Volume 1, issue 2 (2001)

Download this article
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The mapping class group of a genus two surface is linear

Stephen Bigelow and Ryan D Budney

Algebraic & Geometric Topology 1 (2001) 699–708
Bibliography
1 S J Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471 MR1815219
2 J S Birman, H M Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. $(2)$ 97 (1973) 424 MR0325959
3 H M Farkas, I Kra, Riemann surfaces, Graduate Texts in Mathematics 71, Springer (1992) MR1139765
4 M W Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer (1976) MR0448362
5 S P Kerckhoff, The Nielsen realization problem, Ann. of Math. $(2)$ 117 (1983) 235 MR690845
6 M Korkmaz, On the linearity of certain mapping class groups, Turkish J. Math. 24 (2000) 367 MR1803819
7 D Krammer, The braid group $B_4$ is linear, Invent. Math. 142 (2000) 451 MR1804157
8 D Krammer, Braid groups are linear, Ann. of Math. $(2)$ 155 (2002) 131 MR1888796
9 S Lang, Algebra, Addison-Wesley Publishing Co., Reading, MA (1965) MR0197234
10 W B R Lickorish, A finite set of generators for the homeotopy group of a 2–manifold, Proc. Cambridge Philos. Soc. 60 (1964) 769 MR0171269