Volume 2, issue 1 (2002)

Download this article
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Stabilisation, bordism and embedded spheres in 4–manifolds

Christian Bohr

Algebraic & Geometric Topology 2 (2002) 219–238

arXiv: math.GT/0012235

Abstract

It is one of the most important facts in 4–dimensional topology that not every spherical homology class of a 4–manifold can be represented by an embedded sphere. In 1978, M Freedman and R Kirby showed that in the simply connected case, many of the obstructions to constructing such a sphere vanish if one modifies the ambient 4–manifold by adding products of 2–spheres, a process which is usually called stabilisation. In this paper, we extend this result to non–simply connected 4–manifolds and show how it is related to the Spinc–bordism groups of Eilenberg–MacLane spaces.

Keywords
embedded spheres in 4–manifolds, Arf invariant
Mathematical Subject Classification 2000
Primary: 57M99
Secondary: 55N22
References
Forward citations
Publication
Received: 27 November 2001
Accepted: 25 February 2002
Published: 27 March 2002
Authors
Christian Bohr
Mathematisches Institut
Theresienstrasse 39
80333 München
Germany