Volume 3, issue 1 (2003)

Download this article
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
On 4–fold covering moves

Nikos Apostolakis

Algebraic & Geometric Topology 3 (2003) 117–145

arXiv: math.GT/0302225

Abstract

We prove the existence of a finite set of moves sufficient to relate any two representations of the same 3–manifold as a 4–fold simple branched covering of S3. We also prove a stabilization result: after adding a fifth trivial sheet two local moves suffice. These results are analogous to results of Piergallini in degree 3 and can be viewed as a second step in a program to establish similar results for arbitrary degree coverings of S3.

Keywords
branched covering, covering move, colored braid, colored link, $3$–manifold
Mathematical Subject Classification 2000
Primary: 57M12
Secondary: 57M25
References
Forward citations
Publication
Received: 16 November 2002
Accepted: 7 February 2003
Published: 17 February 2003
Authors
Nikos Apostolakis
Department of Mathematics
University of California
Riverside CA 92521
USA