Volume 3, issue 1 (2003)

Download this article
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Espaces profinis et problèmes de réalisabilité

Francois-Xavier Dehon and Gerald Gaudens

Algebraic & Geometric Topology 3 (2003) 399–433

arXiv: math.AT/0306271

Abstract

The mod p cohomology of a space comes with an action of the Steenrod Algebra. L. Schwartz [A propos de la conjecture de non realisation due a N. Kuhn, Invent. Math. 134, No 1, (1998) 211–227] proved a conjecture due to N. Kuhn [On topologicaly realizing modules over the Steenrod algebra, Annals of Mathematics, 141 (1995) 321–347] stating that if the mod p cohomology of a space is in a finite stage of the Krull filtration of the category of unstable modules over the Steenrod algebra then it is locally finite. Nevertheless his proof involves some finiteness hypotheses. We show how one can remove those finiteness hypotheses by using the homotopy theory of profinite spaces introduced by F. Morel [Ensembles profinis simpliciaux et interpretation geometrique du foncteur T, Bull. Soc. Math. France, 124 (1996) 347–373], thus obtaining a complete proof of the conjecture. For that purpose we build the Eilenberg–Moore spectral sequence and show its convergence in the profinite setting.

Keywords
Steenrod operations, nilpotent modules, realization, Eilenberg–Moore spectral sequence, profinite spaces
Mathematical Subject Classification 2000
Primary: 55S10
Secondary: 55T20, 57T35
References
Forward citations
Publication
Received: 29 November 2002
Revised: 3 May 2003
Accepted: 14 January 2003
Published: 8 May 2003
Authors
Francois-Xavier Dehon
Laboratoire J.A. Dieudonné
Université de Nice Sophia-Antipolis
Parc Valrose
BP 2053
06101 Nice
France
Gerald Gaudens
Laboratoire Jean Leray (UMR 6629 du C.N.R.S.)
Université de Nantes
BP 92208
44322 Nantes Cedex 3
France