one spot (del Moro station, close
to Pettino) even > 1 g;

• the response spectra ordinates were particularly large especially in the range 2–10 Hz (0.1–0.5 s),
which contains the natural frequencies of most buildings of the region;

• the duration of the most energetic part of the acceleration records was only 2–5 s (in one station
almost 60% of the energy was released in the first 3 s); this led to a strong impulse at high frequency,
even for the vertical earthquake component, which struck buildings with a moderate number of
cycles but of large amplitude;

• very large local amplifications were measured, which stresses the presence of rather poor soils.

Thus, most structures that were not ductile nor built according to reasonable engineering requirements,
the nonreinforced masonry buildings (including cultural heritage monuments) and a significant part of
the other buildings which were characterized by limited ductility and insufficient seismic resistance (due
to poor designs or construction problems) were unable to withstand the earthquake (Figures 26–30).

 

Figure 26. L’Aquila (April 2009): aerial views of some parts of the town where build-
ings collapsed or were heavily damaged.
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Figure 27. L’Aquila (April 2009): collapse of the Prefettura building (provincial head-
quarters of the national government) and the Santa Maria Paganica Church (right).

 

Figure 28. The Cathedral of Santa Maria di Collemaggio, a rare example of Abruzzo
Romanesque style, prior to the earthquake, and the collapse of the roof of its baroque
(not yet retrofitted) part. The façade, which had been protected by some EPDs installed
on the roof some years earlier (see Figure 45), survived the earthquake; however, a steel
scaffold, previously erected for an already planned retrofit, certainly helped.

   

Figure 29. L’Aquila (April 2009): pillars in the San Salvatore Hospital, heavily dam-
aged due to very inadequate steel reinforcement and poor concrete quality (no inert
materials are visible in the upper part of the pillar).
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Figure 30. L’Aquila (April 2009): partly collapsed and heavily damaged private build-
ings. Note in particular the heavily damaged beam-column joints (top row).

Bridges were also damaged. At the L’Aquila Museum and elsewhere, a number of artistic masterpieces
were destroyed or heavily damaged (Figure 31).

As far as cultural heritage is concerned, over 1,000 ancient monumental buildings were heavily dam-
aged or collapsed in part, largely due to earlier incorrect or incomplete retrofits (see Figure 27, right, and

 

 

Figure 31. L’Aquila (April 2009): collapse of statues at the Museum.
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Figure 32. L’Aquila (April 2009): headquarters of ANAS (the Italian agency for road
construction and maintenance), which suffered mainly nonstructural damage (with the
exception of two pillars, which, however, are reparable — see right. Retrofit by means
of SI was possible and was suggested for this building.

Figure 28). The collapse of numerous r.c. buildings, such as the Student House, or the heavy damage they
incurred (including some further public or strategic buildings) was due to very inadequate reinforcement
and poor concrete quality (see Figure 27, left, and Figures 29 and 30). The importance of maintenance
was evident: similar equally old buildings suffered only limited or even zero damage if they had been
adequately maintained, while they were heavily damaged when maintenance had been neglected.

Luckily, several buildings suffered mainly nonstructural damage and/or minor structural one: many
of them may be retrofitted by means of SI (see, for instance, Figure 32) or ED systems. To this end, the
experience achieved through the retrofit of a three-storey house at Fabriano (Ancona) after the 1997–98
Marche and Umbria earthquake will be very useful: this house (Figure 33) had suffered severe nonstruc-
tural damage in the earthquake and was retrofitted by subfoundation and insertion of HDRBs in the new

 

Figure 33. Three-storey r.c. private house in Fabriano (Ancona), in seismic zone 2, dam-
aged by the 1997–98 Marche and Umbria earthquake. It is the first EU application of SI
in a subfoundation, the retrofit of which was completed with 56 HDRBs of three sizes in
2006, with safety certification by A. Martelli.
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underground floor. For the reasons mentioned in [Dolce et al. 2005; 2006], the cost of this retrofit allowed
for saving 20% of construction costs with respect to a conventional reinforcement. Obviously, SI will
also be used to rebuild collapsed buildings or those being so damaged that they must be demolished.

Lessons learned from the Abruzzo earthquake of April 6, 2009. Obviously, the not yet obligatory use of
the new seismic code was not to blame for the damage and collapses occurred during the 2009 Abruzzo
earthquake. However, the latter were caused by the same reasons for which some builders (thanks to the
support of a senator) had tried to postpone the beginning of the obligatory use of the code: again the
belief that earthquakes are not a major problem in Italy. In fact, part of the damage to ancient buildings —
which could be greatly reduced though not fully avoided — as well as the collapse and damage to many
other structures were caused, as mentioned, by bad construction (poor concrete and absent, inadequate
or insufficient steel reinforcement, especially for stirrups), not consistent with any code (even the oldest),
and by lack of adequate maintenance.

Hopefully, after the Abruzzo earthquake, both Italian institutions and public opinion are now fully
convinced that seismic prevention is indispensable and that the related policy will be strengthened and
accelerated; in particular, that the presently best available techniques (such as SI and ED) should be
extensively used for the reconstruction and retrofits in Abruzzo and that this should be done not only for
strategic and public buildings, but also for residential ones. The additional construction costs (if any) are
quite limited and safety is much higher. This will strongly reduce casualties and damage during the next
shocks, which, by the way (according to history and also to some recent seismological studies), might
unfortunately occur in Abruzzo rather soon. In addition, such a prevention policy should be extended to
the entire Italian territory, because, if the earthquake of April 6, 2009 had taken place elsewhere in Italy,
the consequences would not have been significantly different.

