Volume 3, issue 2 (2003)

Download this article
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Finite subset spaces of graphs and punctured surfaces

Christopher Tuffley

Algebraic & Geometric Topology 3 (2003) 873–904

arXiv: math.GT/0210315

Abstract

The kth finite subset space of a topological space X is the space expk(X) of non-empty finite subsets of X of size at most k, topologised as a quotient of Xk. The construction is a homotopy functor and may be regarded as a union of configuration spaces of distinct unordered points in X. We calculate the homology of the finite subset spaces of a connected graph Γ, and study the maps (expk(ϕ)) induced by a map ϕ: Γ Γ between two such graphs. By homotopy functoriality the results apply to punctured surfaces also. The braid group Bn may be regarded as the mapping class group of an n–punctured disc Dn, and as such it acts on H(expk(Dn)). We prove a structure theorem for this action, showing that the image of the pure braid group is nilpotent of class at most (n 1)2.

Keywords
configuration spaces, finite subset spaces, symmetric product, graphs, braid groups
Mathematical Subject Classification 2000
Primary: 54B20
Secondary: 05C10, 20F36, 55Q52
References
Forward citations
Publication
Received: 21 February 2003
Revised: 16 September 2003
Accepted: 23 September 2003
Published: 25 September 2003
Authors
Christopher Tuffley
Department of Mathematics
University of California at Davis
One Shields Avenue
Davis, CA 95616-8633
USA