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Concordance and 1-loop clovers
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Abstract We show that surgery on a connected clover (or clasper) with
at least one loop preserves the concordance class of a knot. Surgery on a
slightly more special class of clovers preserves invertible concordance. We
also show that the converse is false. Similar results hold for clovers with at
least two loops vs. S-equivalence.
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1 Introduction

1.1 History

M. Goussarov and K. Habiro have independently studied links and 3-manifolds
from the point of view of surgery on objects called Y-graphs, claspers or clovers,
respectively by [Gu, H] and [GGP]. Following the notation of [GGP], given a
pair (M, K) consisting of a knot K in an integral homology 3-sphere M, and
a clover G C M — K, surgery on the framed link associated to G produces a
new pair (M, K)g. Thus, by specifying a class of clovers ¢ we can define an
equivalence relation (also denoted by ¢) on the set M of knots in integral
homology 3-spheres and sometimes on its subset K of knots in S3.

It is often the case that for certain classes of clovers ¢, the equivalence relation
is related to some natural topological equivalence relation. In this paper we
will be particularly interested in concordance (in the smooth category) but will
also discuss S-equivalence.

We begin by discussing some known facts. Using the terminology of [GGP], let
¢®2 denote the class of clovers G C S% — K of degree 1 (that is, the class of Y-
graphs) whose leaves form a 0-framed unlink which bounds disks disjoint from
G that intersect K geometrically twice and algebraically zero times. Surgery
on such clovers was called a double A elta move by Naik-Stanford, who showed
that
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Theorem 1 [NS] ¢*2 coincides with S-equivalence on K.

Relaxing the above condition, let ¢!°°P denote the class of clovers G € M — K
whose leaves have zero linking number with K. Surgery on such clovers was
called a loop move by G.-Rozansky who showed that

Theorem 2 [GR] ¢'°°P coincides with S-equivalence on KM

Let us make the following definition. If G is a clover in M — K and £ a set of
leaves of G, we say L is simple if the elements of £ bound disks in M each of
which intersects K exactly once but whose interiors otherwise are disjoint from
K, G and each other. Consider now for every non-negative integer n, the class
¢" of clovers G C 83 — K whose entire set of leaves is simple, and such that
each connected component of G is a graph with at least n loops (i.e., whose
first betti number is at least n). Kricker and Murakami-Ohtsuki showed that

Theorem 3 [Kr, MO] 2 implies S-equivalence on K.

In fact, if we let ¢V denote the class of clovers G such that each component
of G has at least one internal trivalent vertex, and G has a simple set of
leaves containing one leaf from each component, then it is not hard to check
that ¢ C ¢V and [Kr, MO] actually proved that ¢V implies S-equivalence.
Combining this with a recent result of Conant-Teichner [CT] we actually have:

Theorem 4 [CT| ¢V coincides with S-equivalence on K.

1.2 Statement of the results

In the present paper we will prove the following results.

Theorem 5 ¢! implies concordance on K.

An different proof of Theorem 5 has been obtained by Conant-Teichner [CT]
relying on the notion of grope cobordism. This result was also announced by the
first author in [Le2], where an analogous statement was proved, and our proof
will follow the lines of that argument. The result was also known to Habiro,
according to private communication.

A slight refinement of the class ¢! relates to a classical refinement of concordance
known as invertible concordance. Recall that a knot in S3 is called double-slice if
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it can be exhibited as the intersection of a 3-dimensional hyperplane in R* with
an unknotted imbedding of S? in R*; see e.g. [Su]. Such knots are obviously
slice, and it is shown in [Su] that, for any knot K, the connected sum K§(—K) is
double-slice, where —K denotes the mirror image of K. On the other hand the
Stevedore knot is slice but not double-slice (see [Su]). More generally, following
[Su], we say that K is invertibly concordant to K' if there is a concordance V
from K to K’ and a concordance W from K’ to K so that if we stack W on
top of V', the resulting concordance from K to itself is diffeomorphic to the
product concordance (I x S3,I x K). If we write K < K’ then < is transitive
and reflexive and perhaps even a partial ordering. It is easy to see that 0 < K,
where 0 denotes the trivial knot, if and only if K is double-slice.

Let ¢b™ denote the subclass of ¢! consisting of clovers with no forks— a fork is
a trivalent vertex two of whose incident edges contain a univalent vertex. Then,
we will prove:

Theorem 6 If G is a clover in the class ¢"™ and K’ is obtained from K by
surgery on G then K < K'.