With regard to the seismic protection of existing structures, although the work to be done and money
to be spent are enormous (because nearly nothing was done in the past), the efforts should be much
increased. Several old buildings should be demolished and rebuilt with safe features, instead of being
all considered as cultural heritage, as done to date in Italy after a 50 years life. (Not all constructions
are comparable to the Coliseum!) The interventions should be scheduled based on priorities, namely
beginning from the most risky structures in the areas characterized by the highest seismic hazard. The
latter should be assessed by means of not only the currently used PSHA, but also of the deterministic
approach, which should be considered (as it is, in the author’s opinion) as complementary and already
proved to be quite reliable [Dolce et al. 2005; 2006; Sannino et al. 2009; Martelli 2010b].

Reliable seismic engineering technologies and seismological methodologies exist: thus, there is no
more excuse not to widely use them. However, in applying modern technologies like SI, great care must
be paid to the selection of the devices, their installation and their protection from external causes of
damage and some further construction details, as well as to an adequate maintenance [Martelli 2009f].
In particular, in order to ensure real safety of the isolated structure, correctly qualified, checked and
protected devices should be installed and adequate inspection and maintenance should be performed
during the entire structure life to ensure that the SI features remain unchanged. Otherwise, these devices,
instead of enhancing protection in an earthquake (as SI does, if properly applied), will expose both
human life and the entire SI technology to a great risk: in fact, since the Italian seismic code (contrary to
the Japanese and US ones) allows for “lightening” both the superstructure and foundations when an SI
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system is installed, the inadequate performance of the latter would make an isolated building less safe
than a conventionally founded one [Martelli 2009f; 2009g].

Application of SVPC systems and devices in Italy. As mentioned in [Dolce et al. 2005; 2006; Martelli
et al. 2007; Martelli and Forni 2009b], the first applications of SVPC systems in Italy go back to 1975
for bridges and viaducts and to 1981 for buildings — thus predating those in Japan and the US by four
years (compare Figure 1, right). These early applications involved the Somplago viaduct of the Udine–
Tarviso freeway and a suspended steel-structure fire-command building in Naples. Thanks to its SI
system (formed by sliding devices on the piles and rubber springs between the deck and the abutments),
the Somplago viaduct survived without any damage the second main shock of the 1976 Friuli earthquake
(when one of the decks had already been installed), unlike most other structures similarly located in
the epicentral area; for the Naples building, which had been conventionally designed before the 1980
Campano–Lucano earthquake (when the site was not yet seismically classified), the insertion of neoprene
bearings (NBs) at the top (to isolate the suspended structure) and, inside, that of floor dampers and STUs,
allowed for not fully modifying the original design, in spite of the classification of the Naples area in
seismic category 3 only after the earthquake in question.

The excellent behavior of the Somplago viaduct, in the years of construction of the Italian freeway
system, caused an immediate rapid extension of the application of SVPC systems to the new Italian
bridges and viaducts. Those protected by such systems were already 150 at the beginning of the years
1990s: this ensured the worldwide leadership to Italy for the number and importance of the applications
in this field.

As to buildings, the extension of applications was slower in the first years, but the trend had become
very promising, in this field too, at the beginning of the 1990s (Figure 1, right), after the erection of
the Telecom Italia Centre of Marche Region in Ancona on 297 HDRBs and the impressive on-site tests
performed on one of its five buildings. (Their safety was later certified by the first author of this paper,
as mentioned, for instance, in [Dolce et al. 2005; 2006].)

On the contrary, the use of the SVPC systems and devices became very limited after such an application
(Figure 1, right): in fact, the Italian Ministry of Constructions, by recognizing that no specific rules for
structures provided with said systems and devices were included in the Italian seismic code in force at
that time, on the one hand decided that all designs of such structures had to be submitted for approval
to the already mentioned special commission of the Ministry, but, on the other hand, did not make any
specific design guidelines available until the end of 1998. Moreover, such design guidelines, when they
were published, resulted to be inadequate and the approval process remained uncertain, very complicated
and time consuming.

Thus, in spite of its long tradition, Italy was only fifth, at least for the number of seismically isolated
buildings in use, prior to the 2009 Abruzzo earthquake, with over 70 isolated buildings already opened
to activity and about 30 further applications of this kind in advanced progress [Sannino et al. 2009].
Some tenths of Italian buildings had also already been protected by ED systems or SMADs (19 at
the end of 2007) or STUs (28 at the same date). Moreover, there were already over 250 bridges and
viaducts provided with SVPC devices and important applications of such devices, completed or planned,
to worldwide known cultural heritage (Upper Basilica of St. Francis at Assisi, damaged by the 1997–98
Marche and Umbria earthquake; the Bronzes of Riace and other structures and masterpieces, such as
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those shown in Figures 28 and 45–48). (Italian SVPC devices had been installed in several constructions
in other countries too [Dolce et al. 2005; 2006; Martelli 2009b].)

In recent years, however, there has been a large increase of the number of applications completed
and, especially, of those in progress or under design (Figure 1, right, and Figures 34–44). This change

 

Figure 34. Sketch of the new isolated Del Mare Hospital, during its construction in
Naples, nowadays in seismic zone 2, and view of some of its 327 HDRBs. Several new
Italian hospitals being or to be erected in seismic areas now include the use of SI.

 

Figure 35. The Emergency and Management Operative Center of the new Civil Defense
Center of Central Italy in Foligno (Perugia) was designed by the GLIS board and ASSISi
member A. Parducci of e-Campus University. Their safety will soon be certified by
A. Martelli. The photo on the left shows in the foreground the main building, which
is being erected on ten HDRBs of 1 m diameter, two of which are seen on the right,
with provisional protective covers. Also seen on the left is the adjacent service building,
isolated by HDRBs and SDs. The Foligno Center will include at least seven isolated
buildings, three of which have already been completed. Its site was reclassified from
seismic category 2 to seismic zone 1 in 2003, but no design changes of the structures
and foundations were necessary, thanks to SI. An increase in the diameters of isolators
was sufficient, as demonstrated by a study performed by ENEA.
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Figure 36. The new Francesco Jovine primary school and Le Tre Torri Professional
and University Centre, erected in San Giuliano di Puglia (seismic zone 2 since 2003)
on a single seismically isolated slab, and its SI system (61 HDRBs and 12 SDs) during
construction. The isolators were donated by the Italian ALGA, FIP Industriale and TIS
manufacturing companies. The SI design is by a team of experts coordinated by the
GLIS and ASSISi member P. Clemente of ENEA, with tests done by the University
of Basilicata. Safety was certified by A. Martelli and GLIS member C. Pasquale in
September 2008.

