Volume 2, issue 1 (2002)

Download this article
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Linking first occurrence polynomials over $\mathbb{F}_p$ by Steenrod operations

Phạm Anh Minh and Grant Walker

Algebraic & Geometric Topology 2 (2002) 563–590
Bibliography
1 D P Carlisle, The modular representation theory of $GL(n,p)$ and applications to topology, PhD thesis, University of Manchester (1985)
2 D Carlisle, N J Kuhn, Subalgebras of the Steenrod algebra and the action of matrices on truncated polynomial algebras, J. Algebra 121 (1989) 370 MR992772
3 D P Carlisle, G Walker, Poincaré series for the occurrence of certain modular representations of $\mathrm{GL}(n,p)$ in the symmetric algebra, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989) 27 MR1025452
4 D P Carlisle, G Walker, R M W Wood, The intersection of the admissible basis and the Milnor basis of the Steenrod algebra, J. Pure Appl. Algebra 128 (1998) 1 MR1623269
5 D M Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974) 235 MR0328934
6 S R Doty, G Walker, The composition factors of $\mathbb{F}_p[x_1,x_2,x_ 3]$ as a $\mathrm{GL}(3,p)$–module, J. Algebra 147 (1992) 411 MR1161301
7 S Doty, G Walker, Truncated symmetric powers and modular representations of $\mathrm{GL}_n$, Math. Proc. Cambridge Philos. Soc. 119 (1996) 231 MR1357041
8 J A Green, Polynomial representations of $\mathrm{GL}_{n}$, Lecture Notes in Mathematics 830, Springer (1980) MR606556
9 J C Harris, N J Kuhn, Stable decompositions of classifying spaces of finite abelian $p$–groups, Math. Proc. Cambridge Philos. Soc. 103 (1988) 427 MR932667
10 G James, A Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16, Addison-Wesley Publishing Co., Reading, MA (1981) MR644144
11 J Milnor, The Steenrod algebra and its dual, Ann. of Math. $(2)$ 67 (1958) 150 MR0099653
12 P A Minh, T T Tri, The first occurrence for the irreducible modules of general linear groups in the polynomial algebra, Proc. Amer. Math. Soc. 128 (2000) 401 MR1676308
13 W M Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991) 577 MR1045150
14 T T Tri, On the first occurrence of irreducible representations of semigroup of all matrices as composition factors in the polynomial algebra, Acta Math. Vietnamica to appear
15 G Walker, Modular Schur functions, Trans. Amer. Math. Soc. 346 (1994) 569 MR1273543
16 G Walker, R M W Wood, Linking first occurrence polynomials over $\mathbb F_2$ by Steenrod operations, J. Algebra 246 (2001) 739 MR1872123
17 R M W Wood, Splitting $\Sigma(\mathbb{C}\mathrm{P}^{\infty}\times{\cdots}\times\mathbb{C}\mathrm{P}^{\infty})$ and the action of Steenrod squares $\mathrm{Sq}^i$ on the polynomial ring $F_2[x_1,\cdots,x_n]$, from: "Algebraic topology, Barcelona, 1986", Lecture Notes in Math. 1298, Springer (1987) 237 MR928837