It is natural to ask whether the converses to Theorems 3, 5 and 6 are true. If
that were the case, one could extract from the rational functions invariants of
[GK] many concordance invariants of knots. It was a bit of a surprise for us to
show that the converses are all false.

First of all, it will follow easily from a recent result of Livingston that:
Proposition 1.1 There are S-equivalent knots which are not ¢?-equivalent.
Then we will generalize some techniques of Kricker to prove:

Theorem 7 There are double-slice knots which are not ¢!-equivalent to the
unknot.

Remark 1.2 The proofs of Proposition 1.1 and Theorem 7 allow one to easily
construct specific knots with the desired properties. See [Li, Theorem 10.1] for
knots that satisfy Proposition 1.1. For the (5,2)-torus knot 752, we have that
T598(—T52) is a knot that satisfies Theorem 7.
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1.3 Plan of the proof

Theorems 5 and 6 follow from an analysis of the surgery link corresponding to
a clover.

Proposition 1.1 follows easily from the fact (proven recently by Livingston [Li],
using Casson-Gordon invariants) that S-equivalence does not imply concor-
dance.

Theorem 7 follows from the fact that under surgery on ¢'-clovers, the Alexander
polynomial changes under a more restrictive way than under a concordance.

2 Proofs

2.1 Proof of Theorem 5

Suppose that G is a connected clover of class ¢! and L is its associated framed
link, [Gu, H, GGP]. We want to show that the knot K’ obtained from K by
surgery on L is concordant to K. Note that the manifold M obtained from
S3 by surgery on L is diffeomorphic to S%, see [Gu, H, GGP].

Lemma 2.1 We can express L as a union of two sublinks L' and L"” such
that:

o [ is a trivial 0-framed link in S® — K,

e [ is a trivial O-framed link in S®.

Assuming this lemma we can complete the proof of Theorem 5 as follows.

Consider I x K C I x $% and § x L C 1 x (% — K). Consider a union
of disjoint disks D’ in % x (S® — K) bounded by L’ and push their interiors
into [0,3) x (9% — K). Also consider a union of disjoint disks D” in 3 x §3
bounded by L” and push their interiors into (3,1] x S3. Now let X C I x 3
be obtained from |0, %] x S3 by removing a tubular neighborhood of D’ and
adjoining a tubular neighborhood of D”. The boundary of X consists of 0 x S3
and a copy of M, which is diffeomorphic to S3. Thus X is diffeomorphic
to I x S? ( indeed, add a D* to X along 0 x S® and observe that any two
imbeddings of a 4-disk in a fixed 4-disk are isotopic). Moreover X contains
[0, %] x K, which is a concordance from 0 x K C 0 x S3 to % x K C M, which

is just K'. O
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Proof of Lemma 2.1 This is a generalization of the argument used to prove
Theorem 2 in [Le2]. Recall (eg. from [GGP, Section 2.3]) that surgery on a
clover G with n edges corresponds to surgery on a link L of 2n components.
Given an orientation of the edges of GG, we can split L into the disjoint union of
n-component sublinks L' and L”, where L’ (resp. L") consists of the sublink
of L assigned to the tails of the edges of G (resp. of the heads of the edges
of G, together with the leaves of G'). As long as we avoid assigning all three
of the components at a trivalent vertex to L’ or L”, we will have the desired
decomposition of L. The corresponding conditions imposed on the orientation
of the edges of G are:

(1) No trivalent vertex is a source or a sink,

(2) Every edge with a univalent vertex is oriented toward the univalent vertex.

These are the same conditions as (i) and (ii) in the proof of Theorem 2 in
[Le2] except that we now require no trivalent sinks also. But this will follow by
the same argument as in [Le2] except that we need to choose the orientations
of the cut edges more carefully. In particular we need to avoid choosing the
orientation of two cut edges which share a trivalent vertex so that they both
point into that vertex. But it is not hard to see that this can be done. O

The next two remarks are an addendum to Theorem 5.

Remark 2.2 Observe that the sublinks L’ and L” of L which are constructed
from G have the same number of components, and that the linking matrix of
L is hyperbolic. Lemma 2.1 is analogous to the case of a knot which bounds
a Seifert surface with a metabolic Seifert surface. In that case, the knot is
algebraically slice, and if a metabolizer can be chosen to be bands of the Seifert
surface that form a slice link, then the knot is slice.