 

Figure 37. The first new school building of Mulazzo (Massa Carrara), protected by
LRBs and SDs (right) and the new primary and secondary school of Gallicano (Lucca),
protected by HDRBs and completed in September 2009. They are two of the 5 schools
rebuilt or being rebuilt with SI in Tuscany, in seismic zones 2. Safety of the Mulazzo
school will be certified by A. Martelli, that of the Gallicano was certified by A. Parducci.

was due at first to the new Italian seismic code, enforced in May 2003, which (as mentioned) freed and
simplified the adoption of the SVPC systems, then, very recently, to the Abruzzo earthquake [Martelli
and Forni 2009a].
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Figure 38. The new school in Marzabotto (Bologna), in seismic zone 3, erected on
HDRBs and SDs. Its safety was certified by A. Martelli in September 2010.

 

Figure 39. Romita High School for scientific studies of Campobasso (hosting about
1,300 students), in seismic zone 2, which was at last partly demolished and is now being
rebuilt with SI, due to its very poor concrete quality (as demonstrated by an ENEA study
performed after the 2002 Molise and Puglia earthquake). Safety of the new seismically
isolated buildings will be certified by A. Martelli.

As already mentioned, the enforcement of the new Italian seismic code was largely a consequence of
the collapse of the Francesco Jovine school during the 2002 Molise and Puglia earthquake. This school
was recently rebuilt: the new Francesco Jovine, opened to activity in September 2008 (Figure 36), is
the first Italian isolated school and has been judged as the safest Italian school. It is being followed by
16 further applications of this kind (5 have already been completed). Seismic protection of schools by
means of SI, in addition to that of hospitals, other strategic structures and cultural heritage (Figure 31
and Figures 45–48), was a “priority 1” objective in Italy even before the Abruzzo earthquake.

After this event, this kind of protection is being further extended and planned for residential buildings
too, in the framework of the retrofit/rebuilding program in Abruzzo, which should make a large use of
SI and ED systems.
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Figure 40. Shrine of the Madonna delle Lacrime in Syracuse (seismic zone 2), designed
to fit 11,000: it was retrofitted in 2006 by lifting the dome (22,000 tons) and replacing
the previously existing rubber supports by EPDs (right).

 

Figure 41. Left: Headquarters of the association Fratellanza Popolare – Croce d’Oro
in Grassina (Florence), in seismic zone 2, isolated by means of SDs and VDs; it is a
L-shaped building to be used for civil defense, designed by the GLIS board and ASSISi
member S. Sorace of the University of Udine and certified as safe by A. Martelli in 2007.
Right: NATO Centre in South Naples, in seismic zone 2 (399 HDRBs and 20 dissipative
SDs), during construction in 2007.

In particular, the construction of 184 prefabricated houses of various materials (wood, concrete, steel),
each erected on a 21 m × 57 m r.c. platform, 50 cm thick and supported by 40 steel or r.c. columns with
curved surface sliding (CSS) devices manufactured in Italy (by ALGA and FIP Industriale) at the top,
has been completed: these houses (Figure 44) will host first about 17,000 people who remained homeless
after the earthquake and later, in a few years, students.
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Figure 42. The four r.c. residential buildings of the new San Samuele Quarter of Cerig-
nola (Foggia), in seismic zone 2, first application of the new Italian seismic code to
isolated dwelling buildings, completed with 124 HDRBs (right) in May 2009, with safety
certification of A. Martelli.

 

Figure 43. Left: residential building in San Giuliano di Puglia, isolated by 13 HDRBs
and 2 SDs with the collaboration of ENEA, completed in 2007. Right: SI formed by
LRBs and SDs of an 8-storey building under construction at Messina, in seismic zone 1;
its safety will be certified by A. Martelli.

It is noted, however, that the CSS isolators (besides needing very careful protection from dust and
humidity) had never been previously used in Italy. Building applications of similar isolators existed in
other countries, like Turkey and Greece, but such devices had been manufactured in Germany (Figures
55 and 59), using a sliding material different from the Italian ones. Thus, a debate was promoted in
Italy by the first author of this paper on the need for submitting the Italian CSS isolators to a very
detailed experimental verification campaign, including two-directional (2D) simultaneous excitations in
the horizontal plane, representing real earthquakes, at the laboratories of the University of California
at San Diego, similar to those performed for the German silding isolation pendulum (SIP) devices and,
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Figure 44. One of the 184 seismically isolated pre-fabricated houses erected at L’Aquila
for homeless residents and CSS devices installed to isolate its supporting slab.

 

Figure 45. Interior of the Cathedral of Santa Maria di Collemaggio at L’Aquila (see also
Figure 28) prior to the 2009 Abruzzo earthquake and view of one of the EPDs which had
been installed on the roof at the beginning of the years 2000 to prevent overturning of
the façade.

previously, for the American FPS devices, from which the German SIP and Italian CSS isolators derive.
This debate is still ongoing (the 2D tests are required neither by the Italian code nor by the European
one, although they had been found necessary for both the FPS and the German SIP isolators), but a
first positive result has already been achieved: in fact, the CSS isolators of FIP Industriale installed at
L’Aquila were submitted to these 2D tests in November 2009, with excellent results.

