
ERRATUM TO “DISCRETENESS AND COMPLETENESS FOR

Θn-MODELS OF (∞, n)-CATEGORIES”

JULIA E. BERGNER

In this erratum, we correct the statement of Proposition 5.4 of [1], which previously
had a missing hypothesis, and clarify in the proof where this additional assumption is
needed. We also correct some typos in the coskeleton computations in Example 7.9 of
that paper.

We thank Miika Tuominen and Jack Romo for conversations about these mistakes
and their clarification.

1. Correction to comparison of definitions of Segal objects

We briefly recall some definitions to begin.

Definition 1.1. A Segal object in Θn-spaces is a Reedy fibrant functor W : ∆op →
SSetsΘ

op
n such that, for every m ≥ 2, the Segal map

Wm → W1 ×W0 · · · ×W0 W1︸ ︷︷ ︸
m

is a weak equivalence in the model structure ΘnCSS.

However, there is another definition that is more widely used in the literature, and
that enables a cleaner description of the completeness condition. Here it is helpful to
regard functors W : ∆op → SSetsΘ

op
n instead as functors W : ∆op ×Θop

n → SSets.

Definition 1.2. Given a functor W : ∆op×Θop
n → SSets and any x0, x1 ∈ W ([0], [0])0,

the mapping object M∆
W (x0, x1) : Θ

op
n → SSets is defined levelwise by pullbacks

(1.3) M∆
W (x0, x1)(c) //

��

W ([1], c)

��
{(x0, x1)} // W ([0], c)×W ([0], c).

The following result is the corrected version of Proposition 5.4 of [1], adding an
essential constancy condition. Recall that a Θn-space X is essentially constant if
for any object [m](c1, . . . , cm) of Θn the unique map from it to [0] induces a weak
equivalence X[0] → X[m](c1, . . . , cm).

Proposition 1.4. A Reedy fibrant functor W : ∆op × Θop
n → SSets is a Segal object

in Θn-spaces with W0 essentially constant if and only if the following conditions hold:
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(1) for any m ≥ 2 and c ∈ ob(Θn), the Segal map

W ([m], c) → W ([1], c)×W ([0],c) · · · ×W ([0],c) W ([1], c)

is a weak equivalence of simplicial sets; and
(2) for any x0, x1 ∈ W ([0], [0])0, the mapping object M∆

W (x0, x1) is a Θn-space.

Proof. Suppose that W is a Segal object in Θn-spaces, so for each m ≥ 2 the map

Wm → W1 ×W0 · · · ×W0 W1

is a weak equivalence in ΘnCSS. Since W is assumed to be Reedy fibrant, Wm is
a Θn-space for each m ≥ 0 [3, 15.3.12]. Since ΘnCSS is obtained as a localized
model category, and local weak equivalences between fibrant objects are levelwise weak
equivalences, each Segal map above is a levelwise weak equivalence of functors Θop

n →
SSets, i.e., the maps as in (1) are weak equivalences of simplicial sets.

To check (2), consider M∆
W (x, y) for fixed x, y ∈ W ([0], [0])0. Since W is assumed

to be Reedy fibrant, the right vertical map in (1.3) is a fibration between Θn-spaces,
which are the fibrant objects in ΘnCSS. Since the discrete object {(x, y)} is also a
fibrant object in ΘnCSS, the pullback must be as well. It follows that M∆

W (x, y) is
fibrant, namely, a Θn-space.

Conversely, suppose W satisfies conditions (1) and (2). We first want to show that
W is Reedy fibrant as a functor W : ∆op → ΘnCSS. For any m ≥ 0, let MmW denote
the m-th matching object of W ; using the definition of Reedy fibration [3, 15.3.3], we
need to show that the map Wm → MmW is a fibration in ΘnCSS.

Observe that Wm = Map(∆[m],W ), the functor Θop
n → SSets defined by

[p](c1, . . . , cp) 7→ W ([m], [p](c1, . . . , cp)).

