Volume 3, issue 1 (2003)

Download this article
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On 4–fold covering moves

Nikos Apostolakis

Algebraic & Geometric Topology 3 (2003) 117–145

arXiv: math.GT/0302225

Abstract

We prove the existence of a finite set of moves sufficient to relate any two representations of the same 3–manifold as a 4–fold simple branched covering of S3. We also prove a stabilization result: after adding a fifth trivial sheet two local moves suffice. These results are analogous to results of Piergallini in degree 3 and can be viewed as a second step in a program to establish similar results for arbitrary degree coverings of S3.

Keywords
branched covering, covering move, colored braid, colored link, $3$–manifold
Mathematical Subject Classification 2000
Primary: 57M12
Secondary: 57M25
References
Forward citations
Publication
Received: 16 November 2002
Accepted: 7 February 2003
Published: 17 February 2003
Authors
Nikos Apostolakis
Department of Mathematics
University of California
Riverside CA 92521
USA