Legislative measures recently adopted to promote the use of the antiseismic systems. The Italian gov-
ernment, besides making the use of the new seismic code at last obligatory (during Summer 2009, in
the framework of the law for the rebuilding in Abruzzo), decided some legislative measures to favor
the extension of the adoption of the antiseismic systems and devices (especially of SI). These measures,
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Figure 46. The Orvieto Cathedral. Right: position of the recentering VDs inserted some
years ago to prevent overturning of its façade.

 

Figure 47. The wooden Roman ship excavated at Herculaneum, near Naples, in seismic
zone 2, which was recently protected in the local museum by means of 3D isolators
formed by three spheres and a re-centering rubber cylinder for the horizontal SI and a
spring and a VD for the vertical one.

adopted in December 2009, were largely based on proposals of GLIS and, in particular, of the first author
of this paper. For instance, economic incentives have been included in the project of the new so-called
“Quality House” national law for those adopting such technologies and even more favorable measures
were recently decided by the regional government of Sicily.

With regard to the seismic protection of schools, it is worthwhile reporting a translation of the whole
text of an “agenda” (consistent with the declaration [UNESCO-IPRED-ITU 2009], and based on a pro-
posal of Martelli [2010c]), which was submitted by the President of the Commission on Environment,
Territory and Public Works of the Chamber of Deputies [Alessandri et al. 2009] in the framework of the
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Figure 48. Michelangelo’s marble David, displayed at the Galleria dell’Accademia, in
Florence: note the worsening of the cracks in its ankles in recent years (right), which
make it very vulnerable to both seismic and environmental vibrations. A study to
evaluate the feasibility of SI of the masterpiece has been proposed by Prof. Antonio
Borri of the University of Perugia and the first author [Dolce et al. 2005; 2006, Martelli
2009a]. Consideration of the losses at the L’Aquila Museum (Figure 31 on page 95) may
give pause to the opponents of the development and installation of an adequate seismic
protection system for Michelangelo’s David.

vote of the 2009 Financial Law on December 16, 2009, and was immediately accepted by the Italian
government [Camera dei Deputati 2009, pages VII–VIII]:

“The Chamber of Deputies, considering that:

• paragraph 229 of article 2 of the bill under examination contains measures aimed at guar-
anteeing the safety of schools and, in this framework, in order to ensure the maximum
quickness for the completion of the interventions necessary to put the school buildings in
safe condition and to seismically retrofit them, prescribes, in particular, that, within thirty
days from the date of enforcement of the financial law itself, the interventions which can
be immediately undertaken shall be the first to be identified;

• it shall be stressed in such a framework that, among all construction types, the school
buildings, together with hospitals, should be the most protected from earthquakes, which
are the events characterized by the highest risk in Italy;

• for such buildings the objective shall be the full safety of the students and the other present
persons;

• to this aim, besides preventing the collapse of school buildings in the case of earthquakes
(which is the requirement foreseen by the seismic codes, including the new Technical
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Norms for Constructions), it is also indispensable to guarantee their full integrity, with no
damage even to the nonstructural elements and the objects contained;

• furthermore, the level of the seismic vibrations transmitted by the ground to the buildings
shall be minimized, to prevent panic;

• the aforesaid objectives cannot be achieved by the conventional antiseismic design, which
is based on the “robustness” of structures, while they can be fully achieved thanks to base
seismic isolation and can be achieved to a large extent by inserting energy dissipation
systems inside the structures themselves;

• more than half of the school buildings existing in our country result to be inadequate to
withstand the earthquakes to which they may be subjected;

• for many of such buildings retrofits able to guarantee a sufficient seismic safety are very
difficult or too costly, either because they are monumental buildings (thus also subjected
to the conservation requirements), or because they are rather old;

• in the first case it would be desirable to assign the buildings to a different use and move the
school functions to other structures, possibly of new construction; in the second the best
solution would be demolition and subsequent ex novo rebuilding;

• for the new school buildings there are no obstacles of technical nature against their con-
struction with seismic base isolation (in Italy 5 new isolated schools have already been
completed and further 12 are under construction); in favor of this technological solution
there are, besides the largely higher safety level with respect to a conventionally founded
construction, the overall economic balance too (which takes into account not only the
construction costs, but also those of demolition and repair, removal and storage of the
debris, displacement of the school activities) and the evident environmental and energetic
benefits;

• with regard to the sole construction costs, it is worthwhile noting that, in Italy, the school
buildings have a limited number of stories and usually do not need for an underground
storey; thus, although the new Italian seismic code allows for lightening the superstructure
and foundations of seismically isolated buildings, for school buildings with base isolation
some additional construction costs due to the use of such a protection (isolators, an addi-
tional storey above them, etc.) are sometimes to be foreseen;

• for interventions on existing school buildings, seismic isolation may be used only if the
room necessary for the “rigid body” motion which characterizes the building part supported
by the isolators exists or can be created around the building; the related costs may be even
significantly lower than those characterizing a conventional retrofit, because it is possible
to avoid stripping the structure, strengthening pillars and beam-pillar nodes and inserting
shear walls;

• when seismic isolation is not applicable, it is usually possible to seismically improve the
buildings by inserting dampers inside them; in this case the cost of dampers is usually
largely balanced by the possibility of avoiding stiffening of the structure;
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• in Italy the most famous seismically isolated building is the new Francesco Jovine or
“Angels of San Giuliano”, school; such a school was the first, among those protected by
seismic isolation, to be completed in Italy, in September 2008; the isolation system was
designed by a team of experts coordinated by ENEA and the structure was subjected to
inspections during construction and safety certification of an expert of the Agency; ENEA
also contributed to the design of the seismic isolation system and/or certified or will certify
the safety of further new schools, in Marzabotto (Bologna), Campobasso, Vado (Bologna)
e Mulazzo (Massa); to be cited are also the design and safety certification of 4 further new
seismically isolated schools in Tuscany, performed in the framework of the Collaboration
Agreement on “Applications of seismic isolation and other modern antiseismic technolo-
gies to constructions and buildings, in particular for educational use” signed by Tuscany
region, ENEA and GLIS in 2004;

