Volume 1, issue 1 (2001)

Download this article
For printing
Recent Issues

Volume 20
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Commensurability of graph products

Tadeusz Januszkiewicz and Jacek Świątkowski

Algebraic & Geometric Topology 1 (2001) 587–603
Bibliography
1 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999) MR1744486
2 M Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic Theory Dynam. Systems 20 (2000) 343 MR1756974
3 M Bourdon, Sur la dimension de Hausdorff de l'ensemble limite d'une famille de sous-groupes convexes co-compacts, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1097 MR1614024
4 M W Davis, Buildings are $\mathrm{CAT}(0)$, from: "Geometry and cohomology in group theory (Durham, 1994)", London Math. Soc. Lecture Note Ser. 252, Cambridge Univ. Press (1998) 108 MR1709955
5 M W Davis, T Januszkiewicz, Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000) 229 MR1783167
6 T Hsu, D T Wise, On linear and residual properties of graph products, Michigan Math. J. 46 (1999) 251 MR1704150
7 S P Humphries, On representations of Artin groups and the Tits conjecture, J. Algebra 169 (1994) 847 MR1302120
8 F T Leighton, Finite common coverings of graphs, J. Combin. Theory Ser. B 33 (1982) 231 MR693362
9 K Whyte, Amenability, bi–Lipschitz equivalence, and the von Neumann conjecture, Duke Math. J. 99 (1999) 93 MR1700742