Similarly, MmW = Map(∂∆[m],W ). Using the inclusion ∂∆[m] → ∆[m], one can
check that the map Wm → MmW is indeed a Reedy fibration. It remains to show it is
a fibration in ΘnCSS, for which it suffices by [3, 15.3.13] to show that Wn is fibrant,
i.e, a Θn-space.

We apply the right adjoint R to the inclusion functor of Segal precategory objects,
or functors ∆op → ΘnSp with discrete space in degree zero, into all simplicial objects
in ΘnSp, where RW is the pullback

RW //

��

cosk0(W ([0], [0]))

��
W // cosk0(W0).

The essential constancy of W0 implies that cosk0(W ([0], [0]) is levelwise weakly equiv-
alent to cosk0(W0), and hence RW → W is also a levelwise weak equivalence. But

(RW )1 =
∐
(x,y)

mapW (x, y),

which is a Θn-space by assumption, thus W1 must be as well; a similar argument can
be used for n ≥ 1.
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Finally, we need to check that for any m ≥ 2 the Segal map

Wm → W1 ×W0 · · · ×W0 W1

is a weak equivalence in ΘnCSS. We know by assumption that for any m ≥ 2 and any
object c of Θop

n , the map

W ([m], c) → W ([1], c)×W ([0],c) · · · ×(W ([0],c) W ([1], c)

is a weak equivalence of simplicial sets. It follows that the Segal map above is a levelwise
weak equivalence of simplicial sets, hence also a weak equivalence in ΘnCSS. □

Observe that the proof of the forward direction did not use the essential constancy
condition, but it was necessary to prove the converse.

2. Correction to coskeleton computations

Here, we revise Example 7.9 of [1], correcting some mistakes in the original version.

Example 2.1. Suppose that C = Θop
2 , and let us consider the coskeleta associated to

subsets T of
S = {[0], [1]([0])} ⊆ ob(Θop

2 ).

We start with the case when T is the subset consisting of the object [0]; we denote
the associated coskeleton functor by cosk[0]. Given a functor X : Θop

2 → SSets, we can
use the fact that Θ2 is built from ∆ in particular ways to describe cosk[0](X).

First, when we evaluate at any object of the form [q]([0], . . . , [0]), we can use the
description of the 0-coskeleton of a simplicial space to see that

(cosk[0]X)[q]([0], . . . , [0]) ∼= X[0]q+1.

In particular, we have
(cosk[0]X)[1]([0]) ∼= X[0]2.

Now, we can make use of the simplicial structure built into the objects [1]([c]) to observe
that

(cosk[0]X)[1]([c]) ∼= X[0]2,

and indeed one can check that

(cosk[0]X)[q]([c1], . . . , [cq]) ∼=
(
X[0]q+1

)
for any q.

Now, let us consider instead the case when T is the subset containing only the object
[1]([0]). In this situation, the simplicial 0-coskeleton appears in the objects [1]([c]), for
any c ≥ 0, in that

(cosk[1]([0])X)[1]([c]) ∼= X[1]([0])c+1.

At the object [0], we must have

(cosk[1]([0])X)[0] ∼= ∆[0].

For the object [1]([1]), we must get

(cosk[1]([0])X)[1]([1]) ∼= X[1]([0])×X[1][0];

a general formula for evaluating at objects [q]([c1], . . . , [cq]) quickly becomes more com-
plicated.
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Finally, we consider the coskeleton associated to S itself. Here, we get

(coskS X)[0] = X[0]

and
(coskS X)[1]([0]) = X[1]([0]).

It is not hard to check that

(coskS X)[q]([0], . . . , [0]) ∼= X[1]([0])×X[0] · · · ×X[0] X[1]([0]).

We leave the descriptions upon evaluating at a general [q]([c1], . . . , [cq]) to the reader.
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