• previously other existing schools had been seismically improved by means of energy dissi-
pation systems, first of all at Potenza and its province, then in the Marche region too: among
the latter it is worth citing the Gentile Fermi school in Fabriano, of rationalist architecture,
which, due to the damages suffered during the 1997–98 Marche and Umbria earthquake,
was seismically improved by means of visco-elastic dampers developed in the framework
of the EU-funded project REEDS promoted by ENEA;

• ENEA, in the framework of school building, may profitably contribute in its specific com-
petence fields, among which:

– the development of new antiseismic devices and, by means of its experimental equip-
ment, tests on such devices and mock-ups of structures protected by them;

– the definition of seismic input, also by means of on-site seismic tests, and analysis of
local seismic response and seismic microzoning, with definition of site-specific spectra
and/or acceleration time-histories;

– the evaluation of the seismic vulnerability of existing buildings, also by means of
experimental tests on the materials and structures, with the identification of the most
suitable techniques for the seismic retrofit of the structures;

– specialist consultancy in support to the structural design, with particular reference to
the sizing and verification of the modern seismic protection systems, for both new
buildings and retrofits of existing buildings;

– specialist consultancy in support to the installation of the antiseismic devices;
– inspections during construction and final safety certification of the buildings;
– seismic monitoring of the structures,

commits the government, in the framework of the realization of the provisions of paragraph
229 of article 2 of the bill under examination, to evaluate the opportunity of involving ENEA
and, in the affirmative, to draw up specific agreements, as to define interventions for the seismic
safety of schools which are not only highly effective, but are also both the most advanced with
regard to the construction technologies to be adopted and as advantageous as possible as far as
costs, safety and functionality are concerned.”
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Figure 49. Approaches of the Seo-Hae Granel Bridge in South Korea (overall length
5820 m, height of piles 12–60 m), which were retrofitted by means of 54 Italian VDs
(K = 100 kN/mm) in 2000–2001.

7. South Korea

In South Korea SI has already been applied for several years [Zhou et al. 2009]. Nowadays, it includes
about 400 bridges and viaducts, partly with devices manufactured in Italy (Figure 49), as well as 13 large
LNG tanks at Inchon and Pyeong–Taek. In October 2008, however, only one building was seismically
isolated (in 1999) and only one (a 30-storey residential building) was protected by dampers (VEDs).
Anyway, the use of the SVPC systems is now rapidly increasing, especially for ED, which is being more
and more used for protecting high-rise buildings and long span bridges. This is a consequence of the
magnitude 7.0 Busan–Fukuoka earthquake of 2005 (with epicenter between Korea and Japan) and of the
more recent event of January 2007, with a much lower magnitude (M = 4.8), but with epicenter in the
Korean territory.

8. Taiwan

After the 1999 Chi Chi earthquake and the consequent modifications of the national seismic code (per-
formed in 2002 and 2006), which now permits and even promotes the use of SI and other SVPC systems
in Taiwan, the adoption of such systems is increasing more and more in this country and includes both
new constructions and retrofits [Zhou et al. 2009]. Frequently, SVPC devices manufactured in Italy have
been used. As to the isolated buildings, those completed or under construction (initially mainly hospitals,
but, more recently, residential buildings too) were already 29 in May 2007, against the 25 of June 2005;
at the same date, the isolated bridges and viaducts were over 20. In addition, there is an even larger
number of buildings that are protected by ED systems in Taiwan: these were already 85 in 2005. The
isolators used for buildings are HDRBs and LRBs and have been installed either at the base or the top
of the first floor. Dampers are of various types, namely BRBs, EPDs, VDs, VEDs, etc.

9. Continental France and Martinique Island

France was one of the first countries that developed and applied the modern SI systems [Erdik et al. 2008].
Its first applications date back to the 1970s, when they amounted to a few nuclear plants and structures
and some civil buildings and industrial components. The isolators used were multilayer NBs and, in
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Figure 50. An isolated school in the French Martinique island (France), with a view of
some NBs and VDs that protect it.

particular, the so-called “GAPEC System”. From 1977 to 1989 this system was adopted both to protect
new constructions in the continental France and to erect or retrofit some plants and electrical or electronic
components in the US and Chile. The applications in France in this period included 11 new residential
buildings and (in 1978) the new high school of Lambesc (a town that had been partially destroyed by
the 1909 Provence earthquake), besides 4 industrial (partly high risk) components or structures and 3
LNG tanks (in Rognac in 1993). Later, VDs were also developed in France and were applied to bridges,
viaducts and some buildings and chemical plants too, both in this country and abroad (e.g., together with
Italian SDs, to the building of Figure 41.

As to the French applications of SI performed in the nuclear field in the 1970s, it is worthwhile
reminding those to the Pressurized Water Reactors (PWRs) of Cruas and spent nuclear fuel storage pools
of La Hague, carried out to allow for the use of standardized plant designs in these sites too, which are
characterized by seismic intensities larger than those considered in such designs (for the same reason SI
was also used to protect the Koeberg PWR, in South Africa, which was built by the French industry).
Based on this experience and the subsequent remarkable developments of SI techniques, the French
already decided to isolate both the Jules Horowitz Reactor (for which construction is in progress) and
the ITER plant for the controlled fusion, both located at the Cadarache Research Center (PGA = 0.33 g).