Remark 2.3 Suppose that a knot K’ is obtained from the unknot K by
surgery on a connected clover of class ¢!. It follows from Theorem 5 that K’

is slice. Using the calculus of clovers, one can show that K’ is actually ribbon,
as observed also by Kricker and Habiro.

2.2 Proof of Theorem 6

We need a refinement of Lemma 2.1. Consider a connected clover G of class
¢I2f and let L be its associated framed link.
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Lemma 2.4 There is a link L in S® — K, Kirby equivalent to L in S® — K,
so that L is a union of two sublinks L', L", each of which is trivial in S% — K.

Assuming this lemma, we finish the proof following the lines of the argument
following Lemma 2.1. The only difference is that we now use L instead of L
and that X’ = I x S3 — X, which is also diffeomorphic to I x S3, now also
contains [3,1] x K. Thus M splits the trivial concordance from K to itself.
This, by definition, means K < K’. O

Proof of Lemma 2.4 For each univalent vertex of GG, there is a correspond-
ing part of L which looks like the left part of Figure 1.

Ly o Ls L4\C_\/ L3
SRR Y
2 /
—o 4
1

Figure 1: The associated link of a clover near a univalent vertex which is not a fork,
before and after a Kirby move.

Now we can perform a Kirby move (see [Kr|,[MO]) so that the four component
link {Ly,...,L4} in Figure 1 is replaced by two component link {Lz, L,}. If
we do this at every univalent vertex of G we obtain the link L. Now consider
the partition L = L' U L” given by Lemma 2.1. The corresponding partition of
Lisgivenby L' = {K|K € L' — {L1,L2}} and L" = {K|K € L" — {L1, L2}}.
It is easy to see that both L’ and L” are trivial in S — K. This completes the
proof. O

2.3 Proof of Proposition 1.1

Assume that S-equivalence implies ¢? on K. Since ¢? implies ¢!, and ¢! implies
concordance (by Theorem 5), it follows that S-equivalence implies concordance.
This is false. Livingston using Casson-Gordon invariants, shows that there are
S-equivalent knots which are algebraically slice, but not slice, [Li, Theorem 0.4].
Since Livingston uses Casson-Gordon invariants, his examples have nontrivial
Alexander module.
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2.4 Proof of Theorem 7

We show that the Alexander polynomial A of a knot changes in a more re-
strictive way under c!'-equivalence than under concordance. Recall that if
K and K’ are concordant knots, then their Alexander polynomials satisfy
A0 ()0 (t7Y) = Ag®)0t)0(t™!) for some 0(t),0'(t) € Z[t,t7!] satisfy-
ing 6(1) = (1) = £1. Moreover, there are double-slice knots with Alexander
polynomial 6(¢)0(t~!) for any such §. On the other hand,

Lemma 2.5 Let K and K’ be c'-equivalent knots. Then,
A0t = Ag()0)0(t™)

where 0(t) and ¢'(t) are products of polynomials of the form 1+ t*(t —1)" for
some integers k,n with n > 0.

Proof We prove this using a generalization of an argument of Kricker [Kr].
Consider a connected clover G of the class ¢'. Suppose that K’ is obtained
from K by surgery on G. If G has at least one internal trivalent vertex, then K
and K’ are S-equivalent (see the discussion following Theorem 3); in particular
Ak (t) = Ags(t). Otherwise, G must be a wheel with a certain number n of
legs and with a total of 2n edges. Thus, the associated link L' in $% — K has
4n components (see Figure below). Using the Kirby move in Figure 1 at every
leaf of G we see that L’ is Kirby-equivalent in S® — K to a link L with 2n
components, whose components can be numbered in pairs li,71,...,l, 7, SO
that:

(1) I; (resp. r;) bounds a disk d; (resp. e;) in S — K,
(2) d;nNe;, for 1 <i<mn, each consists of two oppositely oriented clasps,
(3) e;Ndiy1, for 1 <i<n and e, Nd; each consists of a single clasp, and

(4) there are no other intersections among the disks.

