Volume 3, issue 1 (2003)

Download this article
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Heegaard diagrams and surgery descriptions for twisted face-pairing 3-manifolds

J W Cannon, W J Floyd and W R Parry

Algebraic & Geometric Topology 3 (2003) 235–285

arXiv: math.GT/0303081

Abstract

The twisted face-pairing construction of our earlier papers gives an efficient way of generating, mechanically and with little effort, myriads of relatively simple face-pairing descriptions of interesting closed 3–manifolds. The corresponding description in terms of surgery, or Dehn-filling, reveals the twist construction as a carefully organized surgery on a link. In this paper, we work out the relationship between the twisted face-pairing description of closed 3–manifolds and the more common descriptions by surgery and Heegaard diagrams. We show that all Heegaard diagrams have a natural decomposition into subdiagrams called Heegaard cylinders, each of which has a natural shape given by the ratio of two positive integers. We characterize the Heegaard diagrams arising naturally from a twisted face-pairing description as those whose Heegaard cylinders all have integral shape. This characterization allows us to use the Kirby calculus and standard tools of Heegaard theory to attack the problem of finding which closed, orientable 3–manifolds have a twisted face-pairing description.

Keywords
3–manifold constructions, Dehn surgery, Heegaard diagrams
Mathematical Subject Classification 2000
Primary: 57N10
References
Forward citations
Publication
Received: 12 November 2001
Revised: 5 February 2003
Accepted: 14 February 2003
Published: 5 March 2003
Authors
J W Cannon
Department of Mathematics
Brigham Young University
Provo, UT 84602
USA
W J Floyd
Department of Mathematics
Virginia Tech
Blacksburg VA 24061
USA
http://www.math.vt.edu/people/floyd/
W R Parry
Department of Mathematics
Eastern Michigan University
Ypsilanti MI 48197
USA