With regard to civil buildings, on the contrary, the most important French building applications of SI
are now in progress in its Martinique island. This has a relatively small area, thus, the whole territory
will shake in an earthquake. Buildings and houses are very vulnerable there (similar to the neighboring
Guadeloupe). There is no hope for the inhabitants to benefit from safe zones. Moreover, the insular
situation complicates the arrival of helps, taking into account that two thirds of the airport landing strip
are liquefiable. The most recently isolated buildings that were built in the island make use of French
devices, namely NBs (the “GAPEC System” until 2001) in parallel (at least for the protection of important
structures) to VDs (Figures 50 and 51). We note that, some years ago, the Martinique Regional Council
decided that all secondary schools, all Council buildings and all other public buildings it funds, even in
part, must be seismically isolated, and financial support must be provided to private individuals using
SI [Erdik et al. 2008]. By March 2007, SI had already been used to protect four primary or secondary
schools (each consisting of several buildings — see Figure 50), two residential buildings and the Earth
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Figure 51. Left: a small seismically isolated building in the French Martinique. Right:
the New Zealand Parliament at Wellington, a historic building erected in 1921 and retro-
fitted using LDRs in 1992–93.

Science Centre at Saint-Pierre (which was designed to withstand a PGA of 0.45 g). New applications that
were in the design phase included two more secondary schools, one college, four residential buildings,
two important public buildings, a museum and a private clinic.

In continental France, by contrast, further application of SI to civil buildings has been hampered by an
unfavorable seismic code that has been in force for several years, the moderate seismic hazard of most of
its territory and the consequent limited interest of the French public opinion and institutions in seismic
risk mitigation.

10. New Zealand

New Zealand, which is characterized by a high seismicity, is one of the countries where the SVPC systems
took origin [Zhou et al. 2009]. These are, in particular, the LRBs (which have been applied since 1974
based on researches begun in 1967) and other devices based on the lead technology (e.g. lead dampers).
Nowadays, SI is a fully accepted construction technique in this country, to protect both buildings (even
the historic ones) and bridges and viaducts. In addition, the New Zealand manufacturing industry is very
active in other countries, as well (e.g., in Turkey).

In spite of the country’s limited population, 19 buildings, besides several bridges and viaducts, had
already been protected by means of SI in June 2005 (Figure 51, right, and Figure 52). In May 2007, the

 

Figure 52. Wellington, New Zealand: the isolated Te Papa Museum (left) and the Mar-
itime Museum (right), retrofitted with SI in 1993.
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construction of the Wellington Regional Hospital (supported by 135 LRBs and 135 SDs) was in progress,
and 2 new buildings of the Wanganui District Hospital were being designed. The latter are isolated by
90 RoGliders, a new SI system conceived in New Zealand, combining a SD with a rubber membrane:
this system is very suitable for light structures, like the aforesaid buildings [Erdik et al. 2008]. Further
new applications that were already planned in 2007 included the Christchurch Hospital (which behaved
very well during the quake of September 3, 2010), the New Zealand Supreme Court Building, the retrofit
of a Rankine commercial building (performed without any interruption of the activities) and rising of
an existing eight-storey building at Wellington, with further 8 stories. At the time being the seismically
isolated buildings in New Zealand are over 30, which makes this country third at worldwide level (after
Japan and Armenia) for the number of such a kind of applications per residents.

11. Armenia

With regard to Armenia, it is worthwhile stressing again that, after Japan, this country has the largest
number of building applications of SI per capita, despite being a small developing country that did not
start using SI until several years after most of the countries mentioned earlier [Zhou et al. 2009]. Such
applications already number 32, to both r.c. and masonry buildings, including some important retrofits.
Retrofits consist of both base SI and the erection of a so-called additional isolated upper floor (AIUF).
The related developed and applied techniques allow for not interrupting activities or occupation of the
buildings. Moreover, since 2003–2004 even rather tall isolated buildings have been erected at Yerevan,
which hosts a large part of the Armenian population (Figure 53 and Figure 54, left).

After the first applications, which made use of LDRBs and HDRBs, the SI devices used at present in
Armenia are medium damping rubber bearings (MDRBs), which are steel-laminated neoprene isolators
characterized by 8%–10% damping ratios. The MDRBs are manufactured in Armenia and have been
also exported (e.g., for applications to bridges and viaducts in Syria). In the aforesaid tall buildings they
are arranged in groups of relatively small diameter isolators in each SI position, also in order to minimize
torsion effects. Experts of the American University of Armenia have provided important contributions as

 

Figure 53. Left: the Our Yard multi-functional complex in Yerevan, with 10 to 16
storeys, was isolated in 2006 by means of MDRBs. Right: a group of such bearings.
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Figure 54. Left: the 15-storey Cascade multifunctional complex, isolated in Yerevan by
MDRBs in 2006. Construction of even taller buildings is in progress. Right: the roof of
the new Ataturk Airport in Istanbul, isolated by means of 100 FPS devices in 1999.

collaborators with projects in the Russian Federation (including the first of the previously cited retrofits
performed in that country), Romania and Nagorno-Karabakh.

12. Turkey

The Turkish applications of the SVPC systems started after the 1999 Kocaeli and Duzce earthquakes,
which damaged the now seismically isolated new Ataturk airport in Istanbul (it was being conventionally
constructed at that time) — see Figure 54 — while the Bolu viaduct of the Istanbul–Ankara freeway was
saved from collapse by EPDs manufactured in Italy [Dolce et al. 2005; 2006]. Thus, the airport was
retrofitted by inserting FPS devices below the roof. Further applications of SI were later performed, to
both new and existing structures, including, by May 2007, the retrofit of the Antalya international airport
terminal, two new hospitals, one hotel, freeway viaducts (including the Bolu viaduct) and two large LNG
tanks at Aliaga; see Figure 55 and [Dolce et al. 2005; 2006].