An example for n = 2 is shown below:

//
/ / ((\L\ k !
\ _/ \\%//

G | J
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We can now lift d; and e; to disks, JZ and ¢;, in the infinite cyclic cover X of
X = 83 — K. The lifts of I;,r; form a link L in X which has a linking matrix
B with entries in Z[t,t~!]. To compute B note that we can choose the lifts d;
and €; so that:

(1) d; N€ consists of a single clasp, for every 1,

(2) d; Nt(&) consists of a single clasp, oriented opposite to that in (1), for

every 1,

(3) &n CZH, for 1 < i < n, consists of a single clasp, and

(4)
In (4), k (up to sign) is just the linking number of K with the imbedded wheel
of G.

Now it follows from this intersection data and the fact that L is 0-framed that
we can orient L so that the linking matrix B is given by

t—1 1 0o ... 0
0 t—-1 1 0

€n N tk(cﬂ), for some integer k, consists of a single clasp.

0 e 0 t—1 1
=0 ... 0 t-1
For any matrix A over Z[t,t71], A* denotes the conjugate (under the involution
t «» t~1) transpose of A. The desired result Ag/(t) = A (t)0(t)0(t~1) is now
a consequence of the following lemma, which is proved by a standard argument

going back to Kervaire-Milnor, generalized to covering spaces (see for example
[Lel, p.140]). D

Suppose K C S? is a knot, L a framed link in X = S — K, and K’ C S}
the knot produced from K by surgery on L. Assume that the components
of L are null-homologous in X and the components of L C X, the lift of L
into X, are null-homologous. In this case we have well-defined linking numbers
of the components of L which are organized into a matrix B with entries in
Z[t,t7!] in the usual way. Let A(K) = H;(X) and A(K') = H;(Y) denote the
Alezander modules of K, K', where Y = 83 — K.

Lemma 2.6 There is an exact sequence of Z[t,t~!]-modules
0—M— AK') — A(K) — 0

where M is a module with presentation matrix B. In particular, A =
Ag det(B).
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Proof Observe that ¥ = )?Z' Consider the following diagram of exact se-
quences of Z[t,t~!]-modules.

Hy(Y,X—1L)

Notice that Hy(X,X — L) = Hi(Y,X — L) = 0. Moreover, Hy(X,X — L) is
freely generated by the meridian disks of L, lifted to X, and Hg(f/,)? — E)
is freely generated by the disks attached by the surgeries. Thus, since the
components of L are null-homologous in X, i,00, = 0. Also note that Hy(X) =
0 and so we have a mapping

Hy(Y,X — L) — Hy(X, X — L)
induced by 0, which can be interpreted as expressing the longitudes of L as
linear combinations of the meridians of L in H;(X — L). Therefore this map is

given by the linking numbers of L and has B as a representative matrix. This
completes the proof of Lemma 2.6 and, as a consequence, Lemma 2.5. O

To complete the proof of Theorem 7 we need the following lemma.

Lemma 2.7 Let f(t) be a polynomial of the form 1 + t*(t — 1)", for any
integers k,n with n # 0. Then any root of f(t) which lies on the unit circle
must be of the form e*™/3,

Proof If zisaroot of f(t) then |z|¥|z—1|" = 1. Thus we have |z| = |z—1| =1,
from which the conclusion follows. O

Now choose some 6(t) with a root on the unit circle different from e*™/? but
with 0(1) = 1—for example any cyclotomic polynomial of composite order not
equal to 6. Let K be a double-slice knot with Alexander polynomial 6(¢)f(¢t~1)
(see [Su, Theorem 3.3]). Then it follows from Lemmas 2.5 and 2.7 that K is
not ¢! equivalent to the trivial knot. O

We end with a remark concerning the inverse of surgery on a wheel.
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Remark 2.8 Recall that if a knot K’ is obtained from a knot K by surgery
on a Y-graph G, then there exists a Y-graph G’ such that K is obtained from
K' by surgery on G’, see [GGP, Theorem 3.2]. Recall also that surgery on a
wheel is described in terms of surgery on a union of Y-graphs, as explained
in [GGP, Section 2.3]; in particular the inverse of surgery on a wheel can be
described in terms of surgery on a union of Y-graphs. One might guess that the
inverse of surgery on a wheel can be described in terms of surgery on a wheel.
This is false, since the proof of Lemma 2.5 implies that if K’ is obtained from
K by surgery on a wheel G, then Ag always divides (and it can happen that
it is not equal to) Ag.
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