Volume 3, issue 2 (2003)

Download this article
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Near-group categories

Jacob Siehler

Algebraic & Geometric Topology 3 (2003) 719–775

arXiv: math.QA/0209073

Abstract

We consider the possibility of semisimple tensor categories whose fusion rule includes exactly one noninvertible simple object. Conditions are given for the existence or nonexistence of coherent associative structures for such fusion rules, and an explicit construction of matrix solutions to the pentagon equations in the cases where we establish existence. Many of these also support (braided) commutative and tortile structures and we indicate when this is possible. Small examples are presented in detail.

Keywords
monoidal categories, braided categories
Mathematical Subject Classification 2000
Primary: 18D10
References
Forward citations
Publication
Received: 8 November 2002
Accepted: 13 March 2003
Published: 3 August 2003
Authors
Jacob Siehler
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061-0123
USA