 

Figure 55. Isolated buildings in Turkey. Left: the T.E.B. Headquarters, a building which
was under construction on 87 LRBs and LDRBs in Istanbul in 2006. Right: Söğütözü
Congress and Commercial Centre in Ankara, isolated using 105 SIP devices manufac-
tured in Germany in 2007.
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Further applications completed in the last two years or in progress include important bridges and
viaducts, two further airport structures (one terminal and one hangar), a high school and a mosque. The
SI retrofitting of numerous schools and hospitals in Istanbul is foreseen in the framework of an important
project [Zhou et al. 2009]. The SI systems initially used in Turkey consisted of FPS devices, while now
RBs (partly manufactured in Italy) and SIP devices manufactured in Germany are also being used.

13. Mexico

In May 2007 the Mexican applications of SI were only seven (besides four new projects under develop-
ment, including the construction of the new Basilica of Guadalajara), while those of ED systems were
already 25 [Erdik et al. 2008]. The first, begun in 1974, encompasses two bridges, three civil buildings,

Figure 56. The Legaria Secondary school at Mexico City (first Mexican application of
SI, performed in 1974) and one of its rolling SI devices, developed in Mexico.

Figure 57. SI of the printing press of the Mexican Reforma Newspaper (1994) and of
the Mural Newspaper building (1998).
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one factory for the production of microchips at Mexicali and the printing press of the Reforma Newspaper
(Figures 56 and 57). Most of these applications (5) make use of an SI rolling system developed in the
country. Those of ED, on the contrary, initiated in 1989 and all to buildings (16 at Mexico City and 9 at
Acapulco), were performed with devices manufactured in the USA: the most common (in 16 cases) were
the so-called added damping and stiffness (ADAS) EPDs, but VDs too are getting a footing. Fourteen
of the aforesaid applications were retrofits of existing buildings.

14. Greece

In Greece, the SVPC systems have already been applied to a limited number of civil structures (only four
buildings and some bridges and viaducts had been completed with such systems in 2007), but also to
two large LNG tanks, which were isolated at Revithoussa with FPS devices in the 1990s, and a ceiling
of archaeological excavations [Erdik et al. 2008]. It is noted that some important Greek civil structures
have been protected by isolators or dampers manufactured in Italy [Dolce et al. 2005; 2006] Remarkable
examples of application of Italian devices are the ceiling of the new international airport Eleftherios
Venizelos, isolated by means of 8 HDRBs and 128 multidirectional RBs with superposed friction plates
in 1998, and more recent applications such as those shown by Figure 58. In October 2008 only two
Greek buildings were isolated by devices manufactured in countries other than Italy, in this case German
SIP devices: both were located in the Onassis Centre in Athens (Figure 59).

 

Figure 58. Left: the Rion–Antirion bridge in Greece, 12 km in length and protected,
together with its approaches, by Italian SVPC devices, including 188 VDs. Right: the
International Broadcasting Centre in Athens, isolated in 2003 by means of 292 Italian
HDRBs.

15. Cyprus

Cyprus lies on the southern part of the diffuse boundary between the African and Eurasian plate in a rel-
atively active seismic zone; there, the majority of buildings is relatively stiff, with fundamental vibration
frequencies that fall within the usually high seismic energy field, rendering them ideal candidates for the
application of SI. Nevertheless, in May 2009 its use and, in general, that of SVPC techniques were still
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Figure 59. Left: the Onassis Centre in Athens, with the Acropolis Museum, isolated in
2007 by 94 German SIP devices in 2006 (left). Right: the Onassis House of Letters and
Fine Arts, during its construction, again with German SIP devices.

limited to a handful of practical applications: a multistorey r.c. building of the Cyprus Sports Organiza-
tion, which had been protected by steel braces with VDs prior to May 2007; three commercial/industrial
buildings with steel rigid frames and frames with eccentric bracing, where HDRBs (Figure 60) or FPS
devices were placed on top of the basement columns; a retrofit planned for a multistorey building for
the Telecommunications Authority of Cyprus, to be partly supported FPS devices; and three highway
bridges, supported either by LRBs or FPS devices [Phocas et al. 2009].

Figure 60. The Shakolas Park Commercial Centre at Nicosia (Cyprus), designed by the
Italian GLIS board and ASSISi member G. C. Giuliani and his son of Redesco (Milan),
formed by two buildings with mixed r.c. and steel structure, with 164 Italian HDRBs
installed at top of the basement columns, during construction in 2007.

16. Portugal

In Portugal, the use of the SVPC systems has been so far almost exclusively limited to bridges and
viaducts, to which there is already a significant number of applications. In October 2008 [Sannino et al.
2009], the only isolated buildings were the La Luz new hospital and the adjacent residence for old people;
they were isolated with 315 HDRBs (Figure 61). The isolators installed in these buildings and the SVPC
devices used in a large part of the Portuguese bridges and viaducts were manufactured in Italy.
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Figure 61. The new La Luz new hospital in Lisbon, which was base-isolated in 2006,
together with a residence for old people, by means of 315 Italian HDRBs.

17. Iran

In Iran the use of SVPC systems recently began in an extensive way, mainly with the application of RBs
manufactured in Malaysia to a huge number of residential buildings (several hundreds) at Parand, a new
town being constructed near Tehran; however, some problems occurred during construction and only 5
buildings were completed to date [JSSI 2009]. Installation of SVPC devices manufactured in Italy also
began (a hotel was retrofitted by means of Italian dampers). In addition, there are some very interesting
designs, for instance one for the retrofit of the Iran Bastan Museum at Teheran with SI, developed in
the framework of a collaboration between Italy an Iran, which (among others) involves the International
Institute of Earthquake Engineering and Seismology of Tehran, ASSISi and GLIS members representing
the Mediterranean University of Reggio Calabria, ENEA and the Abdus Salam International Centre of
Theoretical Physics of Trieste [Erdik et al. 2008].

18. Canada

In Canada the use of ED systems (frequently BRBs) is rather popular [Zhou et al. 2009], but that of
SI devices began only recently (Figure 62): the beginning of construction of the first Canadian isolated
building was recently reported.

