Volume 2, issue 1 (2002)

Download this article
For printing
Recent Issues

Volume 25
Issue 7, 3789–4436
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Intrinsic knotting and linking of complete graphs

Erica Flapan

Algebraic & Geometric Topology 2 (2002) 371–380

arXiv: math.GT/0205231

Abstract

We show that for every m , there exists an n such that every embedding of the complete graph Kn in 3 contains a link of two components whose linking number is at least m. Furthermore, there exists an r such that every embedding of Kr in 3 contains a knot Q with |a2(Q)| m, where a2(Q) denotes the second coefficient of the Conway polynomial of Q.

Keywords
embedded graphs, intrinsic knotting, intrinsic linking
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 05C10
References
Forward citations
Publication
Received: 13 March 2002
Accepted: 28 March 2002
Published: 21 May 2002
Authors
Erica Flapan
Department of Mathematics
Pomona College
Claremont, CA 91711
USA