 

Figure 62. Golden Ear Bridge (Canada), isolated in 2007 by means of Italian CSS devices.



118 ALESSANDRO MARTELLI AND MASSIMO FORNI

 

Figure 63. The new building of the Hospital Militar de Santiago (80,000 m2), in the
community of La Reina, under construction in 2006. It is equipped with 114 HDRBs
and 50 LRBs.

19. Chile

Chile, where the first isolated building (the Communidad Andalucia residential building) dates back to
1992 [Dolce et al. 2005; 2006], is particularly active in the development of new antiseismic systems,
but new application of SI to buildings is hampered by very penalizing design rules, consistent with US
ones [Erdik et al. 2008]: the only new isolated building under construction in 2006 was a large hospital
in Santiago (Figure 63), completed in 2009. Notably, the buildings just mentioned behaved very well
during the quake of February 27, 2010.

20. Venezuela

In Venezuela a considerable number of railway bridges and viaducts have been protected by dampers
manufactured in Italy; see Figure 64 and [Sannino et al. 2009].

 

Figure 64. The The Caracas – Tuy Medio railway in Venezuela (26 isostatic span
viaducts, overall length = 7,775 m, 217 spans), protected by over 1,500 isolators manu-
factured in Italy in 1999–2003.
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21. Indonesia

In Indonesia there are already at least two isolated constructions: a demonstration residential building
erected on HDRBs in 1994, in the framework of an UNIDO-funded project [Dolce et al. 2005; 2006],
and the Medan City Hall, later protected by Italian isolators [Sannino et al. 2009].

22. Macedonia

In Macedonia Italian HDRBs were used to isolate the new Test Laboratory Building of the Skopje Univer-
sity some years ago. Furthermore (see [Erdik et al. 2008] and Figure 65, left), the poorly steel-laminated
and very degraded LDRBs of Johan Heinrich Pestalozzi Primary School at Skopje (which was the first
modern application of SI) were replaced by locally manufactured HDRBs in 2007: the previous bearings
had been installed to protect the aforesaid school when it was erected in the 1960s, after the violent
Skopje earthquake of 1963.

Figure 65. Left: the isolated Pestalozzi school at Skopje (Macedonia), built in the 1960s.
Top right: a very degraded original low damping rubber bearing (LDRB). Bottom right:
a new HDRB, next to original LDRBs yet to be replaced.

23. Romania

In Romania the use of SI began only recently (Figure 66, left), with Italian and Armenian projects (see
end of Section 11). Romania is expected to invest heavily in SI, due to the large energy content at low
frequencies which characterizes earthquakes in a considerable part of its territory [Sannino et al. 2009].

24. Other countries

The authors are aware of at least one isolated building each in Algeria, Argentina, Israel, India and
Switzerland, and a certain number of isolated bridges and viaducts in further countries such as Bangladesh.
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Figure 66. Left: retrofit design with SI of the Victor Slavescu monumental building
in Bucharest, Romania, erected in 1905 (55.2 m × 20.87 m; height = 22.5 m). Right:
residential building for university students at Mendoza, Argentina, isolated by means of
four 3D German GERB isolators.

The building in Argentina, erected at Mendoza close to an active fault, has been protected by German
3D isolators (Figure 66, right).

25. Conclusions

SI and the other SVPC technologies have been already widely used in over 30 countries and their appli-
cation is increasing more and more, for both new constructions and retrofits, for all kinds of structures.
The features of the design rules used, as well as earthquake experience, have plaid a key role on the
success of the aforesaid technologies. Japan is largely the leading country for the number of applications
of both SI and ED systems. It is now followed by China, Russia, the US and Italy. Iran might soon get
the second place for the number of isolated buildings, if the huge project consisting in the SI of hundreds
of new residential buildings at Parand (a new town under construction near Tehran) will be completed
as planned.

Italy (where the contributions provided by ENEA have been of fundamental importance) is the leading
country at European level, with regard to both SI and ED of buildings, bridges and viaducts. In addition,
it is the worldwide leading country for the use of SVPC systems (in particular SMADs and STUs) to
cultural heritage. Its applications are being significantly extended after the 2009 Abruzzo earthquake.
Italian SVPC devices have been installed in several other countries too.

SI is now worldwide recognized as particularly beneficial for the protection of strategic constructions
like civil defense centers and hospitals (by ensuring their full integrity and operability after the earth-
quake) and for schools and other highly populated public buildings (also because the large values of
the superstructure vibration periods minimize panic). Some codes (e.g., those adopted in Italy, China,
Armenia, etc.) allow for taking advantage of the reduction of seismic forces operated by SI: their use
makes SI attractive for the residential buildings too, because the additional construction costs due to the
use of this technique (if any) are very limited.
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In order to really strongly enhance the seismic protection of our communities, an extensive applica-
tion of the antiseismic systems is necessary [JSSI 2009]: to achieve this objective, legislative measures
and economic incentives, such as the first ones that were recently decided in Italy, may considerably
contribute, especially in the countries where the perception of seismic risk is not yet sufficient.

Hopefully, the use of SVPC systems (in particular SI) will strongly increase for the protection of
cultural heritage and high risk plants, as well. For the first, the problem is the compatibility with the con-
servation requirements. With regard to the latter, SI has a great potential not only for nuclear structures,
but also for chemical components like LNG tanks, for which, to date, only very few applications exist
(in South Korea, China, Turkey, France, Greece and, soon, Mexico: in fact, detailed studies have shown
that SI is indispensable for such components in highly seismic areas [Dolce et al. 2005; 2006; Martelli
2009a].

However, it should be kept in mind that the use of SI in countries like Italy, where designers are
allowed by code to decrease the seismic forces when adopting this technology, requires very careful
selection, design, installation, protection and maintenance during the entire life of the isolated structure:
otherwise, safety could be lower than for if conventional techniques were used.
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